伺服系统概述

合集下载

伺服控制系统(设计)

伺服控制系统(设计)

第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。

在伺服系统中,输出量能够自动、快速、准确地尾随输入量的变化,因此又称之为随动系统或者自动跟踪系统。

机械参数主要包括位移、角度、力、转矩、速度和加速度。

近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及机电创造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步机电、感应电机为伺服机电的新一代交流伺服系统。

目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路创造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性创造系统以及自动化生产线等领域中的应用也迅速发展。

1.1 伺服系统的基本概念1.1.1 伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行住手。

伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵便方便的控制。

1.1.2 伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。

它由检测部份、误差放大部份、部份及被控对象组成。

1.1.3 伺服系统性能的基本要求1 )精度高。

伺服系统的精度是指输出量能复现出输入量的精确程度。

2 )稳定性好。

稳定是指系统在给定输入或者外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。

3 )快速响应。

响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。

4)调速范围宽。

调速范围是指生产机械要求机电能提供的最高转速和最低转速之比。

5 )低速大转矩。

在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。

伺服系统-第一章伺服系统设计概述

伺服系统-第一章伺服系统设计概述
最低跟踪角速度Ωmin 系统作匀速跟踪时所能到达的最低平稳角速度。
最大跟踪角加速度εmax
系统跟踪误差不超过em时,系统输出轴所能达到 的最大角加速度。
最大角速度Ωk、最大角加速度εk
不考虑跟踪精度的情况下,系统输出轴所能达到 的极限速度和极限角加速度。
正弦跟踪误差esin 速度品质系数Kv、加速度品质系数Ka 调速范围D
对系统工作制的要求 长期连续运行、间歇循环运行、短时间运行
对系统可靠性以及使用寿命的要求 连续运行无故障时间
对系统的使用环境条件的要求 环境温度、湿度、三防(防潮、防腐蚀、防辐 射)、抗振动、抗冲击
对系统结构形式的要求 体积、重量、结构外形、安装特点等
对系统经济性的要求 制造成本、标准化程度、元部件通用性、能源利 用率、维护使用、系统电源条件(电源种类、规 格、容量)
1.2 伺服系统的应用
机械制造 冶金 航天 微电子 军事 运输 通信工程 日常生活
机械制造
– 机床运动部分的位置控制、速度控制、运动轨迹控制 – 仿形机床、机器人手臂关节
冶金
– 电弧炼钢炉、粉末冶金炉的电极位置控制 – 轧钢机轧辊压下运动的位置控制
电极
轧前的 钢板
按控制方式分类
– 开环控制 – 闭环控制 – 复合控制
开环伺服系统
r
G1 ( s )
闭环伺服系统
r
e
G1 ( s )

复合控制伺服系统
r
G2 ( s ) c
G2 ( s ) c
B (s)
e G1 ( s ) +

G2 ( s ) c
1.7 伺服系统的技术要求

什么是伺服系统

什么是伺服系统

什么是伺服系统伺服系统是一种控制机械系统运动的技术,它通过传感器对输出信号进行反馈控制,实现精确的位置、速度和力控制。

伺服系统广泛应用于工业生产和自动化领域,提高了生产效率和产品质量。

一、伺服系统的工作原理伺服系统主要由伺服驱动器、伺服电机和反馈传感器组成。

伺服驱动器负责接收和处理控制信号,将信号转换为合适的电压或电流输出,驱动伺服电机运动。

而伺服电机作为执行器,根据伺服驱动器提供的控制信号,输出相应的运动。

反馈传感器则监测伺服电机的运动状态,将监测到的位置、速度或力信号返回给伺服驱动器,驱动器通过与设定值的比较,调整输出信号,实现对运动状态的精确控制。

二、伺服系统的特点1. 高精度:伺服系统能够实现微小运动的精确控制,可实时监测和调整输出信号,适用于对运动精度要求较高的场景。

2. 高响应性:伺服系统的反馈传感器能够实时监测电机的运动状态,并将信息传递给伺服驱动器,驱动器通过处理反馈信号,及时调整输出信号,使系统能够快速响应各种指令。

3. 多功能:伺服系统可通过调整控制参数,实现对位置、速度和力的精确控制,适用于不同的工业应用。

4. 稳定性好:伺服系统通过反馈控制,能够实时调整输出信号,使系统保持稳定运行。

5. 适应性强:伺服系统可根据不同的工作负载,调整输出信号,适应不同工况的需求。

三、伺服系统的应用1. 工业机械:伺服系统广泛应用于机床、激光切割机、注塑机等工业机械设备中,实现对加工精度和速度的要求。

2. 机器人技术:伺服系统在机器人技术中发挥重要作用,通过对关节运动的精确控制,实现机器人的灵活运动和高精度定位。

3. 自动化生产线:伺服系统可应用于自动化生产线中,控制工件输送、装配等过程,提高生产效率和产品质量。

4. 医疗设备:伺服系统在医疗设备中广泛使用,如手术机械臂、电动床等,实现对患者的精确控制和操作。

5. 航空航天:伺服系统应用于航空航天领域,控制飞机和航天器的各个部件的运动,确保航行安全和舒适。

伺服系统简介介绍

伺服系统简介介绍

受控对象
被控制的设备或系统, 可以是机械系统、电气 系统或其他系统。
伺服系统的分类
按受控对象
可分为位置伺服系统、速度伺服系统和力伺 服系统等。
按控制方式
可分为开环伺服系统和闭环伺服系统。
按执行器类型
可分为电动伺服系统、气动伺服系统和液压 伺服系统等。
02
01
按应用领域
可分为数控机床、机器人、航空航天、自动 化生产线等领域的伺服系统。
04
03
02 伺服系统的工作原理
伺服系统的工作原理
• 伺服系统是一种能够精确控制运动和速度的控制系 统。它广泛应用于各种工业自动化设备中,如数控 机床、机器人、印刷机等。
伺服系统的应用场景
03
工业自动化
01
数控机床
伺服系统用于数控机床的精密加工,提高加工精度和效 率。
02
生产线自动化
伺服系统用于生产线自动化,实现生产过程的精确控制 和优化。
能。
自动驾驶
伺服系统用于自动驾驶汽车的导航 和控制,实现精确的路径规划和避 障。
悬挂系统控制
伺服系统用于悬挂系统的控制,提 高车辆的行驶平顺性和稳定性。
04 伺服系统的优势与挑战
伺服系统的优势与挑战
• 伺服系统是一种被广泛应用于各种工业和商业领域的控制系 统。它通过接收输入信号,并利用内部的电子和机械部件来 控制输出运动,以满足特定的应用需求。伺服系统具有高精 度、高速度、高可靠性等优点,但也面临着一些挑战。
升级的工业应用需求。
03
5G技术的应用
5G技术为工业互联网的发展带来了新的机遇。未来的伺服系统将更加
注重与5G技术的融合,以实现更高效、更稳定的生产和制造。

伺服系统

伺服系统

什么叫做伺服系统伺服驱动系统(Servo System)简称伺服系统,是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。

使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量(使用在机电系统中的伺服电机的转动惯量较大,为了能够和丝杠等机械部件直接相连。

伺服电机有一种专门的小惯量电机,为了得到极高的响应速度。

但这类电机的过载能力低,当使用在进给伺服系统中时,必须加减速装置。

转动惯量反映了系统的加速度特性,在选择伺服电机时,系统的转动惯量不能大于电机转动惯量的3倍。

)较大等特点,这类专用的电机称为伺服电机。

当然,其基本工作原理和普通的交直流电机没有什么不同。

该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括电流、速度和/或位置闭环。

我接触伺服电机的时间只有十来天,下面是我收集的基础的知识,希望对出学者有帮助:问:控制方式中的"位置","速度","转矩"有什么分别?答:位置"、"速度"、"转矩"是伺服系统由外到内的三个闭环控制方式。

位置控制方式有伺服完成所有的三个闭环的控制,计算机只需要发送脉冲串给伺服单元即可,计算机一侧不需要完成PID控制算法;使用速度控制方式时,伺服完成速度和扭矩(电流)两个闭环的控制,计算机需要发送模拟量给伺服单元,计算机一侧需要完成PID位置控制算法,然后通过D/A输出;一般来讲,我们的需要位置控制的系统,既可以使用伺服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。

另外,有人认为位置控制方式容易受到干扰。

扭矩控制方式是伺服系统只进行扭矩的闭环控制,即电流控制,上位机的算法也简单,只需要发送给伺服单元一个目标扭矩值,是一个模拟量。

多用在单一的扭矩控制场合,比如在印刷机系统中,一个电机用速度或位置控制方式,用来确定印刷位置,另一个电机用作扭矩控制方式,用来形成恒定的张力。

伺服系统基础知识资料

伺服系统基础知识资料

交流永磁同步伺服驱动系统一、伺服系统简介伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。

伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。

在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。

交流永磁同步伺服驱动系统(以下简称伺服系统),是基于国外高端伺服技术开发出适合于国内环境的伺服驱动系统,具有性能优异、可靠性强,广泛应用于数控机床、织袜机械、纺织机械、绣花机、雕刻机械等领域,在这些要求高精度高动态性能以及小体积的场合,应用交流永磁同步电机(PMSM)的伺服系统具有明显的优势。

其中,PMSM具备十分优良的低速性能、可以实现弱磁高速控制,调速范围宽广、动态特性和效率都很高。

交流伺服系统的性能指标可以从调速范围、定位精度、稳速精度、动态响应和运行稳定性等方面来衡量。

伺服系统调速范围一般的在1:5000~1:10000;定位精度一般都要达到±1个脉冲;稳速精度,尤其是低速下的稳速精度,比如给定1rpm时,一般的在±0.1rpm以内,高性能的可以达到±0.01rpm以内;动态响应方面,通常衡量的指标是系统最高响应频率,即给定最高频率的正弦速度指令,系统输出速度波形的相位滞后不超过90°或者幅值不小于50%。

应用在特定要求高的一些场合,目前国内主流产品的频率在200~500Hz。

运行稳定性方面,主要是指系统在电压波动、负载波动、电机参数变化、上位控制器输出特性变化、电磁干扰、以及其他特殊运行条件下,维持稳定运行并保证一定的性能指标的能力。

二、伺服系统的组成伺服系统的组成1.上位机上位机通过控制端口发送指令(模拟指令或脉冲指令)给驱动器。

驱动器跟随外部指令来执行,同时驱动器反馈信号给上位机。

伺服系统的组成和原理

伺服系统的组成和原理

伺服系统的组成和原理伺服系统是一种控制系统,用于控制机械系统或过程的运动和位置。

它通常由四个主要组成部分组成:传感器、执行器、控制器和电源。

1.传感器:传感器用于检测机械系统的位置和运动。

常见的传感器包括编码器、位置传感器和加速度传感器。

编码器用于测量转动运动的角度和速度,位置传感器用于测量直线运动的位置和速度,而加速度传感器则用于测量加速度。

2.执行器:执行器是伺服系统中的执行元件,用于实际控制机械系统的运动。

最常见的执行器是伺服电机,它由电动机和驱动器组成。

电动机将电能转化为机械能,而驱动器控制电动机的速度和位置。

3.控制器:控制器是伺服系统的“大脑”,用于处理传感器提供的反馈信号,并根据预设的控制算法生成相应的控制信号。

控制器通常使用微处理器或数字信号处理器来执行这些计算。

控制器还可以根据需要进行参数调整和系统校准。

4.电源:伺服系统需要稳定和可靠的电源来提供所需的电能。

电池、直流电源或交流电源都可以作为伺服系统的电源。

1.传感器通过测量机械系统的位置和运动并将其转换为电信号。

2.传感器的信号输入到控制器,在控制器中进行计算和处理。

控制器根据预设的控制算法,比较实际位置和期望位置之间的差异。

如果差异较大,控制器发出控制信号以调整机械系统的运动。

3.控制信号通过驱动器送至执行器。

驱动器根据控制信号控制伺服电机的速度和位置。

驱动器通常与电机直接连接,将电机转子的转动运动转换为线性或旋转的机械运动。

4.机械系统根据电机的控制运动。

反馈传感器不断监测机械系统的位置和运动,并将其反馈给控制器。

5.控制器使用反馈信号重新计算控制信号,并不断对机械系统进行调整,以使实际位置尽可能接近期望位置。

00伺服系统概述

00伺服系统概述


第一节:伺服系统基本概述

三环结构如图4-1所示。
第一节:伺服系统基本概述

这三个环就是位置环、速度环、电流环。

1、位置环也称为外环,其输人信号是计算机 给出的指令和位置检侧器反馈的位置信号。这 个反馈是负反馈,也就是说与指令信号相位相 反。
指令信号是向位置环送去加数,而反馈信号是 送去减数。 位置环的输出就是速度环的输人。
第一章
机电一体化的控制方法: •手动自动 •简单到复杂 •电力电子技术 数控机床:
概述
•机械制造技术 •自动化技术 •伺服驱动技术 •监控检测技术
•…
第一节:伺服系统基本概述

通过以前的相关知识,我们知道数控机床由四 个基本部分组成,即控制介质、数控装置(或 计算机)、伺服系统和机床本体。

其中伺服系统是数控系统的执行部件,是数控 机床的重要组成部分,产生进给脉冲的数控装 置是否能够以足够高的速度与精度进行计算, 关键在于数控伺服系统能以多高的速度与精度 去执行。

切削进给的速度越快,跟随误差对精度的影响就越 大。提高伺服系统响应的快速性,是减小跟随误差, 提高进给速度的根本措施。但伺服系统的响应速度 并不是可以无限制提高的,并且任何的提高都要以 成本的上升为代价。所以对伺服系统的响应速度的 要求要限制在一个合理的范围之内。在一般情况下, 数控机床的进给响应时间 应该在2mm以内。


第一节:伺服系统基本概述

2、速度环也称为中环,这个环是一个非常重 要的环,它的输人信号有两个: 一个是位置环的输出,做为速度环的指令信号 送给速度环;另一个由电动机带动的测速发电 机经反馈网络处理后的信息,做为负反馈送给 速度环。速度环的两个输人信号也是反相的。 一个是加,一个是减。 速度环的翰出就是电流环的指令输人信号。

什么是伺服系统?伺服系统的工作原理

什么是伺服系统?伺服系统的工作原理

什么是伺服系统?伺服系统的工作原理
伺服其实就是一种自动控制系统,其输出被控量始终伴随给定值的变化而变化。

对于已经了解了伺服电缆和伺服电机的我们来说,要了解伺服电机电缆还需要了解最为关键的伺服及伺服系统这两个重要概念。

伺服作为一种自动控制系统,其输出控制量包括了是物体位置、方位以及状态等。

一般情况下,它的任务无非是根据要求,放大、变换或者调控功率,从而能够更加灵活地实现对驱动装置所输出量的控制。

伺服是希腊语中的其实是“奴隶”之意,这就表示,伺服机构在创立之初,本来就是用于满足人们需求的一种工具,一切都是为了使人们的工作能够更加得心应手。

所以伺服机构总是按控制信号所作出的要求来进行相关动作。

一旦没有了控制的讯号,它就会选择静止不动,直到控制讯号再次传达过来。

后来,人们根据伺服机构的特性,又得出了“伺服系统”的概念。

伺服系统也就是随动系统,是一种反馈控制系统,用于精确地跟随着或者是复现出某个过程。

伺服系统中的被控制量,也就是系统的输出量,一般专指机械位移或者加速度和位移速度,是针对这些的反馈系统。

而它的作用在于使输出的转角或机械位移能够有效而准确地跟踪输入的转角或机械位移。

伺服系统在结构组成上,跟其他形式的一些反馈控制系统相比,并没有什么根本上的区别。

另外,伺服系统的作用也十分明确,主要是用来以小功率信号来控制大功率的负载、在无机械连接时由输入轴来控制远处的输出轴,以及使得输出的机械位移能够精确地对电信号进行跟踪,例如指示仪表就是这样。

现代交流伺服系统 第1章 伺服系统概述

现代交流伺服系统 第1章 伺服系统概述
2
伺服系统概述
伺服技术的应用遍及各个领域,例如绕地飞行和高空探测的各类卫星, 地面上飞驰的高速列车,在海上游弋的万吨邮轮和舰船,军事上的导弹发 射架的天线驱动,特定环境下完成特殊任务的各类机器人,各种办公室自 动化设备等。
3
1.1 伺服系统的基本概念
内容提要
1.1.1 伺服系统的定义 1.1.2 伺服系统发展回顾 1.1.3 伺服系统的组成
被控 输出 对象
图 1-1 伺服系统的一般结构
9
1.1.3 伺服系统的组成
给定 环节
比较
+环节误差
控制器
给定
输入 -
功率放大 与变换环节
执行 环节
扰 动
被控 输出 对象
Hale Waihona Puke 反馈环节图 1-1 伺服系统的一般结构
10
1.1.3 伺服系统的组成
(6)执行环节(执行机构):控制信号获得功率放大后,激励被控机
14
1.2.1 稳定性好
稳定性反应了动态过程的振荡倾向和系统重新恢复到平衡状态工作的能力。 如果系统受到扰动后偏离了原工作状态,而控制装置再也不能使系统恢复到原状
态,并且越来越偏离原状态,并且误差越来越大,以至到∞,如图1-2中的过程曲
线③所示。这样的系统就称为不稳定系统。 不稳定系统在一般的情况下完全是由该系统的结构和参数决定,这是系统的
实际系统中都存在集中性或分布性的电感与电容。而电感中的电流、 电容上的电压都是不能跃变的;更何况电机本身与其轴上所驱动的机械 负载装置具有更大的机械惯性、电磁惯性与其串行叠加,更加大了惯性 的作用。在电源所提供的功率强度有限情况下,输出量不可能在瞬间达 到给定信号的期望值;抑制干扰信号也需要一个暂短的抵制与恢复过程, 才能使输出达到或恢复原过程,这一过程,被称为过渡过程或动态过程。

伺服驱动系统

伺服驱动系统
④ 电机应能承受频繁启动、制动和反转.
14.10.2023
6
伺服系统,其驱动元件为步进 电机.
功率步进电机控制系统的结构最简单,控制最容易,维修最方 便,控制为全数字化,这完全符合数字化控制技术的要求,控 制系统与步进电机的驱动控制电路结为一体.
步进电机又称脉冲电机,每接受一个脉冲信号转子转过一个角度,称为步距 角.
脉冲数目:位移大小;脉冲频率:速度大小;通电顺序:方向控制. 步进电机的结构:单段式三相反应式步进电机结构:
工作原理:电磁吸合 转子:开槽形成齿 定子:有磁极
以三相单三拍为例说明工作原理:
✓ 第一拍:A相励磁绕组通电,B、C励磁绕组断电.A相定子绕组的磁力线为 保持磁阻最小,给转子施加力矩,使相邻转子齿与之对齐.
暂的调节过程后,达到新的或者恢复到原来的平衡状态.直
接影响数控加工的精度和表面粗糙度.
3快速响应 快速响应是伺服系统动态品质的重要指标,它反映了
系统的跟踪精度.
4调速范围宽 调速范围是指生产机械要求电机能提供的最高转
速和最低转速之比.0~30m/min.
5低速大转矩 进给坐标的伺服控制属于恒转矩控制,在整个速
按使用场合分:有功率步进电机和控制步进电机.
按电机结构分:有单段式径向式、多段式轴向式、印刷绕组 式.
按工作相数分:有三相、四相、五相等.
按使用频率分:有高频步进电机和低频步进电机.
数控机床中使用较多的是反应式步进电机和永磁感应式步进 电机
14.10.2023
9
14.10.2023
10
2步进电机的结构与工作原理
14.10.2023
19
如上所述,在电磁转矩的作用下,转子有一定的稳定平衡点.

伺服系统是什么_伺服系统的基本要求_伺服系统的基本组成

伺服系统是什么_伺服系统的基本要求_伺服系统的基本组成

伺服系统是什么_伺服系统的基本要求_伺服系统的基本组成伺服系统是什么伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。

伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。

它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。

在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角),其结构组成和其他形式的反馈控制系统没有原则上的区别。

伺服系统最初用于国防军工,如火炮的控制,船舰、飞机的自动驾驶,导弹发射等,后来逐渐推广到国民经济的许多部门,如自动机床、无线跟踪控制等。

伺服系统主要作用1、以小功率指令信号去控制大功率负载;2、在没有机械连接的情况下,由输入轴控制位于远处的输出轴,实现远距同步传动;3、使输出机械位移精确地跟踪电信号,如记录和指示仪表等。

伺服系统的分类从系统组成元件的性质来看,有电气伺服系统、液压伺服系统和电气-液压伺服系统及电气-电气伺服系统等;从系统输出量的物理性质来看,有速度或加速度伺服系统和位置伺服系统等;从系统中所包含的元件特性和信号作用特点来看,有模拟式伺服系统和数字式伺服系统;从系统的结构特点来看,有单回伺服系统、多回伺服系统和开环伺服系统、闭环伺服系统。

伺服系统按其驱动元件划分,有步进式伺服系统、直流电动机(简称直流电机)伺服系统、交流电动机(简称交流电机)伺服系统。

伺服系统的基本要求(1)稳定性好:稳定是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后到达新的或者回复到原有平衡状态。

(2)精度高:伺服系统的精度是指输出量能跟随输入量的精确程度。

作为精密加工的数。

伺服系统概述

伺服系统概述

12 伺服系统概述

半闭环数控系统

半闭环数控系统的位置采样点如图所示,是从驱动装置 (常用伺服电机)或丝杠引出,采样旋转角度进行检测, 不是直接检测运动部件的实际位置。
位置控制单元 CNC 插补 指令 + 位置控制调节 器
速度控制单元 +
-
速度控制 调节与驱动
机械执行部件
实际 位置 反馈
实际 速度 反馈 检测与反馈单 元
电机
12 伺服系统概述

从理论上讲,可以消除整个驱动和传动环节的误差、
间隙和失动量。具有很高的位置控制精度。

由于位置环内的许多机械传动环节的摩擦特性、刚 性和间隙都是非线性的,故很容易造成系统的不稳 定,使闭环系统的设计、安装和调试都相当困难。

该系统主要用于精度要求很高的镗铣床、超精车床、 超精磨床以及较大型的数控机床等。
12 伺服系统概述
气压系统与液压系统的比较
1.
2.
3. 4.
5.
空气可以从大气中取之不竭且不易堵塞;将用过的气体排入大 气,无需回气管路处理方便;泄漏不会严重的影响工作,不污 染环境。 空气粘性很小,在管路中的沿程压力损失为液压系统的干分之 一,易于远距离控制。 工作压力低.可降低对气动元件的材料和制造精度要求。 对开环控制系统,它相对液压传动具有动作迅速、响应快的优 点。 维护简便,使用安全,没有防火、防爆问题;适用于石油、化 工、农药及矿山机械的特殊要求。对于无油的气动控制系统则 特别适用于无线电元器件生产过程,也适用于食品和医药的生 产过程。
输入指令
比较 元件
调节 元件
执行 元件
被控 对象
输出量
测量、反 馈元件

伺服系统的基本概念

伺服系统的基本概念

伺服系统的基本概念(产品培训资料之一)1伺服系统的基本概念1.1伺服系统“伺服”即“跟随”,“随动”的意思。

所谓伺服系统,就是被调量跟随指令值变化的闭环调节系统。

如果被调量是速度就称为速度伺服系统,如果被调量是位置则称为位置伺服系统。

因为绝大多数伺服系统是以速度作为被调量,例如CNC机床中使用的伺服系统,所以一般“伺服系统”是指速度伺服系统,其他伺服系统要在伺服系统的前面冠以被调量名称。

伺服系统与调速系统都是以速度作为被调量的闭环调节系统,区别在于调速系统的速度指令值是恒值(称为恒值调节系统),不要求对速度指令值的快速响应,但要求系统对负载扰动有快速调节作用,即有较强的抗负载扰动能力;伺服系统的速度指令是变化的,要求系统对速度指令快速响应,且有极强的抗负载扰动能力。

对位置伺服系统的要求是快速跟踪位置指令值的变化。

位置伺服系统用于定位控制(位置指令值为恒值)时,要求定位精度高,定位误差(位置稳态误差)小;当用于位置跟踪控制(位置指令值随机变化)时,还要求跟踪指令位置时的位置误差(位置跟踪误差)也小。

位置随动系统用于位置跟踪控制时又称位置随动系统,简称随动系统。

1.2伺服机构,闭环调节系统伺服系统是通过伺服机构使电动机与被调节对象连接的。

在CNC车床上,使刀架作直线运动进行切削的刀架滑座为被调节对象;在CNC铣床上,使工件作直线运动进行切削的工作台滑座为被调节对象;在舰炮控制中,使舰炮作方位回转和俯仰回转的滑座为被调节对象,等等。

当被调节对象为直线运动时,伺服机构需将电动机的旋转运动转换为被调节对象的直线运动;当被调节对象为旋转运动时,伺服机构则将电动机的转速转换为符合被调节对象要求的转速。

将旋转运动转换为直线运动的伺服机构有螺母—丝杠副,滚珠丝杠副,齿轮—齿条副,蜗母—牙条副,等等;将电动机的转速转换为适合负载要求的转速的伺服机构有齿型带传动,齿轮减速器,行星齿轮减速器,谐波齿轮减速器,等等。

闭环调节系统的工作原理是不断比较被调节量与指令值计算出误差值,并使被调量向减小误差方向变化。

伺服系统组成、概述与控制原理(难得好文)

伺服系统组成、概述与控制原理(难得好文)

伺服系统组成、概述与控制原理(难得好⽂)伺服系统既可以是开环控制⽅式,也可以是闭环控制⽅式。

⼀、伺服系统简述伺服系统(servomechanism)指经由闭环控制⽅式达到对⼀个机械系统的位置、速度和加速度的控制。

⼀个伺服系统的构成包括被控对象、执⾏器和控制器(负载、伺服电动机和功率放⼤器、控制器和反馈装置)。

1. 执⾏器的功能在于提供被控对象的动⼒,其构成主要包括伺服电动机和功率放⼤器,伺服电动机包括反馈装置如光电编码器、旋转编码器或光栅等(位置传感器)。

2. 控制器的功能在于提供整个伺服系统的闭环控制如转矩控制、速度控制、位置控制等,伺服驱动器通常包括控制器和功率放⼤器。

3. 反馈装置除了位置传感器,可能还需要电压、电流和速度传感器。

下图为⼀般⼯业⽤伺服系统的组成框图,其中红⾊为伺服驱动器组成部分,黄⾊为伺服电机组成部分。

“伺服”——词源于希腊语“奴⾪”的意思。

⼈们想把“伺服机构”当成⼀个得⼼应⼿的驯服⼯具,服从控制信号的要求⽽动作:在讯号来到之前,转⼦静⽌不动;讯号来到之后,转⼦⽴即转动;当讯号消失,转⼦能即时⾃⾏停转。

由于它的“伺服”性能,因此⽽得名——伺服系统。

⼆、常⽤参数1、伺服电机铭牌参数1. 法兰尺⼨2. 电机极对数3. 电机额定输出功率4. 电源电压规格:单相/三相5. 电机惯量:分为⼤、中、⼩惯量,指的是转⼦本⾝的惯量,从响应⾓度来讲,电机的转⼦惯量应⼩为好;从负载⾓度来看,电机的转⾃惯量越⼤越好6. 电机出轴类型:键槽、扁平轴、光轴、减速机适配…7. 电机动⼒线定义:U: RED V:BLACK W: WHITE8. 额定转速9. 编码器线数:2500/1250/1000/17B/20B法兰是轴与轴之间相互连接的零件,⽤于管端之间的连接。

2、伺服驱动器铭牌参数1. 额定输出功率2. 电源电压规格3. 编码器线数3、伺服系统的性能指标1. 检测误差:包括给定位置传感器和反馈位置传感器的误差,传感器本⾝固有,⽆法克服;2. 系统误差:系统类型决定了系统误差。

伺服系统总结(电机和驱动)ppt课件

伺服系统总结(电机和驱动)ppt课件

;...
8
(1) 液压伺服控制系统 液压伺服控制系统是以电机提供动力基础,使用液压泵将机械能转化为压力,推 动液压油。通过控制各种阀门改变液压油的流向,从而推动液压缸做出不同行程、 不同方向的动作,完成各种设备不同的动作需要。液压伺服控制系统按照偏差信 号获得和传递方式的不同分为机-液、电-液、气-液等,其中应用较多的是机-液和 电-液控制系统。按照被控物理量的不同,液压伺服控制系统可以分为位置控制、 速度控制、力控制、加速度控制、压力控制和其他物理量控制等。液压控制系统 还可以分为节流控制(阀控)式和容积控制(泵控)式。在机械设备中,主要有机-液伺 服系统和电-液伺服系统。
伺服系统介绍
;...
1
目录
伺服系统概述
系统结构原理以及分类
伺服电机
伺服驱动
编码器以及制动方式介绍
伺服与步进区别
伺服选型
;...
2
一、 伺服系统概述
伺服系统(servomechanism)又称随动系统, 是用来精确地跟随或复现某个过程的反馈控制 系统。伺服系统使物体的位置、方位、状态等 输出被控量能够跟随输入目标(或给定值)的任 意变化的自动控制系统。它的主要任务是按控 制命令的要求、对功率进行放大、变换与调控 等处理,使驱动装置输出的力矩、速度和位置 控制非常灵活方便。
;...
10
(4) 电液伺服控制系统 它是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的 有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。 以上是我们常用到的四种伺服系统,他们的工作原理和性能以及可以应用的 范围都有所区别,各有自己的特点和优缺点。因此在选择或者购买的时候, 就需要根据系统的需要以及需要控制的参数和实现的性能,通过计算后在选 择合适的产品。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其他
与材料有关
压电元件
12 伺服系统概述
1. 电气执行元件 电气执行元件包括直流(DC)伺服电机、交流(AC) 伺服电机、步进电机以及电磁铁等,是最常用的执行元 件。对伺服电机除了要求运转平稳以外,一般还要求动态 性能好,适合于频繁使用,便于维修等 2.液压式执行元件 液压式执行元件主要包括往复运动油缸、回转油缸、 液压马达等,其中油缸最为常见。在同等输出功率的情况 下,液压元件具有重量轻、快速性好等特点 3.气压式执行元件 气压式执行元件除了用压缩空气作工作介质外,与液 压式执行元件没有区别。气压驱动虽可得到较大的驱动 力、行程和速度,但由于空气粘性差,具有可压缩 性,故不能在定位精度要求较高的场合使用。
12 伺服系统概述
第二节 伺服系统的执行元件概述
执行元件的种类及特点 执行元件的基本要求 常用的控制用电机
12 伺服系统概述
一、执行元件的种类及其特点
电磁式
电动机 电磁铁及其他
交流伺服电机 直流伺服电机

液压式


件 气压式
油缸 液压马达 气缸 气压马达
步进电机 其他电机 双金属片 状态记忆金属
要求:
• Rn=
nmax nmin
要大,并且在该范围内,速度稳定;
• 无论高速低速下,输出力或力矩稳定,低速驱动时, 能输出额定的力 或力矩;
• 在零速时,伺服系统处于 “锁定” 状态,即惯性小。
12 伺服系统概述
低速大转矩
应变能力指能承受频繁的启动、制动、加速、减速的 冲击; 过载能力指在低速大转矩时,能承受较长时间的过载 而不致损坏。
12 伺服系统概述
第12讲内容
伺服系统概述 伺服系统的执行元件概述 控制电动机 伺服系统设计
12 伺服系统概述
第一节 伺服系统概述
伺服系统基本概念 伺服系统基本类型 伺服系统基本要求
12 伺服系统概述
一、伺服系统基本概念
伺服来自英文单词Servo,指系统跟随外部指令进行 人们所期望的运动,运动要素包括位置、速度和力矩。
12 伺服系统概述
3.执行环节 执行环节的作用是按控制信号的要求,将输入的各种形 式的能量转化成机械能,驱动被控对象工作。机电一体化系 统中的执行元件一般指各种电机或液压、气动伺服机构等。 4.被控对象
5.检测环节 检测环节是指能够对输出进行测量并转换成比较环节所 需要的量纲的装置,一般包括传感器和转换电路。
气体压力源压力 5~7×Mpa;要求操作 人员技术熟练。
液体压力源压力 20~80×Mpa;要求 操作人员技术熟练。
优点
缺点
操作简便;编程容易; 瞬时输出功率大;过载
能实现定位伺服控制; 差;一旦卡死,会引起
响应快、易与计算机
烧毁事故;受外界噪音
(CPU)连接;体积小、 影响大。
动力大、无污染。
气源方便、成本低;无 泄露而污染环境;速度 快、操作简便。
稳态误差表示
影响伺服系统精度的因素: 传感器的灵敏度和精度
组成元件本身误 差
伺服放大器的零点漂移和死区误差 机械装置反向间隙和传动误差
各元器件的非线性因素等
系统本身
结构形式 输入指令信号的形式
12 伺服系统概述
▪ 响应速度:是衡量伺服系统动态性能的重要指标
调速范围 是伺服系统提供的最高速与最低速之比
12 伺服系统概述
气压系统与液压系统的比较
1. 空气可以从大气中取之不竭且不易堵塞;将用过的气体排入大 气,无需回气管路处理方便;泄漏不会严重的影响工作,不污 染环境。
2. 空气粘性很小,在管路中的沿程压力损失为液压系统的干分之 一,易于远距离控制。
3. 工作压力低.可降低对气动元件的材料和制造精度要求。 4. 对开环控制系统,它相对液压传动具有动作迅速、响应快的优
12 伺服系统概述
伺服系统的特点和功用
• 伺服系统与一般机床的进给系统有本质上差别,它能根据 指令信号精确地控制执行部件的运动速度与位置
• 伺服系统是数控装置和机床的联系环节,是数控系统的重 要组成
12 伺服系统概述
二、伺服系统基本类型
➢ 按控制原理分 有开环、闭环和半闭环三种形式 ➢ 按被控制量性质分 有位移、速度、力和力矩等伺
Hale Waihona Puke 功率小、体积大、难于 小型化;动作不平稳、 远距离传输困难;噪音 大;难于伺服。
输出功率大,速度快、 动作平稳,可实现定位 伺服控制;易与计算机 (CPU)连接。
设备难于小型化;液压 源和液压油要求严格; 易产生泄露而污染环境。
应用:液压系统用于需大的功率重型设备;气动用于工件夹紧、输送等 自动化生产线; 电动应用最广泛.
输入指令 比较 元件
调节 元件
执行 元件
被控 对象
输出量
测量、反 馈元件
伺服系统组成原理框图
12 伺服系统概述
1.比较环节 比较环节是将输入的指令信号与系统的反馈信号进行 比较,以获得输出与输入间的偏差信号的环节,通常由专 门的电路或计算机来实现。
2.控制器 控制器通常是计算机或PID(比例、积分和微分)控 制电路,其主要任务是对比较元件输出的偏差信号进行变 换处理,以控制执行元件按要求动作。
12 伺服系统概述
电磁式
感应电动机
永磁同步电动机
异步电动机
离合器电动机
微型直流减速电动机
12 伺服系统概述
液压式
12 伺服系统概述
12 伺服系统概述
气压式
12 伺服系统概述
种类
电 气 式
气 压 式
液 压 式
特点
可用商业电源;信号 与动力传送方向相同; 有交流直流之分;注意 使用电压和功率。
伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服 系统包括伺服电机、反馈装置和控制器。
电气控制装置
由两部分组成:
电气控制装置部分 机械执行装置部分
执行元件
机械执行 装置
传 感 器
伺服系统组成图
12 伺服系统概述
伺服系统的结构组成
机电一体化的伺服控制系统的结构、类型繁多,但从 自动控制理论的角度来分析,伺服控制系统一般包括控 制器、被控对象、执行环节、检测环节、比较环节等五 部分。
服系统形式 ➢ 按驱动方式分 有电气、液压和气压等伺服驱动形式 ➢ 按执行元件分 有步进电机伺服、直流电机伺服和交
流电机伺服形式
12 伺服系统概述
三、伺服系统基本要求
✓精度高: ✓稳定性好: ✓快速响应: ✓调速范围宽: ✓低速大转矩:
12 伺服系统概述
三、伺服系统基本要求 ▪ 精度:指输出量复现输入指令信号的精确程度,通常用
相关文档
最新文档