呼吸机模式及波形认识

合集下载

呼吸机治疗模式及波形

呼吸机治疗模式及波形

79
呼吸模式和功能
混合模式-SIMV
同步间歇指令通气SIMV功能描述 ▪ SIMV 是一种组合模式,根据所选的SIMV
模式,病人接收与其呼吸尝试同步的强制 性通气。 ▪ 在强制性呼吸之间,病人可以在压力支持 呼吸模式下自主呼吸。 ▪ 有三种SIMV 模式,视已安装的模式而定: SIMV (PRVC) + 压力支持 SIMV(容量控制)+ 压力支持 SIMV(压力控制)+ 压力支持
© MAQUET
2021/7/23
83
呼吸模式和功能
同步间歇指令通气SIMV
同步间歇指令通气SIMV通气详解 1. 采用控制和压力支持与自主呼吸功能组
合的模式,可以实现与病人的呼吸同步的 强制性呼吸。 2. 在触发窗中如果在所设置呼吸周期的 90% 时间内病人没有触发,则传送强制性呼吸 3. 呼吸周期时间是指一次强制性呼吸的总时 间。
11
压力控制设置 Pressure Control Settings
© MAQUET
2021/7/23
12
压力调节容量控制 (Pressure regulated Volume Control) PRVC
© MAQUET OH 52:002018/7/23
刘靖 2005 8 16
13
压力支持通气 Pressure Support Ventilation
© MAQUET
2021/7/23
80
呼吸模式和功能
同步间歇指令通气SIMV
▪ 呼吸周期时间
▪ 是以秒为单位的强制呼吸的长度。
▪ 例如: SIMV 频率为6,呼吸周期为3 秒而 且吸/呼比为1:2 表示吸气将用1 秒时间, 呼气将用2 秒时间。

呼吸机波形分析-中文PPT课件

呼吸机波形分析-中文PPT课件

特殊机械通气参数波形
▪ 上升时间 ▪ 吸气终止切换
Paw (cm H2O)
上升时间
在吸气相达到设定的气道压力或峰流速所需时间为上升时间
Time
用于评估在压力支持通气下呼吸机的支持是否满足病人吸气需求
上升时间
pressure spike
Paw (cm H2O)
too fast
Time
too slow
机械通气波形 之“精读”
提纲
1 机械通气波形概述 2 常见机械通气波形 3 特殊参数波形 4 异常波形解析
解读呼吸机波形意义
熟练的ICU医师通过呼吸机波形评估病人肺的 状态 如同心脏科医师通过心电图评估心脏状态
了解病人目前的通气状态 分析机械通气过程中出现的问题
呼吸机的监测
压缩空气 压缩氧气
空氧混合器
Lower
Paw
cmH2O
Inflection Point
低位拐点代表大多数塌陷肺泡的开放点(肺复张)
ARDS的保护性肺通气建议PEEP应设置于地位拐点之上
流速容积(FV)曲线
Flow
(L/min)
Inspiration Expiration
Y轴表示流速,X轴表示容积
吸气支位于X轴上方并且其波形与流速时间波形一致
❖ 常见的切换设置方法:
▪ 根据吸气气流终止切换 ▪ 根据感应到呼出气流切换 ▪ 根据吸气流速变化切换(简称流速切换) ▪…
流速切换
Inspiration ends
Paw
cmH2O
Time(sec)
Flow
L/min
Time(sec)
当吸气流速下降至某一特定水平时吸气终止
流速切换的设置

(整理)呼吸机基本波形详解.

(整理)呼吸机基本波形详解.

呼吸机基本波形详解流速测定流速通常在呼吸机环路(从进气口到呼气阀之间的管道)中测知,流量感应器根据设计类型不同而有些许差异,但大部分都可以测量一个较大的范围(-300—+150LPM),但会由于假呼吸运动、水气、呼吸道分泌物等而影响其准确性。

流速波有两个组成部分:吸气波和呼气波,它描述了流速大小、持续时间和机控呼吸下的流速释放方式(正压通气),或者病人自主呼吸下的流速大小,持续时间和流速需求。

我们先介绍机控呼吸的吸气波,然后是自主呼吸的,等掌握了基本原理,再来讨论呼气波形。

吸气流速波——机控呼吸图1是一个假设呼吸机给于恒定流速的一次机控呼吸的吸气流速波(方波),虚线部分是呼气波,我们会在后面介绍图1 吸气流速波——机控呼吸①呼吸机送气开始开始吸气取决于以下两点:1)到达了预设的呼吸周期时间,即“时间循环”2)病人吸气努力达到了触发辅助通气的阈值,通常是一个吸气负压或吸气流速增量,即“病人循环”。

前者常出现在控制呼吸模式,后者常出现于辅助呼吸模式②吸气峰流速在容控性呼吸机上,预设流速是很有必要的,流速设置也可以设置潮气量和吸气时间来间接得到。

假设设置了一个恒定流速的容控性呼吸机(如图一),峰流速就是设置值。

当流速不恒定,即流速波形是曲线波,流速在吸气时不同时间点上表现为不同的值。

此时中间流速或称平均流速通过下式计算:流速(LPM)=[潮气量(L)/时间(S)]X60③吸气末停止送气这个转换可能达到了预期的容量送气、流速、压力或吸气时间④吸气流速的持续时间常与吸气时间相应,容控呼吸机上,吸气时间常取决于预设的潮气量、峰流速和流速释放方式(波型:如递减波),有的也可以直接设置。

因此,吸气时间可以长于峰流速持续时间,尤其当应用吸气暂停时。

⑤整个呼吸周期时间(TCT)取决于预设的呼吸次数 TCT=60/Rate 图1的流速波型是方波,从吸气开始即达到峰值,直到吸气末都是一个恒定值,在实际应用当中,像图1那样“真正的”方波是不可能达到的,因为流速输送系统都有一个固定的延迟时间,在这段时间内,流速从0达到预设的峰流速。

《呼吸机波形》课件

《呼吸机波形》课件

通过分析患者的呼吸波形,可以初步判断是否存在通气障碍、阻塞、呼
吸运动异常等情况,为进一步诊断提供依据。
02 03
常见疾病的呼吸波形特征
如慢性阻塞性肺疾病(COPD)患者的呼吸波形可能出现波幅过低、频 率加快等情况;哮喘患者的呼吸波形可能出现双峰波形、波幅过高、频 率过慢等情况。
呼吸波形与疾病治疗
根据患者的呼吸波形特征,可以制定针对性的治疗方案,如机械通气治 疗、药物治疗等,以改善患者的通气功能和症状。
03 呼吸机波形监测技术
监测技术介绍
呼吸机波形监测技术是一种用于监测呼吸机工作状态和患者呼吸生理参数的技术。
通过实时监测呼吸机的压力、流量、容积等波形,可以了解患者的呼吸状态和呼吸 机的性能。
该技术广泛应用于临床医学、重症监护、麻醉等领域,为医生提供重要的诊断和治 疗依据。
监测技术原理
基于传感器技术
正常呼吸波形表明呼吸系统功能正常 ,无通气障碍或阻塞。
正常呼吸波形产生机制
正常呼吸波形是由呼吸肌肉的收缩和 舒张,以及胸腔和肺组织的弹性回缩 共同作用的结果。
异常呼吸波形解读
异常呼吸波形特征
异常呼吸波形可表现为波形形态异常、波幅异常、频率异 常等,如出现双峰波形、波幅过低或过高、频率过快或过 慢等。
异常呼吸波形产生机制
异常呼吸波形可能是由于呼吸道狭窄、阻塞、顺应性降低 等原因引起的通气障碍,或者是由于中枢神经系统、肌肉 等病变引起的呼吸运动异常。
异常呼吸波形临床意义
异常呼吸波形可能提示着各种呼吸系统疾病或神经系统疾 病,需要根据具体波形特征和患者情况进行综合判断。
呼吸波形与疾病诊断
01
呼吸波形在疾病诊断中的应用
失败案例分析
1 2 3

《呼吸机波形》PPT

《呼吸机波形》PPT

异常呼气末正压波形识别与处理
总结词
呼气末正压设置不当
详细描述
呼气末正压是在呼气末期呼吸机施加的正压力,用于保持肺泡开放和增加功能残气量。当呼气末正压设置过高时 ,可能导致气压伤;设置过低则可能影响氧合和通气效果。处理方法包括调整呼气末正压设置、监测患者体征和 观察呼吸机波形等。
异常潮气量波形识别与处理
《呼吸机波形》
汇报人:可编辑
2024-01-11
目录
CONTENTS
• 呼吸机波形概述 • 呼吸机波形与呼吸生理 • 常见呼吸机波形分析 • 异常呼吸机波形识别与处理 • 呼吸机波形在临床中的应用
01 呼吸机波形概述
CHAPTER
呼吸机波形概述
• 请输入您的内容
02 呼吸机波形与呼吸生理
CHAPTER
呼吸频率波形呈规则的周期性波动, 频率大小根据患者病情和呼吸机设置 调整。
04 异常呼吸机波形识别与处理
CHAPTER
异常吸气峰压波形识别与处理
总结词
吸气峰压过高或过低
详细描述
吸气峰压是呼吸机在吸气相产生的最大压力。当吸气峰压过高时,可能表示呼吸 道阻力增加或肺顺应性降低;吸气峰压过低则可能表示通气不足或呼吸道阻力过 低。处理方法包括调整呼吸机参数、检查呼吸道通畅度和肺功能等。
通过分析呼吸波形,可以了解患者的 通气/血流比例、弥散功能和通气/灌 注匹配等方面的信息,有助于评估患 者的氧合和通气状态。
呼吸波形与呼吸力学
呼吸波形可以反映呼吸力学参数,如气道阻力、肺顺应性和 内源性呼气末正压等。
通过分析呼吸波形,可以了解患者的呼吸力学特征和呼吸肌 功能,有助于评估患者的呼吸支持和治疗效果。
呼吸机波形在评估患者病情中的应用

呼吸机波形分析入门

呼吸机波形分析入门

呼吸机波形分析入门引言:呼吸机波形是指通过呼吸机监护系统获得的呼吸机输出的波形图像。

波形图像是由时间作为横轴,压力、流量或体积作为纵轴所构成的图像。

通过对呼吸机波形进行分析可以了解患者的呼吸状况、通气情况以及呼吸机的设置是否合理等。

本文将介绍呼吸机波形的基本分析方法,以帮助初学者快速入门。

一、呼吸机波形的采集和显示常见的呼吸机波形包括压力波形、流量波形和体积波形。

压力波形显示了呼吸机输出的气道压力变化情况,流量波形显示了气体进出肺部的速度变化情况,体积波形显示了肺部的体积变化情况。

在呼吸机波形中,一般以吸气期为正,呼气期为负。

二、呼吸机波形的常见特征1.呼吸频率:通过计算波形上吸气峰值或呼气峰值的数量,可以得到呼吸频率。

常用的方法是计算每分钟的呼吸次数。

2.吸气时间和呼气时间:从吸气峰值到呼气峰值的时间间隔为一个完整的吸呼气周期。

通过计算吸气时间和呼气时间的长短,可以了解患者的通气情况。

3.吸气峰值压力和呼气峰值压力:波形中的压力峰值反映了肺的通气效果,通常情况下,吸气峰值压力应该较呼气峰值压力高。

4.呼气末正压(PEEP):波形中的底线或基线表示了呼气末正压。

PEEP是在呼气末保持气道压力的一种方式,能保持肺泡的开放性,增加氧合和通气效果。

5. 吸气延迟时间(inspiratory delay):吸气波形图中延迟时间指的是吸气流量波形开始上升直到达到吸气峰值的时间。

延迟时间过长可能表明存在气道阻力或机械问题。

三、呼吸机波形的分析方法1.波形形状:通过观察波形的形状可以判断患者的通气状态,如是否存在阻塞或排空障碍等。

正常的吸气波形应该是上升快、下降缓慢的斜坡状。

2.吸气和呼气峰值压力:通过分析吸气和呼气峰值压力的变化,可以判断患者的通气状态。

吸气峰值压力过高可能表明气道阻塞或气道峰压过高,呼气峰值压力过低可能表明肺容积不足。

3.吸气延迟时间:延迟时间过长可能表明存在气管插管位置不当、气道阻力增加或呼吸机设置不当等问题。

呼吸机“经典”波形解读

呼吸机“经典”波形解读

呼吸机“经典”波形解读展开全文作者:华中科技大学同济医学院附属同济医院急诊/重症医学科李树生1、VCV:一个呼吸周期由吸气和呼气所组成, 这两时期均包含有流速相和无流速相.在VCV中吸气期无流速相是无气体进入肺内(即吸气后摒气期), PCV的吸气期始终是有流速相期(无吸气后摒气).压力-时间曲线反映了气道压力(Paw)的逐步变化(图14), 纵轴为气道压力,单位是cmH2O(1cmH2O=0.981mbar), 横轴是时间以秒(sec)为单位,2、PCV:与VCV压力-时间曲线不同, 气道压力在吸气开始时从基线压力(0或PEEP)快速增加至设置的水平呈平台样式,并在呼吸机设定的吸气时间内保持恒定. 在呼气相, 压力下降和VCV一样回复至基线压力水平, 本图基线压力为5cmH2O是医源性PEEP.呼吸回路有泄漏时气道压无法达到预置水平.图中黑影部分是SIMV每个呼吸周期起始段的触发窗, 通常占每个呼吸周期时间的25-60%.在触发窗期间内自主呼吸达到触发灵敏度, 呼吸机即输送一次同步指令通气(即设置的潮气量或吸气峰压), 若无自主呼吸或自主呼吸较弱不能触发时,在触发窗结束时呼吸机自动给一次指令通气.此后在呼吸周期的剩余时间内允许患者自主呼吸, 即使自主呼吸力达到触发阈,呼吸机也不给指令通气, 但可给予一次PS(需预设). 图中笫二、五个周期说明触发窗期巳消逝, 图中虽有向下折返的自主呼吸负压, 但呼吸机给的是指令通气并非同步指令通气. 第一、三、四、六均为在触发窗期内自主呼吸力达到触发阈呼吸机给予一次同步指令通气.压力触发阈=PEEP-Trig.(Sens.)cmH2O,图中PEEP=0压力触发值为负值, 在本图中触发压力虽为负值但未达到触发阈(虚线), 故①和②均为自主呼吸, 吸气负压未触发呼吸机进行辅助正压呼吸, 但③是患者未触发呼吸机是一次指令呼吸.图中是VCV通气时,在A处因吸气流速设置太低, 压力上升速度缓慢, 吸气时间稍长(注意:VCV时不能直接调整压力上升时间), 而B处因设置的吸气流速太大以致在压力曲线出现压力过冲, 且吸气时间也稍短. 结合流速曲线适当调节峰流速即可.在PCV或PSV时, 若压力曲线显示无法达到平台压力, 如图A处显示PCV的吸气时间巳消逝, 但压力曲线始终未出现平台(排除压力上升时间太长因素), 说明呼吸回路有漏气或吸气流速不足(需同时检查流速曲线查明原因). 有的呼吸机因原设计的最大吸气峰流以VCV为基础的指令通气所选择的三种波型(正弦波基本淘汰). 而呼气波形形状基本类同. 本图显示了吸气相的三种波形.在定压型通气(PCV)中目前主要采用递减波左侧为VCV的强制通气,吸气流速的波形可选择为方波,递减波中图为自主呼吸的正弦波, 吸、呼气峰流速比机械通气的正弦波均小得多, 且吸气流速波形态不完全似正弦型.右侧图为压力支持流速波,吸气流速突然下降至0是递减波在吸气过程中吸气流速递减至呼气灵敏度的阈值图中A为指令通气吸气流速波, B为在指令吸气过程中有一次自主呼吸, 在吸气流速波出现切迹, C为人机不同步而使潮气量减少,在吸气流速前有微小呼气流速且在指令吸气近结束时出现自主呼吸,而使呼气流速减少.左侧在设置的吸气过程内吸气流速未降至0, 说明吸气时间不足, 图内虚线的呼气流速开始说明吸气流速巳降至0吸气时间足够,在降至0后持续一短时间在VCV中是吸气后摒气时间.右侧图是PCV(均采用递减波)的吸气时间: 图中(A)是吸气末流速巳降至0说明吸气时间合适且稍长, (注意PCV无吸气后摒气时间). (B)的吸气末流速未降至0,说明吸气时间不足或是自主呼吸的呼气灵敏度巳达标(下述), 只有相应增加吸气时间才能不增加吸气压力情况下使潮气量增加.当呼吸回路中存在泄漏,(如气管插管气束泄漏,NIV面罩漏气,回路连接有泄漏)而流量触发值又小于泄漏速度,在吸气流速曲线的基线(即0升/分)和图形之间的距离(即图中虚形部分)为实际泄漏速度, 此时应立即排除漏气,并在处置完漏气之前适当加大流量触发值以补偿泄漏量(升/分)自主呼吸时当吸气流速降至原峰流速25%或实际吸气流速降至5升/分时, 呼气阀门打开呼吸机切换为呼气. 此流速的临界值即呼气灵敏度. 以往此临界值由厂方固定, 操作者不能调节(图10左侧), 现在有的呼吸机呼气灵敏度可供用户调节(图10右侧). 右侧图A因回路存在泄漏或预设的Esens过低,以致呼吸机持续送气,导致吸气时间过长. B适当地将Esens调高及时切换为呼气,但过高的Esens使切换呼气过早, 无法满足吸气的需要. 故在PSV中Esens需和压力上升时间根据波形结合一起来调节吸气流速选用方波,呼气流速波形在下一个吸气相开始之前呼气末流速未回复到0位,说明有Auto-PEEP(PEEPi)存在. 注意图中的A,B和C其呼气末流速高低不一, B呼气末流速最高,依次为A,C. 在实测Auto-PEEP压力也高低不一.Auto-PEEP是由于平卧位(45岁以上), 呼气时间设置不适当, 采用反比通气或因肺部疾病或肥胖者所引起, 是小气道在呼气过程中过早地陷闭, 以致吸入的潮气量未完全呼出, 使气体阻滞在肺泡内产生正压所致.图中支气管扩张剂治疗前后在呼气流速波上的变化, A代表呼出气的峰流速, B代表从峰流速回复到0位的时间.图右侧治疗后呼气峰流速A增加, 有效呼出时间B缩短, 说明用药后支气管情况改善.横铀为压力有正压(机械通气)、负压(自主呼吸)之分, 纵轴是容积(潮气量Vt),单位为升/次. A代表吸气过程从0(或PEEP)起始上升至预设的吸气峰压(PCV)或预设的潮气量(VCV)后即切换为呼气. B代表呼气过程, 呼气结束理论上应回复至起始点0(或PEEP),但实际上偏离0点, 若使用PEEP如5cmH2O则以正压5cmH2O为起始和回复点(即纵轴右移至5cmH2O).此环说明压力与容积的关系.①=PEEP, ②=气道峰压, ③=平台压, ④=潮气量1、VCV时, P-V环呈逆时钟方向描绘,在吸气中肺被恒定的流速(方波)耒充气,呼吸系统的压力逐步增加至预设潮气量(即气道峰压), 至吸气末肺内压力达到与呼吸系统压力一样水平即平台压.然后开始呼气回复至基线压力(0或PEEP)2、吸气开始压力迅速增至气道峰压水平并在吸气相保持恒定, 呼气起始压力快速下降至起始点, 环的形态似方盒状.P-V环受吸,呼气流速, Vt,频率和患者肌松状态, 系统弹性与粘性阻力变化的影响, 可从吸气肢和呼气肢耒观察.P-V环斜率代表系统动态顺应性.(A至B的虚线即斜率)VCV时静态测定第一、二拐点, 以便设置最佳PEEP和设定避免气压伤或高容积伤, 方法a)使用肌松剂, b)频率 6-8次/分, 吸/比=1:2,c)潮气量为0.8升/次. 发现A点(即笫一拐点LIP)呈似平坦状, 是压力增加但潮气量增加甚少或基本未增加, 此为内源性PEEP(PEEPi),在A点处压力再加上2-4cmH2O为最佳PEEP值. 然后观察B点(即笫二拐点UIP), 在此点压力再增加但潮气量增加甚少, 即为肺过度扩张点, 故各通气参数应选择低于B点(UIP)时的理想气道压力,潮气量等参数.肺气肿患者因弹性纤维的丧失, 故肺是高顺从性的, 且阻力增加,P-V环有点类似PCV时的P-V环, 即使在VCV时肺气肿患者也会出现这种形式的环, 因此一般PEEP以不大于6-8cmH2O为宜.气管痉挛在不同场所其严重程度也不一, 在急诊室丶ICU丶手术室均可遇及这类问题, 甚至在插管或拔管过程中也能发生, 治疗前后通过P-V或F-V环前后对比可立即评估疗效. 图57中①为治疗前气管痉挛, ②为治疗后P-V环偏向纵轴左侧为VCV的吸气流速选方形波, 流速在吸气开始快速增至设置值并保持恒定, 在吸气末降至0, 呼气开始时流速最大, 随后逐步降至基线0点处. 右侧为吸气流速为递减形,与方形波差别在于吸气开始快速升至设置值, 在吸气结速时流速降至为0, 呼气流速无差别.左侧为VCV的吸气流速选方形波, 流速在吸气开始快速增至设置值并保持恒定, 在吸气末降至0, 呼气开始时流速最大, 随后逐步降至基线0点处. 右侧为吸气流速为递减形,与方形波差别在于吸气开始快速升至设置值, 在吸气结速时流速降至为0, 呼气流速无差别.。

基础呼吸机波形分析SIMV模式丁广湘

基础呼吸机波形分析SIMV模式丁广湘

基础呼吸机波形分析SIMV模式丁广湘基础呼吸机是一种常见的治疗呼吸系统疾病的医疗设备。

它可以通过提供氧气和辅助呼吸运动来帮助患者呼吸。

SIMV(Synchronized Intermittent Mandatory Ventilation)模式是基础呼吸机的一种模式,它可以根据患者的需求提供机械通气,并与患者的自主呼吸同步。

在SIMV模式下,患者可以自主呼吸,同时基础呼吸机会以设定的频率进行有节奏的机械通气。

在呼气相,患者的自主呼吸努力会降低气道压力,触发呼吸机的呼气相。

在吸气相,患者的自主呼吸努力会升高气道压力,但仅当自主呼吸努力与呼吸机预设的吸气相同时,呼吸机才会给予机械通气的支持。

对于SIMV模式的基础呼吸机波形分析,我们主要关注以下几个方面:1. 支持水平(Support Level):支持水平指的是呼吸机对自主呼吸的支持程度。

当设定的支持水平较高时,呼吸机会提供较大的压力支持,以保持气道通畅。

在波形上,我们可以通过观察呼吸机给予的压力水平来评估支持水平的调整。

2. 吸气时间(Inspiratory Time):吸气时间是指患者吸气相的持续时间。

通过调整吸气时间的长短,我们可以调节机械通气的频率和时间比例,以适应患者的需求。

3. 吸气压力(Inspiratory Pressure):吸气压力是指基础呼吸机在吸气相给予患者的气道压力水平。

通过监测吸气压力,我们可以评估呼吸机对患者的支持力度是否合适。

4. 吸气流速(Inspiratory Flow Rate):吸气流速是指患者在吸气相时的气道流速。

通过观察吸气流速的变化,我们可以评估患者的吸气努力和呼吸系统的阻力情况。

5. 呼气相(Expiratory Phase):在SIMV模式下,呼气相是患者自主呼吸的阶段。

我们可以观察呼气相的持续时间和呼气末正压水平,以评估患者的自主呼气能力和呼气末阻力。

除了以上几个方面,还有其他一些波形特征也值得关注,如患者的自主呼吸频率和幅度、呼吸机的触发敏感度、呼气末正压水平等。

呼吸机基本波形详解

呼吸机基本波形详解

吸呼转换时间
指吸气相结束到呼气相开始所经过的时间,是呼吸机设置的 重要参数。
吸呼转换压力
指吸气相结束和呼气相开始时的压力水平,反映呼吸机的切 换性能。
03
呼吸机波形与临床应用
呼吸机波形在诊断中的应用
吸气峰压(Peak Inspirator…
用于评估患者吸气时的压力,判断是否存在气道阻力增加或肺顺应性 降低等情况。
过渡相时间过短
可能是由于潮气量设置过大、呼吸频 率过快等原因导致。处理方法包括调 整潮气量设置、适当减慢呼吸频率等。
感谢您的观看
THANKS
01
02
03
04
呼气峰压
表示呼气压力的峰值,用于评 估患者呼气时的阻力。
呼气时间
指呼气开始到呼气结束所经过 的时间,是呼吸机设置的重要
参数。
平均压
指呼吸机在整个呼气周期中维 持的压力水平,是评估通气效
果的重要指标。
内源性PEEP
指患者呼气时,呼吸道内产生 的正压,可能导致呼吸机撤离
困难。
过渡相波形
呼气峰压(Peak Expirator通气障碍或呼气性 通气障碍。
潮气量(Tidal Volume)
用于监测患者每分钟通气量,判断是否存在通气不足或通气过度。
吸气时间(Inspiratory Tim…
用于评估患者吸气时间,判断是否存在吸气时间延长或缩短。
呼吸机基本波形详解
目录 CONTENT
• 呼吸机基本波形概述 • 呼吸机基本波形详解 • 呼吸机波形与临床应用 • 呼吸机波形异常情况及处理方法
01
呼吸机基本波形概述
呼吸机波形的定义与分类
定义
呼吸机波形是呼吸机在工作过程 中产生的压力、流量和时间等参 数随时间变化的曲线。

呼吸机模式及波形

呼吸机模式及波形

控制通气
容量控制通气
Pressure
压力控制通气
Pressure
Flow
time
Flow
time
容量控制通气(VCV)
流量恒定
Pressure
恒定的潮气量
不受肺阻力影响
Flow
变化的压力
Time
压力控制通气(PCV)
吸气开始后,气流很快使气 道压达到预置水平,之后送 气速度减慢以维持预置压力 到吸气结束,之后转向呼气。 吸气流速(减速波)特点使 峰压较低,有可能降低气压 伤的发生,能改善气体分布 和V/Q,有利于气体交换。 运用PCV可以不必对潮气量 进行十分准确的监测,是一 种标准通气模式,用于补偿漏 气。
流速--时间波形
方 波: 是呼吸机在整个吸气时 间内所输送的气体流量均按设置值 恒定不变, 故 吸气开始即达到峰流 速, 且恒定不变持续到吸气结束才 降为0. 故形态呈方形 递减波 : 是呼吸机在整个吸气时 间内, 起始时输送的气体流量立即 达到峰流速, 然后逐渐递减至0 (吸 气结束), 以压力为目标的如定压型 通气(PCV)和压力支持 (PSV=ASB) 均采用递减波. 递增波 : 与递增波相反 , 目前基 本不用. 正弦波:是自主呼吸的波形. 吸气 时吸气流速逐渐达到峰流速而吸气 末递减至0.
容量--时间波形
漏气 表现:呼气容积不能回到基线
常见原因:回路或气管内插管漏气
主动呼气
正常:呼气降到基线水平 异常:呼气降到基线水平以下。 常见原因主动呼气
压力--时间波形
阻力增加 表现:峰压升高、平台压不变 原因:气管插管阻塞或分泌物聚集
顺应性降低 表现:峰压和平台压均升高 原因:顺应性降低(ARDS)

呼吸机治疗模式及波形课件

呼吸机治疗模式及波形课件
所设置的频率为病人提供恒稳流量的预设 置潮气量。 2. 吸气流量恒稳不变
3. 按照预设置频率或在病人触发时开始吸气
© MAQUET
2020/6VC
▪ 如果病人能够超越预设置的触发灵敏度, 则病人可以触发额外呼吸。
▪ 根据病人自己的吸气尝试,他们也有可能 在一次吸气过程中接收到高于预设置的吸 气容量和潮气量。
通气目标: A. 压力和容量 B. 压力 C. 流量/容量。
© MAQUET
2020/6/8
17
呼吸模式和功能
呼吸模式简介
以压力和容量为目标- PRVC 每次呼吸维持一个预设的吸气潮气量,吸 气期间压力恒稳不变。(PRVC)。
以压力为目标-PC.PS 在吸气期间维持一个预设置的恒稳压力
以流量/容量为目标 VC 每次呼吸将维持一个恒稳的吸气容量, 吸气 流量恒稳不变
© MAQUET
2020/6/8
78
呼吸模式和功能
自主呼吸模式-CPAP
▪ 气道中维持一个连续的正压。恰当地设置 PEEP可防止气道异常塌陷。
▪ 在病人尝试时开始吸气。开始呼气的情况 与压力支持模式相同。
▪ 如果达到‘呼吸暂停’的报警极限,呼吸 机将自动切换回后备模式。
© MAQUET
2020/6/8
2020/6/8
同步间歇指令通气SIMV(PRVC)+PS
23
呼吸模式和功能
呼吸波形中的重要定义
压力控制/压力支持 压力-时间波形 X:吸气时间 Z:呼气时间 1. 开始吸气 2. 吸气压力峰值 3. 呼气末压力
© MAQUET
2020/6/8
24
呼吸模式和功能
呼吸波形中的重要定义
压力控制 流量-时间波形 ▪ X:吸气时间 ▪ Z:呼气时间 ▪ 4. 吸气流量峰值 ▪ 5. 吸气末流量 ▪ 6. 呼气流量峰值 ▪ 7. 呼气末流量

呼吸机波形解读护理课件

呼吸机波形解读护理课件

平台相波形
在吸气和呼气相之间的 过渡阶段,用于调整呼
吸机的输出压力。
触发相波形
显示触发呼吸机送气的 患者的呼吸努力。
呼吸机波形产生原理
01
02
03
压力波形
由于气体流速的限制,呼 吸机在送气过程中产生压 力波动,形成压力波形。
流量波形
呼吸机根据患者的呼吸努 力和预设的呼吸参数,产 生相应的气流,形成流量 波形。
波形分析
对计算出的参数值进行综合分析,评估患者的呼吸状况和呼吸机 的性能状态。
基于呼吸机波形的护理措施制定
护理计划
根据分析结果,制定针对性的护理计划,包括调整呼吸机参数、 监测患者生命体征、预防并发症等。
护理措施实施
按照护理计划,实施相应的护理措施,确保患者的安全和舒适。
护理效果评估
对护理措施的实施效果进行评估,及时调整和完善护理计划,提高 护理质量。
采集位置
选择合适的传感器放置位置,以便准确监测患者 的呼吸运动和呼吸机的工作状态。
数据存储
将采集到的波形数据存储在可靠的存储介质中, 以便后续分析和处理。
呼吸机波形分析步 骤
波形识别
根据采集到的波形数据,识别出不同类型的波形,如潮气量、气 道压力、流量等。
参数计算
根据识别的波形数据,计算出相应的参数值,如呼吸频率、潮气 量大小、气道阻力等。
呼气峰压过低
检查是否存在呼吸机管路漏气或呼吸 机设置不当,及时调整呼吸机参数, 提高呼气峰压。
平均气道压波形异常处理
平均气道压过高
可能存在肺不张或肺部感染,需要进一步检查并调整治疗方案。
平均气道压过低
可能存在呼吸道梗阻或肺部疾病,需要进一步检查并调整治疗方案。

呼吸机工作原理及波形分析

呼吸机工作原理及波形分析

呼吸机工作原理正常人的呼吸是由呼吸中枢支配呼吸肌有节奏地张弛,造成肺内压力变化来完成的。

当肺内压力大于外部大气压时,便呼气;当肺内压力低于外部大气压时,便吸气。

吸入的气体与血液中的气体进行交换,结合氧气,排出二氧化碳,进而血液中被结合的氧气又与组织中气体进行交换,这就是呼吸的完整过程。

在通常情况下,正常人主要通过自己的呼吸摄取空气中的氧气来满足各器官组织的氧化代谢需要。

如果呼吸系统受到损伤,如药物中毒、溺水、休克,或由于其它生理功能的紊乱引起呼吸衰竭,单靠病人不健全的呼吸功能已不能够或根本不能满足各器官对氧气的需求,这时就需要借助呼吸机对病人进行抢救治疗。

利用呼吸机,可帮助病人提高肺通气量,以解除病人缺氧和二氧化碳在病人体内的滞留,改善病人的换气功能。

由此可见,呼吸机是可以代替人的呼吸功能或辅助人的呼吸功能的仪器。

它适用于呼吸衰竭、甚至停止呼吸的病人做人工呼吸之用。

它能帮助病人纠正缺氧和排出二氧化碳,是挽救某些危重病人生命的重要工具。

呼吸机是利用不同的压力进行工作的仪器。

因此,下面介绍一下正、负压呼吸原理及使用呼吸机必须知道的几个概念。

(一)负压呼吸原理这种呼吸机向病人提供的是负压通气,所以被称作负压呼吸机。

它的工作原理是把病人放在一个压力可以减小的密闭容器内,只把病人的头部露在外面。

然后对这个容器进行抽空,使其内部产生负压。

这个负压传递到胸廓内的空间,使胸部和肺组织容积由于受到压差的作用而增大。

这样,在气道内就产生一个压力递减度。

这时,大气中的空气就会通过露在外面的鼻和口腔,沿着气道内的压力递减度进到肺腔内。

当达到一定量时,使这个密闭容器内的压力恢复到大气压。

这时,胸廓和肺组织就会向反方向恢复它原来的形状,同时也将进入到肺内的空气排到体外。

这种呼吸尽管比较符合生理特点,但由于操作及对各种呼吸参数不易掌握,目前已不再使用。

这种呼吸机叫做体外通气机,有时也被称作铁肺。

(二)正压呼吸原理正压呼吸机是利用增加气道内压力的方法将空气送入肺内,肺内的压力增大使肺腔扩张。

、呼吸机波形--(1)

、呼吸机波形--(1)

、呼吸机波形--(1)呼吸机波形是指在呼吸机治疗时,显示在呼吸机的显示屏上的呼吸波形图像。

呼吸机波形的形态和变化能够反映病人的呼吸情况,对临床医生进行肺机械通气治疗监测至关重要。

以下是呼吸机波形的相关内容。

一、呼气末正压波形呼气末正压(PEEP)是指在呼气结束时,气道压力保持正值,为肺泡提供持续的正压,有效维持肺泡的开放性,并防止肺塌陷。

呼气末正压波形是指呼吸机在PEEP状态下所显示的波形图像。

呼气末正压波形为一个平滑的水平基线,波形的跳动越小,说明呼吸机的雾化效果越好,PEEP的设置越合适。

二、呼吸机压力波形呼吸机压力波形是指呼吸机将气体注入病人气道内时的压力波形,包括吸气压力波形和呼气压力波形。

呼吸机压力波形的高度和宽度也反映了肺的通气情况。

低的呼吸机压力表示肺容量不足,高的值表示肺活量过大。

优秀的肺机械通气治疗需要医生对呼吸机压力波形的变化有敏锐的感知和正确的处理。

三、呼吸机流量波形呼吸机流量波形是指呼吸机向病人提供气体时的气体流速图像,流速的变化应该与时间成正比例关系。

流量波形的陡峭表示气体流速大,缓慢表示气体流速小。

如果气体流速变化太小,可能会导致患者呼吸时间不足,通气量不足。

四、呼吸机容积波形呼吸机容积波形是指呼吸机向病人提供气体时的每次吸入气体的容积。

患者通气次数高,但吸气时间短,可以增加容积。

呼吸机容积波形的峰值应该在一定范围内,否则会对病人造成一定的损害。

五、呼吸机频率波形呼吸机频率波形是指呼吸机向病人提供气体时,病人每分钟通气的次数。

呼吸机频率波形的变化和呼吸机容积波形同步显示,这种显示方式能够更好地反映患者的通气情况。

以上是呼吸机波形的相关内容,呼吸机波形是临床医生进行肺机械通气治疗监测时的重要依据,同时对于肺机械通气治疗过程的安全和有效起到了重要作用。

呼吸机基本波形详解课件

呼吸机基本波形详解课件

呼吸机基本波形的重要性
呼吸机基本波形是评估患者呼吸状况的重要依据,通过观察 波形可以了解患者的呼吸频率、潮气量、吸呼比等参数,从 而判断患者的通气功能和呼吸状态。
呼吸机基本波形也是调整呼吸机参数的重要参考,通过对波 形的分析,可以调整呼吸机的参数设置,以更好地适应患者 的需求,提高治疗效果。
呼吸机基本波形的分类
呼气相波形异常与处理
1 2
呼气峰流速过低
可能是由于患者肺顺应性降低或呼气阀故障导致 ,应检查患者肺功能和呼吸机设置。
呼气峰流速过高
可能是由于患者自主呼吸过快或呼吸机设置不当 引起,应调整患者自主呼吸或调整呼吸机参数。
3
呼气峰流速波形异常
可能是由于患者病理生理改变或呼吸机故障导致 ,应检查患者状态和呼吸机工作状态。
特殊波形与临床意义
窒息波形
当呼吸机无法提供有效通气时, 患者可能出现窒息波形,表现为
吸气和呼气相均无气流通过。
窒息通气波形
在窒息通气过程中,呼吸机呈现 间歇性通气波形,主要用于自主
呼吸较弱的患者。
反常呼吸波形
在反常呼吸波形中,吸气和呼气 相的气流速度方向相反,多见于
严重肺挫伤或气胸等情况。
CHAPTER 04
呼吸机基本波形详解课 件
CONTENTS 目录
• 呼吸机基本波形概述 • 呼吸机基本波形详解 • 呼吸机波形与临床意义 • 呼吸机波形异常与处理
CHAPTER 01
呼吸机基本波形概述
呼吸机基本波形的定义
• 呼吸机基本波形是指在呼吸机的使用过程中,通过监测和记录 呼吸过程中的各种参数,如气流、压力、容量等,形成的动态 图形。这些波形能够反映患者的呼吸状态和呼吸机的性能。
CHAPTER 02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拐点
拐点
呼吸机拮抗
呼吸功(WOB)
吸气功 呼气功
呼吸功(WOB)
流量-容量曲线环
流量-容量曲线环
流量-容量曲线环
压力-流量曲线环
压力-流量曲线环
压力-流量曲线环
曲线与波形临床意义
一、评价药物疗效
针对支气管扩展药和胸肺顺应性改变情况
评价药物疗效
二、容量或压力设置过高
容量或压力设置过高
静态气道阻力
RL=(Ppeak – Pplateau)/flow
静态顺应性
CL=VT/ (Pplateau –PEEP)
cmH2O/L/s L/cmH2O
压力(Paw)
压力(Paw)
压力(Paw)
压力(Paw)
压力(Paw)
压力(Paw)
压力(Paw)
压力(Paw)影响因素
1.呼吸机工作压力 2.压力控制或支持水平 3.潮气量(VT) 4.气道阻力(Raw) 5.呼吸用力幅度
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
肺功能正常的PCV和VCV 的3种波形区别 肺功能异常的PCV和VCV 的3种波形区别
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
容量或压力设置过高
三、漏气
四、脱管
五、堵管
六、管道积水
七、识别呼吸机疲劳
八、呼吸触发灵敏度设置不当
呼吸触发灵敏度设置不当
九、吸气、屏气、呼气时间设置
十、Raw增加
吸气相Raw
Raw增加
吸气相Raw
Raw增加
练习
练习
练习
练习
终于结束了
谢谢大家!
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
3种Scalar波形同时显示与比较
通常设定为T的10%,临床根据病情和呼吸习惯 适当增加或减少。 周期:T=Ti+Te,f=60s/(Ti+Te)bpm
时间(time,T)
时间(time,T)
容量(volume)
容量(volume)
容量(volume)
总之
呼吸机是通过压力-容量-流量时间4个基本要素的不同组合和调 节机制,构成各种适合纠正不同 病理生理状态的模式与功能,最 终在保障容量(或MV),不增加 损伤的前提下,改善和纠正缺氧 与二氧化碳潴留。
3种Scalar波形同时显示与比较
曲线环
压力流量环
呼吸机通气方式
C
(Controlled)
A
(assisted)
S
(Spontaneous)
压力-容量曲线/环
压力-容量曲线/环
压力-容量曲线/环
Raw增加与肺顺应性
Raw增加与肺顺应性
Raw增加与肺顺应性
拐点
(Uip) (Lip)
流量(flow/flow rate,F/ù)
1.吸气F/ù 2.呼气F/ù 3.触发F/ù 4.基线流量
(base flow)
流量(flow/flow rate,F/ù)
流量(flow/flow rate,F/ù)
流量(flow/flow rate,F/ù)
流量(flow/flow rate,F/ù)
流量(flow/flow rate,F/ù)
触发F/ù基线流量(baFra biblioteke flow)
流量影响因素
RR
Vt 吸/呼 调节 吸气 流量
呼吸 用力 大小
流量影响因素
时间(time,T)
两个 “开始、转换或切换” 两个 “相或过程内含保持”
时间参数及其符号
通气频率 ( f:0~120) bpm 吸呼比 (I:E = Ti: Te ) 吸气时间 Ti (s) 、Trise (s) 呼气时间 Te(s) 屏气时间 TP(s) 是吸气时间的一部份,
(Pplateau) 2.呼气压(EP) a.呼气气道压 b.呼气末正压 (peep)
(peepi,autopeep)
PEEPi(autoPEEP)
PEEPi(autoPEEP)
压力(Paw)
3.平均气道 压 (Pmean)
4.触发压 5压力限制
(Pressure limit)
气道阻力和顺应性
构成呼吸机模式与功能的 基本要素及波形
呼吸机通气方式
C
(Controlled)
A
(assisted)
S
(Spontaneous)
基本要素
压力 流量 时间 容量
正常生理肺容量及其组成
正常生理肺容量及其组成
构成呼吸周期的基本要素与波形
压力(Paw)
1.吸气压(IP) a.吸气峰压 (PIP)) b.吸气平台压
相关文档
最新文档