奥数奇数和偶数
奥数之奇数与偶数

偶 数
整数
偶数也叫双数, 既能被2整除的 整数即为偶数。
奇数也叫单数, 既不能被2整除 的整数即为奇数。
性质1:奇数≠偶数。 性质2:奇数±奇数=偶数; 偶数±偶数=偶数。 奇数±偶数=奇数 性质3:奇数×奇数=奇数; 偶数×偶数=偶数; 奇数×偶数=偶数。 性质4:奇数个奇数之和是奇数;偶数 个奇数之和是偶数;任意有限个偶数 之和为偶数。
课堂练习
1、任意取出1994个连续自然数,它们的总和是奇数 还是偶数? 2、用0,1,2,3······9十个数字组成五个两 位数,每个数字只用一次,要求它们的和是一个奇 数,并且尽可能大,那么这五个两位数的和是多少? 3、判断23×47×65×132×239的积是偶数还是奇数? 4、已知83+95+77+89+A=2001,请判断A是奇数还是偶 数?
能否在下式的“□”内填入加号或减号,使等 式成立,若能请填入符号,不能请说明理由 1□ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=10 1□ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=27
性质5:若干个奇数的乘积为奇数;偶数与整数 的乘积为偶数。 性质6:如果若干个整数的乘积是奇数,那么其 中每一个因子都是奇数;如果若干个整数的乘 积是偶数,那么其中至少有一个因子是偶数。 性质7:如果两个整数的和或差是偶数,那么这 两个整数的奇偶性相同;如果两个整数的和或 差是奇数,那么这两个整数一定是一奇一偶。 性质8:两个整数的和或差的奇偶性相同。
着的),每盏灯由一根灯绳控制,拉一下 亮。100个学生依次进入电影院,第一个学 生把1的倍数的灯绳拉一下,灯全亮了,第 二个学生把2的倍数的灯绳都拉一下,第三 个学生把3的倍数的拉一 下,······第100个学生把100的倍 数的拉一下,最后,礼堂里有哪些灯是亮 的?
三年级奥数之奇数与偶数

奇数与偶数班级姓名知识要点:1、奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数2、奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数3、奇数个奇数的和等于奇数,偶数个奇数的和等于偶数,任意个偶数的和等于偶数。
4、任意个奇数的积等于奇数,偶数与任意自然数之积是偶数。
5、若干个自然数的积是奇数,则每一个因数都是奇数;若干个自然数之积是偶数,则其中必定有一个因数是偶数。
6、若干个自然数的和与差的奇偶性相同。
7、偶数的平方能被4整除,奇数的平方被4除余1。
8、相邻两个整数之积必为偶数,其和必为奇数。
教学过程:例1、1+2+3+……+2009的和是奇数还是偶数?练习:下面算式的和是奇数还是偶数?1+2+2+3+3+3+4+4+4+4+……+19+19+……+19例2、说明任意三个数中,至少有两个数之和是偶数。
练习:30个连续自然数的积是奇数还是偶数?例3、桌子上有9只杯子口全朝上,每次将其中的6只同时“翻转”,请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
练习:有5张扑克牌,画面朝上,小明每次翻转其中的4张。
他能在翻转若干次后,使5张牌的画面都向下吗?例4、某校六年级学生参加数学竞赛,试题共40道。
评分标准是:答对一题给3分,答错一题倒扣1分,某题不答给1分。
请说明该校六年级参赛学生的得分一定是偶数。
练习:能否在下面的方框内填入“+”或“-”,使下面的等式成立,为什么?1 2 3 4 5 6 7 8 9 = 10例5、有一列数:1,1,2,3,5,8,13,21,34,55,……从第三个数开始,每个数都是前两个数的和。
那么在前100个数中,有多少个奇数?这100个数的和是奇数还是偶数?练习:有一列数,从第2个数起,每个数与它前面一个数的差等于它的序号,例如第6个数与第5个数的差是6。
奇数与偶数奥数题

奇数与偶数奥数题一、奇数与偶数的基础概念奇数呢,就是那些不能被2整除的整数啦,像1、3、5、7这些。
而偶数呢,就是能被2整除的整数,像2、4、6、8这样。
这就像是数字世界里的两大阵营,各有各的特点哦。
二、简单的奇数与偶数运算规律1. 奇数+奇数=偶数。
比如说1+3 = 4,两个奇数相加就变成偶数啦。
这就好比两个调皮的小奇数凑在一起,就变得规规矩矩的,变成偶数了呢。
2. 奇数+偶数=奇数。
像 3 + 4 = 7,一个奇数和一个偶数相加,结果还是奇数,就像奇数的调皮把偶数也带得有点特别了。
3. 偶数+偶数=偶数。
4+6 = 10,两个偶数相加还是偶数,就像两个温柔的家伙在一起还是很温柔。
三、奇数与偶数的乘法规律1. 奇数×奇数=奇数。
例如3×5 = 15,两个奇数相乘结果还是奇数,它们的那种独特性在相乘的时候也保留下来了。
2. 奇数×偶数=偶数。
像3×4 = 12,奇数和偶数相乘就变成偶数了,就像奇数被偶数给影响了。
3. 偶数×偶数=偶数。
4×6 = 24,两个偶数相乘还是偶数,感觉很和谐呢。
四、奥数题示例1. 有两个连续的整数,它们的和是11,这两个数是奇数还是偶数呢?设较小的数为x,那么较大的数就是x + 1。
根据题意x+(x + 1)=11,2x+1 = 11,2x = 10,x = 5。
所以这两个数是5和6,5是奇数,6是偶数。
2. 三个连续的奇数的和是27,这三个奇数分别是多少?设中间的奇数为x,那么前一个奇数是x - 2,后一个奇数是x+2。
(x - 2)+x+(x + 2)=27,3x = 27,x = 9。
所以这三个奇数是7、9、11。
3. 一个偶数除以2再加上3等于7,这个偶数是多少?设这个偶数为x,根据题意(x÷2)+3 = 7。
x÷2 = 4,x = 8。
4. 有一组数1、2、3、4、5、6、7、8、9、10,其中奇数的和与偶数的和相差多少?奇数的和:1 + 3+5+7+9 = 25。
完整四年级奥数奇数与偶数.docx

一、奇数与偶数一、新学:1.奇数和偶数整数可以分成奇数和偶数两大 .能被 2 整除的数叫做偶数,不能被 2 整除的数叫做奇数。
偶数通常可以用 2k(k 整数)表示,奇数可以用 2k+1(k 整数)表示。
特注意,因 0 能被 2 整除,所以 0 是偶数。
2.奇数与偶数的运算性性 1:偶数±偶数 =偶数,奇数±奇数 =偶数。
性 2:偶数±奇数 =奇数。
性 3:偶数个奇数相加得偶数。
性 4:奇数个奇数相加得奇数。
性 5:偶数×奇数 =偶数,奇数×奇数 =奇数。
利用奇数与偶数的些性,我可以精巧地解决多.二、例例 11+2+3+⋯+1993的和是奇数?是偶数?例 2 一个数分与另外两个相奇数相乘,所得的两个相差150,个数是多少?例 3 元旦前夕,同学相互送年卡 .每人只要接到方年卡就一定回年卡,那么送了奇数年卡的人数是奇数,是偶数?什么?例 4 已知 a、b、c 中有一个是 5,一个是 6,一个是 7.求 a-1,b-2,c-3的乘一定是偶数。
例 5 任意改某一个三位数的各位数字的序得到一个新数 .新数与原数之和不能等于 999。
例 7桌上有 9 只杯子,全部口朝上,每次将其中 6只同时“翻转”请.说明:无论经过多少次这样的“翻转”,都不能使 9 只杯子全部口朝下。
例 8假设 n 盏有拉线开关的灯亮着,规定每次拉动(n-1)个开关,能否把所有的灯都关上?请证明此结论,或给出一种关灯的办法。
例 9 在圆周上有 1987 个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝 .最后统计有 1987 次染红, 1987 次染蓝 .求证至少有一珠子被染上过红、蓝两种颜色。
例 10 某校六年级学生参加区数学竞赛,试题共 40 道,评分标准是:答对一题给 3 分,答错一题倒扣 1 分.某题不答给 1 分,请说明该校六年级参赛学生得分总和一定是偶数。
奥数题(数的奇偶性问题)

• 奇偶性基础概念 • 数的奇偶性判断方法 • 数的奇偶性在数学中的应用 • 奥数题中的数的奇偶性问题 • 解题技巧和思路
01
奇偶性基础概念
奇数Байду номын сангаас偶数的定义
奇数
不能被2整除的整数,如1、3、5等。
偶数
能被2整除的整数,如2、4、6等。
奇偶性的性质
奇数与奇数相加得到 偶数,如3+5=8。
数来判断。如果余数为0,则该数为偶数;如果余数为1,则该数为奇数。
02 03
判断一组数的奇偶性
对于一组数,可以分别判断每个数的奇偶性,然后根据奇偶性的性质 (奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数)来判断整 个表达式的奇偶性。
判断一个表达式的奇偶性
对于一个复杂的表达式,可以将其拆分成若干个简单的部分,分别判断 每个部分的奇偶性,然后根据奇偶性的性质来判断整个表达式的奇偶性。
奇数与偶数相加得到 奇数,如3+4=7。
偶数与偶数相加也得 到偶数,如4+6=10。
奇偶性的运算规则
奇数乘以奇数得到奇数,如 3x5=15。
偶数乘以偶数也得到偶数,如 4x6=24。
奇数乘以偶数得到偶数,如 3x4=12。
02
数的奇偶性判断方法
判断一个数是奇数还是偶数
总结词
通过数学性质判断
详细描述
在数论中的应用
奇偶性在整除理论中的应用
通过奇偶性可以判断一个数是否能被另一个数整除,以及整 除后的余数。
奇偶性在数论函数中的应用
数论函数中经常涉及到奇偶性的判断,如欧拉函数、莫比乌 斯函数等。
04
奥数题中的数的奇偶性问题
奥数奇数和偶数知识讲解

奥数奇数和偶数;知识要点:;奇数和偶数的概念:整数可以分成奇数和偶数两大类;1、偶数与奇数的关系:;偶数+偶数=()偶数-偶数=();偶数+奇数=()偶数-奇数=();奇数+奇数=()奇数-奇数=();偶数×偶数=()偶数×奇数=();奇数×奇数=()偶数÷偶数=();偶数÷奇数=()奇数÷奇数=();2、奇数个奇数的和等于奇数,偶数个奇数的和等于偶;3、任奥数奇数和偶数知识要点:奇数和偶数的概念:整数可以分成奇数和偶数两大类。
能被2整除的数叫做偶数(双数),不能被2整除的数叫做奇数(单数)。
特别注意,因为0能被2整除,所以0是偶数。
因此最小的奇数是1,最小的偶数是0。
1、偶数与奇数的关系:偶数+偶数=()偶数-偶数=()偶数+奇数=()偶数-奇数=()奇数+奇数=()奇数-奇数=()偶数×偶数=()偶数×奇数=()奇数×奇数=()偶数÷偶数=()偶数÷奇数=()奇数÷奇数=()2、奇数个奇数的和等于奇数,偶数个奇数的和等于偶数,任意个偶数的和等于偶数。
3、任意个奇数的积等于奇数,偶数与任意自然数之积是偶数。
4、若干个自然数的积是奇数,则每一个乘数都是奇数;若干个自然数之积是偶数,则其中必定有一个乘数是偶数。
5、相邻的两个整数必为一奇一偶,它们的积必为偶数,它们的和必为奇数。
例1、下表中有15个数,请选出五个数,使它们的和等于30.能做到吗?为什么?例2、在2003年“非典”时期,通信公司赠送某医院27部手机,它们的号码都是连续的。
这27部手机的号码和是奇数还是偶数?例3、任意改变某个三位数的各数字的次序后得到一个新的三位数(比如4 23可改变为432、342等),试问这个新的三位数与原来的那个三位数的和能不能等于999?如果能,试举一例;如果不能,请说明理由。
例4、赵老师在黑板上写了三个整数。
(完整版)四年级奥数奇数与偶数(教师用含答案)

第二讲:奇数与偶数教学目标本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
知识点拨一、奇数和偶数的定义整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论:推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a,b ,有a+b 与a-b 同奇或同偶模块一:奇数偶数基本概念及基本加减法运算性质【例 1】 1231993++++……的和是奇数还是偶数?【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数【巩固】 123456799100999897967654321+++++++++++++++++++++L L 的和是奇数还是偶数?为什么?【解析】 在算式中,1~99都出现了2次,所以123499999897964321++++++++++++++L L 是偶数,而100也是偶数,所以1234567991009998979676++++++++++++++++L L54321+++++的和是偶数.【巩固】 2930318788+++++……得数是奇数还是偶数?【解析】 偶数。
(完整)四年级奥数奇数与偶数

一、奇数与偶数一、新课学习:1.奇数和偶数整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
2.奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数。
性质2:偶数±奇数=奇数。
性质3:偶数个奇数相加得偶数。
性质4:奇数个奇数相加得奇数。
性质5:偶数×奇数=偶数,奇数×奇数=奇数。
利用奇数与偶数的这些性质,我们可以精巧地解决许多实际问题.二、例题例11+2+3+…+1993的和是奇数?还是偶数?例2一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?例3元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数?为什么?例4已知a、b、c中有一个是5,一个是6,一个是7.求证a-1,b-2,c-3的乘积一定是偶数。
例5任意改变某一个三位数的各位数字的顺序得到一个新数.试证新数与原数之和不能等于999。
例7桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
例8假设n盏有拉线开关的灯亮着,规定每次拉动(n-1)个开关,能否把所有的灯都关上?请证明此结论,或给出一种关灯的办法。
例9在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色。
例10某校六年级学生参加区数学竞赛,试题共40道,评分标准是:答对一题给3分,答错一题倒扣1分.某题不答给1分,请说明该校六年级参赛学生得分总和一定是偶数。
例12某学校一年级一班共有25名同学,教室座位恰好排成5行,每行5个座位.把每一个座位的前、后、左、右的座位叫做原座位的邻位.问:让这25个学生都离开原座位坐到原座位的邻位,是否可行?例13在中国象棋盘任意取定的一个位置上放置着一颗棋子“马”,按中国象棋的走法,当棋盘上没有其他棋子时,这只“马”跳了若干步后回到原处,问:“马”所跳的步数是奇数还是偶数?例14线段AB有两个端点,一个端点染红色,另一个端点染蓝色.在这个AB 线段中间插入n个交点,或染红色,或染蓝色,得到n+1条小线段(不重叠的线段).试证:两个端点例外色的小线段的条数一定是奇数。
五年级奥数专题-奇数与偶数

五年级奥数专题-奇数与偶数能被2整除的数叫做偶数,不能被2整除的叫做奇数.奇数平常也叫做单数,偶数也叫做双数.0也是偶数.所以.一个整数不是奇数,就是偶数.奇数和偶数的运算有如下一些性质:1.偶数±偶数=偶数;奇数±奇数=偶数;偶数±奇数=奇数.2.奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.3.如果一个偶数能被奇数整除,那么,商必是偶数.偶数除以,如果能整除,商可能是奇数,也可能是偶数.奇数不能被偶数整除.4.偶数的平方能被4整除,奇数的平方被4除余1.一、例题与方法指导例1. 用0~9这十个数码组成五个两位数,每个数字只用一次,要求它们的和是奇数,那么这五个两位数的和最大是多少?思路导航:有时题目的要求比较多,可先考虑满足部分要求,然后再调整,使最后结果达到全部要求.这道题的几个要求中,满足“和最大”是最容易的.暂时不考虑这五个数的和是奇数的要求.要使组成的五个两位数的和最大,应该把十个数码中最大的五个分别放在十位上,即十位上放5,6,7,8,9,而个位上放0,1,2,3,4.根据奇数的定义,这样组成的五个两位数中,有两个是奇数,即个位是1和3的两个两位数.要满足这五个两位数的和是奇数,根据奇、偶数相加减的运算规律,这五个数中应有奇数个奇数.现有两个奇数,即个位数是1,3的两位数.所以五个数的和是偶数,不合要求,必须调整.调整的方法是交换十位与个位上的数字.要使五个数有奇数个奇数,并且五个数的和尽可能最大,只要将个位和十位上的一个奇数与一个偶数交换,并且交换的两个的数码之差尽可能小,由此得到交换5与4的位置.满足题设要求的五个两位数的十位上的数码是4,6,7,8,9,个位上的数码是0,1,2,3,5,所求这五个数的和是(4+6+7+8+9)×10+(0+1+2+3+5)=351.例2. 7只杯子全部杯口朝上放在桌子上,每次翻转其中的2只杯子.能否经过若干次翻转,使得7只杯子全部杯口朝下?思路导航:盲目的试验,可能总也找不到要领.如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题所在.一开始杯口朝上的杯子有7只,是奇数;第一次翻转后,杯口朝上的变为5只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数.类似的分析可以得到,无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数0.也就是说,不可能使7只杯子全部杯口朝下.例3. 有m(m≥2)只杯子全部口朝下放在桌子上,每次翻转其中的(m-1)只杯子.经过若干次翻转,能使杯口全部朝上吗?思路导航:当m是奇数时,(m-1)是偶数.由例2的分析知,如果每次翻转偶数只杯子,那么无论经过多少次翻转,杯口朝上(下)的杯子数的奇偶性不会改变.一开始m 只杯子全部杯口朝下,即杯口朝下的杯子数是奇数,每次翻转(m-1)即偶数只杯子.无论翻转多少次,杯口朝下的杯子数永远是奇数,不可能全部朝上.当m是偶数时,(m-1)是奇数.为了直观,我们先从m= 4的情形入手观察,在下表中用∪表示杯口朝上,∩表示杯口朝下,每次翻转3只杯子,保持不动的杯子用*号标记.翻转情况如下:由上表看出,只要翻转4次,并且依次保持第1,2,3,4只杯子不动,就可达到要求.一般来说,对于一只杯子,要改变它的初始状态,需要翻奇数次.对于m只杯子,当m是偶数时,因为(m-1)是奇数,所以每只杯子翻转(m-1)次,就可使全部杯子改变状态.要做到这一点,只需要翻转m次,并且依次保持第1,2,…,m只杯子不动,这样在m次翻转中,每只杯子都有一次没有翻转,即都翻转了(m-1)次.综上所述:m只杯子放在桌子上,每次翻转(m-1)只.当m是奇数时,无论翻转多少次,m只杯子不可能全部改变初始状态;当m是偶数时,翻转m次,可以使m 只杯子全部改变初始状态.例4. 一本论文集编入15篇文章,这些文章排版后的页数分别是1,2,3,…,15页.如果将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一面是奇数页码的最多有几篇?思路导航:可以先研究排版一本书,各篇文章页数是奇数或偶数时的规律.一篇有奇数页的文章,它的第一面和最后一面所在的页码的奇偶性是相同的,即排版奇数页的文章,第一面是奇数页码,最后一面也是奇数页码,而接下去的另一篇文章的第一面是排在偶数页码上.一篇有偶数页的文章,它的第一面和最后一面所在的页码的奇偶性是相异的,即排版偶数页的文章,第一面是奇(偶)数页码,最后一面应是偶(奇)数页码,而紧接的另一篇文章的第一面又是排在奇(偶)数页码上.以上说明本题的解答主要是根据奇偶特点来处理.题目要求第一面排在奇数页码的文章尽量多.首先考虑有偶数页的文章,只要这样的第一篇文章的第一面排在奇数页码上(如第1页),那么接着每一篇有偶数页的文章都会是第一面排在奇数页码上,共有7篇这样的文章.然后考虑有奇数页的文章,第一篇的第一面排在奇数页码上,第二篇的第一面就会排在偶数页码上,第三篇的第一面排在奇数页码上,如此等等.在8篇奇数页的文章中,有4篇的第一面排在奇数页码上.因此最多有7+4=11(篇)文章的第一面排在奇数页码上.二、巩固训练1.有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子.阿花每次从大盒内随意摸出两枚棋子,若摸出的两枚棋子同色,则从小盒内取一枚黑棋子放入大盒内;若摸出的两枚棋子异色,则把其中白棋子放回大盒内.问:从大盒内摸了1999次棋子后,大盒内还剩几枚棋子?它们都是什么颜色?解答大盒内装有黑、白棋子共1001+1000=2001(枚).因为每次都是摸出2枚棋子放回1枚棋子,所以每摸一次少1枚棋子,摸了1999次后,还剩2001-1999=2(枚)棋子.从大盒内每次摸2枚棋子有以下两种情况:(1)所摸到的两枚棋子是同颜色的.此时从小盒内取一枚黑棋子放入大盒内.当所摸两枚棋子同是黑色,这时大盒内少了一枚黑棋子;当所摸两枚棋子同是白色,这时大盒内多了一枚黑棋子.(2)所摸到的两枚棋子是不同颜色的,即一黑一白.这时要把拿出的白棋子放回到大盒,大盒内少了一枚黑棋子.综合(1)(2),每摸一次,大盒内的黑棋子总数不是少一枚就是多一枚,即改变了黑棋子数的奇偶性.原来大盒内有1000枚即偶数枚黑棋子,摸了1999次,即改变了1999次奇偶性后,还剩奇数枚黑棋子.因为大盒内只剩下2枚棋子,所以最后剩下的两枚棋子是一黑一白.2. 一串数排成一行:1,1,2,3,5,8,13,21,34,55,…到这串数的第1000个数为止,共有多少个偶数?分析与解:首先分析这串数的组成规律和奇偶数情况.1+1=2,2+3=5,3+5=8, 5+8=13,…这串数的规律是,从第三项起,每一个数等于前两个数的和.根据奇偶数的加法性质,可以得出这串数的奇偶性:奇,奇,偶,奇,奇,偶,奇,奇,偶,……容易看出,这串数是按“奇,奇,偶”每三个数为一组周期变化的. 1000÷3=333……1,这串数的前1000个数有333组又1个数,每组的三个数中有1个偶数,并且是第3个数,所以这串数到第1000个数时,共有333个偶数.三、拓展提升1.在11,111,1111,11111,…这些数中,任何一个数都不会是某一个自然数的平方.这样说对吗?2.一本书由17个故事组成,各个故事的篇幅分别是1,2,3,…,17页.这17个故事有各种编排法,但无论怎样编排,故事正文都从第1页开始,以后每一个故事都从新一页码开始.如果要求安排在奇数页码开始的故事尽量少,那么最少有多少个故事是从奇数页码开始的?3.桌子上放着6只杯子,其中3只杯口朝上,3只杯口朝下.如果每次翻转5只杯子,那么至少翻转多少次,才能使6只杯子都杯口朝上?4.70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边的两个数的和,这一行数的最左边的几个数是这样的:0,1,3,8,21,…问:最右边的一个数是奇数还是偶数?5.学校组织运动会,小明领回自己的运动员号码后,小玲问他:“今天发放的运动员号码加起来是奇数还是偶数?”小明说:“除开我的号码,把今天发的其它号码加起来,再减去我的号码,恰好是100.”今天发放的运动员号码加起来,到底是奇数还是偶数?6.在黑板上写出三个整数,然后擦去一个换成所剩两数之和,这样继续操作下去,最后得到88,66,99.问:原来写的三个整数能否是1,3,5?答案1.对.提示:因为平方数能被4整除或除以4余1,而形如111…11的数除以4的余数与11除以4的余数相同,余3,所以不是平方数.2.5个.提示:与例4类似分析可知,先排9个奇数页的故事,其中有5个从奇数页开始,再排8个偶数页的故事,都是从偶数页码开始.3.3次.提示:见下表.4.偶数.提示:这行数的前面若干个数是:0,1,3,8,21,55,144,377,987,2584,…这些数的奇偶状况是:偶,奇,奇,偶,奇,奇,偶,奇,奇,……从前到后按一偶二奇的顺序循环出现.70÷3=23……1,第70个数是第24组数的第一个数,是偶数.5.偶数.提示:号码总和等于100加上小明号码的2倍.6.不能.提示:如果原来写的是1,3,5,那么从第一次改变后,三个数永远是两个奇数一个偶数.。
小学奥数专题-奇数与偶数-含答案

一、奇数和偶数的定义整数可以分成奇数和偶数两大类。
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数加减法中考虑奇数的个数:性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数乘法中考虑有无偶数三、奇偶性的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶部分一、奇数偶数基本概念及基本加减法运算性质是否存在自然数a 和b ,使得ab (a +b )=115?有四个互不相等的自然数,最大数与最小数的差等于4,数与最大数的乘积是一个奇数,而这四个数的和是最小的两位奇数。
求这四个数。
数列1,1,2,3,5,8,13,21,34,55,…的排列规律是前两个数是1,从第三个数开始,每一个数都是它前两个数的和,这个数列叫做斐波那契数列,在斐波那契数列前2009个数中共有几个偶数?在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如a=5+3=8。
问:填入的81个数字中是奇数多还是偶数多?甲、乙两个哲人将正整数5至11分别写在7张卡片上。
他们将卡片背面朝上,任意混合之后,甲取走三张,乙取走两张。
剩下的两张卡片,他们谁也没看,就放到麻袋里去了。
甲认真研究了自己手中的三张卡片之后,对乙说:“我知道你的两张卡片上的数的和是偶数。
”试问:甲手中的三张卡片上都写了哪些数?答案是否唯一。
9999和99!能否表示成为99个连续的奇自然数之和?测试题1.是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=45327?2.一个偶数分别与其相邻的两个偶数相乘,所得的两个乘积相差80,那么这三个偶数的和是多少?3.数列1,1,2,3,5,8,13,21,34,55, 的排列规律是前两个数是1,从第三个数开始,每一个数都是它前两个数的和,这个数列叫做斐波那契数列,在斐波那契数列前2012个数中共有几个偶数?4.甲同学一手握有写着23的纸片,另一只手握有写着32的纸片.乙同学请甲回答如下一个问题:“请将左手中的数乘以3,右手中的数乘以2,再将这两个积相加,这个和是奇数还是偶数?”当甲说出和为奇数时,乙马上就猜出写有23的纸片握在甲的左手中.你能说出是什么道理吗?5.如果把每个方格所在的行数和列数乘起来,填在这个方格,例如:5315a =×=.问填入的81个数中是奇数多还是偶数多?a 1 2 3 4 5 6 78 9 9876 5432 16.在黑板上写1~2007这2007个自然数,每次任意擦去两个数,然后写上它们的和或差,一直这样重复操作,经过若干次后黑板上只剩下一个数,请问结果是奇数还是偶数?为什么?答案1.不存在。
六年级下册奥数试题奇数与偶数全国通用(含答案)

第5讲奇数与偶数全体整数根据被2除的余数可以分为两类:余数为0的数叫偶数,余数为1的数叫奇数。
一个整数要么是奇数,要么是偶数,是奇数就不能是偶数,是偶数就不能是奇数,即奇数≠偶数。
除此之外,运用奇偶分析解题,常常要用到下列几个基本性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数奇数个奇数的和是奇数;偶数个奇数的和是偶数;若干个偶数的和是偶数。
若干个奇数之积是奇数;偶数与任意整数之积是偶数,下面我们就利用这些性质解一些题目。
例1能否在下式的每个方格中,分别填入加号或减号,使等式成立。
1□2□3□4□5□6□7□8□9=10分析:先随便填入加号或减号试一试,总也不能得到10,因此猜测答案应该是不能。
特别是如果都填加号,得数是45,是奇数。
但怎样才能说明白呢?下面通过分析整数的奇偶性来解决问题。
解:由于任意两个自然数之和与差的奇偶性相同,因此无论在方格中怎样填加减号,所得结果的奇偶性与在每个方格中都填入加号所得结果的奇偶性一样。
但是在每个方格中都填入加号所得的结果45是奇数,而式子的右边是10偶数,两边的奇偶性不同,奇数≠偶数,因此无论怎样填,都不可能使等式成立。
说明:因为a-b=a+b-2b,因此a-b 与a+b 有相同的奇偶性。
看似说不清的题目,用简单的奇数≠偶数就解决了。
例2两个四位数相加,第一个四位数的每个数码都不小于5,第二个四位数只是第一个四位数的数码调换了位置。
某同学得出的答案是16246。
试问该同学的答案正确吗?如果正确,写出这两个四位数;如果不正确,请说明理由。
分析:每个数码都不小于5的四位数有很多,一一去试验显然不太现实。
由于第二个四位数只是第一个四位数的数码调换了位置,因此下面我们分析这两个四位数的数码之和的奇偶性。
解:由于这两个四位数仅仅是数码调换了位置,所以这两个四位数的四个数码之和相同。
因此这两个四位数的数码之和是一个偶数。
由于这两个四位数的每一个数码都不小于5,因此,这两个数相加时,其个位、十位、百位、千位都要进位。
奥数奇数和偶数

奇数和偶数--顾老师阅读思考:凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数)。
因为任何奇数除以2其余数都是1,所以通常用式子21k+来表示奇数(这里k是整数)。
奇数和偶数有许多性质,常用的有:性质1两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2奇数与奇数的积是奇数。
例如:91199⨯=等偶数与整数的积是偶数。
例如:25102816,等。
⨯=⨯=性质3任何一个奇数一定不等于任何一个偶数。
奇数和偶数的性质:(一)两个整数和的奇偶性。
奇数+奇数=(),奇数+偶数=(),偶数+偶数=()。
一般的,奇数个奇数的和是(),偶数个奇数的和是(),任意个偶数的和为()。
(二)两个整数差的奇偶性。
奇数-奇数=(),奇数-偶数=(),偶数-偶数=(),偶数-奇数=()。
(三)两个整数积的奇偶性。
奇数×奇数=(),奇数×偶数=(),偶数×偶数=()一般的,在整数连乘当中,只要有一个因数是偶数,那么其积必为();如果所有因数都是奇数,那么其积必为()。
(四)两个整数商的奇偶性。
在能整除的情况下,偶数除以奇数得(),偶数除以偶数可能得(),也可能得(),奇数不能被偶数整除。
(五)如果两个整数的和或差是偶数,那么这两个整数或者都是(),或者都是()。
(六)两个整数之和与两个整数之差有相同的奇偶性,即A+B、A-B奇偶性相同(A、B为整数)。
(七)相邻两个整数之和为(),相邻两个整数之积为()。
(八)()的平方被4除余1,偶数的平方是4的倍数例1.有5张扑克牌,画面向上。
小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。
五年级上册奥数奇数与偶数及奇偶性的应用(例题含答案)

五年级上册奥数奇数与偶数及奇偶性的应用(例题含答案)第五讲:奇数与偶数及奇偶性的应用一、基本概念和知识1.奇数和偶数整数可以分为奇数和偶数两类。
能被2整除的数为偶数,不能被2整除的数为奇数。
偶数可表示为2k(k为整数),奇数可表示为2k+1(k为整数)。
需要注意的是,因为能被2整除,所以是偶数。
2.奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数。
性质2:偶数±奇数=奇数。
性质3:偶数个奇数相加得偶数。
性质4:奇数个奇数相加得奇数。
性质5:偶数×奇数=偶数,奇数×奇数=奇数。
二、例题利用奇数与偶数的性质,可以解决许多实际问题。
例如,求1+2+3+…+1993的和是奇数还是偶数?可以利用高斯求和公式直接求出和,再判别和的奇偶性。
但是,从加数的奇偶性考虑,同样可以判断和的奇偶性。
此题有两种解法。
解法1:因为997和1993是奇数,奇数×奇数=奇数,所以原式的和是奇数。
解法2:1~1993的自然数中,有996个偶数和997个奇数。
因为996个偶数之和一定是偶数,又因为奇数个奇数之和是奇数,所以997个奇数之和是奇数。
因为偶数+奇数=奇数,所以原式之和一定是奇数。
还有一个例题:一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?可以有两种解法。
解法1:因为相邻两个奇数相差2,所以150是这个数的2倍。
所以这个数是150÷2=75.解法2:设这个数为x,设相邻的两个奇数为2a+1和2a-1(a≥1)。
则有(2a+1)x-(2a-1)x=150,化简得2x=150,所以这个要求的数是75.最后一个例题:元旦前夕,同学们相互送贺年卡。
每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数还是偶数?为什么?解:因为是两人互送贺年卡,给每人分别标记送出贺年卡一次。
那么贺年卡的总张数应能被2整除,所以XXX的总张数应是偶数。
四年级奥数奇偶数的奇妙规律

四年级奥数奇偶数的奇妙规律奥数(奥林匹克数学竞赛)是一项旨在培养学生数学思维和解决问题能力的竞赛活动。
在四年级的奥数中,奇偶数是一个常见的话题。
本文将介绍奇偶数的概念并探讨其中的奇妙规律。
一、奇偶数的定义奇数是指不能被2整除的正整数,如1、3、5等;偶数是指能被2整除的正整数,如2、4、6等。
四年级的学生已经学习了数的基本概念,理解奇偶数的概念并不困难。
二、奇偶数的性质1.奇数加奇数等于偶数奇数加奇数,例如3 + 5,结果为8,是一个偶数。
这是因为两个奇数相加后,它们的和能够被2整除。
2.偶数加偶数等于偶数偶数加偶数,例如2 + 4,结果为6,也是一个偶数。
同样地,两个偶数相加后的和也能够被2整除。
3.奇数加偶数等于奇数奇数加偶数,例如1 + 4,结果为5,是一个奇数。
无论奇数和偶数如何相加,其结果总是奇数。
通过以上三个性质,我们可以得出奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数的规律。
三、奇偶数之间的乘法规律1.奇数乘以偶数等于偶数奇数乘以偶数,例如3 × 4,结果为12,是一个偶数。
这是因为奇数乘以偶数后,结果中包含至少一个因数为2的偶数。
2.奇数乘以奇数等于奇数奇数乘以奇数,例如5 × 7,结果为35,是一个奇数。
两个奇数相乘后,结果仍然是奇数。
3.偶数乘以偶数等于偶数偶数乘以偶数,例如2 × 4,结果为8,也是一个偶数。
两个偶数相乘后,结果仍然是偶数。
这些规律揭示了奇偶数之间的乘法运算规律,可以帮助学生更好地理解奇偶数的特性。
四、奇偶数在数学中的应用1.判断奇偶性奇偶数的概念在数学中具有广泛的应用。
通过判断一个数的奇偶性,我们可以在解决问题时采取不同的思路和方法。
例如,当我们进行数字排列、计算阶乘或进行概率计算时,奇偶性的判断对我们的计算结果有着重要的影响。
2.解决逻辑问题奇偶数的规律也被广泛应用于解决逻辑问题。
例如,通过对奇偶数的求和、乘积或其他运算,我们可以解决一些涉及逻辑推理的问题,训练并锻炼学生的思维能力。
小学奥数讲义5年级-7-奇数与偶数-难版

奇数与偶数的运算性质 性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数整数由小到大排列,奇、偶数是交替出现的。
相邻两个整数大小相差1,所以肯定是一奇一偶。
因为偶数能被2整除,所以偶数可以表示为2n 的形式,其中n 为整数;因为奇数不能被2整除,所以奇数可以表示为(2n+l )的形式,其中n 为整数。
每一个整数不是奇数就是偶数,这个属性叫做这个数的奇偶性。
【例1】★1231993++++……的和是奇数还是偶数?【解析】在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数.【小试牛刀】2930318788+++++……得数是奇数还是偶数?【解析】偶数。
原式中共有60个连续自然数,奇数开头偶数结尾说明有30个奇数,为偶数个。
【例2】★★123456799100999897967654321+++++++++++++++++++++的和是奇数还是偶数?为什么?【解析】在算式中,1~99都出现了2次,所以123499999897964321++++++++++++++是偶数,而100也是偶数,所以典型例题知识梳理1234567991009998979676++++++++++++++++54321+++++的和是偶数.【小试牛刀】东东在做算术题时,写出了如下一个等式:1038137564=⨯+,他做得对吗?【解析】等式左边是偶数,1375⨯是奇数,64是偶数,根据奇数+偶数=奇数,等式右边是奇数,偶数不等于奇数,因此东东写出的等式是不对的.【例3】★★能否从四个3,三个5,两个7中选出5个数,使这5个数的和等于22.【解析】不能。
因为不论如何选,选出的5个数均为奇数,5个奇数的和还是奇数,不可能等于22。
《奥数之奇数与偶数》课件

04
奇偶数的奥数题目解析
初级题目解析
总结词:简单基础
题目1:一个自然数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,这个自然数 最小是多少?
题目2:一个三位数,十位数字是个位数字的2倍,个位数字与十位数字的和等于7,若把这 个三位数的百位数字与个位数字对换,所得新数比原数大270,求原三位数。
01
02
03
04
奇数与奇数相加得偶数 ,如3+5=8。
偶数与偶数相加得偶数 ,如4+6=10。
奇数与偶数相加得奇数 ,如3+4=7。
奇数与偶数相乘得偶数 ,如3x4=12。
奇偶性的应用
在日常生活和科学研究中,奇 偶性在很多场合都有应用,如 密码学、计算机科学、物理学 等。
在计算机科学中,二进制数的 奇偶性用于错误检测和纠正, 确保数据传输的可靠性。
《奥数之奇数与偶数》ppt课件
目录
• 奇数与偶数的基本概念 • 奇偶数的运算性质 • 奇偶数的趣味应用 • 奇偶数的奥数题目解析 • 总结与思考 • 课后习题与答案
01
奇数与偶数的基本概念
奇数和偶数的定义
奇数
不能被2整除的整数,如1、3、5、7等。
偶数
能被2整除的整数,如2、4、6、8等。
奇数和偶数的性质
在密码学中,奇偶性用于生成 加密和解密的密钥,保护信息 的安全性。
02
奇偶数的运算性质
加法性质
01
02
03
奇数+奇数=偶数
当两个奇数相加时,结果 的个位数为偶数。
奇数+偶数=奇数
当一个奇数和一个偶数相 加时,结果的个位数为奇 数。
偶数+偶数=偶数
二年级奥数教程第26讲奇数和偶数

二年级奥数教程第26讲奇数和偶数二年级奥数教程第26讲:奇数和偶数在数学中,像1、3、5、7、9这样的数叫偶数,像2、4、6、8、10这样的数叫偶数。
我们已经学过了一些简单的性质:1.偶数 + 偶数 = 偶数,例如4+8=12.2.奇数 + 奇数 = 偶数,例如9+5=14.3.偶数 - 偶数 = 偶数,例如18-10=8.4.奇数 - 奇数 = 偶数,例如15-9=6.5.奇数 + 偶数 = 奇数,例如21+6=27.6.奇数 - 偶数 = 奇数,例如27-10=17.7.偶数 - 奇数 = 奇数,例如24-11=13.根据这些性质,我们可以解决很多有趣的问题。
例1:下面两个算式中,每个方框代表一个整数,其中每个算式中至少有一个奇数,这6个整数中有几个是偶数?1) □ + 口 = 口2) 口 - 口 = 口解:一共有两个偶数,分别在(1)、(2)中各有1个。
以算式(2)为例来说明。
已知算式(2)中只有1个奇数,分三种情况:1.奇数在第一个方格中,我们可以用图26-1来表示:由①、②和③知,算式(2)中的三个数中都有且只有一个偶数。
算式(1)的情况也可做类似的分析。
综上所述,每个式子中只出现一个偶数,因此一共有两个偶数。
随堂练1:下面的算式中,每个圆圈代表一个整数,其中每个算式中至少有一个偶数,这6个整数中最多有几个奇数?1) ○ + ○ = ○2) ○ - ○ = ○例2:16根香蕉分给3个小朋友,要求分得尽量公平,应该怎么分?他们所得的香蕉根数是奇数还是偶数?解:因为16不能分成三个相同数的和,为了公平,应尽量缩小三个人之间的差距。
由于16=5+5+6,其中一个人比另外两个人多分得一根香蕉,另两人分得的香蕉一样多,都是5根。
其他的分法都会出现某两个人分得的香蕉数相差2的情况。
因此三人分别得5、5、6根香蕉,这三个数分别是奇数、奇数、偶数。
随堂练2:把10个苹果分给4个小朋友,要求分得尽量公平,应该怎么分?每个小朋友得到___的个数是奇数还是偶数?如图26-4,一个5×5的正方形中的每个小方格都填上一个数,填数的规则是将这个小方格所在的行数与它所在的列数加起来,这个和就是小方格里要填的数。
小学奥数 奇数与偶数的性质与应用 精选练习例题 含答案解析(附知识点拨及考点)

本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶模块一、奇偶分析法之计算法【例 1】 1231993++++……的和是奇数还是偶数?【考点】奇偶分析法之计算法 【难度】2星 【题型】解答【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数.【答案】奇数【例 1】 从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。
例题精讲知识点拨教学目标5-1奇数与偶数的性质与应用【考点】奇偶分析法之计算法【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,5题【解析】1+2+3+…+2004+2005=(1+2005)×2005÷2=1003×2005是奇数【答案】奇数【巩固】2930318788……得数是奇数还是偶数?+++++【考点】奇偶分析法之计算法【难度】2星【题型】解答【解析】偶数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数奇数和偶数 Prepared on 24 November 2020奥数奇数和偶数;知识要点:;奇数和偶数的概念:整数可以分成奇数和偶数两大类;1、偶数与奇数的关系:;偶数+偶数=()偶数-偶数=();偶数+奇数=()偶数-奇数=();奇数+奇数=()奇数-奇数=();偶数×偶数=()偶数×奇数=();奇数×奇数=()偶数÷偶数=();偶数÷奇数=()奇数÷奇数=();2、奇数个奇数的和等于奇数,偶数个奇数的和等于偶;3、任奥数奇数和偶数知识要点:奇数和偶数的概念:整数可以分成奇数和偶数两大类。
能被2整除的数叫做偶数(双数),不能被2整除的数叫做奇数(单数)。
特别注意,因为0能被2整除,所以0是偶数。
因此最小的奇数是1,最小的偶数是0。
1、偶数与奇数的关系:偶数+偶数=()偶数-偶数=()偶数+奇数=()偶数-奇数=()奇数+奇数=()奇数-奇数=()偶数×偶数=()偶数×奇数=()奇数×奇数=()偶数÷偶数=()偶数÷奇数=()奇数÷奇数=()2、奇数个奇数的和等于奇数,偶数个奇数的和等于偶数,任意个偶数的和等于偶数。
3、任意个奇数的积等于奇数,偶数与任意自然数之积是偶数。
4、若干个自然数的积是奇数,则每一个乘数都是奇数;若干个自然数之积是偶数,则其中必定有一个乘数是偶数。
5、相邻的两个整数必为一奇一偶,它们的积必为偶数,它们的和必为奇数。
例1、下表中有15个数,请选出五个数,使它们的和等于30.能做到吗为什么例2、在2003年“非典”时期,通信公司赠送某医院27部手机,它们的号码都是连续的。
这27部手机的号码和是奇数还是偶数例3、任意改变某个三位数的各数字的次序后得到一个新的三位数(比如4 23可改变为432、342等),试问这个新的三位数与原来的那个三位数的和能不能等于999如果能,试举一例;如果不能,请说明理由。
例4、赵老师在黑板上写了三个整数。
然后擦去一个数,再写上其他两个数之和;然后再随意擦去一个数,再写出其他两个数之和。
就这样一直做下去,最后得到2004,2005,2006。
赵老师一开始写的三个数有没有可能是1,3,5例5、张老师在黑板上依次写下0,1,3,8,21,一列数,规律是:每个数的3倍等于它前后相邻的两个数字的和,那么张老师写的第20个数是奇数还是偶数例6、a,b,c,d是四个不同的质数,且a﹢b﹢c=d,那么a×b×c×d的积最小是多少例7、已知a,b,c是三个连续的自然数,其中a是偶数,小红和小明两人的说法正确的是()小红:那么﹙a+1﹚, ﹙b+2﹚, ﹙c+3﹚这三个数的乘积一定是奇数。
小明:不对,那么﹙a+1﹚, ﹙b+2﹚, ﹙c+3﹚这三个数的乘积一定是奇数。
例8、小明的爸爸在饭桌上摆了5个水杯,杯口向上。
小明每次只把两个杯子翻过来,到最后小明能不能使这5个杯子全部杯口向下如果能,请画出示意图;如果不能,请说明理由。
例9、小明的爸爸在饭桌上摆了4个水杯,杯口向上。
小明每次只把两3个杯子翻过来,到最后小明能不能使这4个杯子全部杯口向下如果能,请画出示意图;如果不能,请说明理由。
例10、小红去参观文化学习用品展览,展览厅布置如图。
小红从入口进去,想一间不漏地走遍所有的展览厅,又不重复,然后从出口出来。
请你帮她想想这条路线存在吗如果不存在,请说明理由。
例11、中国象棋的棋盘的任意位置上有一个马(如图),它跳遍所有点后,正好回到原来的位置。
这有可能吗请说明理由。
例12、小强爸爸的实验室里有一台实验仪器,上面有A、B、C、D、E、F、G、H、J、K共11盏灯依次排列,其中只有D、H、K这三盏灯亮着。
实验开始时,灯由A至K依次改变一次开关状态,即原来不亮的灯变亮了,原来亮的灯灭了。
当仪器上计数器正指向1000时,现在哪些灯亮着竞赛能级训练A级1、1+2+3++2004+2005的和是奇数还是偶数3、1×3×5×7××2005×2007的个位是﹙﹚。
4、王老师在黑板上写了三个整数2,4,8。
然后任意擦去一个数,再补上一个数,这个数比黑板上的两个数之和还多1。
如擦去4,补上一个数2+8+1=11,这时黑板上的数就是2,8,11。
就这样一直做下去,最后能否得到2005,200 6,20075、某个月的星期日的日期数有3个是奇数,星期六的日期数有3个是偶数,则这个月的28日是星期()。
6、在算式中a×﹙b+c﹚=110+c中,a, b, c是三个不同的质数,那么b=﹙﹚7、一团乱毛线,小东用剪刀随意剪一次,剪出的端点是奇数个还是偶数个8、小明涮了7个碗,碗口向上地摆在桌上,他想每次翻转2个碗,使它们的碗口转向相反的方向。
翻转到某一时候,他能不能使碗口都向下呢如果是6个碗,每次翻转5个呢9、A、B、C、D四个数的和是59,问A2+B2+C2+D2, A3+B3+C3+D3, A4+B4+C4+D4, A5+B5+C5+D5,四个数中共有()个奇数。
10、会展中心的电脑展览厅布置成如下形状,每个小正方形是一个展览室,每个展览室都有门通向相邻的展览室。
乐乐想从入口进去,然后一个不落地走遍所有的展览室,然后从出口出来。
如果他能做到,请帮他画一条路线;如果不能,请说明理由。
请设计一个能达到目的的展览室平面设计图。
11、有8个棱长为1的小正方体,每个小正方体有三组相对的面,第一组相对的面上都写着1,第二组相对的面上都写着2,第三组相对的面上都写着3。
现在把这8个小正方体拼成一个棱长是2的大正方体。
问:是否有一种拼接方式,使得大正方体每一个面上的四个数字之和恰好是6个连续的自然数12、已知a是质数,b是偶数,且a2+b=2008。
则a+b+1=()。
13、控制室的墙上有A、B、C、D、E、F、G共7盏灯依次排开,其中只有B、E这两盏灯亮着。
操作人员控制这些灯从A开始依次改变它们亮、不亮的状态,即原来不亮的灯变亮了,原来亮的灯灭了。
经过500次的操作,墙上还有哪些灯亮着14、张老师手上有17张卡片,上面分别写着1,2,3,4,,16,17,让小亮把卡片分成两堆,一堆卡片上的数字之和是奇数,另一堆卡片上的数字之和也是奇数。
问小亮能办到吗15、王老师说:“我将任意的六个自然数填入右边的方框中,肯定有一个矩形,它的四个角上的数字之和是偶数。
”王老师说的对吗B级1、某人将小球放进两个盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。
如果有99个球,盒子数大于10,那么用大、小盒子个多少个27、右图是一座迷宫的平面图,小明和小亮从A点走进迷宫后,沿路线走,在交叉路口不是左转就是右转。
转了半天,两人谁也没走出去,又转回到了A点。
小明说:“我一共转了40个弯。
” 小亮说:“我一共转了41个弯。
”如果只有一人说对了,那么是谁说对了8、某市小学生参加数学竞赛,题目共30道。
评分标准是:基础分15分,答对一道加5分,不答一题加1分,答错一道减1分。
请说明,如果有1991名同学参赛,则所有参赛同学得分总数一定是奇数还是偶数请说明理由。
能力测试一、填空题1、从1开始的前2005个整数的和是()数。
(填“奇”或“偶”)2、1,1,2,3,5,8,这列数中第50个是()数。
(填“奇”或“偶”)3、13579×24680+12345×98765=B,B是()数。
(填“奇”或“偶”)4、小明左边口袋里有5张卡片,依次是1,2,3,4,5,;右边口袋里有4张卡片,依次是6,7,8,9。
他每次从两边的口袋里各拿出一张卡片,让妹妹求出乘积是多少。
这些乘积中()数多。
(填“奇”或“偶”)二、选择题个。
A、3B、4C、5D、不确定2、用1,2,3,4,5组成没有重复数字的五位数,其中偶数有()个。
A、46B、48C、50D、523、一个自然数,它的每位数都是奇数,还可以分解成还可以分解成两位数乘两位数。
这个自然数最大是()。
A、1111B、999C、777D、555三、解答题1、有一列数,最前面的四个数字依次是1,9,8,7,从第五个数起,每一个数都是它前面相邻四个数之和的个位数字。
问在这一列数字中,会依次出现1, 9,8,8这四个数字吗2、某班有49名同学,坐成7行7列,每个座位的前后左右都叫做它的邻座。
要让这49名同学都换到邻座上去,能办到吗3、小红去姥姥家玩,她从A站上了火车,火车一直沿着一条河行驶,一会在河的左侧,一会在河的右侧。
到达B站后,小红发现火车过桥的次数恰好等于她所坐的车厢序号的2倍加1。
问A、B两站是在河的同一侧还是在河的两侧4、有5张扑克牌,画面朝上,小刚每次翻转其中的3张。
他能在翻转若干次后,使5张牌的画面都向下吗5、会展中心的玩具展览厅布置成如下形状,每个小正方形是一个展览室,每个展览室都有门通向相邻的展览室。
小明想从入口进去,然后一个不落地走遍所有的展览室,然后从出口出来。
如果他能做到,请帮他画一条路线;如果不能,请说明理由。
请设计一个能达到目的的展览室平面设计图。
6、求证:在11,111,1111,11111,,数列中,任何一个数都不是自然数的平方。
请说明理由。
3、一个自然数,它的每位数都是偶数,还可以分解成两位数乘两位数。
这个数最小是()。
5、春节期间,六年一班的同学互相打电话问好,如果两人每通一次电话,每人都计通话一次。
通话次数是奇数次的那些人的总数是奇数还是偶数6、有100个自然数的和是10000,在这些自然数中,奇数的个数比偶数的个数多。
那么偶数最多有多少个7、右图是一座迷宫的平面图,小明和小亮从A点走进迷宫后,沿路线走,在交叉路口不是左转就是右转。
转了半天,两人谁也没走出去,又转回到了A 点。
小明说:“我一共转了40个弯。
” 小亮说:“我一共转了41个弯。
”如果只有一人说对了,那么是谁说对了8、某市小学生参加数学竞赛,题目共30道。
评分标准是:基础分15分,答对一道加5分,不答一题加1分,答错一道减1分。
请说明,如果有1991名同学参赛,则所有参赛同学得分总数一定是奇数还是偶数请说明理由。
能力测试一、填空题1、从1开始的前2005个整数的和是()数。
(填“奇”或“偶”)2、1,1,2,3,5,8,这列数中第50个是()数。
(填“奇”或“偶”)3、13579×24680+12345×98765=B,B是()数。
(填“奇”或“偶”)4、小明左边口袋里有5张卡片,依次是1,2,3,4,5,;右边口袋里有4张卡片,依次是6,7,8,9。
他每次从两边的口袋里各拿出一张卡片,让妹妹求出乘积是多少。