因式分解(复习)导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解(复习)导学案
教学目标:
1.知识与技能:掌握使用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的水平.
知识详解
知识点1 因式分解的定义
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
探究交流
下列变形是否是因式分解?为什么?
(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)x n(x2-x+1)=x n+2-x n+1+x n.
知识点2 提公因式法
例1 用提公因式法将下列各式因式分解.
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
做一做把下列各式分解因式.
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ; (2) 4p(1-q)3+2(q-1)2
知识点3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).
(2)完全平方公式:a2±2a b+b2=(a±b)2.其中,a2±2a b+b2叫做完全平方式
例2 把下列各式分解因式.
(1) (a+b)2-4a2; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9.
学生做一做把下列各式分解因式.
(1)(x2+4)2-2(x2+4)+1;
(2)x3-2x2+x;(3) x2(x-y)+y2(y-x);
探索与创新题
例4 若9x2+kxy+36y2是完全平方式,则k= .
分析:完全平方式是形如:a2±2a b+b2即两数的平方和与这两个数乘积的2倍的和(或差).
做一做若x2+(k+3)x+9是完全平方式,则k= .
课堂小结
用提公因式法和公式法分解因式,会运用因式分解解决计算问题.
各项有“公”先提“公”,首项有负常提负,某项提出莫漏“1”,括号里面分到“底”。
自我评价知识巩固
1.若x2+2(m-3)x+16是完全平方式,则m的值等于( )
A.3
B.-5
C.7.
D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( )
A.2
B.4
C.6
D.8
3.分解因式:4x2-9y2= .
4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
5.把多项式1-x2+2xy-y2分解因式