简单雷达实信号仿真实验报告
雷达原理实验报告(哈工程)
![雷达原理实验报告(哈工程)](https://img.taocdn.com/s3/m/c1c0ff7aa5e9856a57126058.png)
实验报告实验课程名称:雷达原理姓名:班级:电子信息工程4班学号:实验名称规范程度原理叙述实验过程实验结果实验成绩雷达信号波形分析实验相位法测角实验接收机测距和灵敏度实验目标距离跟踪和动目标显示实验平均成绩折合成绩注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2017年5 月雷达信号波形分析实验报告2017年4 月5 日班级电子信息工程4班姓名评分一、实验目的要求1. 了解雷达常用信号的形式。
2. 学会用仿真软件分析信号的特性。
3.了解雷达常用信号的频谱特点和模糊函数。
二、实验原理为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的时间。
根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S :目标距离;T :电磁波从雷达到目标的往返传播时间;C :光速。
三、实验参数设置载频范围:0.5MHz 脉冲重复周期:250us 脉冲宽度:10us 幅度:1V 线性调频信号 载频范围:90MHz 脉冲重复周期:250us 脉冲宽度:10us 信号带宽:14 MHz 幅度:1V 四、实验仿真波形x 10-3时间/s 幅度/v脉冲x 10-3时间/s幅度/v连续波0.51 1.52x 10-3时间/s幅度/v脉冲调制x 1070124频率/MHz幅度/d B脉冲频谱图x 10705104频率/MHz幅度/d B连续波频谱图-4-2024x 1070124频率/MHz幅度/d B脉冲调制频谱图0.51 1.52x 10-3-101时间/s 幅度/v脉冲8.2628.26258.263x 10-4-101时间/s 幅度/v连续波0.51 1.52x 10-3-101时间/s幅度/v脉冲调制-4-224x 1070244频率/MHz幅度/d B脉冲频谱图-4-224x 10705104频率/MHz幅度/d B连续波频谱图-4-224x 1070124频率/MHz幅度/d B脉冲调制频谱图02004006008001000五、实验成果分析实验中用到的简单脉冲调制信号的产生由脉冲信号和载频信号组成,对调制信号进行线性调频分析,得到上面的波形图。
雷达信号处理实验报告-课程设计
![雷达信号处理实验报告-课程设计](https://img.taocdn.com/s3/m/6bcba73eaaea998fcc220e36.png)
电子科技大学雷达信号产生与处理实验课程设计课程名称:雷达信号产生与处理的设计与验证指导老师:姒强小组成员:学院:信息与通信工程学院一、实验项目名称:雷达信号产生与处理的设计与验证课程设计二、实验目的:1.熟悉QuartusII的开发、调试、测试2.LFM中频信号产生与接收的实现3.LFM脉冲压缩处理的实现三、实验内容:1.输出一路中频LFM信号:T=24us,B=5MHz,f0=30MHz2.构造中频数字接收机(DDC)对上述信号接收3.输出接收机的基带LFM信号,采样率7.5MHz4.输出脉冲压缩结果四、实验要求:1.波形产生DAC时钟自行确定2.接收机ADC采样时钟自行确定3.波形产生方案及相应参数自行确定4.接收机方案及相应参数自行确定五、实验环境、工具:MATLAB软件、QuartusII软件、软件仿真、计算机六、实验原理:方案总框图:(1)matlab产生LFM信号LFM信号要求为T=24us,B=5MHz,f0 =30MHz。
选择采样率为45MHz。
产生LFM的matlab代码如下:MHz=1e+6;us=1e-6;%-------------------------波形参数-----------------------------fs=45*MHz;f0=30*MHz;B=5*MHz;T=24*us;Tb=72*us;SupN=fs/7.5/MHz;%-------------------------波形计算-----------------------------K=B/T;Ts=1/fs;tsam=0:Ts:T;LFM=sin((2*pi*(f0-B/2)*tsam+pi*K*tsam .^2));LFM=[zeros(1,Tb/Ts) LFM zeros(1,Tb/Ts)];N=length(LFM);Fig=figure;x_axis=(1:N)*Ts/us;plot(x_axis,real(LFM),'r');title('LFM原始波形');xlabel('时间(us)'); ylabel('归一化幅度');zoom xon; grid on;axis([min(x_axis) max(x_axis) -1.1 1.1]);编写matlab程序将中频LFM信号画出来图6-1 LFM信号原始波形通过matlab将LFM原始波形量化成12位的数据,并生成保存为后缀.MIF的文件。
雷达原理课程实验报告(3篇)
![雷达原理课程实验报告(3篇)](https://img.taocdn.com/s3/m/581c9b7c2379168884868762caaedd3382c4b57a.png)
第1篇一、实验目的通过本次实验,使学生掌握雷达系统的工作原理,熟悉雷达信号的生成、调制、发射、接收、处理和显示等过程,加深对雷达基本概念的理解,提高动手能力和分析问题的能力。
二、实验原理雷达系统通过发射电磁波对目标进行探测,根据反射回来的电磁波来获取目标的位置、速度等信息。
实验中主要涉及以下原理:1. 多普勒效应:当雷达发射的电磁波遇到运动目标时,反射回来的电磁波频率会发生变化,频率变化量与目标速度成正比。
2. 调制与解调:雷达系统中的信息调制和解调是信号处理的关键步骤,通过调制可以将目标信息加载到电磁波上,通过解调可以提取出目标信息。
3. 信号处理:雷达接收到的信号往往包含噪声和干扰,需要对信号进行处理,提取出有用的目标信息。
三、实验仪器与设备1. 雷达实验系统2. 信号发生器3. 信号分析仪4. 示波器5. 计算机及相关软件四、实验内容1. 雷达信号生成与调制:设置信号发生器产生连续波信号,通过调制器将信号调制到雷达发射器上。
2. 雷达发射与接收:发射器将调制后的信号发射出去,接收器接收反射回来的信号。
3. 信号处理:对接收到的信号进行放大、滤波、解调等处理,提取出目标信息。
4. 多普勒频移测量:通过测量反射信号的频率变化量,计算出目标速度。
5. 目标位置估计:根据雷达系统的几何关系,估计目标的位置。
五、实验步骤1. 连接实验设备:按照实验电路图连接实验设备,确保连接正确。
2. 设置信号发生器:设置信号发生器产生连续波信号,频率和幅度根据实验要求进行调整。
3. 调制信号:通过调制器将信号调制到雷达发射器上。
4. 发射与接收:开启雷达发射器和接收器,发射信号并接收反射回来的信号。
5. 信号处理:对接收到的信号进行放大、滤波、解调等处理。
6. 多普勒频移测量:通过测量反射信号的频率变化量,计算出目标速度。
7. 目标位置估计:根据雷达系统的几何关系,估计目标的位置。
8. 数据记录与分析:记录实验数据,并对数据进行处理和分析。
雷达仿真曲线实验报告
![雷达仿真曲线实验报告](https://img.taocdn.com/s3/m/d4d79ef56aec0975f46527d3240c844769eaa0a7.png)
一、实验目的1. 熟悉雷达系统仿真软件的使用方法;2. 了解雷达系统的工作原理;3. 分析雷达系统性能指标;4. 通过仿真实验,验证雷达系统的实际性能。
二、实验原理雷达系统是一种利用电磁波探测目标的系统,其基本原理是发射电磁波,经目标反射后,接收反射回来的电磁波,通过处理这些信号,实现对目标的探测、跟踪和识别。
雷达系统主要由发射机、天线、接收机、信号处理单元等部分组成。
三、实验仪器与软件1. 仪器:计算机、雷达系统仿真软件;2. 软件:MATLAB、雷达系统仿真软件(如:Simulink)。
四、实验步骤1. 打开雷达系统仿真软件,创建一个新的仿真项目;2. 根据雷达系统的工作原理,搭建雷达系统的仿真模型,包括发射机、天线、接收机、信号处理单元等部分;3. 设置雷达系统的参数,如频率、脉冲宽度、脉冲重复频率等;4. 仿真实验,观察雷达系统在不同参数下的性能表现;5. 分析仿真结果,绘制雷达系统的仿真曲线;6. 比较仿真结果与实际雷达系统性能,分析雷达系统的优缺点。
五、实验数据与结果1. 仿真实验参数设置:(1)频率:24GHz;(2)脉冲宽度:1μs;(3)脉冲重复频率:100Hz;(4)天线增益:30dB;(5)接收机灵敏度:-100dBm。
2. 仿真曲线:(1)距离分辨率曲线:如图1所示,雷达系统的距离分辨率为3m,满足实际应用需求。
图1 雷达系统距离分辨率曲线(2)测速精度曲线:如图2所示,雷达系统的测速精度为±0.5m/s,满足实际应用需求。
图2 雷达系统测速精度曲线(3)角度分辨率曲线:如图3所示,雷达系统的角度分辨率为0.5°,满足实际应用需求。
图3 雷达系统角度分辨率曲线六、实验分析与讨论1. 通过仿真实验,验证了雷达系统在不同参数下的性能表现,为雷达系统的优化设计提供了理论依据;2. 分析仿真结果,雷达系统的距离分辨率、测速精度和角度分辨率均满足实际应用需求;3. 比较仿真结果与实际雷达系统性能,雷达系统在实际应用中具有较高的可靠性和稳定性;4. 雷达系统仿真曲线实验有助于提高学生对雷达系统原理和性能指标的认识,为后续相关实验和研究奠定基础。
实验1.雷达信号波形分析实验报告
![实验1.雷达信号波形分析实验报告](https://img.taocdn.com/s3/m/2cd0b602a9114431b90d6c85ec3a87c240288aa5.png)
实验1.雷达信号波形分析实验报告实验一雷达信号波形分析实验报告一、实验目的要求1. 了解雷达常用信号的形式。
2. 学会用仿真软件分析信号的特性。
3.了解雷达常用信号的频谱特点和模糊函数。
二、实验参数设置信号参数范围如下:(1)简单脉冲调制信号:载频:85MHz脉冲重复周期:250us脉冲宽度:8us幅度:1V(2)线性调频信号载频:85MHz脉冲重复周期:250us脉冲宽度:20us信号带宽:15MHz幅度:1V三、实验仿真波形1.简单的脉冲调制信号程序:Fs=10e6;t=0:1/Fs:300e-6;fr=4e3;f0=8.5e7;x1=square(2*pi*fr*t,3.2)./2+0.5;x2=exp(i*2*pi*f0*t);x3=x1.*x2;subplot(3,1,1);plot(t,x1,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('脉冲信号重复周期T=250US 脉冲宽度为8us') grid;subplot(3,1,2);plot(t,x2,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('连续正弦波信号载波频率f0=85MHz') grid;subplot(3,1,3);plot(t,x3,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('·幅度/v')title('脉冲调制信号')grid;仿真波形:脉冲信号重复周期T=250us 脉冲宽度为8us 幅度/v10-101时间/s连续正弦波信号载波频率f0=85MHz23x 10-4 幅度/v10-101时间/s脉冲调制信号123x 10-4幅度/v0-101时间/s23x 10-42.线性调频信号程序:Fs=10e6;t=0:1/Fs:300e-6;fr=4e3;f0=8.5e7;x1=square(2*pi*fr*t,8)./2+0.5;x2=exp(i*2*pi*f0*t); x3=x1.*x2;subplot(2,2,1);plot(t,x1,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('脉冲信号重复周期T=250US 脉冲宽度为8us ') grid;subplot(223);plot(t,x2,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('连续正弦波信号载波频率f0=85MHz ')grid;eps = 0.000001;B = 15.0e6;T = 10.e-6; f0=8.5e7;mu = B / T;delt = linspace(-T/2., T/2., 10001);LFM=exp(i*2*pi*(f0*delt+mu .* delt.^2 / 2.)); LFMFFT = fftshift(fft(LFM));freqlimit = 0.5 / 1.e-9;freq = linspace(-freqlimit/1.e6,freqlimit/1.e6,10001); figure(1) subplot(2,2,2)plot(delt*1e6,LFM,'k');axis([-1 1 -1.5 1.5])grid;xlabel('时间/us')ylabel('幅度/v')title('线性调频信号T = 10 mS, B = 15 MHz')subplot(2,2,4)y=20*log10(abs(LFMFFT));y=y-max(y);plot(freq, y,'k');axis([-500 500 -80 10]);grid; %axis tight xlabel('频率/ MHz') ylabel('频谱/dB')title('线性调频信号T = 10 mS, B = 15 MHz')仿真波形:??/v 0123-4??/v 时间/s??/v 012x 10-10 0.5 时间/us-0.5 1??/dB 3 x 10-4时间/s-5000 频率/ MHz500四、实验成果分析本实验首先利用MTALAB软件得到一个脉冲调制信号,然后再对其线性调频分析,得到上面的波形图。
雷达的使用实验报告
![雷达的使用实验报告](https://img.taocdn.com/s3/m/09876126571252d380eb6294dd88d0d233d43cea.png)
雷达的使用实验报告一、引言雷达(Radar)是一种利用电磁波进行探测的设备,广泛应用于军事、天气预报、航空等领域。
雷达通过发送电磁波,并通过接收返回的信号来测量目标的位置、速度等信息。
本实验旨在通过自行搭建雷达实验装置,了解雷达的工作原理和基本应用。
二、实验装置本实验所用的雷达实验装置包括雷达发射器、接收器、信号处理系统和显示及记录装置。
雷达发射器负责发射脉冲电磁波,接收器用于接收返回的信号,信号处理系统对接收到的信号进行处理,显示及记录装置用于显示和记录结果。
三、实验步骤1. 首先,将雷达装置搭建起来,并确保所有连接正确。
检查电源、天线等部件是否正常工作。
2. 设置雷达发射器的参数,包括频率、脉宽等。
根据实验要求和具体情况进行调整。
3. 打开雷达发射器,并观察接收器上是否有返回信号。
若有,表示雷达正常工作。
4. 将接收到的信号传递给信号处理系统进行处理。
根据需要,可以对信号进行滤波、放大等处理。
5. 最后,将处理后的信号连接至显示及记录装置,以便进行观测和记录。
四、实验结果经过实验,我们观察和记录了几组雷达信号的实验结果,其中包括目标的位置、速度等信息。
通过分析实验数据,我们可以看出雷达能够有效地探测到目标,并获取准确的信息。
五、实验分析本实验通过自行搭建雷达实验装置,对雷达的工作原理和应用进行了初步了解。
通过观察和分析实验结果,我们发现雷达可以在一定范围内探测到目标的位置和速度等信息,这对军事、天气预报等领域具有重要意义。
然而,在实际应用中,还需要考虑到这样的因素,如天气、地形对雷达信号的影响,以及其他干扰对雷达探测的影响等。
因此,我们需要进一步开展相关实验和研究,以完善雷达的性能和提高其应用效果。
六、实验总结通过本次实验,我对雷达的工作原理和基本应用有了更进一步的了解。
实验过程中,通过搭建和调试雷达装置,我熟悉了雷达的基本构成和工作流程;通过观察和分析实验结果,我了解了雷达的探测能力和信号处理方法。
雷达系统设计仿真报告
![雷达系统设计仿真报告](https://img.taocdn.com/s3/m/312bd876f5335a8102d22010.png)
线性调频信号的复包络为:
u(t) = a(t)e jπμt2
其中 a(t) = 1, (t ≤ T / 2) 为矩形脉冲函数,T 是脉冲宽度。
正型模糊函数的定义为:
∫ χ (τ , fd ) =
+∞ u(t)u*(t + τ )e j2π fdt dt
−∞
将上述线性调频信号的复包络带入模糊函数定义式得:
为-30db 时的脉压结果。可以看出,旁瓣的降低是以波瓣展宽为代价的,但我们
仍能分清两个目标。
30 24
22
20
20
18
10
16
14
0
12
0
50
100
150
Dis/km
74
75
76
77
Dis/km
下面分别给出当导弹和飞机进入雷达时杂波的 RCS 随距离的变换。
最后给出了单个脉冲回波的 CNR,SNR,SIR 与距离的关系曲线。左侧为导
τ/μs τ/μs
contour pic 150 100 50
0 -50 -100
4dB contour
100
0
-100
-1
0
1
local zoom of upper 4dB contour
10
9.5
63096
0.63096 0.63096
-150 -1
0 fd/MHz
9 1 0.055
0.06 fd/MHz
正交采样的镜频抑制比曲线时,我按照书上 183 面图 5.3 的流程, 但我得到的结果总是不对,我一直分析这个问题,但始终没法解释, 为什么我得到的结果远没有书上 188 面的那么好? 2、 我在用 Monto Carlo 分析测角误差时,得到均方根误差效果远比书 上的好,我也想不明白,同样的参数,应该不会有那么大的差异。 3、 在最后一部分“某阵列雷达信号处理”中,采用的是老师给定的回 波信号。我的疑问是老师如何产生的回波信号?根据书上给定的条 件,我觉得只能得到杂波的功率谱特性,但是如何反映到时域波形 上呢? 4、 在用老师给定的信号数据进行处理时,我在脉压的时候耽误了很久, 因为我想相同的数据,处理的结果应该跟老师书上给的结果相差不 大,但是一开始我总是得不到老师书上的样子。后来我才发现,问 题在脉压系数上。通常脉压系数都是原线性调频信号的共轭反转, 但是,再利用老师给的数据进行处理时,不用共轭,只需反转即可。 我想着应该跟陈老师您采用的 LFM 信号形式有关,您产生数据时线 性调频基带信号的指数项上应该是负的 x(t) = e− jπμt2 ,不知道我的猜 想对不对?
雷达实验报告
![雷达实验报告](https://img.taocdn.com/s3/m/d33ed3cb690203d8ce2f0066f5335a8103d2664a.png)
雷达实验报告雷达实验报告摘要:本次实验旨在通过搭建雷达系统,探索雷达技术的原理和应用。
实验中我们使用了雷达模块、控制器和计算机,通过测量反射信号的时间差来确定目标物体的距离,并利用信号的频率变化来获得目标物体的速度。
实验结果表明,雷达系统能够准确地检测目标物体的位置和运动状态,具有广泛的应用前景。
1. 引言雷达(Radar)是一种利用电磁波进行探测和测量的技术。
它广泛应用于军事、民用和科学研究等领域,如航空、天气预报、导航等。
雷达系统通过发射电磁波并接收其反射信号,利用信号的时间和频率变化来确定目标物体的距离和速度。
本次实验旨在通过搭建雷达系统,深入了解雷达技术的原理和应用。
2. 实验设备和方法2.1 实验设备本次实验使用的设备有:雷达模块、控制器、计算机。
2.2 实验方法(1)搭建雷达系统:将雷达模块与控制器连接,并将控制器与计算机连接。
(2)设置实验参数:根据实验需求,设置雷达系统的工作频率和功率。
(3)目标检测:通过控制器发送电磁波,并接收其反射信号。
利用信号的时间差来计算目标物体的距离,并利用频率变化来计算目标物体的速度。
(4)数据分析:将实验结果导入计算机,并进行数据分析和处理。
3. 实验结果与讨论3.1 距离测量我们在实验中选择了不同距离的目标物体进行测量,并记录了实验结果。
通过分析数据,我们发现雷达系统能够准确地测量目标物体的距离。
实验结果与实际距离相差不大,证明了雷达系统的测量精度较高。
3.2 速度测量在实验中,我们选择了运动目标进行速度测量。
通过分析信号的频率变化,我们能够准确地计算目标物体的速度。
实验结果表明,雷达系统能够实时监测目标物体的运动状态,并提供准确的速度信息。
4. 实验误差分析在实验过程中,我们发现了一些误差来源。
首先,由于环境中存在其他电磁波干扰,可能会对实验结果产生一定的影响。
其次,雷达系统的精度受到设备本身的限制,可能会导致测量结果的偏差。
此外,实验操作的不准确也可能引入误差。
实验报告雷达
![实验报告雷达](https://img.taocdn.com/s3/m/d1897029ae1ffc4ffe4733687e21af45b307fea2.png)
实验报告雷达实验报告:雷达的原理与应用一、引言雷达(Radar)是一种利用电磁波进行目标探测与测距的技术。
它广泛应用于军事、航空、航海、气象等领域,成为现代科技的重要组成部分。
本实验旨在通过模拟雷达的工作原理,进一步了解雷达的应用和优势。
二、雷达的工作原理雷达的工作原理基于电磁波的反射和回波时间的测量。
雷达发射器会发射一束电磁波(通常是微波),当这束电磁波遇到目标物体时,会被目标物体反射回来,形成回波。
雷达接收器会接收到这些回波,并通过测量回波的时间来计算目标物体与雷达的距离。
三、雷达的应用领域1. 军事应用雷达在军事领域起到了极为重要的作用。
它可以用于目标探测、目标识别、导弹引导等任务。
通过雷达技术,军队可以实时监测敌方目标的位置和移动速度,为决策提供重要依据。
2. 航空应用在航空领域,雷达用于飞行器的导航和防撞系统。
航空雷达可以探测到飞机周围的其他飞行器或障碍物,以避免碰撞。
此外,雷达还可以帮助飞行员确定飞机的位置和高度,提高飞行安全性。
3. 航海应用雷达在航海领域被广泛应用于船舶导航和海洋测量。
通过雷达,船舶可以检测到周围的其他船只、礁石和岛屿等障碍物,以避免碰撞。
海洋测量方面,雷达可以测量海洋的波浪高度、风速、海况等信息,为航海安全提供重要数据。
4. 气象应用气象雷达用于天气预报和气象监测。
它可以探测到大气中的云层、降雨和风暴等天气现象,为气象学家提供重要的观测数据。
通过分析雷达回波的特征,可以预测天气变化趋势,提前采取相应的预防措施。
四、雷达的优势雷达作为一种远距离、高精度的探测技术,具有以下几个优势:1. 高准确性:雷达可以通过测量回波的时间和频率来计算目标物体的位置和速度,具有较高的测量精度。
2. 长距离探测:雷达可以在较远的距离上进行目标探测,对于远距离目标的监测具有独特的优势。
3. 不受天气影响:雷达的探测能力不受天气条件的限制,无论是晴天、雨天还是雾天,雷达都能够正常工作。
4. 实时性:雷达可以实时监测目标物体的位置和移动情况,为决策提供及时的数据支持。
雷达实验
![雷达实验](https://img.taocdn.com/s3/m/0ed9c7690b1c59eef8c7b4fb.png)
实验报告实验课程名称:雷达实验姓名:刘世佳班级: 20100002 学号: 2010081109 实验名称规范程度原理叙述实验过程实验结果实验成绩平均成绩折合成绩注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2013 年 5 月实验一雷达信号波形分析一实验目的要求1.了解雷达常用信号的形式。
2.了解雷达常用信号的频谱特点和模糊函数。
3.学会用仿真软件分析信号的特性。
二实验原理本实验是在PC机上利用MATLAB仿真软件进行常用雷达信号的仿真、设计。
针对所设计的雷达信号分析其频谱特性和模糊函数。
三实验步骤1. 列出简单脉冲调制信号和线性调频雷达信号数学模型2. 利用MATLAB软件编写雷达信号产生程序3. 对信号进行频谱分析4. 记录仿真结果、存储仿真波形。
四实验参数设置脉冲带宽200e6,重复周期10e-6s,中心频率50e6Hz。
eps = 0.000001; B = 200.0e6; T = 10.e-6;f0=50e6;mu = B / T;%调频斜率delt = linspace(-T/2., T/2., 10001); % 信号起始时间和数据点数LFM=exp(i*2*pi*(f0*delt+mu .* delt.^2 / 2.));%产生线性调频信号LFMFFT = fftshift(fft(LFM));%FFT变换freqlimit = 0.5 / 1.e-9;%显示频率范围,采样频率的一半freq = linspace(-freqlimit/1.e6,freqlimit/1.e6,10001);figure(1)subplot(2,1,1)plot(delt*1e6,LFM,'k');axis([-1 1 -1.5 1.5])grid;xlabel('时间/us')ylabel('·幅度/v')title('线性调频信号T = 10 Microsecond, B = 200 MHz')subplot(2,1,2)y=20*log10(abs(LFMFFT));y=y-max(y);plot(freq, y,'k');axis([-500 500 -80 10]);grid;xlabel('频率/ MHz')ylabel('频谱/dB')title('线性调频信号调谱T = 10 Microsecond, B = 200 MHZ')五实验仿真波形1.简单脉冲调制2.线性调频信号六、实验结果分析从程序看出,脉冲带宽200e6,重复周期10e-6s,中心频率50e6Hz。
哈工大雷达系统仿真实验报告
![哈工大雷达系统仿真实验报告](https://img.taocdn.com/s3/m/75388d34a76e58fafab003ef.png)
雷达系统仿真实验报告姓名:黄晓明学号:班级:1305203指导教师:谢俊好院系:电信学院实验一杂波和色噪声的产生—高斯谱相关对数正态随机序列的产生1、实验目的给定功率谱(相关函数)和概率分布,通过计算机产生该随机过程,并估计该过程的实际功率谱和概率分布以验证产生方法的有效性。
2、实验原理1)高斯白噪声的产生222(x)f(x)μσ--=、222(z)xF(x)dzμσ--=⎰均值:μ为位置参数、方差:2σ、均方差:σ为比例参数。
若给定01X~N(,)',则2X X~N(,)μσμσ'=+。
MATLAB中对应函数normrnd(mu,sigma,m,n),调用基本函数01randn(m,n)~N(,)产生标准正态分布。
标准正态分布的产生方法有舍选抽样法、推广的舍选抽样法、变换法、极法、查表法等,其中变换法的优点是精度高,极法运算速度较变换法快10~30%,查表法速度快。
(1)反变换法、反函数有理逼近法令0.5,t r x=-=()2012231230,11a a x a xX signt x Nb x b x b x++⎛⎫=-⎪+++⎝⎭式中2.515517a=,10.802833a=,20.010328a=,11.432788b=,20.189269b=,30.001308b=。
用这一方法进行抽样,误差小于10-4。
(2)叠加法根据中心极限定理有:先产生I组相互独立的01[,]上均匀分布随机数,令1IiiY r==∑,则当N较大时212Y~N(I,I)。
一般可取12I=,则601Y~N(,)-(3)变换对法(Box-Muller method)设相互独立1201r ,r ~U [,],取1211212122222y (ln r )cos r y (ln r )sin r ππ--⎧=-⎨=-⎩,则1201y ,y ~N [,]且相互独立。
(4) 舍选法产生相互独立12,~[0,1]r r U ,令2211221221,21,V u V u W V V =-=-=+,若满足1W >,则舍弃;否则令()()()12112ln 0,1x V W W N =-()()()12222ln 0,1x V W W N =-2)高斯色噪声的产生(1)时域线性滤波法采用线性滤波法由高斯白噪声产生高斯色噪声的基本思想是:确定初始值确定迭代公式模型h(n ),r(m )S (z )H(z )B(z )A(z ),ARMA ⎧'→→→⎨⎩滤波器的暂态效应可以通过取若干特定的输出序列初始值来解决。
雷达实习报告二
![雷达实习报告二](https://img.taocdn.com/s3/m/f82810b2f9c75fbfc77da26925c52cc58bd690c0.png)
一、实习背景随着我国科技的快速发展,雷达技术在国防、民用、科研等领域得到了广泛应用。
为了更好地了解雷达技术,提高自己的专业技能,我于2022年暑假期间,在XX雷达研究所进行了一次为期一个月的实习。
本次实习让我对雷达系统有了更深入的了解,对雷达技术有了全新的认识。
二、实习内容1. 雷达基础知识学习在实习期间,我首先对雷达基础知识进行了学习。
包括雷达的基本原理、分类、雷达方程、雷达系统组成、雷达信号处理等方面。
通过学习,我对雷达技术有了全面的认识。
2. 雷达系统组成及功能实习期间,我深入了解了雷达系统的组成及功能。
雷达系统主要由天线、发射机、接收机、信号处理器、显示器等部分组成。
天线负责发射和接收电磁波,发射机负责产生高频电磁波,接收机负责接收反射回来的电磁波,信号处理器负责对信号进行处理,显示器负责显示雷达图像。
3. 雷达信号处理技术雷达信号处理技术在雷达系统中起着至关重要的作用。
实习期间,我学习了雷达信号处理的基本原理,包括信号检测、参数估计、图像处理等方面。
通过学习,我掌握了雷达信号处理的基本方法,为后续实习打下了基础。
4. 雷达系统设计与应用实习期间,我参与了雷达系统设计与应用的学习。
了解了雷达系统的设计流程,包括需求分析、方案设计、硬件选型、软件编写、调试与测试等。
通过实际操作,我掌握了雷达系统设计的基本方法,提高了自己的动手能力。
5. 雷达技术应用雷达技术在国防、民用、科研等领域有着广泛的应用。
实习期间,我了解了雷达技术在军事、气象、交通、海洋、遥感等领域的应用。
这使我认识到雷达技术在各个领域的重要性,为今后的工作打下了基础。
三、实习收获1. 提高了专业技能通过本次实习,我对雷达技术有了更深入的了解,提高了自己的专业技能。
掌握了雷达系统设计、信号处理、应用等方面的知识,为今后的工作打下了坚实的基础。
2. 增强了实践能力实习期间,我参与了雷达系统的设计与调试,锻炼了自己的动手能力。
通过实际操作,我学会了如何解决实际问题,提高了自己的实践能力。
南信大雷达实习报告
![南信大雷达实习报告](https://img.taocdn.com/s3/m/cd7c0e402379168884868762caaedd3383c4b5ae.png)
一、实习背景随着科技的不断发展,雷达技术在气象、国防、交通、环保等领域发挥着越来越重要的作用。
为了深入了解雷达技术,提高自身实践能力,我于2023年6月至7月在南京信息工程大学雷达实验室进行了为期一个月的雷达实习。
二、实习目的1. 学习雷达基本原理,掌握雷达系统组成及工作原理。
2. 熟悉雷达实验设备,提高动手操作能力。
3. 了解雷达在各个领域的应用,拓宽知识面。
4. 培养团队协作精神,提高沟通能力。
三、实习内容1. 雷达基本原理及系统组成实习期间,我首先学习了雷达的基本原理和系统组成。
雷达是一种利用电磁波探测目标的无线电设备,通过发射电磁波,接收反射回来的回波,从而实现对目标的探测、跟踪和定位。
雷达系统主要由发射机、天线、接收机、信号处理单元等组成。
2. 雷达实验设备操作在实习过程中,我熟悉了雷达实验室的实验设备,包括发射机、天线、接收机、信号处理单元等。
在导师的指导下,我掌握了设备的操作方法,进行了雷达信号的发射、接收和处理实验。
3. 雷达应用领域实习期间,我了解了雷达在各个领域的应用,包括:(1)气象领域:雷达在气象预报、灾害预警、气象监测等方面发挥着重要作用。
(2)国防领域:雷达在防空、预警、侦察等方面具有广泛应用。
(3)交通领域:雷达在交通监控、导航、安全预警等方面发挥着重要作用。
(4)环保领域:雷达在环境监测、污染源追踪等方面具有广泛应用。
4. 雷达数据处理与分析实习期间,我学习了雷达信号处理的基本方法,包括滤波、匹配、谱分析等。
通过对雷达信号的实时处理,我对雷达数据进行了分析,了解了雷达在各个领域的应用。
四、实习收获1. 提高了雷达理论知识水平,掌握了雷达基本原理和系统组成。
2. 增强了实践能力,学会了雷达实验设备的操作方法。
3. 拓宽了知识面,了解了雷达在各个领域的应用。
4. 培养了团队协作精神,提高了沟通能力。
五、实习体会通过本次雷达实习,我深刻认识到雷达技术在各个领域的重要作用。
雷达探测距离仿真实验
![雷达探测距离仿真实验](https://img.taocdn.com/s3/m/157cd6134a35eefdc8d376eeaeaad1f3469311b2.png)
远距离支援/自卫干扰下雷达探测距离仿真一、实验目的1.定量分析干扰机掩护突防目标或自卫干扰的有效距离。
2.根据抗干扰措施,了解不同抗干扰策略条件下雷达探测探测目标的能力。
3.利用MATLAB可视化雷达的探测能力,更好地理解雷达威力图。
二、实验原理雷达能在多远的距离检测到目标,即雷达的探测能力,由雷达方程确定。
雷达方程将雷达的作用距离和雷达发射、接收、天线和环境等因素联系在一起,决定了雷达检测某类目标的最大作用距离。
2.1无干扰条件下的雷达方程雷达检测能力实质上取决于信号噪声比,设检测信号所需的最小输出信噪比为(SN)omin,并考虑系统总损耗L,则可得无干扰条件下的雷达最大作用距离方程为:R max=[P tσG t G rλ2(4π)3kT0B n FL(S N)omin]14上式中,P t为雷达发射机功率,G t为雷达天线的发射增益,G r为雷达天线的接收增益,λ为波长,σ为目标雷达截面积,B n为雷达接收机带宽,F为雷达接收机噪声系数,T0为噪声温度,k为玻尔兹曼常数。
2.2支援干扰条件下的雷达方程支援干扰条件下,干扰机以其主瓣指向雷达,而雷达则以主瓣指向目标。
只考虑单部干扰机时,雷达作用距离方程为:R max_SJ=[P t G t G rσR j2B j4πP j G j G r′(θ)B n Lγj (SJ)min]14上式中,P j为干扰机发射功率,G j为雷达天线的发射增益,B j为干扰机噪声带宽,G r′(θ)为雷达天线对干扰机干扰信号的接收增益。
γj为干扰信号对雷达天线的极化损失,R j为干扰机到雷达之间的距离。
(SJ)min为最小可检测信干比。
考虑多部干扰机支援干扰时,设干扰机到雷达之间的距离和方位角不同,而其他性能一致,则雷达作用距离方程为:R max_SJ=[P t G t G rσB j4πP j G j B n Lγj(SJ)min∑G r′(θi)R j,i2ni=1]14本实验中,计算干扰下的雷达作用距离时,除干扰机的干扰信号外,考虑其他噪声杂波的影响,则信干比的计算为:(SJ all )=SP N∙P NJ all=SP N∙P NP N+P0j上式中,P N=FkT0B为噪声杂波功率,P0j为雷达接收到的干扰信号功率。
雷达技术实验报告
![雷达技术实验报告](https://img.taocdn.com/s3/m/344683b852ea551811a6870a.png)
雷达技术实验报告雷达技术实验报告专业班级:姓名:学号: ﻩ一、实验内容及步骤1、产生仿真发射信号:雷达发射调频脉冲信号,IQ两路;2、观察信号得波形,及在时域与频域得包络、相位;3、产生回波数据:设目标距离为R=0、5000m;4、建立匹配滤波器,对回波进行匹配滤波;5、分析滤波之后得结果。
二、实验环境matlab三、实验参数脉冲宽度T=10e-6; 信号带宽B=30e6;调频率γ=B/T; 采样频率 Fs=2*B;采样周期 Ts=1/Fs; 采样点数N=T/Ts;匹配滤波器h(t)=S t*(—t)时域卷积conv ,频域相乘fft,t=linspace(T1,T2,N);四、实验原理1、匹配滤波器原理:在输入为确知加白噪声得情况下,所得输出信噪比最大得线性滤波器就就是匹配滤波器,设一线性滤波器得输入信号为:其中:为确知信号,为均值为零得平稳白噪声,其功率谱密度为。
设线性滤波器系统得冲击响应为,其频率响应为,其输出响应:输入信号能量:输入、输出信号频谱函数:输出噪声得平均功率:利用Schwarz不等式得:上式取等号时,滤波器输出功率信噪比最大取等号条件:当滤波器输入功率谱密度就是得白噪声时,MF得系统函数为:为常数1,为输入函数频谱得复共轭,,也就是滤波器得传输函数.为输入信号得能量,白噪声得功率谱为只输入信号得能量与白噪声功率谱密度有关。
白噪声条件下,匹配滤波器得脉冲响应:如果输入信号为实函数,则与匹配得匹配滤波器得脉冲响应为:为滤波器得相对放大量,一般。
匹配滤波器得输出信号:匹配滤波器得输出波形就是输入信号得自相关函数得倍,因此匹配滤波器可以瞧成就是一个计算输入信号自相关函数得相关器,通常=1。
2、线性调频信号(LFM)LFM信号(也称Chirp 信号)得数学表达式为:2、1式中为载波频率,为矩形信号,,就是调频斜率,于就是,信号得瞬时频率为,如图1图1 典型得chirp信号(a)up-chirp(K>0)(b)down-chirp(K<0)将2、1式中得up-chirp信号重写为:2、2当TB〉1时,LFM信号特征表达式如下:2、3对于一个理想得脉冲压缩系统,要求发射信号具有非线性得相位谱,并使其包络接近矩形;其中就就是信号s(t)得复包络.由傅立叶变换性质,S(t)与s(t)具有相同得幅频特性,只就是中心频率不同而已。
哈工程雷达实验报告(3篇)
![哈工程雷达实验报告(3篇)](https://img.taocdn.com/s3/m/11726e138f9951e79b89680203d8ce2f00666537.png)
第1篇一、实验目的1. 理解雷达的基本原理和组成;2. 掌握雷达的发射、接收、处理和显示过程;3. 学习雷达在距离、速度测量中的应用;4. 提高实验操作能力和分析问题的能力。
二、实验原理雷达(Radio Detection and Ranging)是一种利用无线电波探测目标的距离、速度和方位等信息的电子设备。
雷达系统主要由发射机、接收机、天线、信号处理器和显示器等组成。
1. 发射机:产生特定频率的无线电波,通过天线发射出去;2. 接收机:接收目标反射回来的无线电波;3. 天线:发射和接收无线电波;4. 信号处理器:对接收到的信号进行处理,提取目标信息;5. 显示器:显示目标信息,如距离、速度和方位等。
三、实验仪器与设备1. 雷达实验系统;2. 计算机及数据处理软件;3. 雷达发射机;4. 雷达接收机;5. 天线;6. 电源。
四、实验步骤1. 连接实验系统,检查设备是否正常;2. 启动雷达实验系统,设置雷达工作参数;3. 开启雷达发射机,发射无线电波;4. 观察雷达接收机接收到的信号,分析目标信息;5. 采集实验数据,进行数据处理和分析;6. 关闭雷达实验系统,整理实验器材。
五、实验数据与分析1. 距离测量实验过程中,通过雷达系统测量目标距离。
根据雷达测距公式,距离D与雷达信号往返时间t和雷达信号速度c之间的关系为:D = c × t / 2其中,c为雷达信号速度,约为3×10^8 m/s。
2. 速度测量实验过程中,通过雷达系统测量目标速度。
根据多普勒效应,目标速度v与雷达信号频率f之间的关系为:v = 2f × c / λ其中,λ为雷达信号波长。
3. 方位测量实验过程中,通过雷达系统测量目标方位。
根据天线方向性,可以计算出目标方位角。
六、实验结果与讨论1. 距离测量结果与理论计算值基本吻合,说明雷达系统在距离测量方面具有较高的精度;2. 速度测量结果与理论计算值基本吻合,说明雷达系统在速度测量方面具有较高的精度;3. 方位测量结果与理论计算值基本吻合,说明雷达系统在方位测量方面具有较高的精度;4. 实验过程中,发现雷达系统在某些情况下存在误差,如信号衰减、噪声干扰等。
关于雷达的实验报告
![关于雷达的实验报告](https://img.taocdn.com/s3/m/1aae5871b5daa58da0116c175f0e7cd1842518ba.png)
一、实验目的1. 了解雷达系统的工作原理和基本组成;2. 掌握雷达系统参数的测量方法;3. 分析雷达系统的性能指标;4. 熟悉雷达系统的调试与优化。
二、实验原理雷达(Radio Detection and Ranging)是一种利用电磁波探测目标的距离、方向、速度等参数的无线电技术。
雷达系统主要由发射机、接收机、天线、信号处理单元等组成。
1. 发射机:产生连续波或脉冲波,向目标发射;2. 接收机:接收目标反射回来的电磁波;3. 天线:发射和接收电磁波;4. 信号处理单元:对接收到的信号进行处理,得到目标参数。
三、实验内容1. 雷达系统组成与工作原理;2. 雷达系统参数测量;3. 雷达系统性能指标分析;4. 雷达系统调试与优化。
四、实验步骤1. 雷达系统组成与工作原理(1)观察雷达系统实物,了解其组成和结构;(2)分析雷达系统各部分的功能和作用;(3)总结雷达系统的工作原理。
2. 雷达系统参数测量(1)使用示波器测量发射机和接收机的输出波形;(2)使用频率计测量发射机和接收机的频率;(3)使用功率计测量发射机的输出功率;(4)使用距离测量仪测量目标距离;(5)使用角度测量仪测量目标角度。
3. 雷达系统性能指标分析(1)计算雷达系统的距离分辨率、角度分辨率、速度分辨率;(2)分析雷达系统的抗干扰能力、抗遮挡能力;(3)分析雷达系统的动态范围、线性度等性能指标。
4. 雷达系统调试与优化(1)调整发射机和接收机的频率,使其满足设计要求;(2)调整天线增益,提高雷达系统的探测距离;(3)优化信号处理算法,提高雷达系统的性能。
五、实验结果与分析1. 雷达系统组成与工作原理通过观察雷达系统实物和理论分析,掌握了雷达系统的组成和结构,了解了雷达系统的工作原理。
2. 雷达系统参数测量(1)发射机输出波形为连续波,频率为X MHz;(2)接收机输出波形为反射回来的目标信号,频率为X MHz;(3)发射机输出功率为P dBm;(4)目标距离为D m;(5)目标角度为θ°。
激光雷达虚拟仿真实验报告
![激光雷达虚拟仿真实验报告](https://img.taocdn.com/s3/m/425b4ab1bdeb19e8b8f67c1cfad6195f312be894.png)
激光雷达虚拟仿真实验报告激光雷达虚拟仿真实验是一种通过计算机模拟实现的激光雷达技术实验,它主要通过虚拟仿真模型来模拟各种实际激光雷达应用场景,达到有效的阐明和实践激光雷达技术的目的。
下面是一份激光雷达虚拟仿真实验报告,供参考。
1. 实验目的本实验主要是为了加深对激光雷达技术的理解,通过搭建虚拟环境来进行仿真实验,了解激光雷达的原理、应用和优缺点等相关知识。
2. 实验设备本次实验需要用到的设备包括:- 一台电脑- 激光雷达虚拟仿真软件3. 实验步骤3.1 安装仿真软件首先需要下载并安装激光雷达虚拟仿真软件,根据软件的安装引导将其安装到合适的目录下,并完成相应的设置。
3.2 打开仿真软件启动已经安装好的激光雷达虚拟仿真软件,并进入主界面。
3.3 设置实验参数在仿真软件的主界面中,可以通过参数设置来设置实验的相关参数,包括激光雷达的光束角度、扫描速度、扫描范围等。
3.4 进行实验完成参数设置后,即可开始进行激光雷达虚拟仿真实验,观察模拟出来的激光雷达数据图像,并对其进行分析和处理,完成实验目标。
4. 实验结果本次激光雷达虚拟仿真实验,我们成功地模拟了不同参数条件下激光雷达的探测情况,并获得了相应的实验结果。
通过分析实验结果,我们深入了解了激光雷达技术的优点和限制,对于今后的相关技术研究和应用也提供了参考和依据。
5. 实验结论通过本次激光雷达虚拟仿真实验,我们对于激光雷达技术的性质、特点和应用情况有了更加深刻的认识,并对于今后的相关技术研究和应用也有了一定的指导和支撑。
同时,本次实验也有效地帮助我们提高了计算机仿真和数据分析处理的能力,是一次非常有价值和富有意义的科学实验。
雷达操作演示实验报告
![雷达操作演示实验报告](https://img.taocdn.com/s3/m/7202857fabea998fcc22bcd126fff705cd175c6a.png)
一、实验目的1. 熟悉雷达的基本原理和组成;2. 掌握雷达的操作方法和步骤;3. 学习雷达信号处理的基本知识;4. 了解雷达在实际应用中的重要作用。
二、实验原理雷达(Radio Detection and Ranging)是一种利用电磁波探测目标的技术。
其基本原理是发射电磁波,当电磁波遇到目标时,部分能量被反射回来,接收器接收到反射波后,通过处理和分析反射波的信息,实现对目标的探测、定位和跟踪。
雷达主要由以下几部分组成:1. 发射器:产生和发射电磁波;2. 发射天线:将电磁波发射出去;3. 接收器:接收反射回来的电磁波;4. 接收天线:将接收到的电磁波转化为电信号;5. 信号处理器:对电信号进行处理和分析;6. 显示器:显示处理后的信息。
三、实验仪器与设备1. 雷达实验系统一台;2. 发射天线一台;3. 接收天线一台;4. 信号处理器一台;5. 显示器一台;6. 电源一台。
四、实验步骤1. 连接实验仪器:将发射天线、接收天线、信号处理器、显示器和电源按照实验系统要求进行连接。
2. 打开电源:开启雷达实验系统电源,确保所有设备正常工作。
3. 设置参数:根据实验要求,设置雷达的频率、脉冲宽度、发射功率等参数。
4. 发射电磁波:按下发射按钮,雷达开始发射电磁波。
5. 接收反射波:雷达接收器接收反射回来的电磁波。
6. 信号处理:信号处理器对接收到的电磁波进行处理和分析,提取目标信息。
7. 显示信息:显示器显示处理后的信息,包括目标距离、速度、方位角等。
8. 修改参数:根据实验要求,修改雷达参数,重复实验步骤。
9. 关闭实验系统:完成实验后,关闭雷达实验系统电源。
五、实验结果与分析1. 实验过程中,雷达成功发射电磁波,并接收反射波。
2. 信号处理器成功处理反射波,提取目标信息。
3. 显示器成功显示目标信息,包括距离、速度、方位角等。
4. 通过修改雷达参数,可以观察到不同参数对目标信息的影响。
六、实验结论1. 雷达实验系统能够成功发射和接收电磁波,实现目标的探测、定位和跟踪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《雷达原理》
实验报告
学院:
专业:
姓名:
学号:
成绩:
评阅教员:
时间:
一、实验内容简介:
利用Mathlab实现对几种常见的雷达信号的仿真。
画出这几种信号形式的时域和频域的波形图。
二、实验目的:
通过仿真熟悉常用的雷达信号的时域和频谱形式,掌握MatLab中信号的产生和表示方法及信号频谱的计算和图形绘制。
进一步锻炼学员的编程能力,提高利用算法实现解决实际问题的能力。
三、实验原理:
不同体制的雷达由于不同的任务采用了不同的信号形式,雷达常用的信号形式有连续波和脉冲波两种;
连续波中又有按三角形或按正弦规律变化的调频连续波,脉冲波中有简单脉冲波、脉内调频脉冲波和脉间调频脉冲波;
其中测高雷达和车载测距雷达多采用连续波的形式,常规雷达采用简单调频脉冲信号;动目标显示或测速多普勒雷达多采用高工作比的矩形调幅脉冲信号;一些新体制的高分辨率雷达多采用线性调频或相位编码等脉冲压缩信号。
对以上信号形式经傅立叶变换可以得到其频谱。
四、实验环境:
实验地点:自习室
硬件环境:acer aspirs4738G
Intel(R) Core(TM) i5 CPU M480 @
RAM
软件环境:Windos 7 旗舰版32位操作系统
MATLABa) 32-bit(win32)
五、实验内容:
画出连续波、单个矩形脉冲波、相参脉冲波、线性调频脉冲波、相位编码脉冲波的时域波形,计算并绘制以上信号的频谱。
信号采用的参数如下:
1、连续波
连续波是最基本的波形,其表达式为:
参数为:载波频率f0为20MHz,采样频率为4倍f0,采样长度为1000.
Mathlab代码:
仿真效果如下图所示:
2、单个矩形脉冲
单个矩形脉冲的表达式为:
参数为:载波频率f0为20MHz,采样频率为4倍f0,脉宽为1us ,脉冲周期为20us Mathlab代码为:
仿真结果如图
(a)单个矩形脉冲信号的合成过程说明
(b)单个矩形脉冲信号的时域频域波形图
3、相参脉冲
参数为:载波频率f0为20MHz,采样频率为4倍f0,脉宽为1us,脉冲周期为20us。
Mathlab代码为:
仿真结果如下图:
4、线性调频脉冲(LFM)
参数为:带宽为20MHz,采样频率为fs为4倍B,脉宽为10us,频率变化率为带宽除以脉冲宽度。
Mathlab代码为:
仿真效果如图所示:
5、相位编码脉冲
参数为:载波频率f0为10MHz,采样频率为16倍f0,脉宽为,脉冲周期为5us。
Mathlab代码为:
仿真结果如下图:
六、实验心得:。