点集拓扑学ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以上运算定律由定义或作图不难验证,我们仅以对 偶律的验证为例,其余读者自己完成.
图1.1.2
图(a)中阴影部分表示 (A B) ,图(b)中右斜线表示 A ,左斜线表示 B . 由图1.1.2可得:(A B) A B . 定义1.1.5 对给定的非空集合 X ,Y 我们把由二元有序对 (x, y) (其中 x X , y Y ) 构成的集合叫做X与Y的笛卡 尔积,记作 X Y 用描. 述法表示是:
B A
, .
6. 设A,B都是集合,证明:若 A B ,则 B (B A) A .
7. 设某一个全集已经给定,证明
① A B A B
② A B (A B) B A (A B)
③ 若 A B X,并且 A B ,则 A B, B A
④ ( A1 B1) ( A2 B2 ) A1 A2 (B1 B2 )
点集拓扑学
主讲人:吴洪博
第一章 集合论初步
❖§1.1 集 合 ❖§1.2 关系,等价关系 ❖§1.3 映 射 ❖§1.4 集族及其运算 ❖§1.5 可数集,不可数集 ❖§1.6 基 数
§1.1 集 合
❖ 重点:熟悉有关集合的等式和性质 ❖ 难点:有关集合的有限笛卡尔积的等式和性质
❖ 集合一词,我们在高中阶段已经接触过,在那里, 集合是指具有某种属性的对象的全体.在这里,我们 仍采用对集合的这种直观的描述性定义,以后我们 还将经常遇到像这样直观的描述性定义或一些直观 的结论.虽然这样做逻辑性差一些,不及公理集合论 的严密性,但这样做却是我们易于理解和接受的, 不致使读者陷入逻辑困惑之中,从而尽快地进入拓 朴学基础的学习程序.
定义1.1.1 对于两个集合A,B,如果A的每个元素都是集 合B的元素,我们称A包含于B,或B包含A,或A是B的子 集,记作 A B .
如果 A B,而且存在使得 y B,称A是B的真子集,
记作 A . B
如果A B ,同时B A,称集合A与集合B相等, 记作A=B.
➢不含任何元素的集合称为空集,用符号 表示. ➢规定空集是任意集合的子集. ➢含有有限个元素的集合叫做有限集, ➢不是有限集的集合叫做无限集.
A1 A2 An 3. 设 X {x1, x2, , xn} ,即X有 n 个互不相同的元素,X的幂集P (X)有多少个互不相同 的元素. 4. 设 X {a,b,c,,d} 用列举法给出P (X).
ห้องสมุดไป่ตู้
5. 设A,B是集合,证明 A A B 的充要条件是 B A , 且 A B B 的充要条件是
虽然对于任意给定集合,它们的元素不必有序,但我们可 以把集合的元素串在一起,这样就可用线段或直线表示 集合.进而将集合的笛卡尔积就可用“平面图形”直观的表 现出来.
例1.1.1 设 A, B X , C, D Y 由下面的图1.1.3很容易得
(A B) (C D) A C (A B) D B (C D) A C B D (A B) D B (C D)
图1.1.1
观察图1.1.1我们不难得出下面的等式:
A B (A B) B (A B) (A B) (B A)
这样做的好处在于将并集 A B 转化成互不相交 的集合并集.该集合等式也可以用定义证明.
集合中的运算律
设X是全集,A,B,C是X的子集,则以下运算律成立: (1)交换律 A B B A, A B B A (2)结合律 (A B) C A (B C), (A B) C A (B C) (3)零元,单位元 A A, A X A (4)吸收律 A (A B) A, A (A B) A
(A-B)×(C-D)
图1.1.3
该集合等式也可用定义证明,其过程读者自己做为练习完成.
习题 1.1
1. 试判断下列关系式的正确与错误
A {A}; A{A}; {}; {}; {}; (); 2. 设 A1, A2 ,, An 都是集合,其中 n 2 ,证明:如果 A1 A2 An A1 , 则
定义1.1.2 给定集合A,B,由A与B的全部元素
构成的集合叫做A与B的并集,记作 A B. 用描述法表示是: A B {x | x A, 或x B}
定义1.1.3 给定集合A,B,由A和B的公共元素
.
构成的集合叫做A与B的交集,记作 A B. 用描述法表示就是:A B {x | x A,而且 x B}.
8. 设A,B,C,D是全集X的子集,试判断下列命题的正确性.若正确,给出证明, 若不正确,给出反例.
① A (A B) B
定义1.1.4 给定集合A,B,把由属于A而不属于B 的元素构成的集合叫做A与B的差集,记作 A B. 用描述法表示是 A B {x | x A, xB}. 如果 A B, 称 B A 为A在B中的补集,记作 A.
而此时可称B为全集,全集在一个问题中是事先 指定的或者是不言自明的.
对于集合之间的运算,有时用图象表示更直观一些.在下面的图1.1.1中, 我们用两个圆分别表示集合A,B,而用阴影部分表示两个集合运算的结果.
X Y {( x, y) | x X , y Y}
其中x是第一个坐标,y是第二个坐标,X称为第一个坐标集, Y称为第二个坐标集. 特别地,记 X X 为 X 2 称为X的二重笛卡尔积. 对于有序对及笛卡尔积,读者并不陌生,我们学过的笛
卡尔直角坐标系中的点就是有序数对 (x, y), (x, y R) , 因而整个直角坐标系平面就是集合R的二重笛卡尔积R 2 (R表示实数集合).
(5)分配律 A (B C) (A B) (A C),
A (B C) (A B) (A C)
(6)幂等律 A A A, A A A (7)对合律 A A (8)对偶律 (A B) A B, (A B) A B (9)互补律 A A X , A A
相关文档
最新文档