测控电路
测控电路考点整理

红色字体是必须要掌握的时间来不及可以先看一、1.测控电路的主要要求:精度高、响应快、可靠性与经济性、转换灵活(填空选择)2.测控电路的组成(概念、流程框图等看课件)3.测量电路的组成模拟式与数字式AB卷4.开闭环控制流程图(重点)二、1.二极管三极管原理特性了解2.放大电路基本要求(背全文背诵必考)①低噪声;②低的输入失调电压和输入失调电流以及低的漂移;③高共模输入范围和高共模抑制比;④一定的放大倍数和稳定的增益;⑤线性好;⑥输入阻抗应与传感器输出阻抗相匹配;⑦足够的带宽和转换速率。
反相电路同相电路差动放大(有能力同学背原理图及特点)无时间也可以直接记结论3.高共模抑制比放大电路(必考全文背诵)CMRR公式必考考点可能分散在AB卷推导过程都很重要电路组成要看懂原理自动凋零放大电路各部分组成名称两个周期调零原理(不懂原理就背)5.电荷放大电路原理公式不懂原理就背公式截止频率Uo公式等找到规律很好记6.隔离电路好像没考7.失调电压调整外部内部二选一8.转换速率SR=u/t以及最大变换率(考了填空或者填空好像)9.转折频率10.写出三种噪声类型答:(热噪声、低频噪声、散弹噪声)其他略过不考11.基本加法电路、减法电路要看得出来背结构组成和计算公式12.对数指数我记得是没考了解吧知道长什么样就可以13.基本积分运算电路(重点要考的)电路结构+公式14.PID运算电路(重点要考的大题!!)我们当时考了并联PID电路公式推导这个图很复杂很难看不懂背也要背下来每一部分原理组成(非常重要)一定要弄明白(并联简单一点串联PID难一点求稳的话就都看明白原理自己会推导最好!)15.绝对值运算电路也就是半波整流和全波整理(重点考点)16.峰值、最值、平均值运算电路等了解即可三、1.调制信号、解调信号、载波信号、已调信号定义正弦信号三个特点:幅值、频率、相位(选择填空)2.调幅信号原理:用调制信号x去控制高频载波信号的幅值。
测控电路知识点总结

测控电路知识点总结近年来,随着电子技术的飞速发展,测控电路越来越成为各行各业中不可或缺的一个关键技术。
测控电路可以用来测量和控制各种电气和非电气量,包括电流、电压、温度、湿度等。
作为一名电子工程师,在处理测控电路方面需要具备相应的知识与技能。
本文将就测控电路方面的知识点进行总结。
一、传感器的种类和原理传感器是一种将非电信号(如压力、温度、湿度等)转换成电信号的电子元件。
不同的传感器根据其测量的物理量可以分为多种类型,例如:1. 压力传感器:用于测量水、气体、油等任何压强。
2. 电位差传感器:用于测量电压信号。
3. 温度传感器:用于测量实际环境的温度。
4. 湿度传感器:用于测量相对湿度。
5. 光电传感器: 用于识别物体的特定位置,能够测量物体的距离、位置、方向等。
二、放大电路对于一些微弱的信号,通过放大电路可以使其变得更容易处理和检测。
其中一个经典例子是基于放大器的心电图监护仪,在该系统中,微弱的电信号将通过放大器进行增强。
常见放大电路包括:1. 非反馈放大器:一种基本的放大器,它由一个晶体管或运放构成。
2. 反馈放大器:一种通过反馈改变增益的电路,在电控系统中应用广泛、且效果显著。
3. 差动放大器:将信号放大器的两个输入端,当两个输入信号不相同时,将输出信号的放大版。
三、多路选择电路在多种模数转换器、自动测量仪器和自动控制系统中,多路选择电路的应用越来越广泛。
通过多路选择电路,可以在多种不同的电压输入信号之间进行切换。
常见的多路选择电路有两种类型:基于模拟开关的多路选择电路和集线器。
1. 模拟开关:通常由多个开关组成,用于将不同的输入信号分别连接到单个输出。
在工业自动化领域中,模拟开关的应用非常广泛。
2. 集线器:一类数字电路,允许将多个设备连接到单个设备上。
在计算机领域中,集线器是网络拓扑中扮演重要角色。
四、计时电路计时电路可以用于测量时间间隔,以实现各种不同的控制功能,在计时器、任务调度和排队等领域中使用广泛。
测控电路知识点总结

测控电路一.名词解释1.测量放大电路2.高共模抑制比电路:有抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比放大电路。
P263.有源驱动电路:将差动式传感器的两个输出经两个运算放大器构成的同相比例差动放大后,使其输入端的共模电压1:1地输出,并通过输出端各自电阻(阻值相等)加到传感器的两个电缆屏蔽层上,即两个输入电缆的屏蔽层由共模输入电压驱动,而不是接地,电缆输入芯线和屏蔽层之间的共模电压为零,这种电路就是有源屏蔽驱动电路。
P284.电桥放大电路:由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥都称为电桥放大电路。
P295.自举电路:自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。
P366.可编程增益放大电路:放大电路的增益通过数字逻辑电路由确定的程序来控制,7.隔离放大电路:隔离放大电路的输入、输出和电源电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地端。
P458.信号调制及解调:调制就是用一个信号(称为调制信号)去控制另一作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。
在将测量信号调制,并将它和噪声分离,放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这一过程称为解调。
P559•调幅、调频、调相、脉冲调宽:调幅就是用调制信号x去控制高频载波信号的幅值。
(P55)10.包络检波:从已调信号中检出调制信号的过程称为解调或检波。
幅值调制就是让已调信号的幅值随调制信号的值变化,因此调幅信号的包络线形状与调制信号一致。
只要能检出调幅信号的包络线即能实现解调。
这种方法称为包络检波。
P60二.简答题1.测控电路在整个测控系统中起着什么样的作用?答:传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。
测控电路

测控电路介绍测控系统主要由传感器、测量控制电路(简称测控电路)和执行机构三部分组成。
在测控系统中电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。
测控系统乃至整个机器和生成系统的性能在很大程度上取决于测控电路。
测控电路主要包括信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、电量测量电路、连续信号控制电路、逻辑与数字控制电路等。
实际上,测控电路是模拟电子技术和数字电子技术的进一步延伸与扩展,主要讨论一些典型常见的电路。
因此学好模电和数电是基础,其中运算放大器是测控电路的一个核心部件。
网址:从50年代的“尺寸自动检测仪器”,到80年代的“精密仪器电路”,再到今天的“测控电路”,“测控电路”课程经历了半个世纪的发展历程。
测控技术是现代生产和高科技中的一项必不可少的基础技术。
“测控电路”课程主要介绍工业生产和科学研究中常用的测量与控制电路。
包括测控电路的功用和对它的主要要求、测控电路的类型与组成、信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、逻辑控制与连续信号控制电路、测控电路中的抗干扰技术,最后通过若干典型测控电路对电路进行分析。
本课程不是一般意义上电子技术课程的深化与提高,而要着重讲清如何在电子技术与测量、控制之间架起一座桥梁,使学员熟悉怎样运用电子技术来解决测量与控制中的任务,实现测控的总体思想,围绕精、快、灵和测控任务的其它要求来选用和设计电路。
本课程选用的教材是由天津大学精仪学院张国雄教授主编的《测控电路》。
该书是根据1996年10月全国高等学校仪器仪表类教学指导委员会第一次会议的决定,作为测控技术及仪器专业的规划教材,并根据随后拟定的教学大纲编写的。
该教材可供测控技术及仪器专业各专业方向和机械工程类其它专业选用。
2002年,该书获全国优秀教材二等奖,并被列为国家“十五”规划教材。
测控电路

2.常用的调制方法:传感器调制和电路调制。传感器调制包括1交流供电2机械或光学方法。电路调制包括 乘法器调制,开关电路调制,信号相加调制。常用的解调方法:用非线性原件(二极管或者晶体三极 管);用低通滤波器。 3.相敏检波电路和包络检波的区别在于:相敏检波电路具有鉴别相位的能力,具有选频的功能,还必须有参 考信号。(乘法器,开关式,相加式) 4.将调制信号乘以幅值为1的余弦信号就可以得到双边带调幅信号,将双边带调幅信号再乘以载波信号,经 低通滤波后就可以得到原先的调制信号。 5.相敏检波电路具有抑制各种高次谐波的能力,这就是他的选频功能。相敏检波电路的鉴相特性指:当输入 信号和参考信号同频率时,输出信号随相位差的余弦而变化。 第四章 信号分离电路 1.滤波器是具有频率选择作用的电路或运算处理系统,可以从频率域中实现对噪声的抑制,提取所需的测量 信号。工作原理是当信号与噪声分布在不同频域带中时,利用滤波器对不同频率信号具有不同的衰减作用 的特点从频域实现信号分离。 2.几个特征频率:转折频率fc,固有频率(谐振频率或中心频率)f0; *群时延函数:t=df(w)/dw,用来评价相位失真程度。越接近常数,相位失真越小。 3.滤波器按照电路组成可以分为:1.LC无源滤波器,2.RC无源滤波器,3.RC有源滤波器 4.由特殊元件构成 的无源滤波器。 4.压控电压源型滤波器:闭环增益(1+R0/R)增益过大容易导致自己振荡,这是因为电路中存在正反馈。 高通低通和带通 *5.无源元件参数计算。 第五章 加法减法运算电路(设计) 第六章 常用的模拟开关元件包括二极管开关.,双极型晶体管开关,结型场效应管开关,MOS型场效应管开关等。
测控电路
第一章 1.测控系统主要由传感器(测量装置),测量控制电路(测控电路)和执行机构三部分组成。传感器的输出 信号一般都很微弱,还可能伴随着各种噪声,还需要测控电路将它放大,剔除噪声,选取有用信号。在测 控系统中,电路是最灵活的部分,它具有便于放大,便于变换,便于传输,适应于各种使用要求的特点。 *2.测控电路的特点:精度高;响应快;转换灵活。 *3.影响测控电路的主要因素: 1噪声与干扰;2失调与漂移,主要是温漂;3线性度与保真度;4输入与输出阻抗的影响。其中噪声与干 扰,失调与漂移(含温漂)是最主要的,需要特别注意。 4.测控电路的输入信号和输出信号: 模拟:1非调制信号2已调制信号(调制信号,载波信号,调幅信号) 数字:增量码信号;绝对码信号;开关信号 第二章 信号放大电路 1.信号放大电路是为了将微弱的传感器信号放大到足以进行的各种转换处理或驱动指示器,记录器以及各种 控制机构。 2.输入失调电压(实际中的差分放大器不一定完全对称,必须在输入端加上某一直流电压后才能使输出为 零,这一电压便成为输入失调电压);这种失调电压随时间和温度而变化,称为零点漂移; 3.为了减小零点漂移可以采取以下几个措施:1.引入直流负反馈2.引入温度补偿电路3.差分放大电路的自稳零 和采用调制的方法把直流变交流。 4.相位补偿 5.噪声分为白噪声和色噪声两种。电子电路中的固有噪声有热噪声,低频噪声和散弹噪声三种。 6.测量放大电路是指在测量控制系统中用来放大传感器输出的微弱电压电流或者电荷信号的电路。在结构原 理上可以分为1.差动直接耦合式(单端输入,电桥放大,电荷放大),2调制式(斩波稳零)3自动稳定式 (自动调零放大电路)。测量放大电路的基本要求是:1其输入阻抗要与传感器的输出阻抗相匹配2稳定的 放大倍数3低噪声4低的输入失调电压和输入失调电流以及低漂移,5足够的带宽和转换速率6高共模输入范 围和高共模抑制比7可调的闭环增益8线性好精度高9成本低。 7.反向放大器的闭环增益为-R2/R1;优点:性能稳定,缺点是输入阻抗低容易对传感器新城敷在作用。 同相放大器的闭环增益是1+(R2/R1);优点输入阻抗高,输出阻抗几乎为零,缺点容易受干扰99。 差动放大电路有益于抑制共模干扰(提高电路的共模抑制比)和减小温漂。 *8.三运放高共模抑制比放大电路 9.自动调零放大电路 10.高输入阻抗集成运放的屏蔽将高输入阻抗的输入端周围用导体围住,并将屏蔽层接到低输入阻抗处。 11.自举式高输入阻抗放大电路利用反馈使输入阻抗两端电位近似相等,减少想输入阻抗索取电流从而提高 输入阻抗。 12.差动输入电桥放大电路 *13.隔离放大电路的输入输出和电源的电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地 端。由输入放大器和输出放大器,隔离器和隔离电源等几部分组成。常用的隔离方法:光电隔离,变压器 隔离和电容隔离。 14.调制信号---->调制器——>放大器——》解调器——》低通滤波 振荡器 第三章 信号调制解调电路 1.在信号调制中,通常以高频的正弦信号做载波信号。调幅,调频和调相。调制就是利用调制信号去控制另 一个作为载体的信号(载波信号),让载波信号的(幅值,频率,相位和脉冲宽度)按照调制信号的值变 化。 可以克服干扰,便于放大和远距离传输。
测控电路(第7版)课件:测控电路设计实例

压控电压源性滤波电路因为引入正 反馈,所以增益不能选的太大,否则容 易引起自激振荡。同时,系统的品质因 数Q也不能选的太大,否则陷波网络不 能起到陷波效果。
29
校正电路
串联校正主要有三种形式,超前校正、滞后校正、超前滞后校正。相较于滞 后校正,超前校正能够提高系统的带宽,比较适合于带宽较小的系统。
模拟乘法器
1 2
kkmU
mU
c
r
(t
)
低频信号
1 2
kkmUmUcr(t) cos 2t
载波频率二倍频信号
陷波器
输出信号:uo (t) kkmUmUcr(t) / 2
相敏解调
mt
U jz
激磁信号
R1 R3
R2
C 移相电路
选取R1=R2,移相电路的传递函数为:
A(s) 1 R3Cs 1 R3Cs
1
0
0 1
(
1 s
)
x y
(s) (s)
测控电路设计实例
13
11.2.3 校正网络设计及系统仿真
频域特性分析
校正前Bode图
校正后Bode图
测控电路设计实例
14
11.2.3 校正网络设计及系统仿真
时域特性分析
单位阶跃响应
测控电路设计实例
斜坡响应
15
11.3 电路设计
11.3.1 预处理电路 11.3.2 校正电路 11.3.3 控制解耦网络 11.3.4 功率放大电路
Φy(s)
Vx(s) Vy(s)
测控电路设计实例
11
11.2.3 校正网络设计及系统仿真
对再平衡回路的基本要求可以归纳为: 1)闭环稳定,并具有一定的幅值和相角稳定裕度。 2)满足规定的动、静态指标。静态指标是指系统在角度常值、速率和角 加速度输入信号下的稳态偏差;良好的动态指标是指系统及时跟踪角速率 变化的能力,具有足够的带宽。 3)能提供足够的加矩电流,平衡最大的输入角速度,在承受最大角加速 度时转子偏角不超过规定的范围。
测控电路课后习题答案

实例三:液位测控电路
0 电路组成:由传感器、放大器、比较器和执行机构等组成
1 0
实例应用:可用于化工、石油、食品等行业的液位测控
3
பைடு நூலகம்工作原理:传感器将液位信号转换为电信号,放大
0
器将信号放大后送至比较器与设定值进行比较,根
2
据比较结果控制执行机构动作,实现液位的自动控
制
0 电路特点:结构简单、可靠性强、易于实现自动化控制
习题二答案
• 题目:简述测控电路的基本组成。 答案:测控电路的基本组成包括传感器、信号调理电路、转换电路和执行机构。传感器负责采集 被测量的信息,信号调理电路对传感器输出的信号进行放大、滤波等处理,转换电路将模拟信号转换为数字信号,执行机构则根据 控制信号对被控对象进行控制。
• 答案:测控电路的基本组成包括传感器、信号调理电路、转换电路和执行机构。传感器负责采集被测量的信息,信号调理电路对传感器输出的信号进 行放大、滤波等处理,转换电路将模拟信号转换为数字信号,执行机构则根据控制信号对被控对象进行控制。
采集电路:放大器、滤波器、模 数转换器等
添加标题
添加标题
添加标题
添加标题
采集方法:直接采集和间接采集
采集注意事项:保证信号的准确 性和可靠性
信号的放大与滤波
信号放大:通过电子元件将微弱信号进行放大,以便于测量和控制 滤波:利用滤波器对信号进行筛选,去除噪声干扰,提取有用信号
信号的转换与输出
信号的转换:将输入的模拟信号转换为数字信号,便于计算机处理
分
添加标题
工作原理:压力传感 器将压力信号转换为 电信号,经过信号调 理电路处理后,再通 过A/D转换器转换为 数字信号,最后由微 控制器进行数据处理
测控仪器电路实验报告(3篇)

第1篇一、实验目的1. 熟悉测控仪器的基本原理和组成。
2. 掌握常用测控仪器的操作方法和应用。
3. 通过实验,加深对测控电路的理解,提高动手能力和分析问题能力。
二、实验原理测控仪器电路实验主要涉及以下几种仪器:信号发生器、示波器、交流毫伏表、数字万用表、晶体管毫伏表、直流稳压电源等。
这些仪器在电子测量和实验中发挥着重要作用。
1. 信号发生器:能够产生正弦波、方波、三角波等信号,用于测试电路性能和调整电路参数。
2. 示波器:用于观察和分析信号波形,测量信号的幅度、频率、相位等参数。
3. 交流毫伏表:用于测量正弦交流电压的有效值,广泛应用于信号检测和电路调试。
4. 数字万用表:具有测量电压、电流、电阻、电容等多种功能,是电子实验中常用的测量工具。
5. 晶体管毫伏表:用于测量正弦信号的有效值,适用于低频信号测量。
6. 直流稳压电源:为电路提供稳定的直流电源,保证电路正常工作。
三、实验器材1. 信号发生器2. 示波器3. 交流毫伏表4. 数字万用表5. 晶体管毫伏表6. 直流稳压电源7. 测控电路实验箱8. 电阻、电容、二极管等元器件四、实验内容1. 信号发生器使用- 连接信号发生器,输出正弦波信号。
- 调整频率和幅度,观察示波器显示的波形。
- 测量输出信号的频率和幅度。
2. 示波器使用- 连接示波器,观察信号发生器输出的正弦波信号。
- 调整示波器的垂直和水平扫描,使波形清晰。
- 测量信号的幅度、频率和相位。
3. 交流毫伏表使用- 连接交流毫伏表,测量信号发生器输出的正弦波信号的有效值。
- 比较交流毫伏表和示波器测量的结果。
4. 数字万用表使用- 使用数字万用表测量电阻、电容、二极管等元器件的参数。
- 分析测量结果,判断元器件的质量。
5. 晶体管毫伏表使用- 连接晶体管毫伏表,测量信号发生器输出的正弦波信号的有效值。
- 比较晶体管毫伏表和示波器测量的结果。
6. 直流稳压电源使用- 连接直流稳压电源,为电路提供稳定的直流电源。
测控 电路

气鼓产生饱和蒸汽,经减 温器到过热器产生过热蒸 汽。 图中温度变送器、控制器 和执行器构成了一个单回 路测控系统。 1热电阻,2变送器,3调 节器,4调节阀
电厂锅炉过热蒸汽温度控制流程图
• 自动化的进一步发展就是智能化。
• 智能化:对环境、原材料、机器工具状 态的自适应,进行信息交换,优化决策。
• 智能化更离不开测控。
高新科技离不开测量与控制
• 当今时代是信息时代。 • 信息技术包括:信息获取、处理、传输、存储、
执行(控制)。 • 测量是信息的源头,最后落实到控制。 • 信息时代的标志——高性能计算机的发展,速
度和容量为其主要指标。 • 关键是重复定位和曝光技术精度,在于测控。
国防事业离不开测量与控制
• 现代战争是信息战 • 仪器仪表的测量控制精度决定了武器系
5.使用正确的安装方法,不可粗暴安装:在安装的过 程中一定要注意正确的安装方法,对于不懂不会的地方要 仔细查阅说明书,不要强行安装,稍微用力不当就可能使 引脚折断或变形。
6.把所有零件从盒子里拿出来(不要从防静电袋子中 拿出来),按照安装顺序排好,看看说明书,有没有特殊 的安装需求。
7.以主板为中心,把所有东西排好。在主板装进机箱 前,先装上处理器与内存;要不然过后会很难装,搞不好 还会伤到主板。此外在装AGP与PCI卡时,要确定其安装牢 不牢固,因为很多时候,上螺丝时,卡会跟着翘起来。如 果撞到机箱,松脱的卡会造成运作不正常,甚至损坏。
8.插拔时不要抓住线缆拔插头,以免损伤线缆。
12.2.6 台式计算机组装基本步骤
1.主机的安装 (1)准备好机箱并安装电源,主要包括打开空机箱和安装电源; (2)驱动器的安装,包括硬盘、光驱的安装; (3)CPU和散热器的安装,在主板处理器插座上安装CPU及散热 风扇; (4)内存条的安装,将内存条插入主板内存插槽内; (5)主板的安装,将主板固定在机箱内; (6)显卡的安装,根据显卡接口类型将显卡安装在主板上合适 的扩展槽内; (7)声卡等的安装,根据声卡的总线类型选择合适的扩展槽将 它们安装在主板上; (8)机箱与主板间连线的连接,是指各种指示灯、电源开关线、 PC喇叭等面板插针的连接,以及硬盘、光驱。
测控电路 (2)

测控电路1. 引言测控电路是指用于测量和控制系统中的信号调理、数据采集、信号传输和控制执行等功能的电路。
在现代工业控制、仪器仪表和自动化等领域中,测控电路发挥着重要的作用。
本文将介绍测控电路的基本原理、常见组成部分和设计要点等内容。
2. 测控电路的基本原理测控电路的基本原理包括信号调理、数据采集、信号传输和控制执行等方面。
信号调理是指将传感器、信号源等产生的信号进行放大、滤波、线性化等处理,以便更好地适应后续的数据采集和控制操作。
数据采集是指将经过信号调理的信号转换为数字信号,并进行采样、量化等操作。
信号传输是指将采集到的数字信号进行传输,常用的方式包括串行通信、并行通信、以太网等。
控制执行是指根据传输的数字信号控制执行器进行动作控制,例如电机的启动、停止等操作。
3. 测控电路的组成部分测控电路的组成部分主要包括传感器、信号调理电路、数据采集器、数据传输模块和执行控制器等。
3.1 传感器传感器是将被测量的物理量转换为电信号的装置,常见的传感器包括温度传感器、压力传感器、光电传感器等。
传感器的选择应根据被测量的物理量和测量要求进行,例如在温度测量中可以选择热电偶传感器或者热敏电阻传感器。
3.2 信号调理电路信号调理电路用于对传感器输出的信号进行放大、滤波、线性化等处理,以适应后续的数据采集和控制操作。
常见的信号调理电路包括放大电路、滤波电路和线性化电路等。
放大电路可以根据传感器输出的信号进行放大,以增加测量的精度。
滤波电路可以通过滤除高频噪声和杂散信号,提高测量的稳定性。
线性化电路可以将非线性的传感器输出信号转换为线性信号,以便后续的处理和分析。
3.3 数据采集器数据采集器用于将经过信号调理的信号转换为数字信号,并进行采样和量化等操作。
数据采集器可以根据采集的信号类型选择合适的转换方式,常见的转换方式包括模数转换和频率转换等。
模数转换器可以将连续变化的模拟信号转换为离散的数字信号,频率转换器可以将频率变化的信号转换为数字信号。
测控电路课程设计论文

测控电路课程设计论文一、教学目标本课程的教学目标是让学生掌握测控电路的基本原理、基本知识和基本技能,能够运用测控电路解决实际问题。
具体来说,知识目标包括:掌握测控电路的基本概念、基本原理和基本方法;了解测控电路在工程中的应用和前景。
技能目标包括:能够使用常见的测控电路仪器和设备,具备分析和解决测控电路问题的能力。
情感态度价值观目标包括:培养学生对测控电路的兴趣和热情,提高学生的问题解决能力和创新意识。
二、教学内容根据课程目标,本课程的教学内容主要包括测控电路的基本原理、基本知识和基本技能。
具体来说,教学大纲如下:第一章:测控电路概述1.1 测控电路的定义和发展1.2 测控电路的基本原理1.3 测控电路的应用和前景第二章:测控电路的基本元件2.1 电阻元件2.2 电容元件2.3 电感元件2.4 运算放大器第三章:测控电路的基本电路3.1 测量电路3.2 控制电路3.3 信号处理电路第四章:测控电路的实验与调试4.1 测控电路的实验方法4.2 测控电路的调试技巧4.3 测控电路的实验案例三、教学方法为了实现课程目标,本课程将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。
讲授法用于传授基本原理和基本知识,讨论法用于探讨和解决实际问题,案例分析法用于分析和理解测控电路的应用,实验法用于锻炼学生的实践能力。
通过多样化的教学方法,激发学生的学习兴趣和主动性,提高学生的学习效果。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备适当的教学资源。
教学资源包括教材、参考书、多媒体资料和实验设备等。
教材将作为学生学习的基础,参考书提供更多的学习材料,多媒体资料用于辅助理解和记忆,实验设备用于实践和验证。
通过合理利用教学资源,提高学生的学习效果和问题解决能力。
五、教学评估本课程的教学评估将采用多元化的评估方式,以全面、客观、公正地评价学生的学习成果。
评估方式包括平时表现、作业、考试等。
测控电路复习重点

A/D转换器
选用适当的模数转换器,将模拟信号 转换为数字信号,便于微控制器或计
算机处理。
信号调理电路
设计信号调理电路,将压力传感器输 出的模拟信号转换为适合后续处理的 数字信号。
控制策略
根据实际需求,设计相应的控制策略, 如PID控制算法,实现对压力的精确 控制。
位移测控电路设计
滤波器类型
滤波器可分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等,根据信号处理需求选择合适的滤波器类型。
滤波器特性
滤波器的特性包括通带、阻带、过渡带等,这些特性决定了滤波器对信号的通过和抑制能力。
信号转换器及其特性
信号转换器类型
信号转换器包括模数转换器和数模转换器,用于实现模拟信号和数字信号之间的相互转换。
应用领域
广泛应用于压力、位移、液位等物理量的测 量与控制。
压电式传感器
要点一
工作原理
压电式传感器利用压电效应,通过测量压电元件的电压或 电荷变化来感知物理量变化,其工作原理基于压电材料的 压电效应和逆压电效应。
要点二
应用领域
广泛应用于冲击、振动、压力等物理量的测量与控制。
04 测控电路中的执行器
测控电路的应用领域
工业自动化
用于生产线的控制、监测和数据采集。
医疗电子
用于医疗设备的信号处理和控制,如监护仪、 心电图机等。
航空航天
用于飞行器的导航、控制和监测。
环境监测
用于气象、水文、地质等方面的监测和数据 采集。
测控电路的基本组成
信号调理电路
用于对传感器输出的电信号进 行放大、滤波、线性化等处理。
执行器
用于将控制信号转换为实际的 控制动作。
测控电路实训报告

本次测控电路实训旨在通过实际操作和理论学习,加深对测控电路原理和技术的理解,提高动手实践能力。
具体目标如下:1. 理解测控电路的基本原理和功能。
2. 掌握测控电路的组成、工作原理和调试方法。
3. 学会使用常用测控仪表和设备。
4. 培养团队合作精神和解决实际问题的能力。
二、实训时间2023年3月15日至2023年3月24日,共10天。
三、实训内容1. 测控电路基本原理学习- 了解测控电路的定义、分类和特点。
- 学习模拟量和数字量的转换原理。
- 研究常用测控电路的工作原理,如模拟放大电路、滤波电路、比较电路等。
2. 测控电路组成和调试- 学习测控电路的组成元件,如电阻、电容、二极管、三极管、运算放大器等。
- 学习电路图的识读和分析方法。
- 通过实验,掌握测控电路的调试方法,如调整元件参数、观察波形等。
3. 常用测控仪表和设备的使用- 学习万用表、示波器、信号发生器等常用测控仪表的使用方法。
- 学习如何利用这些仪表进行电路测量和分析。
4. 综合实训- 设计并搭建一个简单的测控电路,如信号放大电路、滤波电路等。
- 对搭建的电路进行调试和测试,确保其功能正常。
1. 理论学习- 首先通过查阅资料、听讲等方式,学习测控电路的基本原理和知识。
- 了解常用测控仪表和设备的使用方法。
2. 实验操作- 根据实验指导书,进行实验操作,如搭建电路、测量参数、调试电路等。
- 记录实验数据和结果,分析实验现象。
3. 问题解决- 在实验过程中,遇到问题及时与指导老师沟通,寻求帮助。
- 分析问题原因,提出解决方案,并付诸实践。
4. 总结报告- 实验结束后,整理实验数据和结果,撰写实验报告。
- 总结实训过程中的收获和体会。
五、实训成果通过本次实训,我掌握了以下知识和技能:1. 熟悉测控电路的基本原理和组成。
2. 掌握测控电路的调试方法。
3. 学会使用常用测控仪表和设备。
4. 培养了团队合作精神和解决实际问题的能力。
六、实训体会本次实训让我深刻认识到理论知识与实际操作相结合的重要性。
测控电路绪论实验报告

一、实验目的1. 理解测控电路的基本概念和组成。
2. 掌握测控电路的基本原理和常用测量方法。
3. 学习使用测控仪器和设备。
4. 培养实验操作能力和数据分析能力。
二、实验原理测控电路是一种用于测量和控制的电子电路,其主要功能是对各种物理量进行精确测量,并将其转换为电信号输出。
测控电路通常由传感器、信号调理电路、显示电路和执行电路等组成。
传感器将各种物理量(如温度、压力、流量等)转换为电信号;信号调理电路对传感器输出的信号进行放大、滤波、转换等处理;显示电路将处理后的信号以图形、数字等形式显示出来;执行电路根据显示的信号控制相应的执行机构,实现对物理量的调节。
三、实验仪器与设备1. 传感器:温度传感器、压力传感器、流量传感器等。
2. 信号调理电路:放大器、滤波器、转换器等。
3. 显示电路:示波器、数字万用表、记录仪等。
4. 执行电路:继电器、电机、电磁阀等。
5. 实验平台:测控实验台。
四、实验内容1. 传感器性能测试- 测试传感器的灵敏度、线性度、稳定性等参数。
- 分析传感器在不同工作条件下的性能变化。
2. 信号调理电路设计- 设计放大器、滤波器、转换器等信号调理电路。
- 测试电路的性能指标,如增益、带宽、失真等。
3. 测控系统搭建- 搭建测控系统,将传感器、信号调理电路、显示电路和执行电路连接起来。
- 调整系统参数,使系统达到最佳工作状态。
4. 测控系统性能测试- 测试测控系统的精度、响应速度、稳定性等性能指标。
- 分析系统在不同工作条件下的性能变化。
5. 数据分析与处理- 对实验数据进行采集、处理和分析。
- 根据实验结果,优化测控系统设计和参数。
五、实验步骤1. 准备工作- 熟悉实验原理和实验仪器。
- 检查实验设备是否完好。
2. 传感器性能测试- 根据实验要求,选择合适的传感器。
- 测试传感器的各项参数,记录实验数据。
3. 信号调理电路设计- 设计信号调理电路,确定电路参数。
- 搭建电路,测试电路性能。
测控电路

Dennis Gabor The Nobel Prize in Physics 1971 "for his invention and development of the holographic method"
9
部分因从事仪器科学与技术研究获得诺贝尔物理学奖 的科学家
Ernst Ruska The Nobel Prize in Physics 1986 "for his fundamental work in electron optics, and for the design of the first electron microscope"
Frits Zernike The Nobel Prize in Physics 1953 "for his demonstration of the phase contrast method, especially for his invention of the phase contrast microscope"
11
第一节 测控电路的功用
当今时代是信息时代。 信息技术包括:信息获取、处理、传输、 存储、执行(控制)。 测量是信息的源头。 信息时代的标志:高性能计算机,速度、 容量,大规模集成电路,离不开测控。
第一节 测控电路的功用
现代战争离不开测控。 仪器仪表的测量控制精度决定了武器的 打击精度,测试速度、控制反应速度决 定了武器的反应能力。 载人飞船成功发射,测控也有至关重要 作用。 生产、生活、科技、国防都离不开测控。
第一节 测控电路的功用
传感器
测量控 制电路
图1-1 测控系统的组成
测控电路课件(完整)

(三)、开关信号
开关信号可视为绝对码信号的特例,当绝 对码信号只有一位编码时,就成了开关信号。 只有0和1两个状态。
与行程开关、光电开关、触发式测头相连 接的测控电路,其输入信号为开关信号。
当执行机构只有两种状态时,如电磁铁、 开关等,要求测控电路输出开关信号。
第四节 测控电路的类型与组成
一、测量电路的基本组成 (一)模拟式测量电路的基本组成 (二)数字式测量电路的基本组成
二、控制电路的基本组成 (一)开环控制 (二)闭环控制
传 感 器
量 程 切 换
放 大 器
解 调 器
电
路
振荡器
信 号 分 离
运 算 电
模 数 转 换
计 算 机
电路 电
路
路
电源
显 示 执 行 机 构 电路
图1-6 模拟式测量电路的基本组成
传 感 器
细 脉转 分 冲换 电 当电 路 量路 辨向电路
(二)、绝对码信号
1111 0000
1110
0001
1101
0010
1100
0011
1011
0100
1010
0101
1001
0110
1000 0111
绝对码信号是一种与状态相对应的信号。
绝对码信号在显示与打印机机构中有广泛的 应用。显示与打印机构根据测控电路的译码器输 出的编码,显示或打印相应的数字或符号。在一 些随动系统中,执行机构根据测控电路输出的编 码,使受控对象进入相应状态。
以磁电式电表、示波器、笔式记录器作为显示 机构,以直流电动机为执行机构时,要求测控电路 的输出信号为非调制模拟信号。
第三节 测控电路的输入信号与输出信号
测控电路文档

测控电路简介测控电路是一种用于测量和控制系统的电路设计。
它具有广泛的应用,常见于各类工业生产设备和科学研究实验中。
在测控电路中,通过使用传感器和执行器,可以对待测对象进行测量和控制操作,以实现对系统状态的监测和调节。
测控电路的组成一个典型的测控电路包含以下几个主要组成部分:1.传感器(Sensor):传感器是测控电路中的输入设备,用于将待测物理量转换为电信号。
常见的传感器有温度传感器、压力传感器、光敏传感器等。
传感器的选择取决于需要测量的物理量类型和精度要求。
2.信号调理电路(Signal Conditioning Circuit):信号调理电路用于对传感器输出的电信号进行放大、滤波、线性化等处理。
这些处理可使信号满足控制系统输入端的要求,并提高测量的准确性。
3.AD转换器(Analog-to-Digital Converter):AD转换器将传感器输出的模拟电信号转换为数字信号,以便控制系统对信号进行处理和运算。
AD转换器的精度和采样率决定了对待测信号的准确度和响应速度。
4.控制算法(Control Algorithm):控制算法根据经过信号处理的数据,计算出控制器对待控制对象的控制命令。
常见的控制算法有PID控制、模糊控制、自适应控制等。
5.控制器(Controller):控制器通过接收控制算法计算出的控制命令,驱动执行器对待控制对象进行控制操作。
控制器可采用模拟电路或数字电路实现,常见的控制器有比例控制器、PID控制器、PLC控制器等。
6.执行器(Actuator):执行器是测控电路中的输出设备,通过接收控制器的控制信号,对待控制对象进行控制。
常见的执行器有电动阀门、电动马达、液压缸等。
测控电路的应用测控电路在工业生产和科学研究中有着广泛的应用。
在工业上,测控电路常被应用于自动化生产线上。
通过对生产线上的关键参数进行实时监测和调节,可以提高生产效率和产品质量。
例如,在液体灌装生产线中,通过使用流量传感器测量液体的流量,控制阀门的开关,可以确保每个容器中的液体量精确达到设定值。
《测控电路》课件

频率和周期测量电路
总结词
实现频率和周期测量的电路
详细描述
频率和周期测量电路是用来测量电路中信号的频率和周期的电路,通常由示波器和频率计组成。通过测量信号的 波形和周期,可以计算出信号的频率和周期。
电阻、电容、电感测量电路
总结词
实现电阻、电容、电感测量的电路
详细描述
电阻、电容、电感测量电路是用来测量电子元件的电阻、电容和电感值的电路,通常由测试信号源和 测量仪表组成。通过测量电子元件的阻抗值和频率响应,可以计算出其电阻、电容和电感值。
了更多可能性。
医疗物联网
测控电路在医疗仪器中还起到校准作用,确保仪器测 量结果的准确性。同时,通过对仪器运行状态的监测 ,可及时发现潜在故障,便于维护保养。
07
总结与展望
本课程的主要内容总结
01
02
03
04
信号的测量与处理
介绍了信号的采集、调理和变 换技术,以及信号的频域和时
域分析方法。
控制系统基础
提高测控电路精度的措施
选择高精度元件和设备
使用高质量的元件和设备是提高测控 电路精度的基本措施。
优化电路设计
通过合理的电路设计和布局,减小信 号传输过程中的损失和干扰,从而提 高测量精度。
实施温度补偿
对于受温度影响较大的元件,采取温 度补偿措施可以减小温度变化对测量 结果的影响。
加强数据处理和校准
对测量数据进行合理的数据处理和校 准,可以减小随机误差和系统误差的 影响。
06
实际应用案例分析
工业自动化生产线控制系统
自动化生产线控制
测控电路在工业自动化生产线控制系统中发挥着关键作用 。通过测控电路,可以实时监测生产线上各设备的状态, 确保生产流程的顺利进行。
测控电路

2、闭环控制
测量电路
传感器
扰动量
给定 机构
设定 电路
放大 电路
转换 电路
执行 机构
被控 对象
输 出
控制电路
开环控制系统的基本组成
扰动
给定 机构
设定 电路
比较 电路
放大 电路
校正 转换 电路 电路
执行 机构
被控 对象
输出
控制电路 传感器
闭环控制系统的基本组成
第五节 测控电路的发展趋势
3 2 uc
x
O
t
a)
x uc
O
x us 1 x 4 us
O
t
b)
t
c)
图 用电感传感器测量 工件轮廓形状
图 调幅信号
第三节 测控电路的输入信号与输出信号
1、载波频率(carrying frequency)
信号的频率由传感器供电频率确定,这一频率 称为载波频率
2、载波信号(carrying signal)
为了适应在各种情况下测量与控制的需要, 要求测控电路有灵活地进行各种转换的能力。 它包括:
第二节 对测控电路的主要要求
1、模数转换与数模转换 2、信号形式的转换 3、量程的变换 4、信号的选取 5、信号处理与运算
第二节 对测控电路的主要要求
1、模数转换与数模转换
自然界客观存在的物理量多为模拟量 计算机:数字信号 控制执行机构动作:多模拟信号
第一节 测控电路的功用
生产自动化也离不开测量与控制 产品的质量离不开测量与控制 现代的生活、办公器械
微波炉、照相机、复印机等也都装有不同数 量的传感器,
第一节 测控电路的功器, 对点火时间、燃油喷射、空气燃料比、 防滑、防碰撞等进行控制。 航天发射与飞行,都需要靠精密测量与 控制保证它们轨道准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正向分析: 当A发生负跳变时,
➢由非门DG2、电阻R2、电容C2和与门DG4组成的单稳 触发 器输出窄脉冲信号A‘,此时B为高电平,与或非门 DG5有计数脉冲输出, DG10无计数脉冲输出。
当B发生负跳变时, ➢由非门DG5、电阻R4、电容C4和与 DG9组成的单稳触 发器输出窄脉冲信号B‘,此时A为高电平,DG5有计数 脉冲输 出, DG10无计数脉冲输出。
1 A
DG1
1 B
DG6
DG3 & A
R1
C1
& A
R2
C2 DG4
1
DG2
DG8
& B
R3
C3
& B
C4 DG9 R4 1
DG7
B & ≥1
A B
&
A A &
UO1
B
A &
B DG5
A & ≥1 B B &
A A &
UO2
B A & B
DG10
图7-2 单稳四 细分辨向电路
A
A
B
B
A'
A'
B'
概述
辨向: ➢ 由于位移传感器一般允许在正、反两个方向 移动,在进行计数和细分电路的设计时往往 要综合考虑辨向的问题。
概述
分类: 按工作原理,可分为直传式细分和
平衡补偿式细分。
按所处理的信号可分为调制信号细 分电路和非调制信号细分电路。
第一节 直传式细分电路
xi K1
x1
x1 K2
x2
Km
B'
Uo1
Uo1
Uo2
Uo2
a)
b)
图7-3
正向分析:
当A发生正跳变时, ➢由非门DG1、电阻R1、电容C1和与门GD3组成的单稳 触发器输出窄脉冲信号A',此时B为高电平,与或非门 DG5 有计数脉冲输出; ➢由于B为低电平,与或非门DG10无计数脉冲输出。
当B发生正跳变时, ➢由非门DG6、电阻R3、电容C3和与门DG8组成的单稳 触发器输出窄脉冲信号B‘,此时A为高电平,DG5有计 数脉冲输出, DG10仍无计数脉冲输出。
比较器、模拟数字转换器和逻辑电路等组成。 各个环节都依次向末端传递信息,这就是直传的意思。 电路的结构属于开环系统, 系统总的灵敏度(也可称传
递函数)K,为各个环节灵敏度Kj(j=l~m)之积:
Ks=K1K2K3…Km
第一节 直传式细分电路
由于直传系统信号单向传递,故越在前面的环节, 其输入变动量所引起的输出的变动量越大。
一、四细分辨向电路
输入信号: ➢ 具有一定相位差(通常为90)的两路方波信号。
细分的原理: ➢ 基于两路方波在一个周期内具有两个上升沿和 两个下降沿,通过对边沿的处理实现四细分
辨向: ➢ 根据两路方波相位的相对导前和滞后的关系作 为判别依据
一、单稳四细分辨向电路
原理: ➢ 利用单稳提取两路方波信号的边沿实现 四细分
近的芯片,四细分和辨向功能,
➢具有抗干扰设计,并将可逆计数器设计在芯片上, ➢芯片的集成度高,可大大简化外围电路的设计。 ➢CLK为芯片外接工作时钟,经施密特触发器改善波形后成为
CK,用作芯片内部的时钟。
➢ 测量电路通常采用对信号周期进行计数的方 法实现对位移的测量,
➢ 若单纯对信号的周期进行计数, 则仪器的分 辨力就是一个信号周期所对应的位移量。
➢ 为了提高仪器的分辨力,就需要使用细分电 路。
概述
细分的基本原理:
根据周期性测量信号的波形、振幅或者 相位的变化规律,在一个周期内进行插 值,从而获得优于一个信号周期的更高 的分辨力。
HCTL-20XX系列四细分辨向电路
CLK
CK
施密特 数字 触发器 滤波器
CH A
四细分 辨向电路
计数脉冲 计数方向
CH B
SEL OE
禁止逻辑
12/16位 可逆计数器
计数脉冲
计数方向 Q0-Q11,15
HCTL-2020具有的功能
12/16位 锁存器
Q0-Q7 Q0-Q11,15 D0-D11,15
第七章 信号细分与辨向电路
概述 第一节 第二节
直传式细分电路 平衡补偿式细分电路
概述
信号细分电路概念: ➢ 信号细分电路又称插补器, ➢ 是采用电路的手段对周期性的测量信号进行 插值提高仪器分辨力
信号的共同特点: 信号具有周期性,信号每变化一个周期就对应 着空间上一个固定位移量。
概述
电路细分原因:
由于Ks的变化和xj的存在会使达到相同xo所需 的xi值发生变化,即使细分点的位置发生变化。
第一节 直传式细分电路
缺点:直传系统抗干扰能力较差,其精度低于 平衡补偿系统。
优点:直传系统没有反馈比较过程,电路结构 简单、响应速度快,有着广泛的应用。
第一节 直传式细分电路
典型的细分电路 ☆ 四细分辨向电路 ☆ 电阻链分相细分 ☆ 微型计算机细分 ☆ 只读存储器细分
要保持系统的精度必须稳定各环节的灵敏度,特别是 减少靠近输入端的环节的误差。
一般来说,直传系统抗干扰能力较差,其精度低于平 衡补偿系统。
但由于直传系统没有反馈比较过程,电路结构简单、 响应速度快,故有着广泛的应用。
第一节 直传式细分电路
m
xo K s xi K sj x j
j Ksj=Kj+1…Km
在正向运动时,DG5在一个信号周期内依次输出A‘、 B’、A‘、B’四个计数脉冲,实现了四组分。
反向分析:
同样的方法可以分析在传感器反向运动时,DG5无脉冲输 出,DG10有四个脉冲输出。同样实现了四组分。
DG5、DG10随运动方向的改变 交替输出脉冲, 输出信号Uo1、Uo2可直接送入可逆计数器计数, 实现辨向计数。如74Ls194、
INH
细分脉冲 CNTDECR 计数方向 U/D
级联脉冲 CNTCAS
多路切换器 三态缓冲器 8 B0-B7 8 A0-A7*
8 D0-D7
SEL OE
*HCTL-2000中A4-A7接地
图7-4 HCTL-20XX系列集成电路细分原理图
➢HCTL-20XX系列是HP公司生产的细分辨向电路。 ➢包括HCTL-2000、HCTL-2016和HCTL-2020三种功能相
xo
Ks=K1K2K3…Km
第一节 直传式细分电路
直传式细分电路由若干环节串联而成,图。 输入量为xi,一般是来自位移传感器的周期信号,以一
对正、余弦信号或者相移为90°的两路方波最为常见。 输出xo有多种形式:有时为频率更高的脉冲或模拟信号,
有时为可供计算机直接读取的数字信号。 中间环节完成从输入到输出的转换,常由波形变换电路、