绝缘栅双极晶体管(IGBT)特性与驱动电路研究
电力电子试题及答案及电力电子器件及其驱动电路实验报告
一、填空题:(本题共7小题,每空1分,共20分)
1、请在正确的空格内标出下面元件的简称:
电力晶体管GTR;可关断晶闸管GTO;功率场效应晶体管MOSFET;绝缘栅双极型晶体管IGBT;IGBT是MOSFET和GTR的复合管。
2、晶闸管对触发脉冲的要求是要有足够的触发功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。
ton=1.8us,ts=1.8us,tf=1.2us
(2)电阻、电感性负载时的开关特性测试
除了将主回器部分由电阻负载改为电阻、电感性负载以外(即将“1”与“22”断开而将“2”与“22”相连),其余接线与测试方法同上。
ton=2.1us,ts=10.0us,tf=2.5us
2.不同基极电流时的开关特性测试
2.不同基极电流时的开关特性测试。
3.有与没有基极反压时的开关过程比较。
4.并联冲电路性能测试。
5.串联冲电路性能测试。
6.二极管的反向恢复特性测试。
三.实验线路
四.实验设备和仪器
1.MCL-07电力电子实验箱中的GTR与PWM波形发生器部分
2.双踪示波器
3.万用表
4.教学实验台主控制屏
五.实验方法
GTR :1
PWM:1
GTR:6
PWM:2
GTR:3
GTR:5
GTR:9
GTR:7
GTR:8
GTR:11
GTR:18
主回路:4
GTR:15
GTR:16
GTR:19
GTR:29
GTR:21
GTR:22
主回路:1
用示波器观察,基极驱动信号ib(“19”与“18”之间)及集电极电流ic(“21”与“18”之间)波形,记录开通时间ton,存贮时间ts、下降时间tf。
电气传动实验报告模板(黑龙江科技大学)
【实践数据】αUd(V)测量Id(A)测量Ud(v)计算U2(V) Id(A)计算α=78°10 0.1 31.15 64 0.33α=60°66 0.65 70 60 0.76α=30°110 1.05 111.45 55 1.21 βUd(V)测量Id(A)测量Ud(v)计算U2(V)β=90°0 -0.45 0 121β=120°155 -0.25 146.25 125β=150°290 0 253.31 125【数据分析】所用公式:Ud=-2.34*U2*COSα;R=92Ω, Id=Ud/Rα=78° Ud=2.34*64*0.2079=31.15VId=Ud/R=0.33Aα=60° Ud=2.34*60*1/2=70V Id=Ud/R=0.76Aα=30° Ud=2.34*55*0.82=111.45V Id=Ud/R=1.21A【实践结果图】图15 α=30°幅值【三相桥式有源逆变电路】合上主电源。
调节Uct,观察ß=90°,120°,150°时,电路中Ud,Uvt的波形。
R=92Ω。
图19 β=90°时输出波形图此时U=0V I=-0.45A图20 β=120°时输出波形图此时U=155V I=-0.25A图21 β=150°时输出波形此时U=290V I=0A【小结】通过老师的讲解我们了解到,要实现有源逆变,必须满足以下两个要求:其一,要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。
其二,要求晶闸管的控制角a>Π/2,使Ud为负值。
我们做的三项有源逆变是由单相有源逆变转化而来的,逆变和整流的区别仅仅是控制角a的不同。
0<a<Π/2时,电路工作在整流状态,Π/2<a<Π时,电路工作在逆变状态。
绝缘栅双极晶体管(IGBT)特性与驱动电路研究
课程名称:电力电子器件指导老师:陈辉明成绩:实验名称:实验类型:同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得实验二绝缘栅双极晶体管(IGBT)特性与驱动电路研究一、实验目的和要求1、熟悉IGBT 主要参数与开关特性的处理方法。
2、掌握混合集成驱动电路M57859L 的工作原理与调试方法。
3、研究IGBT 主要参数与开关特性。
二、实验内容和原理实验原理:见《电力电子器件实验指导书》(汤建新编著)34 页至38 页“IGBT 特性与驱动电路研究”中“二.实验线路及原理”。
混合集成驱动电路M57859L:M57859L 是高度集成的专为IGBT 设计的栅极驱动电路,芯片提供了驱动所需要的要求,包括短路过流保护,过流定时恢复,栅极封锁保护,输入隔离等功能。
芯片的原理图如下:三、主要仪器设备1、DSX 01 电源控制屏2、DDS 16“电力电子自关断器件特性与驱动电路”实验挂箱3、DT 10“直流电压电流表实验挂箱”4、数字示波器等四、操作方法和实验步骤1、IGBT 主要参数测试2、M57959L 主要性能测试3、IGBT 开关特性测试4、过流保护性能测试五、实验数据与分析1、IGBT 主要参数测试1.1 开启阀电压V gs(th)测试调节栅极电压,测量集电极电流,记录输入,并特别观察电流为1m A 时的栅压,此时为开启电压。
记录数据如下:当电流为一毫安时开通电压为6.18V1.2 跨导g m 测量根据1.1 测得是数据,计算得gm,绘制成曲线如下:1.3 导通电阻测量根据公式,计算得到数据如下:当IGBT 未导通时,I C =0A,因此,Ron=0Ω。
在开通的瞬间,有一个瞬间增大的跳变。
当IGBT 逐渐处于开通状态时,增加ce V 导通电阻逐渐增大,由于实验设备的限制,测量的状态为电阻的线性区,导通电阻随着电压的增加而近似满足线性关系。
绝缘栅双极型晶体管(IGBT)的工作原理、基本特性、主要参数
绝缘栅双极型晶体管(IGBT)的工作原理、基本特性、主要参数绝缘栅双极晶体管(Insulated-Gate Bipolar Transistor,IGBT)是一种复合型电力电子器件。
它结合了MOSFET和电力晶体管GTR的特点,既具有输入阻抗高、速度快、热稳定性好和驱动电路简单的优点,又具有输入通态电压低、耐压高和承受电流大的优点,因而具有良好的特性。
自1986年IGBT开始投入市场以来,就迅速扩展了其应用领域,目前已取代了原来GTR和一部分MOSFET的市场,成为中、小功率电力电子设备的主导器件,并在继续努力提高电压和电流容量,以期再取代GTO的地位。
IGBT的结构与工作原理IGBT是三端器件。
具有栅极G、集电极C和发射极E。
图1(a)给出了一种由N 沟道MOSFET与双极型晶体管组合而成的IGBT的基本结构。
与MOSFET对照可以看出,IGBT比MOSFET多一层P+注入区,因而形成了一个大面积的PN结J1。
这样使得IGBT导通时由P+注入区向N基区发射载流子,从而对漂移区电导率进行调制,使得IGBT具有很强的通流能力。
图1 IGBT的结构、等效电路和电气符号从图1可以看出,这是用双极型晶体管与MOSFET组成的达林顿结构,相当于一个由MOSFET驱动的PNP晶体管,RN为晶体管基区内的调制电阻。
因此,IGBT 的驱动原理与MOSFET基本相同,它是一种场控器件,其开通和关断是由栅射电压uGE决定的,当uGE为正且大于开启电压UGE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流,进而使IGBT导通。
由于前面提到的电导调制效应,使得电阻RN减小,这样高耐压的IGBT也具有很小的通态压降。
当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。
上述PNP晶体管与N沟道MOSFET组合而成的IGBT称为N沟道IGBT,记为N-IGBT,其电气图形符号如图1(c)所示。
绝缘栅双极型晶体管
绝缘栅双极型晶体管一、 IGBT介绍IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
二、 IGBT的结构左边所示为一个N沟道增强型绝缘栅双极晶体管结构, N+区称为源区,附于其上的电极称为源极(即发射极E)。
P+区称为漏区。
器件的控制区为栅区,附于其上的电极称为栅极(即门极G)。
沟道在紧靠栅区边界形成。
在C、E两极之间的P型区(包括P+和P-区)(沟道在该区域形成),称为亚沟道区(Subchannel region)。
而在漏区另一侧的P+区称为漏注入区(Drain injector),它是IGBT特有的功能区,与漏区和亚沟道区一起形成PNP双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。
附于漏注入区上的电极称为漏极(即集电极C)。
IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP(原来为NPN)晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断。
IGBT 的驱动方法和MOSFET基本相同,只需控制输入极N-沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET的沟道形成后,从P+基极注入到N-层的空穴(少子),对N-层进行电导调制,减小N-层的电阻,使IGBT在高电压时,也具有低的通态电压。
三、对于IGBT的测试IGBT模块的测试分为两大类:一类是静态参数测试,即在IGBT模块结温为25C时进行测试,此时IGBT工作在非开关状态;另一类是动态参数测试,即在IGBT模块结温为1时进行测试,此时IGBT工作在开关状态。
绝缘栅双级晶体管IGBT
绝缘栅双极晶体管(IGBT)一、IGBT的工作原理电力MOSFET器件是单极型(N沟道MOSFET中仅电子导电、P沟道MOSFET中仅空穴导电)、电压控制型开关器件;因此其通、断驱动控制功率很小,开关速度快;但通态降压大,难于制成高压大电流开关器件。
电力三极晶体管是双极型(其中,电子、空穴两种多数载流子都参与导电)、电流控制型开关器件;因此其通-断控制驱动功率大,开关速度不够快;但通态压降低,可制成较高电压和较大电流的开关器件。
为了兼有这两种器件的优点,弃其缺点,20世纪80年代中期出现了将它们的通、断机制相结合的新一代半导体电力开关器件——绝缘栅极双极型晶体管(insulated gate bipolar transistor,IGBT)。
它是一种复合器件,其输入控制部分为MOSFET,输出级为双级结型三极晶体管;因此兼有MOSFET和电力晶体管的优点,即高输入阻抗,电压控制,驱动功率小,开关速度快,工作频率可达到10~40kHz(比电力三极管高),饱和压降低(比MOSFET 小得多,与电力三极管相当),电压、电流容量较大,安全工作区域宽。
目前2500~3000V、800~1800A的IGBT器件已有产品,可供几千kVA以下的高频电力电子装置选用。
图1为IGBT的符号、内部结构等值电路及静态特性。
IGBT也有3个电极:栅极G、发射极E和集电极C。
输入部分是一个MOSFET管,图1中R dr表示MOSFET的等效调制电阻(即漏极-源极之间的等效电阻R DS)。
输出部分为一个PNP三极管T1,此外还有一个内部寄生的三极管T2(NPN管),在NPN晶体管T2的基极与发射极之间有一个体区电阻R br。
当栅极G与发射极E之间的外加电压U GE=0时,MOSFET管内无导电沟道,其调制电阻R dr可视为无穷大,Ic=0,MOSFET处于断态。
在栅极G与发射极E之间的外加控制电压U GE,可以改变MOSFET管导电沟道的宽度,从而改变调制电阻R dr,这就改变了输出晶体管T1(PNP管)的基极电流,控制了IGBT管的集电极电流Ic。
绝缘栅双极型晶体管(IGBT)特性与驱动电路研究
绝缘栅双极型晶体管(IGBT)特性与驱动电路研究一.实验目的1.熟悉IGBT主要参数与开关特性的测试方法。
2.掌握混合集成驱动电路EXB840的工作原理与调试方法。
二.实验内容1.IGBT主要参数测试。
2.EXB840性能测试。
3.IGBT开关特性测试。
4.过流保护性能测试。
三.实验设备和仪器1.NMCL-07电力电子实验箱中的IGBT与PWM波形发生器部分。
2.双踪示波器。
3.毫安表4.电压表5.电流表6.教学实验台主控制屏四.实验线路见图2—3五.实验方法1.IGBT主要参数测试(1)开启阀值电压V GS(th)测试在主回路的“1”端与IGBT的“18”端之间串入毫安表,将主回路的“3”与“4”端分别与IGBT 管的“14”与“17”端相连,再在“14”与“17”端间接入电压表,并将主回路电位器RP左旋到底。
将电位器RP逐渐向右旋转,边旋转边监视毫安表,当漏极电流I D=1mA时的栅源电压值即为开启阀值电压V GS(th)。
读取6—7组I D、Vgs,其中I D=1mA必测,填入表2—8。
(2)跨导g FS测试在主回路的“2”端与IGBT的“18”端串入安培表,将RP左旋到底,其余接线同上。
将RP逐渐向右旋转,读取I D与对应的V GS值,测量5-6组数据,填入表2—9。
(3)导通电阻R DS测试将电压表接入“18”与“17”两端,其余同上,从小到大改变V GS,读取I D与对应的漏源电压V DS,测量5-6组数据,填入表2—10。
2.EXB840性能测试(1)输入输出延时时间测试IGBT部分的“1”与“13”分别与PWM波形发生部分的“1”与“2”相连,再将IGBT部分的“10”与“13”、与门输入“2”与“1”相连,用示波器观察输入“1”与“13”及EXB840输出“12”与“13”之间波形,记录开通与关断延时时间。
t on= ,t off=(2)保护输出部分光耦延时时间测试将IGBT部分“10”与“13”的连线断开,并将“6”与“7”相连。
IGBT的驱动电路设计
目录一. 方案论证……………………………………………….1-3二. IGBT驱动电路的原理…………………………………4-5三. 基于EXB 841驱动电路设计…………………………...6-7四. 元件清单 (8)五. 结论 (9)六. 参考书目 (9)一.方案论证绝缘栅双极型晶体管IGBT(InsulatedG ateB ipolarTransistor)是一种由双极晶体管与MOSFET组合的器件,它既具有MOSFET的栅极电压控制快速开关特性,又具有双极晶体管大电流处理能力和低饱和压降的特点,近年来在各种电力变换装置中得到广泛应用。
但是,IGBT的门极驱动电路影响IGBT的通态压降、开关时间、开关损耗、承受短路电流能力及dine / d t等参数,决定了IGBT的静态与动态特性。
因此,在使用IGBT时,最重要的工作就是要设计好驱动与保护电路。
典型的IGBT栅极驱动电路一个理想的IGBT 驱动器应具有以下基本性能:(1) 动态驱动能力强,能为IGBT 栅极提供具有陡峭前后沿的驱动脉冲。
当IGBT 在硬开关方式下工作时,会在开通及关断过程中产生较大的开关损耗。
这个过程越长,开关损耗越大。
器件工作频率较高时,开关损耗甚至会大大超过IGBT 通态损耗,造成管芯温升较高。
这种情况会大大限制IGBT 的开关频率和输出能力,同时对IGBT 的安全工作构成很大威胁。
IGBT 的开关速度与其栅极控制信号的变化速度密切相关。
IGBT 的栅源特性呈非线性电容性质,因此,驱动器须具有足够的瞬时电流吞吐能力,才能使IGBT 栅源电压建立或消失得足够快,从而使开关损耗降至较低的水平。
另一方面,驱动器内阻也不能过小,以免驱动回路的杂散电感与栅极电容形成欠阻尼振荡。
同时,过短的开关时间也会造成主回路过高的电流尖峰,这既对主回路安全不利,也容易在控制电路中造成干扰。
(2)能向IGBT提供适当的正向栅压。
IGBT 导通后的管压降与所加栅源电压有关,在漏源电流一定的情况下, u GS越高, uDS就越低,器件的导通损耗就越小,这有利于充分发挥管子的工作能力。
绝缘栅双极型晶体管_IGBT_驱动及保护电路的研究
文章编号:1007-6735(2004)03-0283-03 收稿日期:2004-01-05 基金项目:上海市教委青年基金资助项目(02GQ29) 作者简介:郝润科(1963-),男,副教授.绝缘栅双极型晶体管(IGBT)驱动及保护电路的研究郝润科, 杨一波(上海理工大学电气工程学院,上海 200093)摘要:介绍了绝缘栅双极型晶体管(IG B T )模块的电气特性和对栅极驱动的要求,结合IG B T 模块的电气特性对IG B T 驱动电路和保护电路的设计进行了分析和讨论,并给出了一些典型电路以供大家参考.关键词:绝缘栅双极型晶体管;驱动;保护中图分类号:TN 386 文献标识码:AStudy on IGBT drive and protection circuitHAO Run 2ke , YANG Y i 2bo(College of Elect ric Engineering ,U niversity of S hanghai f or Science and Technology ,S hanghai 200093,China )Abstract :The electric features of IG B T and the requirement for gate drive are introduced.The analysis and discussion on the design of IG B T and protection circuit are mainly focused and some typical circuits are presented for reference.K ey w ords :I GB T ;drive ;protect 绝缘栅双极型晶体管(IG B T )是近年来发展起来的半导体器件,它集功率场效应管MOSFET 和功率晶体管GTR 的优点于一身,具有输入阻抗高、开关频率高(10~40kHz )、峰值电流容量大、自关断、低功耗和易于驱动等特点,是目前发展最为迅速的新一代电力电子器件之一,被广泛用于各种电机控制驱动、不间断电源、医疗设备和逆变焊机等领域.IG B T 的驱动和保护是其应用中的关键技术,本文就此进行了较详细的研究.1 IG B T 的电气特性IG B T 是在功率MOSFET 漏区加入P +N 结构构成的,导通电阻降低到普通功率MOSFET 的1/10,其等效电路如图1所示[1,2].其中R 是厚基区调制电阻,IG B T 可认为是由具有高输入阻抗、高速MOSFET 驱动的双极型晶体管.图2(见下页)为IG B T 的电气特性(IG B T 为200A/1200V ),图2a 是集射电压U CE 与集电极电流I C 的关系,图2b 是栅极电压U GE 与集电极电流I C 的关系曲线.图1 IG B T 的等效电路Fig.1 Equivalent circuit of IG B T上海理工大学学报 第26卷 第3期J.University of Shanghai for Science and TechnologyVol.26 No.3 2004 图2 IG B T 的电气特性Fig.2 Electric feature of IG B T2 IG B T 栅极驱动2.1 驱动电压的幅值 IG B T 为电压控制器件,从其电气特性图2b 可知,当U GE ≥U GE (th )(U GE (th )为阈值电压)时,IG B T 即可开通,一般情况下U GE (th )=5~6V.由图2a 可知,当U GE 增加时,通态电压U CE 减小,通态损耗减小,IG B T 承受短路电流能力减小;当U GE 太大时,可能会引起栅极电压振荡,损坏栅极.所以,在实际应用中应折中考虑栅极电压的选取,为获得通态压降小,同时IG B T 又具有较好的承受短路电流的能力,U GE 应折中取12~15V 为宜,12V 最佳. 在需要IG B T 关断期间,为提高IG B T 的抗干扰能力及承受d i /d t 上升率能力(其中i 为电流,t 为时间),保证其可靠地关断,最好给栅射极间加5~10V 的负偏压,过大的反向偏压会造成IG B T 栅射极反向击穿.2.2 栅极串联电阻为抑制栅极脉冲前后沿陡度和防止振荡,减小开关d i /d t 和IG B T 集电极尖峰电压,应在栅极串联一个电阻R G .在选取R G 值时,应根据IG B T 电流容量和电压额定值以及开关频率选取.当R G 过大时,IG B T 的开关时间延长,开关损耗加大;R G 减小时,IG B T 的开关时间和开关损耗减小;但当R G 过小时,可导致栅源之间振荡,IG B T 集电极d i /d t 增加,引起IG B T 集电极尖峰电压,使IG B T 损坏.通常选取R G 值在几欧姆到十几欧姆之间,如10Ω、15Ω、27Ω等.2.3 栅射极并联电阻在IG B T 开通期间,其集电极会经常出现振荡电压,通过栅-集电容的联系,栅极电压也会受到影响,可能导致U GE 超过阈值电压U GE (th ),引起IG B T 误导通,而且当U GE 一旦产生过电压(IG B T 栅极耐压约20V )就会损坏IG B T.为防止这类现象的发生,可采取在栅射极之间并联稳压二极管或电阻R GE 的方法.因稳压二极管有很大的结电容,影响IG B T 的开关速度,所以并联稳压二极管的方法在IG B T 高速工作时需要增大驱动电流.3 IG B T 的保护电路3.1 过压保护 IG B T 关断时的换相过电压,主要决定于主电路的杂散电感及关断时的d i /d t .在正常工作时d i /d t 较低,通常不会造成IG B T 损坏,但在过流故障状态时,d i /d t 会迅速增大产生较高的过电压,所以应尽量减小主电路布线杂散电感,以减小因d i /d t 过大产生的过电压.可以采取的措施有:直流环节的滤波电容应靠近IG B T 模块,滤波电容至IG B T 模块的正负极连线尽量靠近;采用RCD 电路吸收过电压尖峰,而且电容和电阻均应采用无感电容和无感电阻,吸收二极管D 应为快速恢复器件,吸收电路直接连接到IG B T 的相应端子上.3.2 过电流保护当过电流小于工作电流的2倍时,可采用瞬时封锁栅极脉冲的方法来实现保护.当过电流的倍数较高时,尤其是发生负载短路故障时,加瞬时封锁栅极脉冲会使d i /d t 很大,在回路杂散电感上感应出较高的尖峰电压,RCD 吸收电路很难彻底吸收此尖峰电压.为此,在保护中应采取软关断措施使栅极电压在2~5μs 降至零电压,目前常用的IG B T 驱动模块内部均具有此过流软关断功能.482 上海理工大学学报2004年第26卷 4 驱动电路4.1 分立元件构成的驱动电路 图3是由分立元件构成的IG B T 驱动电路.光耦采用小延时高速型光耦,T 1和T 2组成图腾结构的对管(T 1、T 2选用三级管的放大倍数β>100的开关管),D Z1选用5V/1W 的稳压管.当输入信号到来时,T 2截止,T 1导通,对IG B T 施加+12V 栅极电压;当输入信号消失时,T 1截止,T 2导通,5V 稳压管为IG B T 提供反向关断电压;稳压二极管D Z2、D Z3的作用是限制加在IG B T 栅射间的电压,避免过高的栅射电压击穿栅极.此电路结构简单,可用于驱动小功率变换器中的IG BT.图3 IG B T 驱动电路Fig.3Drive circuit of IG B T4.2 驱动模块电路目前生产IG B T 的几个主要厂家都开发了与之配套的驱动模块电路.如富士的EX B 系列、东芝的T K 系列、莫托罗拉的MPD 系列和惠普HCPL 系列等.这类模块均具备过流软关断、高速光耦隔离、欠压锁定和故障信号输出的功能.应用这类模块可提高产品的可靠性能.图4是EX B841模块驱动IG B T 的应用电路[3].EX B841是日本富士公司设计的可驱动高达400A/600V 和300A/1200V 的IG B T ,最高工作频率为40kHz.内装用于高隔离电压的光耦合器,采用+20V 直流单电源供电,可产生+15V 开栅电压和-5V 关栅电压,内部装有过流检测电路和软关断电路,过流检测电路可按驱动信号与集电极电压之间的关系检测过流,当IG B T 的电流超过设定值时,软关断电路低速切断电路,保护IG B T 不被损坏.在图4中,端脚6用于监测集电极电压,从图2a 可知,当U GE 不变,通态电压U CE 随集电极电流增大而增高,所以可用检测U CE 作为过流的判断信号,当IG B T 的U CE 过高(一般达7V )时则出现过流信号,此信号经过流检测电路10μs 检查(IG B T 能抵抗10μs 短路电流),滤除其中的干扰信号,确定为过流时,端脚5信号由高电平变为低电平,光耦TL P521工作,发出过流保护输出,封锁驱动输入信号,切断IG B T.此电路在作者研制的3kW 磁阻电机调速系统中应用效果良好.图4 EX B841驱动模块应用电路Fig.4 Applied circuit of EX B841drive mode5 结束语本文介绍了IG B T 的结构和电气特性,讨论了设计IG B T 驱动电路的要求和注意事项,分析了正确选取栅极驱动电压的范围,d i /d t 对栅压的影响和应采取的措施,给出了典型驱动电路,对正确使用IG B T 具有一定的参考价值.参考文献:[1] 张立.现代电力电子技术基础[M ].北京:高等教育出版社,2000.[2] 何希才.现代电力电子技术[M ].北京:国防工业出版社,1996.[3] 郝润科,刘贵卿.开关磁阻电动机开关元件的选择与研究[J ].太原工业大学学报,1997,28(3):27~30.582 第3期郝润科等:绝缘栅双极型晶体管(IG B T )驱动及保护电路的研究 。
感应加热电源IGBT驱动及保护电路设计
感应加热电源IGBT驱动及保护电路设计摘要本文以感应加热电源IGBT驱动及保护电路为研究对象,阐述感应加热电源的现状与发展趋势、感应加热电源的优点、应用和基本原理。
其中,IGBT(绝缘栅双极晶体管)是一种复合了功率场效应管和电力晶体管的优点而产生的一种新型复合器件,它同时具有MOSFET的高速开关及电压驱动特性和双极晶体管的低饱和电压特性,易实现较大电流的能力,既具有输入阻抗高、工作速度快、热稳定性好和驱动电路简单的优点,又具有通态电压低、耐压高和承受电流大的优点。
近年来IGBT成为电力电子领域中尤为瞩目的电力电子器件,并得到越来越广泛的应用。
本文分析了感应加热电源的总体结构和介绍了IGBT的基本结构、工作原理、驱动电路,同时简要概括了IGBT模块的选择方法和保护措施等,通过对IGBT的学习,来探讨IGBT在当代感应加热领域的广泛应用和发展前景。
关键词:感应加热电源,绝缘栅双极晶体管,IGBT驱动电路,IGBT保护电路。
Induction heating power IGBT drive and protective circuitdesignABSTRACTBased on the induction heating power IGBT drive and protection circuit as the research object, this paper present situation and the development trend of induction heating power supply, the advantages of induction heating power supply, the application and the basic principle. Among them, the IGBT (insulated gate bipolar transistor) is a kind of composite power field effect tube and the advantage of the power transistor and produce a new type of composite device, it also has a high-speed switching and voltage of the MOSFET drive characteristic and low of the bipolar transistor saturation voltage characteristic, easy to realize large current capacity, not only has high input impedance, working speed, good thermal stability and drive circuit, the advantages of simple and has a low voltage state, the advantages of high voltage and current under the big. In recent years the IGBT as power electronics is particularly outstanding in the field of power electronics, and get more and more widely used.This paper analyzes the overall structure of induction heating power supply, and introduces the basic structure, working principle of IGBT, drive circuit, and briefly summarizes the IGBT module selection method and protection measures, etc., through the study of IGBT, to explore the IGBT are widely used in the field of contemporary induction heating and development prospects.KEY WORDS: Induction heating power supply, insulated gate bipolar transistor, IGBT drive circuit, protection circuit for IGB目录前言 (1)第1章感应加热电源的原理 (2)1.1 感应加热电源的基本知识 (2)1.1.1感应加热电源的优点及应用 (2)1.1.2 感应加热电源的基本原理 (2)1.1.3感应加热中的三种效应和穿透深度 (2)1.2 感应加热电源发展现状及趋势 (3)1.2.1感应加热电源频率划分 (3)1.2.2国外高频感应加热电源发展现状 (3)1.2.3国内高频感应加热电源发展现状 (4)1.2.4感应加热电源的IGBT (4)1.3本文研究的内容及任务 (4)1.3.1课题主要研究内容 (4)1.3.2课题目的和要求 (5)第2章IGBT的基本结构和工作原理 (6)2.1 IGBT的工作特性 (6)2.1.1 IGBT的基本结构 (6)2.1.2 IGBT的工作原理 (8)2.1.3 IGBT的工作特性 (8)2.2 IGBT工作原理 (10)2.2.1 IGBT工作方法 (10)2.2.2 导通 (11)2.2.3关断 (11)2.2.4 阻断与闩锁 (12)2.3 英飞凌FZ400R12KS4 (12)2.4 IGBT驱动电路 (12)2.4.1分立元件驱动电路 (13)2.4.2光电耦合器驱动电路 (13)2.4.3脉冲变压器直接驱动IGBT的电路 (14)2.4.4专用集成驱动电路 (14)第3章IGBT的保护电路设计 (16)3. 1 IGBT过压保护电路 (16)3.1.1 IGBT栅极过压保护电路 (16)3.1.2 集电极与发射极间的过压保护电路 (17)3.1.3 直流过电压 (18)3.1.4 浪涌过电压 (18)3.1.5 IGBT开关过程中的过电压 (18)3.2 IGBT过流短路保护电路 (19)3.2.1 IGBT过流保护的分类 (19)3.2.2 过流保护检测电路 (20)3.2.3 过流和短路保护措施 (20)3.3 IGBT过热保护电路 (21)3.4 IGBT欠压保护电路 (22)第4章IGBT的驱动电路 (23)4.1 IGBT的驱动要求 (23)4.2 驱动电路的隔离方式 (23)4.2.1隔离的重要性: (23)4.2.2. 集成光电隔离驱动模块HCPL-316J (23)4.2.2器件特性 (24)4.4.3芯片管脚及其功能介绍 (24)4.4.4 内部逻辑电路结构分析 (26)4.5 IGBT驱动电路 (27)第5章辅助直流稳压电源 (29)5.1辅助直流稳压电源方案的选择 (29)5.2本次设计用的电源 (29)5.2.1 18伏, 15伏稳压电压电源 (29)5.2.2 ±12伏,±5伏双路稳压电源 (30)5.2.3 元器件选择及参数计算 (31)第6章功能仿真 (33)结论..................................................................... 错误!未定义书签。
绝缘栅双极型晶体管IGBT行业分析研究报告
IGBT的封装材料主要包括陶瓷、金属、塑料等,这些材料的 供应情况对IGBT的生产成本和性能有着重要影响。
中游制造工艺及技术发展
半导体工艺
IGBT的制造需要使用多种半导体工艺,如扩散、光刻、薄膜制备等,这些工 艺的发展对IGBT的性能和可靠性有着重要影响。
封装工艺
IGBT的封装需要使用多种封装工艺,如引线键合、倒装芯片、塑封等,这些 工艺的发展对IGBT的性能和可靠性有着重要影响。
第二阶段
20世纪90年代,随着电力电子技术的发展, IGBT开始广泛应用于工业领域。
3
第三阶段
21世纪初,随着新能源汽车和新能源等领域的 快速发展,IGBT市场需求大幅增长。
IGBT市场发展环境
政策环境
01
政府出台了一系列政策支持半导体产业发展,鼓励企业加大研
发投入,推动半导体技术创新和应用拓展。
2023
《绝缘栅双极型晶体管 igbt行业分析研究报告》
目 录
• IGBT市场概述 • IGBT产业链分析 • 主要地区/国家IGBT市场分析 • IGBT市场竞争格局分析 • IGBT市场发展趋势及前景预测 • 结论和建议
01
IGBT市场概述
IGBT定义及工作原理
绝缘栅双极型晶体管(IGBT)是一种半导体器件,集成了晶体管和功率MOSFET 的优点,具有高电压、大电流、高频率、低损耗等特性。
经济环境
02
随着全球经济的复苏和国内经济的持续增长,电力、汽车、新
能源等领域对IGBT的需求不断增长。
技术环境
03
IGBT技术不断升级,新型材料和制造工艺的应用提高了其性
能和可靠性,同时也增加了市场竞争的激烈程度。
02
绝缘栅双极晶体管(精)
1-6
2.4 绝缘栅双极晶体管
IGBT的关断过程
关断延迟时间td(off)
电流下降时间tf 关断时间toff 电流下降时间又可分为 tfi1 和tfi2两段。 tfi1——IGBT 器 件 内 部 的 MOSFET的关断过程,iC下 降较快。 tfi2——IGBT 内部的 PNP 晶 体管的关断过程,iC下降较 慢。
三端器件:栅极G、集电极C和发射极E
发射极 栅极 G E N+ J3 P J2 J1 N+ NN+ P+ N+ P N+ 漂移区 缓冲区 注入区 E b) c) G + ID RN VJ1 + + IDRon C IC C G
C 集电极 a)
图1-22 IGBT的结构、简化等效电路和电气图形符号
a) 内部结构断面示意图 b) 简化等效电路 c) 电气图形符号
3) IGBT的主要参数
(1) 最大集射极间电压UCES
——由内部PNP晶体管的击穿电压确定。
(2) 最大集电极电流
——包括额定直流电流IC和1ms脉宽最大电流ICP 。
(3) 最大集电极功耗PCM
——正常工作温度下允许的最大功耗 。
1-8
2.4 绝缘栅双极晶体管
IGBT的特性和参数特点可以总结如下:
——NPN晶体管基极与发射极之间存在体区短路电阻,P形体区的 横向空穴电流会在该电阻上产生压降,相当于对J3结施加正偏压, 一旦J3开通,栅极就会失去对集电极电流的控制作用,电流失控。
动态擎住效应比静态擎住效应所允许的集电极电流小。 擎住效应曾限制IGBT电流容量提高,20世纪90年代中后期开 始逐渐解决。
2.4
绝缘栅双极晶体管
IGBT论文
摘要IGBT(Insulated Gate Bipolar Transistor),也称为绝缘栅双极晶体管,是一种复合了功率场效应管和电力晶体管的优点而产生的一种新型复合器件,它同时具有MOSFET的高速开关及电压驱动特性和双极晶体管的低饱和电压特性及易实现较大电流的能力,既具有输入阻抗高、工作速度快、热稳定性好和驱动电路简单的优点,又具有通态电压低、耐压高和承受电流大的优点,这使得IGBT成为近年来电力电子领域中尤为瞩目的电力电子驱动器件,并且得到越来越广泛的应用。
本文主要介绍了IGBT的结构特性、工作原理和驱动电路,同时简要概括了IGBT模块的选择方法和保护措施等,最后对IGBT的实际典型应用进行了分析介绍,通过对IGBT的学习,来探讨IGBT 在当代电力电子领域的广泛应用和发展前景。
关键词:IGBT;绝缘栅双极晶体管;MOSFET;驱动电路;电力电子驱动器件目录摘要 (I)1 前言 (1)2 IGBT的发展历程 (1)3 IGBT的结构特点和工作原理 (2)4 IGBT的驱动电路和保护 (4)4.1 IGBT对驱动电路的要求 (4)4.2 IGBT实用的驱动电路 (5)4.3 IGBT的保护措施 (8)5 IGBT的工作特性 (11)6 IGBT模块的选择和测试 (12)7 IGBT的应用实例 (15)7.1断路器永磁机构控制器的驱动电路 (15)7.2 变频调速系统 (16)7.3大功率商用电磁炉 (17)8 结论 (17)参考文献 (19)1 前言近年来,新型功率开关器件IGBT已逐渐被人们所认识,IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 与以前的各种电力电子器件相比,IGBI、具有以下特点:高输入阻抗,可采用通用低成本的驱动线路;高速开关特性;导通状态低损耗。
IGBT兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
绝缘栅双极型晶体管特性与驱动电路研究
绝缘栅双极型晶体管特性与驱动电路研究首先,IGBT的特性需要了解其结构和工作原理。
IGBT由P-N结加上一个控制栅组成。
在电路中,当控制电流进入栅极时,栅极与发射极之间的薄氧化层形成强电场,将N结中的主导区的正空穴抽出,从而使N结的电导率增加,使得整个器件形成导通状态。
当控制电流断开时,器件再次变为截止状态。
IGBT的导通过程可以用一个等效电路模型表示,由电阻和电容组成,这决定了IGBT工作时的各种特性。
其次,IGBT的特性可以通过关注其静态特性和动态特性来研究。
静态特性包括导通特性和截止特性。
导通特性表明了IGBT在给定电压下的电流特性,而截止特性是指IGBT在给定控制信号下的切换行为。
导通特性和截止特性的研究有助于了解IGBT在电路中的工作状态和性能。
另外,IGBT的动态特性也是研究的重点之一、动态特性包括开关速度、过渡过程和电压应力等。
开关速度是指IGBT从导通到截止或从截止到导通的时间,其决定了IGBT的响应速度和工作频率。
过渡过程是指IGBT从导通到截止或从截止到导通时,由一个状态切换到另一个状态的过程。
电压应力是指IGBT在工作中所承受的电压大小,其决定了IGBT的耐压能力和安全性。
最后,IGBT的驱动电路也是研究的重要内容之一、IGBT需要一个合适的驱动电路来提供适当的控制信号,以确保器件能够稳定工作。
驱动电路的设计应考虑IGBT的工作电流、控制信号的频率和幅度等因素,以满足其性能要求。
常见的驱动电路包括开关驱动电路、隔离驱动电路和保护电路等。
综上所述,IGBT作为一种重要的功率开关器件,其特性与驱动电路的研究对于提高电力电子装置的性能和可靠性具有重要意义。
通过深入研究IGBT的特性和驱动电路,可以优化其设计和应用,提高电力电子装置的效率和稳定性。
IGBT绝缘栅双极晶体管解析
IGBT是Insulated Gate Bipolar Transistor的英文缩写绝缘门双极性晶体管绝缘栅双极晶体管缩写IGBTMOSFET是场效应管,因为只有一个极性的粒子导电,又称为单极性晶体管。
是功率管,有放大作用,IGBT的本质就是一个场效应管,不过是在场效应管的基础上加上了P+层。
是结合了场效应管&双极性晶体管的特点。
IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。
由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。
虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。
较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。
IGBT基本结构见图1中的纵剖面图及等效电路。
导通IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。
如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。
基片的应用在管体的P+和N+ 区之间创建了一个J1结。
当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。
如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。
最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流);空穴电流(双极)。
关断当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。
绝缘栅双极晶体管(IGBT)的基本特性与驱动
绝缘栅双极晶体管(IGBT)的基本特性与驱动张冬冬(华北电力大学电气与电子工程学院,北京102206)The Basic Characteristics and the Drive of Insulated Gate Bipolar Transistor(IGBT)Zhang Dong-dong(School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)ABSTRACT: IGBT is short for Insulate Gate Bipolar Transistor. It greatly expands the semiconductor device applications field in power industry, as it has multiple advantages of MOSFET and GTR. For example, it improves the performance of the air conditioner remarkably when used in convert circuits in frequency conversion air conditioner.GTR saturated pressure drop, the carrier density, but the drive current is larger; MOSFET drive power is small, fast switching speed, but the conduction voltage drop large carrier density. IGBT combines the advantages of these two devices, drive power is small and saturated pressure drop. V ery suitable for DC voltage of 600V and above converter systems such as AC motor, inverter, switching power supply, electric lighting.KEY WORDS:IGBT, converter, switching power supply摘要:IGBT的全称是Insulate Gate Bipolar Transistor,即绝缘栅双极晶体管。
绝缘栅双极晶体管驱动器特性分析
绝缘栅双极晶体管驱动器特性分析徐靖驰① 李鹏 吴小军 李贤飞(宁波钢铁有限公司设备部 浙江宁波315807)摘 要 栅极驱动器是一种功率放大器,它接受来自控制器的低功耗输入,并为功率器件产生适当的高电流栅极驱动。
随着对电力电子器件的要求不断提高,栅极驱动器电路的设计和性能变得越来越重要。
栅极驱动器电路是电力电子系统的一个组成部分。
栅极驱动器构成了大功率电子器件和控制电路之间的重要接口,用于驱动功率半导体器件,因此,栅极驱动器在电力电子转换器的中至关重要。
关键词 绝缘栅双极晶体管 栅极 驱动器 特性中图法分类号 TF321 文献标识码 BDoi:10 3969/j issn 1001-1269 2022 06 017CharacterizationoftheGateDriverofanInsulatedGateBipolarTransistorXuJingchi LiPeng WuXiaojun LiXianfei(NingboIronandSteelCo.,Ltd.,Ningbo315807)ABSTRACT Agatedriverisapoweramplifierthatacceptsalow-powerinputfromacontrollerICandproducestheappropriatehighcurrentgatedriveforapowerdevice.Asrequirementsforpowerelectronicscontinuetoincrease,thedesignandperformanceofthegatedrivercircuitryarebecomingevermoreimportant.Thegatedrivercircuitisanintegralpartofpowerelectronicssystems.Gatedriversformanimportantinterfacebetweenthehigh-powerelectronicsandthecontrolcircuitandareusedtodrivepowersemiconductordevices.Therefore,thegatedrivercircuitiscriticallyimportantinthepowerelectronicconverters.KEYWORDS IGBT Gate Driver Characterizati1 前言栅极驱动器的具有控制IBGT栅极电压和电流的能力,其中核心的技术是如何控制栅极驱动器的输出强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称:电力电子器件指导老师:陈辉明成绩:
实验名称:实验类型:同组学生姓名:
一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
实验二绝缘栅双极晶体管(IGBT)特性与驱动电路研究
一、实验目的和要求
1、熟悉IGBT 主要参数与开关特性的处理方法。
2、掌握混合集成驱动电路M57859L 的工作原理与调试方法。
3、研究IGBT 主要参数与开关特性。
二、实验内容和原理
实验原理:
见《电力电子器件实验指导书》(汤建新编著)34 页至38 页“IGBT 特性与驱动电路研究”中“二.实验线路及原理”。
混合集成驱动电路M57859L:
M57859L 是高度集成的专为IGBT 设计的栅极驱动电路,芯片提供了驱动所需要的要求,包括短路
过流保护,过流定时恢复,栅极封锁保护,输入隔离等功能。
芯片的原理图如下:
三、主要仪器设备
1、DSX 01 电源控制屏
2、DDS 16“电力电子自关断器件特性与驱动电路”实验挂箱
3、DT 10“直流电压电流表实验挂箱”
4、数字示波器等
四、操作方法和实验步骤
1、IGBT 主要参数测试
2、M57959L 主要性能测试
3、IGBT 开关特性测试
4、过流保护性能测试
五、实验数据与分析
1、IGBT 主要参数测试
1.1 开启阀电压V gs(th)测试
调节栅极电压,测量集电极电流,记录输入,并特别观察电流为1m A 时的栅压,此时为开启电压。
记录数据如下:
当电流为一毫安时开通电压为6.18V
1.2 跨导g m 测量
根据1.1 测得是数据,计算得gm,绘制成曲线如下:
1.3 导通电阻测量
根据公式,计算得到数据如下:
当IGBT 未导通时,I C =0A,因此,Ron=0Ω。
在开通的瞬间,有一个瞬间增大的跳变。
当IGBT 逐渐处于开通状态时,增加ce V 导通电阻逐渐增大,由于实验设备的限制,测量的状态为电阻的线性区,导通电阻随着电压的增加而近似满足线性关系。
2、M57959L 主要性能测试
2.1 输入、输出延时时间测试
用示波器的双端分别观察输入信号和输出信号,其中一通道为输入信号,二通道为输出信号,波形结
果如下:
观察延时时间,将波形放大,显示如下:
由示波器光标测量可知延时时间为392ns如上图所示
2.2 过流保护定时复位时间测试
分别用示波器的双端观察电压和复位波形,二通道为复位波形,结果如下:
由波形可知,在一通道出现过流后,复位信号迅速下降,保护电路。
观察两个复位信号之间的间隔时间,为过流保护定时复位时间,如下:
在实验条件下,用示波器观察,得波形如下:
得负栅压为4.16V如上图所示
2.4 过流阀值电压测试
根据实验调节测量过流阀值电压。
实验中,不断提高栅极电压,观察示波器的波形。
由于当过流是,驱动芯片自动产生过流保护,因此,当波形消失时的值,即为过流阀值电压。
经电压表测量其电压为6.98V
3、IGBT 开关特性研究
3.1电阻负载开关特性测试
用示波器观察V GE和V CE的波形,如下所示:
观察具体的开通和关断时间,将波形放大如下:
该延时时间约为200ns 上升时间约为320ns,故总开通时间约为520ns
从波形中,可以看出关断过程中Vce与Vge的关系
该延时时间约为400ns 上升时间约为400ns,故总开通时间约为800ns 用示波器观察V CE和I C 的波形,如下所示:
综合以上图形绘制的开关特性曲线如下:
3.3并联缓冲电路作用及对开关特性的影响测试
从上到下依次为欠吸收、正好吸收和过吸收的波形图如下:
4、过流保护特性测试
用示波器观察V ge 波形,打开电源电路,观察到过流指示灯发亮,波形消失。
消除故障,回复以前连线后,按复位按钮,指示灯灭,波形恢复。
由以上结果可知过流保护特性良好,结果正确。
波形如下:
六、讨论、心得
1、熟悉了IGBT的器件工作原理和特性原理,从实验中测的特性更有利于分析该器件内部结构和内部工作机理,加强了对书本知识的认识和理解。
2、通过实验,观察到了IGBT 开关状态的状态与时间的关系,记录了波形并针对其特性进行了画图综合,加深了对IGBT 动态性能的理解。
3、初步认识了驱动电路的过流保护功能,并联缓冲电路开关特性的影响以及欠吸收正好吸收和过吸收的
实际情况。