11【基础】勾股定理逆定理(基础课程讲义例题练习含答案)

合集下载

(完整版)勾股定理及逆定理习题及答案

(完整版)勾股定理及逆定理习题及答案

勾股定理及逆定理习题及答案1、由于0.3,0.4,0.5不是勾股数,所以0.3,0.4,0.5为边长的三角形不是直角三角形()2、由于0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数()3.下列几组数据能作为直角三角形的三边的有( )(1)9,12,15; (2)15,36,39;(3)12,35,36 ; (4)12,18,22.4.一个三角形的三边的长分别是15cm,20cm,25cm,则这个三角形的面积是()cm2 .(A)250 (B)150 (C)200 (D)不能确定5.如图,在△ABC中,AD⊥BC于D,BD=9,AD=12,AC=20,则△ABC是().(A)等腰三角形(B)锐角三角形(C)钝角三角形(D)直角三角形6.如图,在一块平地上,张大爷家屋前9 m远处有一棵大树.在一次强风中,这棵大树从离地面6 m处折断倒下,量得倒下部分的长是10 m.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时会砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( )A.一定不会B.可能会C.一定会D.以上答案都不对7.为了迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小王搬来一架长为 2.5 m的木梯,准备把梯子架到 2.4 m高的墙上,则梯脚与墙角的距离为( )A.0.7 m B.0.8 m C.0.9 m D.1.0 m 8.某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航行,海监船乙船同时以20海里/时的速度离开港口向东航行,则它们离开港口2小时后相距( )海里.9. 在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足c +a =2b ,c -a = 12 b ,则△ABC 是什么特殊三角形?1x 2.x 3.(1)(2)(4) B (5)D 6.A 7.A(8)50海里9. 解:因为c +a =2b ,c -a =12b ,所以(c +a)(c -a)=2b·12b.所以c 2-a 2=b 2,即a 2+b 2=c 2.所以△ABC 是∠C =90°的直角三角形.。

初中数学专题复习勾股定理的逆定理 例题精讲与同步训练(含答案)

初中数学专题复习勾股定理的逆定理 例题精讲与同步训练(含答案)

勾股定理的逆定理【学习目标】1.能熟练地说出勾股定理的逆定理.2.会应用逆定理判定一个三角形是否是直角三角形. 3.学会通过代数运算证明几何问题的方法. 【主体知识归纳】1.勾股定理的逆定理 如果三角形的三边长a 、b 、c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形.2.直角三角形的判定 判定一个三角形是直角三角形,一是利用定义,即证明三角形中有一个角是直角,二是利用勾股定理的逆定理. 【基础知识精讲】1.本节主要是勾股定理的逆定理及其应用,它与勾股定理都是初中阶段所学数学的重要思想——数形结合思想的重要体现.判断三角形的形状是本节命题热点,它常与完全平方公式相配合,通过代数法来证明几何问题.2.能够成为直角三角形三条边长的三个正整数,称为勾股数(或勾股弦数),勾股数是一种重要的数组,找勾股数可以用试验的方法.实际上,人们已证明了许多公式,用公式很容易找出许多组勾股数.例如在△ABC 中,三边长分别为a 、b 、c ,其中a =n 2-1,b =2n ,c =n 2+1,只要用n >1的正整数代入公式即可. 【例题精讲】[例1]如图3—224,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB =c ,CD =h .求证:(1)222111h b a =+;(2)a +b <c +h;(3)以a +b ,h ,c +h 为边的三角形是直角三角形. 证明:(1)∵∠ACB =90°,CD ⊥AB 于D ,∴S △ABC =21AB ·CD =21AC ·BC . ∴AB ·CD =AC ·BC ,即ch =ab ,∴.1112222222222hh c c b a b a b a ==+=+. (2)∵(c +h)-(a +b)=(c +c ab )-(a +b)=cb c a c c bc ac ab c ))((2--=--+∵c >a ,c >b ,∴(c +h)-(a +b)>0,∴c +h >a +b ,即a +b <c +h . (3)∵c +h >a +b ,c +h >h ,∴(c +h)2=c 2+2ch +h 2=a 2+b 2+2ab +h 2=(a +b)2+h 2. ∴以a +b ,h ,c +h 为边的三角形是直角三角形.说明:本题综合考查几何问题的代数解法,其关键是掌握面积公式、不等式等代数知识. [例2]如图3—225,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我反走私A 艇发现正东方有一走私艇C 以每小时13海里的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意,反走私艇A 通知反走私艇B :A 和C 两艇的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 测得距离C 艇是12海里,若走私艇C 的速度不变,最早会在什么时间进入我国领海?解:设MN 与AC 相交于E ,则∠BEC =90°,又∵AB 2+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,∠ABC =90°. 由于MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE .①-②得CE =169144131314413144=÷≈0.85(小时)=51(分), ∴9时50分+51分=10时41分.答:走私艇C 最早在10时41分进入我国领海.说明:用勾股定理及逆定理也可以解决诸如上例类似实际问题. 练习 1.填空题(1)若一个三角形三边满足c 2-a 2=b 2,则这个三角形是__________(2)△ABC 的三边a =1.2 cm ,b =1.6 cm ,c =2 cm ,则∠C =__________. (3)已知三角形的三边分别是m 2-1,2m ,m 2+1,则最大角是__________(4)四边形ABCD 中,AB 、BC 、CD 、DA 各边长顺次为3,4,13,12,且∠ABC =90°,则四边形ABCD 的面积为__________(5)有一个三角形两边长为4,5,要使三角形为直角三角形,则第三边为__________(6)设a>b,如果a+b,a-b是三角形较小的两边,当第三边等于__________时,这个三角形为直角三角形.(7)如图3—226,在Rt△ABC中,E是斜边AB上一点,把△ABC沿CE折叠,点A与点B 恰好重合,如果AC=4 cm,那么AB=__________cm.(8)如图3—227,∠ADB=45°,BD=1,把△ABD沿直线AD折叠过去,点B落在点B′的位置,标出B′的位置,则BB′的长为__________(9)如图3—228,AD是BC的中线,∠ADC=45°,把△ADC沿直线AD翻折过来,点C 落在点C′的位置,如果BC=4,那么BC′的长等于__________(10)已知四边形ABCD中,AB=BC=23,∠ABC=60°,∠BAD=90°,且△ACD是一个直角三角形;那么AD的长等于__________.2.选择题(1)已知在△ABC中,三条边长分别为a、b、c,a=n2-1,b=2n,c=n2+1(n>1),则三角形为A.锐角三角形; B.钝角三角形; C.等腰三角形; D.直角三角形(2)下列各组能组成直角三角形的是A.4、5、6; B.2、3、4; C.11、12、13; D.8、15、17(3)三角形三边长分别为6、8、10,那么它最短边上的高为A.6; B.4.5; C.2.4; D.8(4)下列命题中,假命题是A.三个角的度数之比为1∶2∶3的三角形是直角三角形B.三个角的度数之比为1∶3∶2的三角形是直角三角形C.三边长度之比为1∶3∶2的三角形是直角三角形D.三边长度之比为2∶2∶2的三角形是直角三角形(5)在△ABC 中,D 是BC 上一点,若BD =5,AB =13,AD =12,AC =15,则△ABC 的面积是( 0A .30;B .42;C .84;D .100(6)一个三角形三边长分别为20,15,25,那么它的最长边上的高为A .12.5;B .12;C .2215; D .9 (7)△ABC 三边a 、b 、c 满足|a +b -50|+32--b a +(c -40)2=0,则△ABC 为A .等边三角形;B .直角三角形;C .等腰三角形;D .无法确定3.如图3—229,CD 是△ABC 边上的高,且D 在边AB 上,有CD 2=AD ·DB .求证:△ABC 是直角三角形.4.a 、b 为任意正数,且a >b .求证:边长为2ab ,a 2-b 2,a 2+b 2的三角形是直角三角形.5.已知△ABC 的三边之比为5∶12∶13,求证:△ABC 为直角三角形.6.△ABC 中,AB =8 cm ,BC =20 cm ,BC 边上的中线AD =6 cm .(1)求证:S △ABC =2S △ADC ;(2)求△ADC 的面积S △ADC .7.已知△ABC 的三边分别为a 、b 、c ,且a +b =4,ab =27,c =3,试判断△ABC 是不是直角三角形,并说明理由.8.在△ABC 中,D 是BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求DC .9.如图3—230,已知BE⊥AD,∠A=∠EBC=60°,AB=4,BC=23,CD=3,DE=3,求证:AD⊥CD.10.如图3—231,一块四边形的草地ABCD,其中∠A=60°,∠B=∠D=90°,AB=20米,CD=10米,求这块草地的面积.11.若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断三角形的形状.【思路拓展题】 ●读一读:勾股数如果三个正整数满足于勾股定理逆定理,那么就称这三个数为一组勾股数.3、4、5是最简单的一组勾股数,因为它们满足:32+42=52.勾股数是一种重要的数组,那么什么样的数才能组成勾股数呢?看下面一些简单的勾股数:3,4,5;5,12,13;7,24,25;9,40,41;… 观察这些勾股数组成的规律,发现:第一个数是奇数,第二个数是第一个数的平方减1再除以2,第三个数是第二个数加1,也就是第一个数的平方加1再除以2.结论:如果n 是一个奇数,且n ≥3,那么n 、212-n 、212+n 就是一组勾股数.证明:∵n 2+(212-n )2=n 2+,)21(41244122224224+=+-+=+-n n n n n n , ∴n 、212-n 、212+n 是一组勾股数.这样,我们任意给出一个奇数(如11,13,…),同学们就可以写出各组勾股数来. 再看一些简单的勾股数:4,3,5;6,8,10;8,15,17;10,24,26;…观察这些勾股数组成的规律,发现:第一个数是偶数,第二个数是第一个数的一半的平方减1,第三个数是第一个数一半的平方加1.结论:如果m 是一个偶数,且m ≥4,那么m 、(2m )2-1、(2m)2+1就是一组勾股数. 证明:∵m 2+[(2m )2-1]2=m 2+(42m )2-22m +1=m 2+21624m m -+1=1616824++m m ,]1)2[()44(222+=+=mm∴m 、(2m )2-1、(2m)2+1是一组勾股数. 这样,我们任意给出一个偶数(如10,12,…),同学们就可以写出各组勾股数来.参考答案1.(1)直角三角形 (2)90° (3)90° (4)36 (5)3或41 (6)2222b a (7)42(8) 2 (9)22 (10)3或42.(1)D (2)D (3)D (4)B (5)C (6)B (7)B 3.提示:由AC 2=AD 2+CD 2,BC 2=CD 2+DB 2, 得AC 2+BC 2=2CD 2+AD 2+DB 2, 又CD 2=AD ·DB ,所以AC 2+BC 2=AB 2. 4.提示:(a 2+b 2)2=(a 2-b 2)2+(2ab)2.5.提示:设三角形三边长分别为5x ,12x ,13x .∵(13x)2=(12x)2+(5x)2,∴△ABC 是直角三角形. 6.(1)提示:S △ABD =S △ACD ;(2)S △ADC =24 cm 2.提示:△ABD 是直角三角形.7.△ABC 为直角三角形.提示:a 2+b 2=(a +b)2-2ab =16-7=9,∴a 2+b 2=c 2. 8.DC =9.9.提示:由已知易求BE =23,又∵∠EBC =60°,BC =23,则可证△BCE 是等边三角形,得CE =23, 则可证△DEC 是直角三角形.10.1503 cm .提示:延长AD 、BC 交于点E ,且∠E =30°.11.△ABC 是直角三角形.提示:配方得:(a -5)2+(b -12)2+(c -13)2=0,∴a =5,b =12,c =13. 想一想:(略).。

勾股定理的逆定理-习题训练(含答案)

勾股定理的逆定理-习题训练(含答案)

勾股定理的逆定理一、基础·巩固1.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值).图18-2-4 图18-2-5 图18-2-63.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=41AD ,试判断△EFC 的形状.5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?图18-2-76.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形.二、综合·应用7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论.图18-2-910.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形.问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______;②错误的原因是______________;③本题的正确结论是__________.11.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD的面积.图18-2-10参考答案一、基础·巩固1.思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角;B 、C 满足勾股定理的逆定理,所以应选D.答案:D2.解:过D 点作DE ∥AB 交BC 于E, 则△DEC 是直角三角形.四边形ABED 是矩形,∴AB=DE.∵∠D=120°,∴∠CDE=30°.又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm.根据勾股定理的逆定理得,DE=3551022=- cm.∴AB=3551022=- cm.3.思路分析:因为△ABC 是Rt △,所以BC 2+AC 2=AB 2,即S 1+S 2=S 3,所以S 3=12,因为S 3=AB 2,所以AB=32123==S . 答案:324.思路分析:分别计算EF 、CE 、CF 的长度,再利用勾股定理的逆定理判断即可.解:∵E 为AB 中点,∴BE=2.∴CE 2=BE 2+BC 2=22+42=20.同理可求得,EF 2=AE 2+AF 2=22+12=5,CF 2=DF 2+CD 2=32+42=25.∵CE 2+EF 2=CF 2,∴△EFC 是以∠CEF 为直角的直角三角形.5.分析:要检验这个零件是否符合要求,只要判断△ADB 和△DBC 是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.解:在△ABD 中,AB 2+AD 2=32+42=9+16=25=BD 2,所以△ABD 为直角三角形,∠A =90°.在△BDC 中,BD 2+DC 2=52+122=25+144=169=132=BC 2.所以△BDC 是直角三角形,∠CDB =90°.因此这个零件符合要求.6.思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可.证明:∵k2+1>k2-1,k2+1-2k=(k-1)2>0,即k2+1>2k,∴k2+1是最长边.∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴△ABC是直角三角形.二、综合·应用7.思路分析:如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形(例2已证).8.思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可.证明:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2.∴△ABC是直角三角形.9.思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△OAB是否是直角三角形即可.解:∵ OA2=OA12+A1A2=32+12=10,OB2=OB12+B1B2=22+42=20,AB2=AC2+BC2=12+32=10,∴OA2+AB2=O B2.∴△OAB是以OB为斜边的等腰直角三角形.10.思路分析:做这种类型的题目,首先要认真审题,特别是题目中隐含的条件,本题错在忽视了a有可能等于b这一条件,从而得出的结论不全面.答案:①(B) ②没有考虑a=b这种可能,当a=b时△ABC是等腰三角形;③△ABC是等腰三角形或直角三角形.11.思路分析:(1)移项,配成三个完全平方;(2)三个非负数的和为0,则都为0;(3)已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形.解:由已知可得a2-10a+25+b2-24b+144+c2-26c+169=0,配方并化简得,(a-5)2+(b-12)2+(c-13)2=0.∵(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.∴a -5=0,b -12=0,c -13=0.解得a=5,b=12,c=13.又∵a 2+b 2=169=c 2,∴△ABC 是直角三角形.12.思路分析:(1)作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA );(2)DE=AB=4,BE=AD=3,EC=EB =3;(3)在△DEC 中,3、4、5为勾股数,△DEC 为直角三角形,DE ⊥BC ;(4)利用梯形面积公式,或利用三角形的面积可解.解:作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA ),∴DE=AB=4,BE=AD=3.∵BC=6,∴EC=EB=3.∵DE 2+CE 2=32+42=25=CD 2,∴△DEC 为直角三角形.又∵EC=EB=3,∴△DBC 为等腰三角形,DB=DC=5.在△BDA 中AD 2+AB 2=32+42=25=BD 2,∴△BDA 是直角三角形.它们的面积分别为S △BDA =21×3×4=6;S △DBC =21×6×4=12. ∴S 四边形ABCD =S △BDA +S △DBC =6+12=18.。

勾股定理的逆定理

勾股定理的逆定理

1勾股定理的逆定理 一、单选题1.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,√2C .6,8,13D .5,12,152.△ABC 的三边为a ,b ,c 且(a +b )(a ﹣b )=c 2,则该三角形是( )A .锐角三角形B .以c 为斜边的直角三角形C .以b 为斜边的直角三角形D .以a 为斜边的直角三角形3.在如图所示的方格纸中,点A ,B ,C 均为格点,则∠ABC 的度数是( )A .30°B .35°C .45°D .60°4.如图,有一个圆柱,它的高等于12cm ,底面上圆的周长等于18cm ,在圆柱下底面的点A 处有一只蚂蚁,它想吃到上底面与点A 相对的点B 处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是( )A .15cmB .17cmC .18cmD .30cm5.下列四组数据表示三角形的三边长,其中不能构成直角三角形的一组数据是( )A .1 cm, 2√2 cm, 4cmB .5cm, 12cm, 13cm:C .3cm, 4cm, 5cm:D .7cm, 24cm, 25 cm6.如图,一个长方体的长宽高分别是6米、3米、2米,一只蚂蚁沿长方体的表面从点A 到点 C ′ 所经过的最短路线长为( )A .√85B .√73C .√61D .以上都不对7.下列是勾股数的有( ) ① 3、4、5;② 5、12 、13;③ 9、40 、41;④ 13、14、15;⑤√7、√10、√17 ;⑥ 11 、60 、61 A .6组 B .5组 C .4组 D .3组8.我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么(a +b )2的值为( )A .13B .19C .25D .1699.在△ABC 中,△A ,△B ,△C 的对边分别是a 、b、c,下列条件中,能判断△ABC 是直角三角形( )2A .a=2,b=3,c=4B .a :b :c= √2:√3:√5C .△A+△B=2△CD .△A=2△B=3△C10.为迎接“五一”的到来,同学们做了许多拉花布置教室准备召开“五一”联欢晚会,小刚搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙距离应为( )A .0.7米B .0.8米C .0.9米D .1.0米11.已知三组数据:①2,3,4;②3,4,5;③1,√3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( )A .②B .①②C .①③D .②③12.小明想做一个直角三角形的木架,以下四组木棒中,哪一组的三条能够刚好做成( )A .3cm ,4cm ,7cmB .6cm ,8cm ,12cmC .7cm ,12cm ,15cmD .8cm ,15cm ,17cm13.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A .√3,√4,√5 B .1,√2,√3 C .6,7,8 D .2,3,414.下列各组数是三角形的三边,能组成直角三角形的一组数是( )A .2,3,4B .3,4,5C .6,8,12D .√3,√4,√515.下列各组数中,不能作为直角三角形的三边长的是( )A .3,4,5B .4,5,6C .5,12,13D .6,8,1016.满足下列条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3B .三边长的平方之比为1:2:3C .三边长之比为3:4:5D .三内角之比为3:4:517.下列各组数是勾股数的是( )A .5,12,13B .4,5,6C .7,12,13D .9,12,1318.已知△ABC 的三边长分别为5,13,12,则△ABC 的面积为( )A .30B .60C .78D .不能确定19.在△ABC 中,△A ,△B ,△C 的对边分别为a ,b ,c ,且(a+b )(a ﹣b )=c 2,则( )A .△A 为直角B .△C 为直角C .△B 为直角D .不是直角三角形20.如图,一架云梯25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米21.如图,一根木杆在离地面3m 处折断,木杆顶端落在离木杆底端4m 处,木杆折断之前的高度是( )A .5mB .6mC .7mD .8m二、填空题22.“直角三角形的两个锐角互余”的逆命题是。

勾股定理的逆定理练习题(有答案)

勾股定理的逆定理练习题(有答案)

勾股定理的逆定理练习题1.小强在操场上向东走80m 后,又走了60m ,再走100m 回到原地。

小强在操场上向东走了80m 后,又走60m 的方向是 。

2.在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A 、B 、C 三点能否构成直角三角形? 为什么?3.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。

4.一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直? 为什么? 5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积。

6、若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状 。

7、已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。

求:四边形ABCD 的面积。

第7题 8、根据下列条件,分别判断a,b,c 为边的三角形是不是直角三角形 (1)a=7,b=24,c=25; (2) a=32,b=1,c=32( 填序号 )D9、已知ABC Δ的三边分别a,b,ca=22n m -,b=2mn,c=22n m +(m>n,m,n 是正整数),ABC Δ是直角三角形吗?说明理由。

10、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截。

已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?第10题11、如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=14BC ,求证:AF ⊥EF .E NABC12、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。

《勾股定理》勾股定理的逆定理(含答案)精讲

《勾股定理》勾股定理的逆定理(含答案)精讲

第3章《勾股定理》3.2勾股定理的逆定理填空题1.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m ,宽1.2m 的栅栏门的相对角顶点间加一个加固木板,这条木板需 _m(第3题)2. 如图,将一根长24cm 的筷子,底面直径为5cm 高为12cm 的圆柱形水杯中, 设筷子露在杯子外面的长度为 h cm ,则h 的最小值是3. 如图所示的一只玻璃杯,最高为 8cm 将一根筷子插入其中,杯外最长 4厘 米,最短2厘米,那么这只玻璃杯的内径是 _____________ 厘米.4 .如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达 8米高的路灯.当电工 师傅沿梯上去修路灯时,梯子下滑到了 B'处,下滑后,两次梯脚间的距离为 2 米,则梯顶离路灯 _________________ 米.(第 5 题)5 .如图所示的圆柱体中底面圆的半径是错误!,高为2,若 沿着圆柱体的侧面爬行到 C 点,则小虫爬行的最短路程是 号)6. 如图,有一圆锥形粮堆,其正视图是边长为 6m 的正三角形ABC 粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达 P 处捕捉老鼠,则小猫所经过的最短路程是m .(结果不取近似值)7. 如图,这是一个供滑板爱好者使用的 U 型池,该U 型池可以看作是一个长方 体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为 4m 的半圆,其 边缘AB=CD=20,点E 在CD 上, CE=2m 一滑板爱好者从A 点滑到E 点,则他滑 行的最短距离约为—d .(边缘部分的厚度忽略不计,结果保留整数)(第 2 题)cm (第 6 题)只小虫从A 点出发______ .(结果保留根CACJ(第 8 题) (第 9 题)8. 如图,有一圆柱,其高为12cm 底面半径为3cm 在圆柱下底面A 点处有一 只蚂蚁,它想得到上底面B 处的食物,则蚂蚁经过的最短距离为 cm .( n 取3) 9. 一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那 么它所行的最短路线的长 10. 如图是一个三级台阶,它的每一级长、宽、高分别是 2米、0.3米、0.2 米, A, B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物, 则蚂蚁沿台阶面爬行到B 点最短路程是 米. c(第10题) 11.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块, 它的棱长和场地宽AD 平行且> AD 木块的正视图是边长为0.2米的正方形, 只蚂蚁从点A 处,到达C 处需要走的最短路程是 __________ 12 .如图是一个三级台阶,它的每一级的长、宽、高分别为 和B 是这个台阶的两个相对端点,A 点上有一只蚂蚁想到 则它所走的最短路线长度是 ______________________________ 寸. 13 .观察下列一组数: 3、4、5,猜想:32=4+5; 13,猜想: 25,猜想: (第 12 题) 米.(精确到0.01米) 7寸、5寸和3寸,A B 点去吃可口的食物,列举 列举 列举 5、12、 7、24、 52=12+13; 72=24+25; 列举: 请你分析上述数据的规律, 解答题 14.如图,P 是等边三角形ABC 内的一点,连接PA,PB,PC,以BP 为边作/ PBQ=60 , 且BQ=BP 连接CQ (1) 观察并猜想AP 与CC 之间的大小关系,并证明你的结论;(2) 若PA PB: PC=3 4: 5,连接PQ 试判断△ PQC 勺形状,并说明理由.13b 、 c ,猜想: 132=b+c ; 结合相关知识求得 b= ,c=15.如图,点0是等边△ ABC内一点.将△ BOC绕点C按顺时针方向旋转60°得△ ADC 连接0D 已知/ AOB=110 .(1)求证:△ COD是等边三角形;(2)当a =150°时,试判断^ AOD勺形状,并说明理由;(3)探究:C16 .先请阅读下列题目和解答过程:“已知a、b、c为^ABC的三边,且满足a2c2-b2c2=a4-b4,试判断^ ABC的形状. 解:•••a2c2-b2c2=a4-b4①•••C2 (a2-b2) = (a'+b2) (a2-b2)②•••cF+b2③•••△ ABC是直角三角形.”④请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因;(3)写出正确的解答过程.17.如图,四边形ABCD中,AD=3 AB=4 BC=12 CD=13 / BAD=90 ,(1)试说明:BDIBC(2)计算四边形ABCD勺面积.a为多少度时,△ AOD是等腰三角形.当18.如图,△ ACWAECD都是等腰直角三角形,A , C, D 三点在同一直线上,连 接BDAE 并延长AE 交BD 于 F . (1) 求证:△ ACE^A BCD(2) 直线AE 与BD 互相垂直吗?请证明你的结论.19 .请阅读下列解题过程:已知a 、b 、c 为^ ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4, 试判断△ ABC 的形状. 解:°.°a 2C 2-b 2C'=a 4-b 4, A•••c 2 (a 2-b ^) = (a 2+b 2) (a 2-b 2),B•••c F +b ],C•••△ ABC 为直角三角形.D 问: (1)(2) (3) 20.如图所示,四边形 ABCD 中,AB=3cmAD=4cmBC=13cmCD=12cm /A=90, 求四边形ABCD 勺面积.a= __________ ,b= __________ ,c= _________ ;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.在上述解题过程中,从哪一步开始出现错误:错误的原因是___________; 本题正确的结论是:___________ .21.张老师在一次“探究性学习”课中,设计了如下数表:922.如图,在△ ABC中, CDIAB 于 D, AC=4 BC=3 DB=.5(1) 求CD AD 的值;(2) 判断△ ABC 的形状,并说明理由.23.有一块直角三角形的绿地,量得两直角边长分别为6m 8m 现在要将绿地扩 充成等腰三角形,且扩充部分是以 8m 为直角边的直角三角形,求扩充后等腰三 角形绿地的周长.24 .如图,小明用一块有一个锐角为30°的直角三角板测量树高,的距离为3米,DE 为1.68米,那么这棵树大约有多高?(精确到〜1.732).E(图2,图3备用)已知小明离树0.1 米,V 3B图1图2图3CD25.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?Rni26 •如图,在两面墙之间有一个底端在 A点的梯子,当它靠在一侧墙上时,梯子 的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在 D 点•已知/ BAC=60, / DAE=45,点D 到地面的垂直距离DE=t 误!m 求点B 到地面的垂直距离BC27•如图(1)所示,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下 端B 与墙角C 距离为1.5 米,梯子滑动后停在DE 位置上,如图所示,测得BD=0.5 米,求梯子顶端A 下落了多少米?图(1 J28 •如图,铁路上于B ,已知DA=15kmCB=10km 现在要在铁路 AB 上建一个土特产品收购站 E, 使得C 、D 两村到E 站的距离相等,则E 站应建在距A 站多少千米处?29•如图,A 城气象台测得台风中心在 A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影 响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么 A 城遭受这次台风影响有多长时间?KJhiA 、B 两点相距25kmCD 为两村庄,DAI AB 于A, CBI AB30.如下图,在四边形ABCD中,/ B=90 , AB=8 BC=6 CD=24 AD=26 求四边形ABCD 勺面积.答案:填空题1.故答案为:1.5 m考点:勾股定理的应用.专题:应用题.分析:用勾股定理,两直角边的平方和等于斜边的平方进行解答.解答:解:由图可知这条木板的长为错误!=错误!=1.5m.点评:本题较简单,只要熟知勾股定理即可.2.故答案为:11cm考点:勾股定理的应用.专题:应用题.分析:筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的长度,筷子总长度减去杯子里面的长度即露在外面的长度.解答:解:设杯子底面直径为a,高为b,筷子在杯中的长度为c,根据勾股定理, 得: C2=a2+b2,故:c=错误!=错误!=13cm h=24-13=11cm点评:[本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.3 .故答案为:6厘米.考点:勾股定理的应用.分析:根据最长4cm,可得筷子长为12cm.那么可得AC长,那么利用勾股定理可得内径.解:根据条件可得筷子长为12厘米.如图AC=10厘米,BC=t误匸错误!= 6厘米.点评:主要考查学生对解直角三角形的应用的掌握情况.4.故答案为:2cm.考点:勾股定理的应用.专题:应用题.分析:根据题意,将梯子下滑的问题转化为直角三角形的问题解答. 解答:解:在直角三角形A0沖,根据勾股定理,得:0B=6m根据题意,得:0B =6+2=8m又•••梯子的长度不变,在Rt△ A OB中,根据勾股定理,得:0A =6m 则AA =8-6=2m.点评:熟练运用勾股定理,注意梯子的长度不变.5.故答案为:2边.考点:平面展开-最短路径问题. 专题:压轴题.分析:先将图形展开,再根据两点之间线段最短可知.解答:解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.••• AB=n ?错误!=2, CB=2••• AC彳AB2+BC2 =谑=2 边,故答案为:2寸2 .点评:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.6.故答案为:3^/5 m考点:平面展开-最短路径问题.专题:压轴题;转化思想.分析:求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解:圆锥的底面周长是6n,则6n丿眾:6•••n=180°,即圆锥侧面展开图的圆心角是180度. 则在圆锥侧面展开图中AP=3 AB=6 / BAP=90度.•在圆锥侧面展开图中BP=/32+62 =745 = 3^5 m.故小猫经过的最短距离是3^/5 m.故答案是:3寸5 m.点I仁正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键. 7.故答案为:22m考点:平面展开-最短路径问题.专题:压轴题.分析:要求滑行的最短距离,需将该U型池的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:其侧面展开图如图:AD=n R=4冗,AB=CD=20mDE=CD-CE=20-2=18m在Rt△ ADE中, AE吋AD2+DE2 =错误g21.9 〜22m故他滑行的最短距离约为22m点评:U型池的侧面展开图是一个矩形,此矩形的宽等于半径为4m的半圆的周长,矩形的长等于AB=CD=20m本题就是把U型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.故答案为:15cm考点:平面展开-最短路径问题.专题:压轴题.分析:本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm宽为底面圆周长的一半为n r,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理求得AB的长.解答:解:圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm宽为底面圆周长的一半为n rem, 蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得AB=/122+(3 n)2=错误!=错误! = 15cm故蚂蚁经过的最短距离为15cm ( n取3)点评:解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.9 .故答案为:10 .考点:平面展开-最短路径问题.分析:根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.解答:解:将点A和点B所在的两个面展开,A *------ ------则矩形的长和宽分别为6和8,故矩形对角线长AB=/62+82=10,即蚂蚁所行的最短路线长是10.点评:本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.10.故答案为:2.5 .考点:平面展开-最短路径问题;勾股定理.分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3 )X 3,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:X2=2+[ (0.2+0.3 )X 3]2=2.52,解得X=2.5 .点评:本题用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11.故答案为:2.60 .考点:平面展开-最短路径问题.分析:解答此题要将木块展开,然后根据两点之间线段最短解答.C解答:解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,•••长为2+0.2 X 2=2.4米;宽为1米. 于是最短路径为:a2.42+12=2.60米. 故答案为:2.60 .点评:本题主要考查两点之间线段最短,有一定的难度,是中档题.12.故答案为:25寸.考点:平面展开-最短路径问题〔分析:根据两点之间线段最短,运用勾股定理解答.解答:解:将台阶展开矩形,线段 AB 恰好是直角三角形的斜边,两直角边长分 别为24寸,7寸, 由勾股定理得AB=/72+242 =25寸.点评:本题结合实际,运用两点之间线段最短等知识来解答问题.13.故答案为:b=84, c=85;考点:勾股数.专题:规律型.分析:认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个 数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数(2n + 1)2-1的平方是第二、三个数的和;最后得出第 n 组数为(2n+1), ((―2^ ((2n J +1 ),由此规律解决问题. 弓解答:在 32 =4+5 中,4=3-21 , 5=3-2+1 52 1 52+I在 52=12+13 中,12^^ , 13^2-则在 13、b 、c 中,=84 , =85 ;点评:认真观察各式的特点,总结规律是解题的关键.解答题14 .考点:等边三角形的性质;全等三角形的判定与性质;勾股定理的逆定理.专题:探究型.分析:根据等边三角形的性质利用 SAS 判定△ ABP^ACBQ 从而得到AP=CQ 设 PA=3a PB=4a Pc=5a 由已知可判定△ PBQ 为正三角形从而可得到 pQ=4a 再根 据勾股定理判定^ PQC 是直角三角形.解答:解:(1)猜想:AP=CQ证明:•••/ ABP^^PBC=60 , / QBC :+ PBC=60 ,•••/ ABP2 QBC又 AB=BC BP=BQ•••△ ABP^A CBQ••• AP=CQ(2)由 PA PB: PC=3 4: 5, 可设 PA=3a P B=4a PC=5a 连接PQ), 32-1在△PBC中由于PB=BQ=4a且/ PBQ=60 ,•••△ PBC为正三角形.PQ=4a于是在△ PQC中••• P ^+Q(C=16a2+9a2=25a2=PC•••△ PQC是直角三角形.点评:此题考查学生对等边三角形的性质,直角三角形的判定及全等三角形的判定方法的综合运用.15.考点:等边三角形的判定;全等三角形的判定与性质;等腰三角形的判定;勾股定理的逆定理.专题:证明题;压轴题;探究型分析:此题有一定的开放性,要找到变化中的不变量才能有效解决问题.解答:(1)证明:••• CO=CP / OCD=6D ,•••△ COD是等边三角形;(3分)(2)解:当a=150°,即/ BOC=150时,△ AOD是直角三角形.(5分)•••△ BOC^A ADC•••/ ADCh BOC=150 ,又•••△ COD是等边三角形,•••/ ODC=6t),•••/ ADO=90 ,即^ AOD是直角三角形;(7分)(3)解:①要使AO=AD 需/ AODhADOV/ AOD=360 - / AOB/ COD a =360° -110° -60° - a =190° - a / ADOa-60°,--190 - a = a - 60• •• a =125°;②要使OA=OP 需/ OAD/ADOV/ AOD=190 - a,/ ADOa -60°,V/ OAD=180 - (/AOD/ADO =50°,• a -60° =50°• a =110°;③要使OD=AD需/ OADMAOD••• 190° - a =50°• a =140°.综上所述:当a的度数为125°,或110°,或140°时,△ AOD是等腰三角形.(12 分)说明:第(3)小题考生答对1种得(2 分),答对2种得(4 分).点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.16.考点:勾股定理;等腰三角形的判定;勾股定理的逆定理.专题:阅读型分析:从公式入手,式子的左边提取公因式,式子的右边符合平方差公式,并分解,两边同一个不为零的数,从而得到勾股定理.解答:解:(1)从第②步到第③步出错(写成第“ 2”或“二”等数字都不扣分;另外直接写“第③步”或“到第③步”都算正确),(2分)(2)等号两边不能同除a2-b2,因为它有可能为零.(4分)(3)(从头或直接从第③步写解答过程都行),va2c2-b^c2=a4-b4,•••C2(a〔b;) = (a2+b2)(a2-b2),移项得:c2(h-b*)- (a2+b2)(a2-b2)=0,得(a上b2)(c2-a2-b2)=0, (5 分)•••a2莎或c2=a2+b l (6 分)•••△ ABC 是直角三角形或等腰三角形.(7分)点评:正确理解勾股定理来验证直角三角形,从公式的角度入手,得出结论从而验证.17 .考点:勾股定理;勾股定理的逆定理.分析:| (1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BDIBC (2)根据两个直角三角形的面积即可求解.解答:解:(1)v AD=3 AB=4 / BAD=90,• BD=5又BC=12 CD=13••• BD+BC=CD.•BDIBC(2)四边形ABCD勺面积=△ ABD的面积+△ BCD的面积=6+30=36. 点评:综合运用了勾股定理及其逆定理,是基础知识比较简单.18 .考点:勾股定理的逆定理;直角三角形全等的判定.专题:证明题分析:(1)根据SAS判定△ ACE^A BCD从而得到/ EACM DBC根据角之间的关系可证得AF丄BD(2)互相垂直,只要证明/ AFD=90,从而转化为证明/ EAC# CDB=90即可解答:(1)证明:•••△ ACB^n^ ECD都是等腰直角三角形, ••• AC=BC CE=CD/ ACEMBCD=90 , 在dACEm BCD j / AC = BC 律ACE =/ BCDI CE= CD•••△ ACE^ABCD( SAS;(2;解:直线AE与BD互相垂直,理由为:证明:•••△ ACE^A BCD•••/ EACM DBC又•••/ DBC# CDB=90 ,•••/ EAC# CDB=90 ,•••/ AFD=90 ,••• AF丄BD即直线AE与BD互相垂直.点评:此题主要考查学生对全等三角形的判定及直角三角形的判定的掌握情况.19.故答案为:(1)第C步(2)等式两边同时除以a2-b2(3)直角三角形或等腰三角形考点:勾股定理的逆定理.专题:阅读型.分析:通过给出的条件化简变形,找出三角形三边的关系,然后再判断三角形的形状. 解答:解:(1)C;(2)方程两边同除以(a2-b2),因为(a2-b2)的值有可能是0;(3)vc2_( a找2) = (a2+b2)(a2-b2).^c2=a2+b2或a2-b2=0va2-b2=0••• a+b=O或a-b=Oa+bM0•••c2=a2+b2或a-b=O•.c2=a2+b2或a=b•该三角形是直角三角形或等腰三角形.点评:本题考查了因式分解和公式变形等内容,变形的目的就是找出三角形三边的关系再判定三角形的形状.20 .考点:勾股定理;勾股定理的逆定理.分析:如图,连接BD由勾股定理求得BD的长度;然后根据勾股定理的逆定理判定△ BDC是直角三角形,则四边形ABCD勺面积二直角△ ABD的面积+直角△ BDC 的面积.解答:解:•••在△ ABD中,AB丄AD AB=3 AD=4BD彳AB2+AD2 =732+42 =5 .在^ BDC中, CD=12 BC=13 BD=5••• 122+52=132,即CD+BD=BC,•••△ BDC是直角三角形,且/ BDC=90,•••S 四边形ABCD=S ABD+S BDC=2AB?A D+BD?C D X 3X 4+1 X 5X 12=36,即四边形ABCD勺面积是36.点评:本题考查了勾股定理、勾股定理的逆定理.注意:勾股定理应用的前提条件是在直角三角形中.21.故答案填:n2-1,2n, n2_考点:勾股定理的逆定理;列代数式.专题:应用题;压轴题.分析:(1)结合表中的数据,观察a, b, c与n之间的关系,可直接写出答案; (2)分别求出a2+b2, c2,比较即可.解答:解:(1)由题意有:n2-1 , 2n, n2+1;(2)猜想为:以a, b, c为边的三角形是直角三角形.证明:••• a=n2-1 , b=2n; c=n2+1• aa+b2= (n* ) 2+ (2n) 2=n4-2n2+1+4n2=n4+2rf+仁(n2+1) 2而c2= (n2+1) 2•••根据勾股定理的逆定理可知以a, b, c为边的三角形是直角三角形.点评:本题需仔细观察表中的数据,找出规律,利用勾股定理的逆定理即可解决问题.22 .考点:勾股定理的逆定理.分析:利用勾股定理求出CD和AD则可,再运用勾股定理的逆定理判定△ ABC是直角三角形.解答:解:(1)v CDIAB且CB=3 BD| ,故△ CDB为直角三角形,•••在 Rt △ CDB 中, CD 勺CB 2-BD 2 =、^32-(2)A ABC 为直角三角形.••• AC+BC=42+32 =25=5 =AB , •••根据勾股定理的逆定理,△ ABC 为直角三角形.点评:本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目.8023.故答案为:32口或(2Q+4、/5 ) m 或一m .考点:勾股定理的应用;等腰三角形的性质.专题:分类讨论.分析:根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的 性质利用勾股定理解答.解答:解:在 Rt △ ABC 中,/ ACB=90,AC=8 BC=6由勾股定理有:AB=1Q 应分以下三种情况:①如图1,当AB=AD=1Q 寸,••• ACIBDCD=CB=6m•••△ ABD 的 周长=1Q+1Q+2X 6=32m②如图2,当AB=BD=1Q 寸,-BC=6m--CD=1Q6=4m,••• AD=4/5 m , •••△ ABD 的周长=10+10+4/5 = (2Q+祐)m ③如图3,当AB 为底时,设AD=BD=x 贝U CD=x-6,由勾股定理得:AD^82+(x-6)2=x 解得,x=25, 8Q•••△ ABD 的 周长为:AD+BD+A 零 m .312~5, 在 Rt △ CAD 中, AD 彳A 汽E42-( ¥ 16 ~5 -理由:••• AD =56,BD =5, 5 5 16 _ 9•• AB=AD+BD F +- =5 ,5 5图3点评:本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分三种情况讨论,不要漏解.24.考点:勾股定理的应用.分析:因为/ CAD=30,贝U AC=2CD再利用勾股定理求得CD的长,再加上DE 的长就求出了树的高度.解答:解:在Rt△ ACD中,/ CAD=30,AD=3设CD=x 贝U AC=2x 由AD+CD=AC,得,32+x2=4x2,x=W =1.732,所以大树高1.732+1.68 ~ 3.4 (米).点评:此题主要考查了学生利用勾股定理解实际问题的能力.25.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,E——设大树高为AB=10m 小树高为CD=4rm 过C点作CEIAB于E,贝U EBD(是矩形,连接AC,••• EB=4rm EC=8rm AE=AB-EB=10-4=6,在Rt△ AEC中, AC^AE2+EC2 =错误!=10m故小鸟至少飞行10m点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.26.考’点:勾股定理的应用.分析:在Rt△ ADE中,运用勾股定理可求出梯子的总长度,在Rt△ ABC中,根据已知条件再次运用勾股定理可求出BC的长.解答:解:在Rt△ DAE中,V/ DAE=45,•••/ ADEM DAE=45 , AE=DE=8 , ••• AD=AE+DE=36me ) 2+(^/8 ) 2=16, ••• AD=4,即梯子的总长为4米.••• AB=AD4.在Rt△ ABC中, V/ BAC=60 ,•••/ ABC=30 ,••• AC=1AB=2,••• B C=A B-AC2=42-2=12,••• BC^12 =2羽m ;•••点B到地面的垂直距离BC=^3 m.点评:本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.27.考点:勾股定理的应用.分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE的长即可.解答:解:在Rt△ ACB中, A(2=A^-BC2=2.52-1.5 2=4,•AC=2V BD=O.5,•CD=2在Rt△ ECD中, EC=ED-CD=2.52-22=2.25 ,•EC=1.5,•AE=ACEC=2-1.5=O.5 .答:梯子顶端下滑了0.5米.点评:注意此题中梯子的长度是不变的.熟练运用勾股定理.28.考点:勾股定理的应用.分析:根据使得C, D两村到E站的距离相等,需要证明DE=CE再根据△ DAE^A EBC 得出AE=BC=10km解答:解:V使得C, D两村到E站的距离相等.•DE=CEV DAI AB于A, CB! AB于B,•/ A=/ B=9O° ,•AE+AD=DE, BE+BC=EC,•AE+AD=BE+B C| ,设AE=x 贝U BE=AB-AE(25-X ),V DA=15km CB=10km•x2+152= (25-X ) 2+102 ,解得:X=10 ,•AE=10km•••收购站E应建在离A点10km处.点评:本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.29.考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C, 若AO200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D 6则^ ADG是等腰三角形,由于ACIBF,贝U C 是DG 的中点,在Rt △ ADC 中,解出CD 的长,贝U 可求DG 长,在DG 长的范围内都是受台风影响, 再根据速度与距离的关系则可求时间.解答:解:(1)由A 点向BF 作垂线,垂足为C,在 Rt △ ABC 中,/ ABC=30,AB=320km 贝U AC=160km因为160V 200,所以A 城要受台风影响;AG=200千 米.因为DA=AG 所以△ ADG 是等腰三角形,因为ACIBF,所以AC 是 BF 的垂直平分线,CD=Gp在 Rt △ ADC 中, DA=200千米,AC=160千米,由勾股定理得,CD=DA-AC = ^2002-1602=120 千米, 贝U DG=2DC=24千米,遭受台风影响的时间是:t=240 -40=6 (小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度 与时间的关系等,较为复杂.30 .考点:勾股定理的应用.分析:连接AC ,根据已知条件运用勾股定理逆定理可证△ ABM^^ACD ^直角三 角形,然后代入三角形面积公式将两直角三角形的面积求出来, 两者面积相加即 为四边形ABCD 勺面积.V/ B=90° ,:.△ ABC 为直角三角形,V A^=A^+B(2=82+62=102,V AO 0,••• AC=10,则还有一点G 有在^ ACD中,V AC+CD=100+576=676 AD=2&=676,••• AC+CD=AD,•••△ ACD为直角三角形,且/ ACD=90 ,1 1+S ACD X 6 X 8+3 X 10 X 24=144.• -S 四边形ABCD = S ABc点评:通过作辅助线可将一般的四边形转化为两个直角三角形,使面积的求解过程变得简单.。

勾股定理的逆定理(基础)知识讲解

勾股定理的逆定理(基础)知识讲解

勾股定理的逆定理(基础)【学习目标】1. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.【要点梳理】要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;【典型例题】类型一、原命题与逆命题1、写出下列原命题的逆命题并判断是否正确1.原命题:猫有四只脚.2.原命题:对顶角相等.3.原命题:线段垂直平分线上的点,到这条线段两端点的距离相等.4.原命题:角平分线上的点,到这个角的两边距离相等.【答案与解析】1. 逆命题:有四只脚的是猫(不正确)2. 逆命题:相等的角是对顶角(不正确)3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.•(正确)4. 逆命题:到角两边距离相等的点,在这个角的角平分线上.(正确)【总结升华】掌握原命题与逆命题的关系. 原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误.举一反三:【变式】下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a b c ,,满足222a b c +=,那么这个三角形是直角三角形.【答案】①④提示:①的逆命题“两直线平行,同旁内角互补”显然正确;②的逆命题“如果两个角相等,那么它们是直角”很明显是错误的;③的逆命题“如果两个实数的平方相等,那么这两个实数相等”,两个实数可以互为相反数,所以该命题不正确;④的逆命题“如果三角形是直角三角形,那么三角形的三边长a b c ,,满足222a b c +=”也是正确的.类型二、勾股定理的逆定理2、判断由线段a b c ,,组成的三角形是不是直角三角形.(1)a =7,b =24,c =25;(2)a =43,b =1,c =34; (3)22a m n =-,22b m n =+,2c mn =(0m n >>);【思路点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【答案与解析】解:(1)∵ 2222724625a b +=+=,2225625c ==,∴ 222a b c +=.∴ 由线段a b c ,,组成的三角形是直角三角形. (2)∵ a b c >>,222239251141616b c ⎛⎫+=+=+= ⎪⎝⎭,2241639a ⎛⎫== ⎪⎝⎭, ∴ 222b c a +≠.∴ 由线段a b c ,,组成的三角形不是直角三角形.(3)∵ 0m n >>,∴ 222m n mn +>,2222m n m n +>-.∵2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++, 22224224()2b m n m m n n =+=++,∴ 222a c b +=.∴ 由线段a b c ,,组成的三角形是直角三角形.【总结升华】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证2c 与22a b +是否具有相等关系,再根据结果判断是否为直角三角形.举一反三:【变式1】判断以线段a b c ,,为边的△ABC 是不是直角三角形,其中a =b =2c =.【答案】解:由于a c b >>,因此a 为最大边,只需看2a 是否等于22b c +即可.∵ 227a ==,223b ==,2224c ==,∴ 222a b c =+, ∴ 以线段a b c ,,为边能构成以a 为斜边的直角三角形.【变式2】(2014春•永州校级期中)下列四组数:①5,12,13;②7,24,25;③1,2,4;④5,6,8.其中可以为直角三角形三边长的有 .(把所有你认为正确的序号都写上)【答案】①②;解:①∵52+122=132,能构成直角三角形;②72+242=252,能构成直角三角形;③12+22≠42,不能构成直角三角形;④52+62≠82,不能构成直角三角形.所以①②.故答案为:①②.3、(2015春•大石桥市校级期末)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.【思路点拨】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.【答案与解析】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【总结升华】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.举一反三:【变式】如图所示,在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD 中点,试判断EC与EB的位置关系,并写出推理过程.【答案】解:EC ⊥EB .过点C 作CF ⊥AB 于F ,则四边形AFCD 是矩形,在Rt △BCF 中,可得CF =22. 则AD =CF =22,故DE =AE =12AD =2. 在Rt △ABE 和Rt △DCE 中, 2226EB AE AB =+=,2223EC DE CD =+=.∴ 229EB EC +=.∵ BC =3,∴ 222EB EC BC +=.∴ ∠CEB =90°,∴ EB ⊥EC .类型三、勾股定理逆定理的实际应用4、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【思路点拨】我们可以根据题意画出如图所示的图形,可以看到,由于“远航”号的航向已知,如果求出两艘轮船所成的角,就能知道“海天”号的航向了.【答案与解析】解:根据题意可画出上图,PQ =16×1.5=24,PR =12×1.5=18,QR =30,在△PQR 中,22222418576324900PQ PR +=+=+=,∴ 222PQ PR QR +=.∴ △PQR 是直角三角形且∠RPQ =90°.又∵ “远航”号沿东北方向航行,可知∠QPN =45°,∴ ∠RPN =45°.由此可知“海天”号沿西北方向航行.也可沿东南方向航行.【总结升华】根据勾股定理的逆定理,可判断一个角是不是90°,这里需注意与东北方向成90°角的有两个方向,即西北方向或东南方向.。

人教版八年级数学讲义勾股定理逆定理(含解析)(2020年最新)

人教版八年级数学讲义勾股定理逆定理(含解析)(2020年最新)

两者面积相
∴ S =S +S = 四边形 ABCD △ABC △ACD ×6×8+ × 10×24=144.
讲解用时: 3 分钟 解题思路: 此题主要考查了勾股定理和勾股定理逆定理, 通过作辅助线可将一般
的四边形转化为两个直角三角形,使面积的求解过程变得简单. 教学建议: 熟练运用勾股定理及其逆定理 . 难度: 3 适应场景: 当堂练习 例题来源: 无 年份: 2018
【答案】 是 【解析】 根据勾股定理的逆定理,可得答案.
解:由分别以△ ABC的三边为直径向外作 3 个半圆,它们的面积分别为 4、5、9, 得 BC2+AC2=AB2, 则△ ABC是直角三角形, 故答案为:是. 讲解用时: 3 分钟 解题思路: 本题考查了勾股定理的逆定理,利用勾股定理的逆定理是解题关键. 教学建议: 掌握勾股定理的逆定理并熟练运用 . 难度: 3 适应场景: 当堂练习 例题来源: 无 年份: 2018
【例题 3】
如图,正方形网格中的△ ABC,若小方格边长都为 1,则△ ABC是:
三角形.
【答案】 直角
【解析】 欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平
方和等于最长边的平方即可. 解:∵ AC2=22+32=13,AB2=62+42=52, BC2=82+12=65, ∴ AC2+AB2=BC2,∴△ ABC是直角三角形. 讲解用时: 3 分钟 解题思路: 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,
【答案】 ( 1)是;( 2) 12,16,20;( 3) a、 b、 c 为勾股数
【解析】 ( 1)直接利用勾股数的定义去验证即可;
( 2)根据勾股数的定义:满足 a2+b2=c2 的三个正整数,称为勾股数,即可写出

勾股定理及其逆定理(含答案)

勾股定理及其逆定理(含答案)

勾股定理及其逆定理1.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A. 1B. 2C. 3D. 42.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )A. 5cmB. 10cmC. 14cmD. 20cm3.如图:图形A的面积是()A.225B.B. 144C.C. 81D.D. 无法确定4.如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A. 6B. 8C. 10D. 125.如图,两个正方形的面积分别为64和49,则AC等于()A. 15B. 17C. 23D. 1136. 如图,小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间6.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B. 3C.D. 58. 直角三角形的两条直角边的长分别为4和5,则斜边长是()A. 3B. 41C.D. 97.如图,图中直角三角形共有()A. 1个B. 2个C. 3个D. 4个8.如图,AD⊥CD,CD=4,AD=3,∠ACB=90°,AB=13,则BC的长是()A. 8B. 10C. 12D. 169.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A. 6B. 7C. 8D. 910.如图,字母B所代表的正方形的面积是()A. 12 cm2B. 15 cm2C. 144 cm2D. 306 cm213. 已知直角三角形的两边长分别为2、3,则第三边长可以为()A. B. 3 C. D.14. 如图,在平面直角坐标系中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A. (5,4)B. (4,5)C. (4,4)D. (5,3)11.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A.3B.4C.5D.612.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()A. 5B.6C.7D.2513.如图,菱形中,,这个菱形的周长是()A. B. C. D.18. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 8014.如图,E为正方形ABCD内部一点,且,,,则阴影部分的面积为()A. 25B. 12C. 13D. 1915.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=10km,BC=24km,则M、C两点之间的距离为( )A. 13kmB. 12kmC. 11kmD. 10km16.Rt△ABC中,∠C=90°,AC=8,BC=15,则AB=()A. 17B.C. 289D. 18117.直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是()A. 5B. 6C. 6.5D. 1318.如图,在矩形ABCD中,AC与BD交于点O,E是CD的中点,已知,,则AC的长为( )A. 10B. 11C. 12D. 1319.在下列四组数中,不是勾股数的一组数是()A. a=15,b=8,c=17B. a=9,b=12,c=15C. a=7,b=24,c=25D. a=3,b=5,c=720.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. 2,3,4B. 3,4,5C. 6,8,12D.21.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A. 10 mB. 15 mC. 18 mD. 20 m22.下列长度的三条线段能组成直角三角形的是()A. 3,4,5B. 2,3,4C. 4,6,7D. 5,11,1223.在以下列三个数为边长的三角形中,不能组成直角三角形的是()A. 4、7、9B. 5、12、13C. 6、8、10D. 7、24、2524.一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()A. 20cmB. 50cmC. 40cmD. 45cm25.已知的三边长分别为a,b,c,则下列条件中不能判定是直角三角形的是().A. B.C. D.26.以下列各组数为边长,不能构成直角三角形的是()A. 3,4,5B. 9,12,15C. ,,D. 0.3,0.4,0.527.-64的立方根是()A. ±8B. 4C. -4D. 1628.-8的立方根是()A. -2B. ±2C. 2D. -29.的立方根是()A. -1B. 0C. 1D. ±130.下列说法正确的是()A. 1的相反数是-1B. 1的倒数是-1C. 1的立方根是±1D. -1是无理数31.在实数0,-2,,3中,最大的是()A. 0B. -2C.D. 332.在实数,,,中有理数有()A. 1个B. 2个C. 3个D. 4个33.8的相反数的立方根是()A. 2B.C. -2D.34.下列说法正确的是()A. 是有理数B. 5的平方根是C. 2<<3D. 数轴上不存在表示的点35.-的相反数是()A. -B. -C. ±D.36.|1-|的值为()A. 1-B. 1+C. -1D. +137.在下列实数中:π,-,0,,最小的数是()A. -B. 0C.D. π38.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数39.下列说法正确的是()A. 3.14是无理数B. 是无理数C. 是有理数D. 2p是有理数40.下列各式正确的为()A. =±4B. -=-9C. =-3D.41.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数42.下列四个数:-2,-0.6,,中,绝对值最小的是()A. -2B. -0.6C.D.43.与最接近的整数是()A. 4B. 5C. 6D. 744.下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或145.下列说法:①带根号的数都是无理数;②无理数都可用数轴上的点表示;③的平方根是±4:④a2的算术平方根是a;⑤负数也有立方根,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个答案和解析1.【答案】C【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选:C.2.【答案】D【解析】【分析】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.3.【答案】C【解析】【分析】根据勾股定理列式计算即可得解;本题考查了勾股定理,是基础题,主要是对勾股定理的理解与应用.【解答】解:由勾股定理得,A边长,故A的面积.故选C.4.【答案】C【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.5.【答案】B【解析】【分析】本题考查了勾股定理,求出AB、BC的长是解题的关键.根据正方形的性质求出AB、BD、DC的长,再根据勾股定理求出AC的长即可.【解答】解:如图,∵两个正方形的面积分别是64和49,∴AB=BD=8,DC=7,∴BC=BD+DC=8+7=15,根据勾股定理得:AC==17.故选B.6.【答案】C【解析】解:由勾股定理得,OB==,∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.利用勾股定理列式求出OB,再根据无理数的大小判断即可.本题考查了勾股定理,估算无理数的大小,熟记定理并求出OB的长是解题的关键.7.【答案】B【解析】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2-EB2=22-12=3,∴正方形ABCD的面积=BC2=3.故选:B.先根据正方形的性质得出∠B=90°,然后在Rt△BCE中,利用勾股定理得出BC2,即可得出正方形的面积.本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.也考查了正方形的性质.8.【答案】C【解析】解:由勾股定理得:斜边长为,故选:C.利用勾股定理即可求出斜边长.本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是关键.9.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C10.【答案】C【解析】【分析】此题主要考查了勾股定理,正确应用勾股定理是解题关键.直接利用勾股定理得出AC的长,进而求出BC的长.【解答】解:∵AD⊥CD,CD=4,AD=3,∴AC==5,∵∠ACB=90°,AB=13,∴BC==12.故选C.11.【答案】C【解析】【分析】本题考查的知识点是勾股定理和等腰三角形的性质,在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得等腰底边上的高.【解答】解:根据题意画出图形,,如图:BC =12,AB=AC=10 ,在△ABC中,AB =AC,AD⊥BC,则BD =DC=BC=6 ,在Rt△ABD中,AB=10,BD=6,,故选C.12.【答案】C【解析】解:如图,∵a2+b2=c2,而a2=81,c2=225,∴b2=225-81=144,∴字母B所代表的正方形的面积为144cm2.故选:C.如图,利用勾股定理得到a2+b2=c2,再根据正方形的面积公式得到a2=81,c2=225,则可计算出b2=144,从而得到字母B所代表的正方形的面积.本题考查了勾股定理:会利用勾股定理进行几何计算.13.【答案】D【解析】【分析】本题考查了勾股定理,是基础题,难点在于要分情况讨论,分3是直角边和斜边两种情况讨论求解.【解答】解:3是直角边时,第三边==,3是斜边时,第三边==,所以,第三边长为或.故选D.14.【答案】A【解析】【分析】此题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO的长度.首先根据菱形的性质求出AB的长度,再利用勾股定理求出DO的长度,进而得到点C的坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,∴AB=AO+OB=5,∴AD=AB=CD=5,∴DO===4,∴点C的坐标是(5,4).故选A.15.【答案】A【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选A.16.【答案】A【解析】【分析】本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB===5.故选:A.17.【答案】C【解析】【分析】通过菱形性质及勾股定理求出边AB的值,周长为4AB即可.本题主要考查了菱形的性质,解决四边形问题一般转化为三角形问题.【解答】解:因为四边形ABCD是菱形,所以AC⊥BD,设AC与BD交于点O,则AO=1,BO=2,所以AB=.周长为4AB=4.故选C.18.【答案】C【解析】【分析】本题考查勾股定理以及正方形的性质,解题关键是利用勾股定理求出正方形的边长,然后利用部分之和等于整体求出阴影部分面积.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE转换求面积.【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE=AB2-×AE×BE=100-×6×8=76.故选C.19.【答案】D【解析】【分析】本题考查了正方形的性质,勾股定理的运用,利用勾股定理求出正方形的边长并观察出阴影部分的面积的表示是解题的关键,根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是AE×BE=×3×4=6,∴阴影部分的面积是25-6=19,故选D.20.【答案】A【解析】【分析】本题考查勾股定理和直角三角形斜边上的中线的性质,在Rt△ABC中,由勾股定理可得AB=26,根据直角三角形斜边上的中线等于斜边的一半,即可得到M、C两点之间的距离.【解答】解:在Rt△ABC中,AB2=AC2+CB2,∴AB==26,∵M点是AB中点,∴MC=AB=13,故选A.21.【答案】A【解析】【分析】本题考查了勾股定理在直角三角形中的运用,掌握勾股定理是解决问题的关键.由题意可知:斜边为AB,直接由勾股定理求得答案即可.【解答】解:根据勾股定理,AB===17.故选A22.【答案】C【解析】解:由题意得,斜边=,所以斜边上的中线=×13=6.5.故选:C.根据勾股定理,先求出直角三角形的斜边长,再根据直角三角形斜边上的中线等于斜边的一半,即可求出中线长.此题考查了勾股定理以及直角三角形斜边上的中线的性质.23.【答案】D【解析】【分析】考查了矩形的性质,三角形中位线定理,勾股定理,了解矩形的性质是解答本题的关键,难度不大.首先利用三角形的中位线定理求得BC的长,然后利用勾股定理求得AC的长即可.【解答】解:∵四边形ABCD为矩形,∴O为BD的中点,∵E为CD的中点,∴OE为△ABC的中位线,∵OE=6,∴BC=2OE=12,∵AB=5,∴AC==13,故选D.24.【答案】D【解析】【分析】本题考查了勾股数的定义,掌握勾股数的知识是解决问题的关键.理解勾股数的定义,即在一组(三个数)中,两个数的平方和等于第三个数的平方.解:由题意可知,在A组中,152+82=172=289,在B组中,92+122=152=225,在C组中,72+242=252=625,而在D组中,32+52≠72,故选:D.25.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选:B.26.【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC的长,进而可得出结论.本题考查的是勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.【解答】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴AC===13(m),∴这棵树原来的高度=BC+AC=5+13=18(m).故选C.27.【答案】A【解析】解:A.∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B.∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C.∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D.∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.28.【答案】A【解析】解:A、42+72≠92,故不是直角三角形,故此选项符合题意;B、52+122=132,故是直角三角形,故此选项不符合题意;C、82+62=102,故是直角三角形,故此选项不符合题意;D、72+242=252,故是直角三角形,故此选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.29.【答案】C【解析】【分析】本题考查勾股定理的实际应用,首先要正确理解题意,明白怎么放桶内所能容下的木棒最长,然后灵活利用勾股定理,难度一般.根据题意画出示意图,AC为圆桶底面直径,AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理即可求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=2×12=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.30.【答案】A【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A.∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,故不能判定△ABC是直角三角形;B.∵,设a、b、c边长为k、k、k∴则有k2+k2=2k2,即a2+b2=c2,∴∠C=90°,故能判定△ABC是直角三角形;C.∵∠C=∠A-∠B,∴∠A=∠B+∠C,∴∠A=90°,故能判定△ABC是直角三角形;D.∵b2=a2-c2,∴b2+c2=a2,故能判定△ABC是直角三角形.故选A.31.【答案】C【解析】解:A、因为32+42=52,故能构成直角三角形,此选项错误;B、因为92+122=152,能构成直角三角形,此选项错误;C、因为()2+()2≠()2,不能构成直角三角形,此选项正确;D、因为0.32+0.42=0.52,能构成直角三角形,此选项错误.故选:C.根据勾股定理的逆定理,一个三角形的三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.32.【答案】C【解析】【分析】本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.依据立方根的定义求解即可.【解答】解:∵(-4)3=-64,∴-64的立方根是-4.故选C.33.【答案】A【解析】解:∵-2的立方等于-8,∴-8的立方根等于-2.故选:A.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.34.【答案】C【解析】解:的立方根是1,故选:C.根据开立方运算,可得一个数的立方根.本题考查了立方根,先求幂,再求立方根.35.【答案】A【解析】解:A、1的相反数是-1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、-1是有理数,故错误;故选:A.根据相反数、倒数、立方根,即可解答.本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.36.【答案】D【解析】【分析】本题考查了实数的大小比较,要注意无理数的大小范围.根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,-2,,3中,最大的是3.故选D.37.【答案】B【解析】解:在实数,,,中=2,有理数有,共2个.故选:B.整数和分数统称为有理数,依此定义求解即可.此题考查了有理数和无理数的定义,注意需化简后再判断.38.【答案】C【解析】解:8的相反数是-8,-8的立方根是-2,则8的相反数的立方根是-2,故选:C.根据相反数的定义、立方根的概念计算即可.本题考查的是实数的性质,掌握相反数的定义、立方根的概念是解题的关键.39.【答案】C【解析】【分析】本题考查了实数的意义、实数与数轴的关系,利用被开方数越大算术平方根越大是解题关键.根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【解答】解:A、是无理数,故A错误;B、5的平方根是,故B错误;C、<,∴2<3,故C正确;D、数轴上存在表示的点,故D错误;故选C.40.【答案】D【解析】解:根据相反数、绝对值的性质可知:-的相反数是.故选:D.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.41.【答案】C【解析】解:|1-|的值为-1.故选:C.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.绝对值的性质,负数的绝对值是其相反数.考查了实数的性质,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.42.【答案】A【解析】解:∵-<<0<π,∴最小的数是-.故选:A.根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.43.【答案】A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.44.【答案】C【解析】解:整数和分数统称为有理数.A.3.14是小数,可写成分数的形式,所以是有理数,错误.B.是有理数,错误.D.2p表示p的2倍,要视乎p本身是否为有理数而定,错误.故选:C.按照有理数无理数的定义判断即可.本题考查了有理数的定义,正确理解有理数定义是解题关键.45.【答案】D【解析】解:A、=4,故原题计算错误;B、-=9,故原题计算错误;C、=3,故原题计算错误;D、=,故原题计算正确;故选:D.根据=|a|进行化简计算即可.此题主要考查了二次根式和立方根,关键是掌握二次根式的性质.46.【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.47.【答案】C【解析】解:∵|-2|=2,|-0.6|=0.6,||=,||=,∵,所以绝对值最小的是,故选:C.根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.此题考查了实数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.48.【答案】B【解析】【分析】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和5.5之间,题目比较典型,根据无理数的意义和二次根式的性质,即可求出答案.【解答】解:∵,∴,∴最接近的整数为,∴.故选B.49.【答案】C【解析】【分析】本题考查了实数,利用平方根的意义、立方根的意义、实数与数轴的关系是解题关键.根据平方根的意义、立方根的意义、实数与数轴的关系,可得答案.【解答】解:A.实数与数轴上的点一一对应,说法正确,故选项不符合题意;B.π+(1-π)=1,说法正确,故选项不符合题意;C.负数的立方根是负数,说法错误,故选项符合题意;D.算术平方根等于它本身的数只有0或1,说法正确,故选项不符合题意.故选C.50.【答案】B【解析】【分析】本题主要考查了实数中无理数的概念,算术平方根,平方根,立方根的概念.①根据无理数的定义即可判定;②根据无理数与数轴的关系即可判定;③根据算术平方根、平方根的定义计算即可判定;④根据算术平方根的定义即可判定;⑤根据立方根的定义即可判定.【解答】解:①带根号的数不一定是无理数,有的是有理数,故说法错误;②无理数都可用数轴上的点表示,故说法正确;③=4,4的平方根是±2,故说法错误:④a2的算术平方根是|a|,故说法错误;⑤负数也有立方根,故说法正确.正确的是:②⑤.故选B.。

勾股定理的逆定理练习题(超经典含答案)

勾股定理的逆定理练习题(超经典含答案)
C.定理的逆命题不一定正确,故错误;D.所有的命题都有逆命题,故错误.故选A.
3.【答案】A
【解析】A、1.52+22≠32,不符合勾股定理的逆定理,故本选项符合题意;
B、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;
C、72+242=252,符合勾股定理的逆定理,故本选项不符合题意;
A.5B.6C.7D.8
11.下列命题中,命题为真命题的是
A.对顶角相等B.若a=b,则|a|=|b|
C.同位角相等,两直线平行D.若ac2<bc2,则a<b
12.如图所示的一块地,∠ADC=90°, , , , ,求这块地的面积 为
A.54m2B.108m2C.216m2D.270m2
13.如图,在钝角△ABC中,已知∠A为钝角,边AB、AC的垂直平分线分别交BC于点D、E,若BD2+CE2=DE2,则∠A的度数为__________.
B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;
C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;
D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误.故选A.
20.【答案】A
【解析】∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为: ×5×500×12×500=7500000(平方米)=7.5(平方千米).故选A.
∴四边形ABCD的面积是6.
18.【解析】(1)∵AD⊥BC,
∴∠ADC=∠ADB=90°.
在Rt△ADC中,由勾股定理得AD=
在Rt△ADB中,由勾股定理得BD= .

勾股定理及其逆定理 (习题及答案)

勾股定理及其逆定理 (习题及答案)

勾股定理及其逆定理(习题)例题示范例1:如图,强大的台风使得一棵树在离地面 3m 处折断倒下,树的顶部落在离树的底部 4m 处,这棵树折断之前有多高?解:如图,由题意,得AC=3,BC=4,∠ACB=90°A在 Rt△ABC 中,∠ACB=90°,由勾股定理,得AC2+BC2=AB2∴32+42=AB2∴AB=5 C B∴AB+AC=5+3=8答:这棵树折断之前高 8m.例 2:如图,在△ABC 中,AB=13cm,AC=5cm,BC=12cm.求证:∠C=90°.AC B证明:如图在△ABC 中,AB=13,AC=5,BC=12∵52+122=132∴AC2+BC2=AB2∴△ABC 为直角三角形,且∠C=90°.巩固练习1.如图,在 Rt△ABC 中,∠C=90°,若BC=8,AB=17,则AC的长为.BC A2.已知甲、乙两人从同一地点出发,甲往东走了 12km,乙往南走了5km,这时甲、乙两人之间的距离为.3.如图,分别以直角三角形的三边为直径作半圆,三个半圆的面积从小到大依次记为S1,S2,S3,则S1,S2,S3 之间的关系是()A.S l+S2>S3 B.S l+S2<S3C.S1+S2=S3 D.S12+S2 =S34.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若其中最大正方形的边长为 7cm,则正方形A,B,C,D 的面积之和为cm2.5.如图 1 是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a 和b,斜边长为c.图 2 是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并利用这个图形证明勾股定理;(2)假设图 1 中的直角三角形有若干个,你能运用图 1 中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼成的图形的示意图,并利用该图形证明勾股定理.b ba a图1 图26.以下列长度的三条线段为边,不能组成直角三角形的是A.1.5,2,2.5 B.9,12,15C.7,24,25 D.1,1,27.已知三条线段的长是:①5k,12k,13k(k>0);②111;③32,42,52;3 4 5④11,60,61;⑤(m +n)2 -1,2(m +n),(m +n)2 +1 (m,n为正整数).其中能构成直角三角形的有()A.2 个B.3 个C.4 个D.5 个8.如图,在正方形A BCD 中,点E,F 分别在A D,CD 边上,A D若A B=4,AE=2,DF=1,则图中的直角三角形共有个. F 9.如图,求出下列直角三角形中未知边的长度:b= ,c= . BC1015 2410.如图,一架长 25 米的云梯斜靠在一面墙上,梯子底端与墙根之间的距离为 7 米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了 4 米,那么梯子的底端在水平方向上滑动了几米?11.在△ABC 中,AB=10,BC=12,BC 边上的中线AD=8,求AC的长. AB D C12.在△ABC 中,点D是线段BC 上的一点,已知AB=15,AD=12,AC=13,BD=9.求BC 的长.思考小结1.赵爽弦图和毕达哥拉斯弦图都是由四个全等的三角形拼成的,但是在拼的过程中有区别,赵爽弦图的弦在(填“内”或“外”),毕达哥拉斯弦图的弦在(填“内”或“外”),请你画出对应的弦图.赵爽弦图毕达哥拉斯弦图2.我们知道3,4,5 是一组勾股数,那么3k,4k,5k(k 是正整数)(填“是”或“不是”)一组勾股数;一般地,如果a,b,c(a<b <c )是一组勾股数,那么a k,bk,ck(k 是正整数)是一组勾股数吗?若是,请证明;若不是,请说明理由.解:ak,bk,ck(k 是正整数)一组勾股数,理由如下:∵a,b,c 是一组勾股数∵k≠0∴k2a2+k2b2k2c2∴(ak)2+(bk)2(ck)2∵k 为正整数∴ak,bk,ck 也是∴ak,bk,ck(k 是正整数)一组勾股数Ca bB c A【参考答案】巩固练习1. 152.13 km3. C4. 495.略6.D7. B8. 49. 12,2610. (1)24 米(2)8 米11.AC 的长为 1012.BC 的长为 14思考小结1. 直角,外,内图略2. 是,是,a2 +b2 =c2 ,=,=,正整数,是。

勾股定理(讲义及答案)含答案

勾股定理(讲义及答案)含答案

一、选择题1.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论:①BD =CE ,②BD ⊥CE ,③∠ACE +∠DBC=30°,④()2222BE AD AB =+.其中,正确的个数是( ) A .1 B .2 C .3D .4 2.△ABC 的三边的长a 、b 、c 满足:2(1)250a b c -+-+-=,则△ABC 的形状为( ).A .等腰三角形B .等边三角形C .钝角三角形D .直角三角形3.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm 4.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( )A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形 5.下列四组数中不能构成直角三角形的一组是( )A .1,26B .3,5,4C .5,12,13D .3,2136.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =7.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A.8 B.9.6 C.10 D.128.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是()A.6 B.32πC.2πD.129.如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9 B.210C.326+D.1210.下列四组线段中,可以构成直角三角形的是()A.1、2、3B.2、3、4 C.1、2、3 D.4、5、6二、填空题11.将一副三角板按如图所示摆放成四边形ABCD,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD=32,则AB的长为__________.12.如图,△ABC是一个边长为1的等边三角形,BB1是△ABC的高,B1B2是△ABB1的高,B2B3是△AB1B2的高,……B n-1B n是△AB n-2B n-1的高,则B4B5的长是________,猜想B n-1B n的长是________.13.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.14.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .15.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.16.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .17.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.20.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为____________.三、解答题21.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.22.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.23.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.25.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =;(2)延长BD 与EF 交于点G .①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.26.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.27.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.28.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD .(1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.29.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===∴△BAD ≌△CAE (SAS ),∴BD=CE ,故①正确;②∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD ⊥CE ,故②正确;③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得BE 2=BD 2+DE 2,∵△ADE 为等腰直角三角形,∴AE=AD ,∴DE 2=2AD 2,∴BE 2=BD 2+DE 2=BD 2+2AD 2,在Rt △BDC 中,BD BC <,而BC 2=2AB 2,∴BD 2<2AB 2,∴()2222BE AD AB<+故④错误,综上,正确的个数为2个.故选:B.【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.2.D解析:D【分析】由等式可分别得到关于a、b、c的等式,从而分别计算得到a、b、c的值,再由222+=a b c的关系,可推导得到△ABC为直角三角形.【详解】∵2(1)0a c-=又∵()210ac⎧-≥≥-≥⎪⎩∴()21=0ac⎧-⎪⎪⎨⎪⎪⎩∴12abc⎧=⎪=⎨⎪=⎩∴222+=a b c∴△ABC为直角三角形故选:D.【点睛】本题考察了平方、二次根式、绝对值和勾股定理逆定理的知识;求解的关键是熟练掌握二次根式、绝对值和勾股定理逆定理,从而完成求解.3.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC =1+1+1=3(cm ).故选:D .【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.4.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.5.A解析:A【解析】A. 12+22)2,不能构成直角三角形,故此选项符合题意;B. 32+42=52,能构成直角三角形,故此选项不符合题意;C. 52+122=132,能构成直角三角形,故此选项不符合题意;D. 32+222,能构成直角三角形,故此选项不符合题意;故选A.6.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.7.B解析:B【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B. 【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.8.A【分析】分别求出以AB、AC、BC为直径的半圆及△ABC的面积,再根据S阴影=S1+S2+S△ABC-S3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=98π(cm2);以BC为直径的半圆的面积S3=258π(cm2);S△ABC=6(cm2);∴S阴影=S1+S2+S△ABC-S3=6(cm2);故选A.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22(24)2210++=.故选:B.【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.10.A【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A 、12+)2=2∴以1,故本选项正确;B 、22+32≠42 ∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误; C 、12+22≠32 ∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;D 、 42+52≠62 ∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;故选A..【点睛】本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键.二、填空题11.【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=∴6=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =, ∵222AC BC AB +=, ∴22216()2AB AB +=,解得AB=故答案为:【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键.12.32 2n 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=2,求出△ABC 的面积是4;求出113ABB BCB S S ==B 1B 2=4,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2=4,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3=8,B 3B 4,B 4B 5,…,B n﹣1B n=3.故答案为:332,32n.【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.13.75或6或9 4【分析】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP 时,分别求出BP的长度,继而可求得t值.【详解】在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,∴BC=6(cm);①当AB=BP=7.5cm时,如图1,t=7.52=3.75(秒);②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);③当BP=AP时,如图3,AP=BP=2tcm,CP=(4.5﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,所以4t2=4.52+(4.5﹣2t)2,解得:t=94,综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=94.故答案为:3.75或6或94.【点睛】此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.14.36或84【分析】过点A作AD⊥BC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC 的长度,然后根据三角形的面积公式列式计算即可得解.【详解】解:过点A 作AD ⊥BC 于点D ,∵BC 边上的高为8cm ,∴AD=8cm ,∵AC=17cm ,由勾股定理得: 22221086BD AB AD =-=-=cm ,222217815CD AC AD =-=-=cm ,如图1,点D 在边BC 上时,BC=BD+CD =6+15=21cm ,∴△ABC 的面积=12BC AD =12×21×8=84cm 2, 如图2,点D 在CB 的延长线上时,BC= CD −BD =15−6=9cm , ∴△ABC 的面积=12BC AD =12×9×8=36 cm 2, 综上所述,△ABC 的面积为36 cm 2或84 cm 2,故答案为:36或84.【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.15.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,PM=22221086PD DM -=-= ,当P 在M 的左边时,CP=10-6=4,则P 的坐标是(4,8);当P 在M 的右侧时,CP=10+6=16,则P 的坐标是(16,8).故P 的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.16.55【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长2222105PD QD +=+5cm ),故答案为:5【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.172【分析】连接CE .根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE ,【详解】解:(1)如图,连接CD 、CF.∵Rt △ABC 中,∠ACB=90°,AC=BC ,D 为AB 边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF ,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC ,∴∠DCF-∠DCA=∠DFC-∠DFE ,即∠GCF=∠GFC ,∴GC=GF ,∴EG+CG=EG+GF=EF=BE ,∴△ECG 的周长2, 2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式. 19.78. 【解析】 ∵∠C =90°,AB =5,BC =4,∴AC 2254-.∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78. 20.5【解析】试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,∵△ABC 是等腰直角三角形,∴AB =CB ,∠ABC =90°,AD =DC ,∴∠BAC =∠C =45°,∵∠ADF =∠CDB ,∴△ADF ≌△CDB ,∴AF =BC ,∠FAD =∠C =45°,∵AE =3,BE =1,∴AB =BC =4,∴AF =4,∵∠BAF =∠BAC +∠FAD =45°+45°=90°,∴由勾股定理得:EF 22AF AE +2243+,∵AC 是BF 的垂直平分线,∴BP =PF ,∴PB +PE =PF +PE =EF =5,故答案为5.点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.三、解答题21.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.(3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD2+CE2=2(AP2+CP2),再判断出CD2+CE2=2AC2.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(2)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.22.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD ≌△ECD (SAS ),∴DE =DA ,∠A =∠CED =60°,∴∠CED =2∠CBA ,∵∠CED =∠CBA +∠BDE ,∴∠CBA =∠BDE ,∴DE =BE ,∴AD =BE ,∵BE =BC−CE =BC−AC ,∴BC−AC =AD .(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.23.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=3BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(3BF)2∴DE2=(EB+12AD)2+(32AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.24.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中, AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB 2222126AB AO -=-3∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE 222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD ()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273,在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.25.(1)见解析;(2)①见解析;②2.【分析】(1)当D 、E 两点重合时,则AD=CD ,然后由等边三角形的性质可得∠CBD 的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=12BC CG⋅,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴1302DBC ABC∠=∠=︒,∵CF CD=,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴BD DF=;(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵AE CD=,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=120°,∴△BHE≌△ECF(SAS),∴∠EBH=∠FEC,EB=EF,∵BA=BC,∠A=∠ACB=60°,AE=CD,∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;②∵∠BGE=60°,∠EBD=30°,∴∠BEG=90°,∵EB=EF,∴∠F=∠EBF=45°,∵∠EBG =30°,BG =4,∴EG =2,BE =23, ∴BF =226BE =,232GF =-,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,∴6BM ME MF ===,∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =+,266262CF =--=-, ∴()262312CN FN ==⨯-=-,∴()2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB ,∴62CG CF ==-,∴△BCG 的面积=()()116262222BC CG ⋅=+-=. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.26.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆203123. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+ 则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤< 当2a c b +=时,则1c k a =≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+ 则2b c c b b c +-<<+,解得3c b <,即3c k b =<故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x = 2222,3AB BD x AD AB BD x ∴===-=22222(3)(4)224AC AD CD x x x x =+=++=++11432322ABC S BC AD x x ∆=⋅=⨯⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即222444x x x +++=,解得103x =则10203232333ABC S x ∆==⨯= 当2AC AB BC +=时,即222428x x x +++=,解得65x =则6123232355ABC S x ∆==⨯= 当2BC AB AC +=时,即242424x x x +=++,整理得234120x x ++=,此方程没有实数根综上,ABC ∆的面积为2033或1235.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.27.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】。

《17.2 勾股定理的逆定理》课件(含习题)

《17.2 勾股定理的逆定理》课件(含习题)

∴AC2+BC2=52+122=169, 又∵AB2=169, ∴AC2+BC2=AB2,
C 3 D 13
4
∴∠ACB=90°,
A
∴S四边形ABCD=S△ABC-S△ADC=30-6=24(m2).
当堂练习
1.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,
则b的面积为( C )
c
b
构造两直角边分
别为a,b的 Rt△A′B′C′
B aC
△ABC≌ △ A′B′C′
证明:作Rt△A′B′C′, 使∠C′=900,A′C′=b,B′C′=a
则 AB 2 BC 2 AC 2 a2 b2
a2 b2 c2
AB 2 c2 AB c
在ABC和ABC中
AC AC
④若∠A:∠B:∠C=5:2:3,则△ABC是直角三角形.
以上命题中的假命题个数是( A )
A.1
B.2
C.3
D.4
3. 一根24m的绳子,折成三边长为三个连续偶数的三角 形,则三边长分别为 6m,8cm,10cm ,此三角形的形状为
直角三角形 . 4. 命题:对顶角相等,其逆命题是: 相等的角是对顶角 .
在 Rt△ABC 中,
C
AC= AB2+BC2= 32+42 =5
4
12
在△ACD 中,
B
AC2+CD2=52+122=169,AD2=169, 3
D
所以△ACD 是直角三角形,
A
13
且∠ACD=90°。
所以四边形 ABCD 的面积
=SRt△ABC+S Rt△ACD=6+30=36.

初中数学勾股定理及逆定理练习题(附答案)

初中数学勾股定理及逆定理练习题(附答案)

初中数学勾股定理及逆定理练习题一、解答题1.如图所示的一块地,4,3,13,12,AD m CD m AB m BC m ====求这块地的面积.2.如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点(1)判断ABC 的形状,并说明理由.(2)求BC 边上的高.3.如图,在Rt ABC 中90,7cm C BC ∠=︒=.动点P 在线段AC 上从点C 出发,沿CA 方向运动;动点Q 在线段BC 上同时从点B 出发,沿BC 方向运动.如果点,P Q 的运动速度均为1cm /s ,那么运动几秒时,它们相距5cm4.如图,在ABC ∆中,45ABC ∠=︒,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 交于点F .(1)求证:ACD FBD ∆≅∆(2)若5,1AB AD ==,求BF 的长5.如图,将长方形ABCD 沿直线EF 折叠,使点C 与点A 重合,折痕交AD 于点E ,交BC 于点F ,连接CE .(1)求证:AE AF CE CF===;(2)设AE a=,请写出一个a b c,,三者之间的数量关系式.=,DC c=,ED b6.如图,在边长为6的正方形ABCD中,E是边CD的中点,将ADE△,延长△沿AE对折至AFEEF交BC于点G,连接AG.(1)求证:ABG AFG△△;≅(2)求BG的长.7.如图,长方体盒子的长、宽、高分别是12cm,8cm,30cm,在AB的中点C处有一滴蜂蜜,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.8.如图,在正方形ABCD中,AB边上有一点3E AE=,,1+EB=,在AC上有一点P,使EP BP 最短,求EP BP+的最短长度.9.如图,四边形ABCD 是舞蹈训练场地,要在场地上铺上草坪网,经过测量得知:90B ∠=︒,24m AB =,7m BC =,15m CD =,20m AD =.(1)判断D ∠是不是直角,并说明理由;(2)求四边形ABCD 需要铺的草坪网的面积.10.台风是一种自然灾害,它以台风中心为圆心在周围数百千米的范围内形成极端气旋,有极强的破坏力如图,有一台风中心由A 向B 移动,已知点C 为一海港,且点C 与直线AB 上的两点,A B 的距离分别为300km AC =,400km BC =,且500km AB =,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C 受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?11.如图,每个小正方形的边长是1.(1)求ABC △的周长.(2)画出BC 边上的高,并求出ABC △的面积.(3)画出AB 边上的高,并求出高.12.如图,在ABC △中,20AB =,12AC =,16BC =,把ABC △折叠,使AB 落在直线AC 上,求重叠部分(阴影部分)面积.13.已知ABC △的三边分别为a b c ,,,且4a b +=,1ab =,c =ABC △的形状. 14.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力据气象观测,距沿海某城市A 正南方向240km 的B 处有一台风中心,其中心风力为12级,每远离台风中心25km ,风力就会减弱一级该台风中心现正以20km/h 的速度沿北偏东30°方向往C 处移动,如图,且台风中心的风力不变若城市所受风力到达或超过4级,则称受到台风影响(提示:在直角三角形中,30°角所对的直角边等于斜边的一半)(1)城市A 是否会受到台风影响?请说明理由(2)若城市A 会受到台风影响,那么台风影响该城市的时间有多长?(3)若城市A 会受到台风影响,那么该城市受到台风影响的最大风力为几级?15.如图,在长方形纸片ABCD 中,3cm AB =,9cm AD =,将此长方形纸片折叠,使点D 与点B 重合,折痕为EF ,求ABE △的面积.16.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D'处,BC交AD'于点BC=,求阴影部分的面积.,,8cm6cmE AB=17.如图,点D是ABC△,且4△内一点,把ABD△绕点B顺时针旋转60°得到CBEAD=,CD=.3BD=,5(1)判断DEC△的形状,并说明理由.(2)求ADB∠的度数.18.在一次意外事故中,有一根高为16m的电线杆在A处断裂,如图,电线杆的顶部C落在离电线杆底部B处8m远的地方,求电线杆断裂处A到地面的距离.19.如图,在等腰直角三角形ABC中,90∠=︒,点D为AC边的中点,过点D作DE DFABC⊥,CF=,求EF的长.交AB于点E,交BC于点F,若4AE=,320.八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面.你能将旗杆的高度求出来吗?21.如图,已知一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长17米,云梯底部距地面2 米,问发生火灾的住户窗口距地面多高?22.已知a,b,c,为△ABC 的三边长,且满足a 2 +b 2+c 2+50=6a+8b+10c,试判断△ABC 的形状.23.如图所示,在长方形ABCD 中, 8AB =,4BC =,将长方形沿AC 折叠,使点D 落在点D '处,求重叠部分AFC ∆的面积.24.如图,一个梯子AB 长25米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为15米,梯子滑动后停在DE 的位置上,测得BD 长为5米,求梯子顶端A 下落了多少米?25.美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.参考答案1.答案:解:连接AC∵90,4,3, 5.ADC AD CD AC ∠=︒==∴=由13,12AB BC ==可得222,AC BC AB ABC +=∴△是直角三角形∴30S ABC =△6,S ACD =△30624-=所以这块土地的面积为224m解析:2.答案:(1)结论:ABC 是直角三角形.理由:2222222221865,2313,6452BC AC AB =+==+==+=,222AC AB BC ∴+=, ∴ABC 是直角三角形.(2)设BC 边上的高为则有1122AC AB BC h ⋅⋅=⋅⋅, 13,AC AB BC ===.解析: 90,2ADB AD BD h ︒∠==∴ 3.答案:设运动x 秒时,它们相距5cm ,则()7cm,cm CQ x CP x =-= 根据题意得:()22275x x =+-解得123,4x x ==答:运动3秒或4秒时,它们相距5cm解析:4.答案:(1)证明:45,ABC CD AB ︒∠=⊥90CDB CDA ∴∠=∠=︒CDB ∴∆为等腰直角三角形BD CD ∴=BE AC ⊥90CEF FDB ∴∠=∠=︒又CFE BFD ∠=∠ACD FBD ∴∠=∠在ACD ∆和FBD ∆中,90ACD FBD BD CDCDA FDB ∠=∠⎧⎪=⎨⎪∠=∠=⎩︒ ()ACD FBD ASA ∴∆≅∆(2)ACD FBD ∆≅∆ 1AD FD ∴==又5AB =4BD ∴=∴在Rt BDF ∆中,BF === 解析:5.答案:(1)证明:由题意知,AF CF =,AE CE =,AFE CFE ∠=∠. 在长方形ABCD 中,//AD BC ,AEF CFE ∴∠=∠, AFE AEF ∴∠=∠,AE AF EC CF ∴===.(2)由题意知,AE EC a ==,ED b =,DC c =, 由90D ∠=︒知,222ED DC CE += ,即222b c a +=. 解析:6.答案:(1)证明:在正方形ABCD 中,AD AB =,90D B ∠=∠=︒. 将ADE △沿AE 对折至AFE △,AD AF ∴=,DE EF =,90D AFE ∠=∠=︒.AB AF ∴=,90B AFG ∠=∠=︒.又AG AG =,()Rt Rt HL ABG AFG ∴≅△△.(2)ABG AFG ≅△△,BG FG ∴=.设()0BG FG x x ==>,则6GC x =-, E 为CD 的中点,3CE DE EF ∴===,3EG x ∴=+. 在Rt CEG △中,()()222363x x +-=+,解得2x =,2BG ∴=. 解析:7.答案:分为三种情况:(1)如图①,连接EC .在Rt EBC △中,12820cm EB =+=,13015cm 2BC =⨯=,由勾股定理得25cm EC =(2)如图②,连接EC .同理可得25cm CE >.(3)如图③,连接EC .同理可得25cm CE >. 综上可知,小虫爬行的最短路程是25cm.解析:8.答案:如图,连接BD 交AC 于O ,连接ED 与AC 交于点P ,连接BP .此时EP BP +最短.易知BD AC ⊥,且BO OD =,BP PD ∴=,则BP EP ED +=.3AE =,134AD AB ==+=,∴在Rt ADE △中,由勾股定理得222234255ED =+==, EP BP ∴+的最短长度为5.解析:9.答案:(1)D ∠是直角,理由如下:如图,连接AC ,90B ∠=︒,24m AB =,7m BC =,222AC AB BC ∴=+22247625=+=,()25m AC ∴=. 又15m CD =,20m AD =,222152025+=即222DC AD AC +=,ACD ∴△是直角三角形,且D ∠是直角. (2)ABC ADC ABCD S S S =+四边形△△()211234m 22AB BC AD DC =⋅+⋅=. 故四边形ABCD 需要铺的草坪网的面积为2234m . 解析:10.答案:(1)海港C 受台风影响.理由如下:如答图,过点C 作CD AB ⊥.300km AC =,400km BC =,500km AB =.222AC BC AB ∴+=,ABC ∴△是直角三角形,AC BC CD AB ∴⋅=⋅,300400500CD ∴⨯=⨯,()300400240km 500CD ⨯∴==.以台风中心为圆心周围250km 以内为受影响区域, ∴海港C 受台风影响(2)当250km EC =,250km FC =时,台风正好影响C 港口. 70km ED EC ==,140km EF ∴=.台风的速度为20km/h ,∴受台风影响的时间为()140207h ÷=,答:台风影响该海港持续的时间为7h.解析:11.答案:(1)AB AC =,2BC =,故ABC △的周长为2(2)作图略,ABC △的面积12442=⨯⨯=.(3)作图略,AB 边上的高42=⨯÷解析:12.答案:设CD x =在ABC △中,20AB =,12AC =,16BC =,222AC BC AB ∴+=,90ACB ∴∠=︒.把ABC △折叠,使AB 落在直线AC 上,BD B D '∴=16x =-,B C AB AC '=-20128=-=.在Rt DCB '△中,90DCB '∠=︒,222CD B C DB ''∴+=,()222816x x ∴+=-,解得6x =.∴重叠部分(阴影部分)的面积为1612363⨯⨯=. 解析:13.答案:ABC △是直角三角形理由如下22a b +()22a b ab =+-242114=-⨯=,2214c ==,222a b c ∴+=,ABC ∴△是直角三角形. 解析:14.答案:(1)城市A 会受到台风影响理由如下:如图,过点A 作AD BC ⊥于点D .在Rt ADB △中,30ABD ∠=︒,240km AB =,()11240120km 22AD AB ∴==⨯=.由题意知,距台风中心在()()12425200km -⨯=以内时,会受到台风影响.120200<,∴城市A 会受到台风影响..(2)设台风中心移至E 处时,城市A 开始受到台风影响,台风中心移至F 处时,城市A 脱离台风影响,连接AE AF ,,则200km AE AF ==.由勾股定理,得222DE AE AD =-222200120160=-=,160km DE ∴=.同理可得160km DF =.∴城市A 受台风影响的时间为()160216h 20⨯=. (3)当台风中心位于D 处时,对城市A 的影响最大.120km AD =,∴台风从D 处到A 处,其风力将减弱12025 4.8÷=(级),A ∴处的风力为12 4.87.2-=(级),∴该城市受到台风影响的最大风力为7.2级解析:15.答案:设cm BE x =,由折叠的性质知cm DE BE x ==,则()9cm AE AD DE x =-=-.在Rt ABE △中,由勾股定理,得222BE AE AB =+,即()22293x x =-+,解得5x =.5cm DE BE ∴==, ()9954cm AE x ∴=-=-=.12ABE S AB AE ∴=⋅△()21346cm 2=⨯⨯=. 解析:16.答案:由折叠的性质,可知D D '∠=∠,CD CD '=.又CD AB =,D B ∠=∠,CD AB '∴=,B D '∠=∠在ABE △和CD E '△中, AEB CED B D AB CD '∠=∠⎧⎪'∠=∠⎨⎪'=⎩,ABE CD E '∴≅△△,AE CE ∴=.设cm AE CE x ==,则()8cm BE x =-在Rt ABE △中,222AB BE AE +=即()22268x x +-=,254x ∴=,25cm 4CE AE ==. 12S CE AB ∴=⋅阴影()2125756cm 244=⨯⨯=. 解析:17.答案:(1)DEC △是直角三角形理由如下: ABD △绕点B 顺时针旋转60°得到CBE △,CBE ABD ∴≅△△,3BE BD ∴==,4CE AD ==又60DBE ∠=︒,BDE ∴△是等边三角形,3DE BD ∴==.又5CD =,222234DE CE ∴+=+22255CD ===,DEC ∴△是直角三角形(2)由(1)得90DEC ∠=︒,BDE △是等边三角形,60BED ∴∠=︒,BEC DEC BED ∴∠=∠+∠9060150=︒+︒=︒.ABD CBE ≅△△,150ADB BEC ∴∠=∠=︒.解析:18.答案:在Rt ABC △中,90ABC ∠=︒.设m AB x =,则()16m AC x =-由勾股定理,得222AB BC AC +=,即()222816x x +=-,解得6x =.故电线杆断裂处A 到地面的距离为6m.解析:19.答案:连接BD .在等腰直角三角形ABC 中,90ABC ∠=︒,点D 为AC 边的中点,BD AC ∴⊥,BD CD AD ==,45ABD ∠=︒,45C ∠=︒,ABD C ∴∠=∠. 又DE DF ⊥,BD AC ⊥,EDB BDF FDC BDF ∴∠+∠=∠+∠,EDB FDC ∴∠=∠,在EDB △与FDC △中,EBD C BD CD EDB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,()...EDB FDC A S A ∴≅△△,3BE CF ∴==,7AB ∴=,则7BC =,4BF ∴=.在Rt EBF △中,222EF BE BF =+223425=+=,5EF ∴=.解析:20.答案:解:能将旗杆的长度求出来理由如下:设旗杆的长度为x 米,根据勾股定理得:2225(1)x x +=+解得:12x =答:旗杆的高度为12米.解析:21.答案:设窗口距地面高为(2)x +米,根据勾股定理有222178x =-,∴15x =,则217x +=,所以窗口距地面高17米.解析:22.答案:△ABC 是直角三角形解析:∵a 2+b 2+c 2+50=6a+8b+10c,∴a 2-6a+9+b 2-8b+16+c 2-10c+25=0,即(a-3)2+(b-4)2+(c-5)2=0,∴a=3,b=4,c=5,∵32+42=52,∴△ABC 是直角三角形23.答案:在长方形ABCD 中,∵//AB CD ,∴BAC DCA ∠=∠.又由折叠的性质可得DCA FCA ∠=∠,∴BAC FCA ∠=∠,∴AF CF =.设AF x =,则8BF AB AF x =-=-.在Rt BCF ∆中, 4BC =,8BF x =-,CF x =,90B ∠=︒,∴()22248x x +-=.解得5x =. ∴11541022AFC S AF BC ∆=⋅=⨯⨯=. 解析:24.答案:5米解析:在RT ABC ∆中,根据勾股定理得: 20AC =米,由于梯子的长度不变,在RT CDE ∆中,根据勾股定理,求出CE ,从而即可得出答案.在Rt ABC ∆中, 25AB =米, 15BC =米, 故20AC ===米,在Rt ECD ∆中, 25AB DE ==米, ()15520CD =+=米, 故15EC ==米,故20155AE AC CE =-=-=米.答:梯子顶端A 下落了5米.考点:勾股定理的应用25.答案: 因为 ()()22211222S a b a ab b =+=++梯形, 又因为S 梯形221111(2)2222ab ba c ab c =++=+ 所以22211(2)(2)22a ab b ab c ++=+得c2=a2+b2.解析:试题分析:此等腰梯形的面积有三部分组成,利用等腰梯形的面积等于三个直角三角形的面积之和列出方程并整理.考点:勾股定理的证明.。

数学勾股定理(讲义及答案)附解析

数学勾股定理(讲义及答案)附解析

一、选择题1.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .92.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若CE=1,AB=42,则下列结论一定正确的个数是( )①BC=2CD ;②BD>CE ;③∠CED+∠DFB=2∠EDF ;④△DCE 与△BDF 的周长相等; A .1个B .2个C .3个D .4个 3.以线段a 、b 、c 的长为边长能构成直角三角形的是( ) A .a =3,b=4,c=6B .a =1,b=2,c=3C .a =5,b=6,c=8D .a =3,b=2,c=54.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( ) A .a =7,b =8,c =10B .a =41,b =4,c =5C .a =3,b =2,c =5D .a =3,b =4,c =65.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6 6.下列各组线段能构成直角三角形的一组是( )A .30,40,60B .7,12,13C .6,8,10D .3,4,67.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西15︒B.南偏西75°C.南偏东15︒或北偏西15︒D.南偏西15︒或北偏东15︒8.如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是()A.杨辉B.刘徽C.祖冲之D.赵爽9.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,B C'交AD于点E,则线段DE的长为()A.3 B.154C.5 D.15210.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,设正方形ADOF的边长为x,则210x x+=()A.12 B.16 C.20 D.24二、填空题11.如图,AB=12,AB⊥BC于点B, AB⊥AD于点A,AD=5,BC=10,E是CD的中点,则AE的长是____ ___.12.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).13.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.14.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.15.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.16.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.17.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD,则线段BD的长为_____.18.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有_____________ (填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB=150°④∠APC=135°19.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处.蚂蚁爬行的最短路程为_______cm.20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB,且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD的长是____________.三、解答题21.如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.22.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.23.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.26.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.28.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.30.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设AB=c ,AC=b ,BC=a ,用a 、b 、c 分别表示'A BC ,'AB C △,'ABC △的面积,再利用Rt ABC 得b 2+c 2=a 2,求得c 值代入即可求得的面积'ABC △的面积.【详解】设AB=c ,AC=b ,BC=a ,由题意得'A BC 的面积=11022a a ⋅⋅=,'AB C △的面积=142b ⋅=∴2a = 2b =在Rt △ABC 中,∠BAC=90°,b 2+c 2=a 2,∴c 2=a 2-b 2=∴'ABC △的面积=212c ⋅=6= 故此题选B【点睛】此题考察勾股定理的运用,用直角三角形的三边分别表示三个等边三角形的面积,运用勾股定理的等式求得第三个三角形的面积2.D解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AC=BC=4,则AE=3=DE ,由勾股定理可得, ①正确;1>,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)= 135°-∠CDF=135°-(∠DFB+45°)= 90°-∠DFB ,故∠CED+∠DFB=90°=2∠EDF ,③正确;△DCE 的周长,△BDF 的周长+4-4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.3.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A 、222346+≠,C 、222568+≠,D 、2222+≠,故错误;B 、22213+==,能构成直角三角形,本选项正确. 故选B .【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.4.B解析:B【分析】根据勾股定理逆定理对每个选项一一判断即可.【详解】A 、∵72+82≠102,∴△ABC 不是直角三角形;B 、∵52+42=)2,∴△ABC 是直角三角形;C 、∵2222,∴△ABC 不是直角三角形;D 、∵32+42≠62,∴△ABC 不是直角三角形;故选:B .【点睛】本题主要考查勾股定理逆定理,熟记定理是解题关键.5.C解析:C【详解】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .考点:勾股定理的证明.6.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.7.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.8.D解析:D【分析】3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.【详解】由题意,可知这位伟大的数学家是赵爽.故选D .【点睛】考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.9.B解析:B【分析】首先根据题意得到BE=DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题.【详解】解:设ED=x ,则AE=6-x ,∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=154,∴ED=154.故选:B.【点睛】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.10.D解析:D【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,整理方程即可.【详解】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故选:D.【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二、填空题11.5【详解】解:如图,延长AE交BC于点F,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=,6.52AF AE == 故答案为:6.5.12.①③【分析】 ①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③; ④由BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===, ∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.13.(21009,0).【分析】根据等腰直角三角形的性质得到OA 1=1,OA 2=1,OA 3=2,OA 4=3,…OA 2019=2018,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.【详解】∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=1,OA 2,OA 3=)2,…,OA 2019=)2018,∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,∴2019÷8=252…3,∴点A 2019在x 轴正半轴上.∵OA 2019=)2018,∴点A 2019的坐标为(2018,0)即(21009,0).故答案为:(21009,0).【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征. 14.6或2.【分析】由于已知没有图形,当Rt △ABC 固定后,根据“以BC 为斜边作等腰直角△BCD”可知分两种情况讨论:①当D 点在BC 上方时,如图1,把△ABD 绕点D 逆时针旋转90°得到△DCE ,证明A 、C 、E 三点共线,在等腰Rt △ADE 中,利用勾股定理可求AD 长;②当D 点在BC 下方时,如图2,把△BAD 绕点D 顺时针旋转90°得到△CED ,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D 点在BC 上方时,如图1所示,把△ABD 绕点D 逆时针旋转90°,得到△DCE ,则∠ABD=∠ECD,CE=AB=22,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.15.232【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4, ∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:23或2【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.16.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE是等腰直角三角形==所以20所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.17.7【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD故答案为:7【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.18.①②③【解析】【详解】解:∵△ABC是等边三角形,∴∠=,ABC60∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠=∠+∠=∠+∠=∠=,PBQ PBC CBQ PBC ABP ABC60∴△BPQ是等边三角形,①正确.∴PQ=BP=4,222222PQ QC PC+=+===,4325,525222∴+=,PQ QC PC∴∠=,即△PQC是直角三角形,②正确.PQC90∵△BPQ是等边三角形,∴∠=∠=,60PBQ BQP∵△BQC≌△BPA,∴∠APB=∠B QC,∴∠=∠=+=,③正确.BPA BQC6090150∴∠=---∠=-∠,APC QPC QPC36015060150,,∠=≠PQC PQ QC9045QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.19.100【解析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm 和50cm ,则所走的最短线段AB==10cm ;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm 和30cm ,所以走的最短线段AB==10cm ;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB==100cm;三种情况比较而言,第三种情况最短.故答案为100cm.点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.20.3或3或15【分析】根据直角三角形的性质求出BC,勾股定理求出AB,根据直角三角形的性质列式计算即可.【详解】解:如图∵∠B=90°,∠A=30°,∴BC=12AC=12×8=4,由勾股定理得,22228443AC BC-=-=43333AD∴==当点P在AC上时,∠A=30°,AP=2PD,∴∠ADP=90°,则AD2+PD2=AP2,即(32=(2PD)2-PD2,解得,PD=3,当点P在AB上时,AP=2PD,3∴3当点P在BC上时,AP=2PD,设PD=x ,则AP=2x ,由勾股定理得,BP 2=PD 2-BD 2=x 2-3,()(22223x x ∴-=-解得,故答案为:3【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°, ∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15,答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.(1)见解析;(2)见解析;(3)43或63【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =3∴AC ()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC为等边三角形,过D作DG⊥AC于G,则∠ADG=160302⨯︒=︒,∴122AG AD==,22224223DG AD AG=-=-=,∴S△ADC=1423432⨯⨯=,S△ABC=12AB×BC=23,∴S四边形ABCD=S△ADC+S△ABC=63;②当CD=CB=BD=23时,如图所示:∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是或【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.23.(1)AE=BD且AE⊥BD;(2)6;(3)PQ为定值6,图形见解析【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC=45°,可得AE⊥BD;(2)由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长;(3)分两种情况讨论,由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC,可得AE⊥BD,由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长.【详解】解:(1)AE=BD,AE⊥BD,理由如下:∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE⊥BD;(2)∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;(3)如图3,若点D在AB的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.24.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF ,CE=CE∴△ECF ≌△ECD∴EF=ED在Rt △EFG 中,EF 2=FG 2+EG 2又∵EG=EB+BG∴EG=EB+12BF , ∴EF 2=(EB+12BF )2+(32BF )2 ∴DE 2= (EB+12AD )2+(3AD )2 ∴DE 2= EB 2+AD 2+EB ·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°,∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH , ∴222GH BG BH BG =+=,∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.26.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC 平分∠BAD ,∴D′点落在AB 上,∵BC=10,∴D′C=BC ,过点C 作CE ⊥AB 于点E ,则D′E=BE ,设D′E=BE=x ,在Rt △CEB 中,CE 2=CB 2-BE 2=102-x 2,在Rt △CEA 中,CE 2=AC 2-AE 2=172-(9+x )2.∴102-x 2=172-(9+x )2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B 不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.27.(1)①详见解析;(2)2222CD n =+-1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90° ∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+- 又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+=∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90° ∴由勾股定理得222DFCD CF CD =+=又DF=BF-BD=AD-BD∴2AD BD CD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.28.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,∴ab +a 2=c 2,在Rt △ABC 中,∠C =90°,根据勾股定理得,a 2+b 2=c 2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;。

勾股定理(基础篇)(有答案)

勾股定理(基础篇)(有答案)

勾股定理 基础题1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是_________________ 2.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为_________________ 3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为_________________4.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是_________________ 5.等腰三角形底边上的高为8,周长为32,则三角形的面积为_________________6.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )7.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为_________________8.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm 9.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。

另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。

10.如图,在边长为c 的正方形中,有四个斜边为c 的全等直角三角形,已知其直角边长为a ,b.利用这个图试说明勾股定理?150°20m30m第6题图COA BD EF第8题图A第9题图第26题图11.如图,在△ABC 中,AB=AC ,P 为BC 上任意一点,请用学过的知识说明:AB 2-AP 2=PB ×PC 。

北师大版初中数学八年级上册知识讲解,巩固练习(教学资料,补习资料):第一章 勾股定理(基础)

北师大版初中数学八年级上册知识讲解,巩固练习(教学资料,补习资料):第一章 勾股定理(基础)

第一章 勾股定理(基础)勾股定理(基础)【学习目标】1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.【要点梳理】要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,, .要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以. a b ,c 222a b c +=222a c b =-222b c a =-()222c a b ab =+-方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以. 要点三、勾股定理的作用1. 已知直角三角形的任意两条边长,求第三边;2. 用于解决带有平方关系的证明问题;3. 与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、.(1)若=5,=12,求;(2)若=26,=24,求.【思路点拨】利用勾股定理来求未知边长.【答案与解析】解:(1)因为△ABC 中,∠C =90°,,=5,=12,所以.所以=13.(2)因为△ABC 中,∠C =90°,,=26,=24,所以.所以=10.【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.举一反三:【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、.(1)已知=6,=10,求;(2)已知,=32,求、.【答案】a b c a b c c b a 222a b c +=222a b c +=a b 2222251225144169c a b =+=+=+=c 222a b c +=c b 222222624676576100a c b =-=-=-=a a b c b c a :3:5a c =b a c解:(1)∵ ∠C =90°,=6,=10,∴ ,∴ =8.(2)设,,∵ ∠C =90°,=32,∴ .即.解得=8.∴ ,.类型二、与勾股定理有关的证明2、(2018•丰台区一模)阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b ,斜边为c ,然后按图1的方法将它们摆成正方形.由图1可以得到(a+b )2=4×, 整理,得a 2+2ab+b 2=2ab+c 2.所以a 2+b 2=c 2.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到 ,整理,得 ,所以 .【答案与解析】证明:∵S 大正方形=c 2,S 大正方形=4S △+S 小正方形=4×ab+(b ﹣a )2,∴c 2=4×ab+(b ﹣a )2,整理,得2ab+b 2﹣2ab+a 2=c 2,∴c 2=a 2+b 2. b c 2222210664a c b =-=-=a 3a k =5c k =b 222a b c +=222(3)32(5)k k +=k 33824a k ==⨯=55840c k ==⨯=故答案是:;2ab+b 2﹣2ab+a 2=c 2;a 2+b 2=c 2.【总结升华】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.举一反三: 【变式】如图,在△ABC 中,∠C =90°,D 为BC 边的中点,DE ⊥AB 于E ,则AE 2-BE 2等于( )A .AC 2B .BD 2C .BC 2D .DE 2【答案】连接AD构造直角三角形,得,选A .类型三、与勾股定理有关的线段长3、如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .6【答案】D ;【解析】解:设AB =,则AF =,∵ △ABE 折叠后的图形为△AFE ,∴ △ABE ≌△AFE .BE =EF ,EC =BC -BE =8-3=5,在Rt △EFC 中,由勾股定理解得FC =4,在Rt △ABC 中,,解得. 【总结升华】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解. 类型四、与勾股定理有关的面积计算x x ()22284x x +=+6x =4、如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .6B .5C .11D .16【思路点拨】本题主要考察了全等三角形与勾股定理的综合应用,由b 是正方形,可求△ABC ≌△CDE .由勾股定理可求b 的面积=a 的面积+c 的面积.【答案】D 【解析】解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC ,在△ABC 和△CDE 中,∵∴△ABC ≌△CDE∴BC=DE∵ ∴∴b 的面积为5+11=16,故选D .【总结升华】此题巧妙的运用了勾股定理解决了面积问题,考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.举一反三:【变式】(2018•东莞模拟)如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S =4,S =9,S =8,S =10,则S=( )A.25B.31C.32D.40ABC CDE ACB DEC AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩222AB BC AC +=222AB DE AC +=1234【答案】解:如图,由题意得:AB 2=S 1+S 2=13,AC 2=S 3+S 4=18,∴BC 2=AB 2+AC 2=31,∴S=BC 2=31,故选B . 类型五、利用勾股定理解决实际问题5、(2019春•淄博期中)有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.【思路点拨】根据题中所给的条件可知,竹竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高.【答案与解析】解:设门高为x 尺,则竹竿长为(x +1)尺,根据勾股定理可得:x 2+42=(x +1)2,即x 2+16=x 2+2x +1,解得:x=7.5,竹竿高=7.5+1=8.5(尺)答:门高7.5尺,竹竿高8.5尺.【总结升华】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键.举一反三:【变式】如图所示,一旗杆在离地面5处断裂,旗杆顶部落在离底部12处,则旗杆折断前有多高?【答案】解:因为旗杆是垂直于地面的,所以∠C =90°,BC =5,AC =12,∴ .∴ ().∴ BC +AB =5+13=18().∴ 旗杆折断前的高度为18.mm m m 22222512169AB BC AC =+=+=13AB =m m m勾股定理(基础)【巩固练习】一.选择题1.(2019•荆门)如图,△ABC 中,AB=AC,AD 是∠BAC 的平分线.已知AB=5,AD=3,则BC 的长为( )A .5B .6C .8D .102.若直角三角形的三边长分别为2,4,,则的值可能有( )A .1个B .2个C .3个D .4个3. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( )A .12米B .10米C .8米D .6米4.Rt △ABC 中,斜边BC =2,则的值为( )A .8B .4C .6D .无法计算5.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( )A .4B .6C .8D .56.(2018•深圳模拟)如图,在△ABC 中,AB=AC=5,P 是BC 边上除B 、C 点外的任意一点,则代数式AP 2+PB•PC 等于( )A .25B .15C .20D .30二.填空题7.(2019•黔东南州一模)在Rt △ABC 中,∠ACB=90°,AB=5cm ,BC=3cm ,CD ⊥AB 于D ,CD= .8.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______米路,却踩伤了花草.x x 222AB AC BC ++9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆孔中心A 和B 的距离为 mm .10.如图,有两棵树,一棵高8,另一棵高2,两树相距8,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______.11.如图,直线经过正方形ABCD 的顶点B ,点A 、C 到直线的距离分别是6、8,则正方形的边长是______.12.(2018•延庆县一模)学习勾股定理相关内容后,张老师请同学们交流这样的一个问题:“已知直角三角形的两条边长分别为3,4,请你求出第三边.”张华同学通过计算得到第三边是5,你认为张华的答案是否正确: ,你的理由是 .三.解答题13. 如图四边形ABCD 的周长为42,AB =AD =12,∠A =60°,∠D =150°,求BC 的长.14. 已知在三角形ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,CD =3,BD =5,求AC的m m mm ll长.15.(2018春•滨州月考)如图所示的一块地,AD=9m ,CD=12m ,∠ADC=90°,AB=39m ,BC=36m ,求这块地的面积.【答案与解析】一.选择题1.【答案】C ;【解析】勾股定理.2.【答案】B ;【解析】可能是直角边,也可能是斜边.3.【答案】A ;【解析】设旗杆的高度为米,则,解得米. 4.【答案】A ;【解析】.5.【答案】B ;【解析】AD =8,,∴BD=6.6.【答案】A.【解析】解:过点A 作AD⊥BC 于D ,∵AB=AC=5,∠ADP=∠ADB=90°,∴BD=CD,根据勾股定理得:PA 2=PD 2+AD 2,AD 2+BD 2=AB 2,∴AP 2+PB•PC=AP 2+(BD+PD )(CD ﹣PD )=AP 2+(BD+PD )(BD ﹣PD )=AP 2+BD 2﹣PD 2=AP 2﹣PD 2+BD 2=AD 2+BD 2=AB 2=25.故选A.x x ()22215x x +=+12x =222228AB AC BC BC ==++2222210836BD AB AD =-=-=二.填空题7.【答案】; 8.【答案】2;【解析】走捷径是5米,少走了7-5=2米.9.【答案】150;【解析】∵AC=150﹣60=90mm ,BC=180﹣60=120mm ,,所以AB=150mm .10.【答案】10;【解析】∵=100,∴飞行距离为10m . 11.【答案】10;【解析】可证两个三角形全等,∵,∴正方形边长为10.12.【答案】不正确;若4为直角边,第三边为5;若4为斜边,第三边为. 【解析】解:张华的答案不正确,理由为:若4为直角边,第三边为=5; 若4为斜边,第三边为=. 三.解答题13.【解析】解:连接BD ,因为AB =AD =12,∠A =60°所以△ABD 是等边三角形,又因为∠D =150°,所以△BCD 是直角三角形,于是BC +CD =42-12-12=18,设BC =,从而CD =18-,利用勾股定理列方程得,解得=13,即BC 的长为13.14.【解析】解:过D 点作DE ⊥AB 于E ,∵AD 平分∠BAC ,∠C =90°,∴DE =CD =3,易证△ACD ≌△AED ,∴AE =AC ,在Rt △ DBE 中,∵BD =5 ,DE =3,∴BE =4在Rt △ACB 中,∠C =90°设AE =AC =,则AB =∵ ∴ 12522222500AB AC BC =+=()22882+-22268=10+x x 222(18)12x x -+=x x 4x +222AB AC BC =+()22248x x +=+解得,∴AC =6.15.【解析】解:解:连结AC ,由勾股定理可知AC===15, 又∵AC 2+BC 2=152+362=392=AB 2,∴△ABC 是直角三角形,故这块地的面积=S △ABC ﹣S △ACD =×15×36﹣×12×9=216(m )2,即这块地的面积是216平方米.勾股定理的逆定理(基础)【学习目标】1. 理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.【要点梳理】要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如).(2) 验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助: 6x=a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ≠+222a b c +<222a b c +>c 222x y z +=x y z 、、① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长; (2)(n ≥1,是自然数)是直角三角形的三条边长;(3) (是自然数)是直角三角形的三条边长;【典型例题】 类型一、勾股定理的逆定理1、判断由线段组成的三角形是不是直角三角形.(1)=7,=24,=25;(2)=,=1,=; (3),,();【思路点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【答案与解析】解:(1)∵ ,,∴ .∴ 由线段组成的三角形是直角三角形.(2)∵ ,,, ∴ . ∴ 由线段组成的三角形不是直角三角形.(3)∵ ,∴ ,.∵, ,a b c 、、t at bt ct 、、22121n n n -+,,1,n n >2222,21,221n n n n n ++++n 2222,,2m n m n mn -+,m n m n >、a b c ,,a b c a 43b c 3422a m n =-22b m n =+2c mn =0m n >>2222724625a b +=+=2225625c ==222a b c +=a b c ,,a b c >>222239251141616b c ⎛⎫+=+=+= ⎪⎝⎭2241639a ⎛⎫== ⎪⎝⎭222b c a +≠a b c ,,0m n >>222m n mn +>2222m n m n +>-2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++22224224()2b m n m m n n =+=++∴ .∴ 由线段组成的三角形是直角三角形.【总结升华】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证与是否具有相等关系,再根据结果判断是否为直角三角形.举一反三:【变式】(2018春•安陆市期中)发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有( )A.1组B.2组C.3组D.4组【答案】C.解:①∵82+152=172,∴能组成直角三角形;②∵52+122=132,∴能组成直角三角形;③122+152≠202,∴不能组成直角三角形;④72+242=252,∴能组成直角三角形.故选C .2、(2019春•丰城市期末)如图,已知四边形ABCD 中,∠B =∠90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.【思路点拨】由AB =3,BC =4,∠B =90°,应想到连接AC ,则在Rt △ABC 中即可求出△ABC 的面积,也可求出线段AC 的长.所以在△ACD 中,已知AC ,AD ,CD 三边长,判断这个三角形的形状,进而求得这个三角形的面积.【答案与解析】解:连接AC ,在△ABC 中,因为∠B =90°,AB =3,BC =4,所以,所以AC =5,在△ACD 中,AD =13,DC =12,AC =5,所以,即.所以△ACD 是直角三角形,且∠ACD =90°.所以222a c b +=a b c ,,2c 22a b+222223491625AC AB BC =+=+=+=2222225122514416913DC AC AD +=+=+===222DC AC AD +=1122ABC ACD ABCD S S S AB BC AC DC =+=+△△四边形.【总结升华】有关四边形的问题通常转化为三角形的问题来解,本题是勾股定理及逆定理的综合考察.类型二、勾股定理逆定理的应用3、已知:为的三边且满足,试判断的形状.【答案与解析】解:∵∴∴,∴△ABC 是直角三角形.【总结升华】此类问题中要判断的三角形一般都是特殊三角形,一定要善于把题目中已知的条件等式进行变形,从而得到三角形的三边关系.对条件等式进行变形常用的方法有配方法,因式分解法等.举一反三:【变式】请阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状.解:∵a 2c 2﹣b 2c 2=a 4﹣b 4, 第一步∴c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2), 第二步∴c 2=a 2+b 2, 第三步∴△ABC 为直角三角形. 第四步问:(1)在上述解题过程中,从哪一步开始出现错误: _________ ;(2)错误的原因是: _________ ;(3)本题正确的结论是: _________ .【答案】解:(1)第三步;(2)方程两边同时除以(a 2﹣b 2)时,没有考虑(a 2﹣b 2)的值有可能是0;(3)∵c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2) 113451222=⨯⨯+⨯⨯63036=+=,,a b c ABC ∆222338102426a b c a b c +++=++ABC ∆222338102426a b c a b c +++=++0338262410222=+-+-+-c c b b a a 0)13()12()5(222=-+-+-c b a 5,12,13a b c ===222c b a =+∴c2=a2+b2或a2﹣b2=0∵a2﹣b2=0∴a+b=0或a﹣b=0∵a+b≠0∴c2=a2+b2或a﹣b=0∴c2=a2+b2或a=b∴该三角形是直角三角形或等腰三角形.4、(2018•秦皇岛校级模拟)如图,铁路MN和铁路P Q在P点处交汇,点A处是第九十四中学,AP=160米,点A到铁路MN的距离为80米,假使火车行驶时,周围100米以内会受到噪音影响.(1)火车在铁路MN上沿PN方向行驶时,学校是否会受到影响?请说明理由.(2)如果受到影响,已知火车的速度是180千米/时那么学校受到影响的时间是多久?【思路点拨】(1)过点A作AE⊥MN于点E,由点A到铁路MN的距离为80米可知AE=80m,再由火车行驶时,周围100米以内会受到噪音影响即可直接得出结论;(2)以点A为圆心,100米为半径画圆,交直线MN于BC两点,连接AB、AC,则AB=AC=100m,在Rt△ABE中利用勾股定理求出BE的长,进而可得出BC的长,根据火车的速度是180千米/时求出火车经过BC是所用的时间即可.【答案与解析】解:(1)会受到影响.过点A作AE⊥MN于点E,∵点A到铁路MN的距离为80米,∴AE=80m,∵周围100米以内会受到噪音影响,80<100,∴学校会受到影响;(2)以点A为圆心,100米为半径画圆,交直线MN于BC两点,连接AB、AC,则AB=AC=100m,在Rt△ABE中,∵AB=100m,AE=80m,∴BE===60m,∴BC=2BE=120m,∵火车的速度是180千米/时=50m/s,∴t===2.4s.答:学校受到影响的时间是2.4秒.【总结升华】题考查的是勾股定理的应用,在解答此类题目时要根据题意作出辅助线,构造出直角三角形,再利用勾股定理求解.【巩固练习】一.选择题1. (2019春•庆云县期末)下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )A .a=1.5,b=2,c=3B .a=7,b=24,c=25C .a=6,b=8,c=10D .a=3,b=4,c=52. 如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( ).A.CD 、EF 、GHB.AB 、EF 、GHC.AB 、CF 、EFD.GH 、AB 、CD 3. 下列说法:(1)在△ABC 中,若a 2+b 2≠c 2,则△ABC 不是直角三角形;(2)若△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2;(3)在△ABC 中,若a 2+b 2=c 2,则∠C=90°;(4)直角三角形的两条直角边的长分别为5和12,则斜边上的高为.其中说法正确的有( ).A.4个B.3个C.2个D.1个4.(2018春•临沂期末)如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对5.已知三角形的三边长为(其中),则此三角形( ). A.一定是等边三角形 B.一定是等腰三角形1n n m +、、221m n =+C.一定是直角三角形D.形状无法确定6.三角形的三边长分别为 、、(都是正整数),则这个三角形是( ).A .直角三角形B . 钝角三角形C .锐角三角形D .不能确定二.填空题7.(2019春•岳池县期末)若三角形的边长分别为6、8、10,则它的最长边上的高为 .8.(2018•本溪模拟)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的点C 有 个.9. 已知,则由此为边的三角形是 三角形.10.在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是 .11.若一个三角形的三边之比为5:12:13,且周长为60,则它的面积为 .12.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.三.解答题13.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =,求证:AF ⊥FE .14.观察下列各式:,,,,…,22a b +2ab 22a b -a b、0435=-+-+-Z y x x y z ,,cm CB 41322345+=2228610+=22215817+=222241026+=你有没有发现其中的规律?请用含的代数式表示此规律,再根据规律写出接下来的式子.15.(2018春•石林县校级月考)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,求这块空地的面积?【答案与解析】一.选择题1.【答案】A【解析】∵1.52+22≠32,故构不成直角三角形.2.【答案】B【解析】AB 2=22+22=8,CD 2=42+22=20,EF 2=12+22=5,GH 2=32+22=13,所以AB 2+EF 2=GH 2.3.【答案】B【解析】(1)根据勾股定理的逆定理,若a 2+c 2=b 2,则△ABC 也为直角三角形,故错误;(2)符合勾股定理,故正确;(3)符合勾股定理的逆定理,故正确;(4)首先根据勾股定理计算其斜边是13,再根据面积计算其斜边上的高,该高等于两条直角边的乘积除以斜边,故正确.4.【答案】A.【解析】解:∵正方形小方格边长为1,∴BC==2, AC==, AB==, 在△ABC 中,∵BC 2+AC 2=52+13=65,AB 2=65,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选:A .5.【答案】C【解析】,满足勾股定理的逆定理. 6.【答案】A【解析】,满足勾股定理的逆定理. 二.填空题n ()()222221,211n m n n n n +=+++=+()2222222()2()a b ab a b -+=+7.【答案】4.8;【解析】∵三角形三边的长分别为6、8和10,62+82=100=102,∴此三角形是直角三角形,边长为10的边是最大边,设它的最大边上的高是h ,∴6×8=10h ,解得,h=4.8.8.【答案】4;【解析】解:如图,C 1,C 2,C 3,C 4均可与点A 和B 组成直角三角形.故答案为:4.9.【答案】直角;10.【答案】108【解析】△ABC 是直角三角形.11.【答案】120【解析】这个三角形是直角三角形,设三边长为,则,解得,它的面积为. 12.【答案】6【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt△.三.解答题13.【解析】解:连结AE ,设正方形的边长为,则DF =CF =,CE =,BE =,在Rt △ADF 中,,在Rt △CEF 中,,在Rt △ABE 中,,因为,所以三角形AEF 为直角三角形,AF ⊥FE .14.【解析】解:, .(≥1且为整数) 5;12;13x x x 512133060x x x x ++==2x =1151260412022x x ⋅=⨯⨯=4a 2a a 3a 22222216420AF AD DF a a a =+=+=22222245EF CE CF a a a =+=+=22222216925AE AB BE a a a =+=+=222AE AF EF =+222351237+=()()()22222112111n n n ⎡⎤⎡⎤+-++=++⎡⎤⎣⎦⎣⎦⎣⎦n n15.【解析】解:如图,连接AC .在△ACD 中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC 2+BC 2=52+122=132=AB 2,∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积﹣△ACD 的面积=×5×12﹣×3×4=24(平方米).《勾股定理》全章复习与巩固(基础)【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;a b 、c 222a b c +=(4)勾股定理在实际生活中的应用. 要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长,满足,那么这个三角形是直角三角形.要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为;(2)验证:与是否具有相等关系:若,则△ABC 是以∠C 为90°的直角三角形;若时,△ABC 是锐角三角形;若时,△ABC 是钝角三角形.2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t 为正整数时,以为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数; 2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【典型例题】类型一、勾股定理及逆定理的简单应用1、(2019•益阳)在△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积. 某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.a b c 、、222a b c +=c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、a b c 、、at bt ct 、、a b c 、、a b c <<2a b c =+2729【思路点拨】根据题意正确表示出AD 2的值是解题关键. 【答案与解析】解:如图,在△ABC 中,AB=15,BC=14,AC=13, 设BD=x ,则CD=14﹣x ,由勾股定理得:AD 2=AB 2﹣BD 2=152﹣x 2,AD 2=AC 2﹣CD 2=132﹣(14﹣x )2,故152﹣x 2=132﹣(14﹣x )2, 解之得:x=9. ∴AD=12.∴S △ABC =BC •AD=×14×12=84.【总结升华】此题主要是要读懂解题思路,然后找到解决问题的切入点,问题才能迎刃而解. 举一反三:【变式】在△ABC 中,AB =15,AC =13,高AD =12.求△ABC 的周长. 【答案】解:在Rt △ABD 和Rt △ACD 中,由勾股定理,得.∴ .同理.∴ .①当∠ACB >90°时,BC =BD -CD =9-5=4.∴ △ABC 的周长为:AB +BC +CA =15+4+13=32. ②当∠ACB <90°时,BC =BD +CD =9+5=14.∴ △ABC 的周长为:AB +BC +CA =15+14+13=42. 综上所述:△ABC 的周长为32或42.2、如图所示,△ABC 中,∠ACB =90°,AC =CB ,M 为AB 上一点.求证:.22222151281BD AB AD =-=-=9BD =22222131225CD AC AD =-=-=5CD =2222AM BM CM +=【思路点拨】欲证的等式中出现了AM 2、BM 2、CM 2,自然想到了用勾股定理证明,因此需要作CD ⊥AB . 【答案与解析】证明:过点C 作CD ⊥AB 于D . ∵ AC =BC ,CD ⊥AB , ∴ AD =BD . ∵ ∠ACB =90°, ∴ CD =AD =DB .∴在Rt △CDM 中,, ∴ .【总结升华】欲证明线段平方关系问题,首先联想勾股定理,从图中寻找或作垂线构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证. 举一反三:【变式】已知△ABC 中,AB =AC ,D 为BC 上任一点,求证:.【答案】解:如图,作AM ⊥BC 于M ,∵AB =AC ,∴BM =CM,则在Rt △ABM 中:……①在Rt △ADM 中:()()2222AM BM AD DM AD DM +=-++222222AD AD DM DM AD AD DM DM =-⋅+++⋅+222()AD DM =+222()CD DM =+222CD DM CM +=2222AM BM CM +=22AB AD BD CD -=⋅222AB AM BM =+……②由①-②得:= (MC +DM )•BD =CD·BD 类型二、勾股定理及逆定理的综合应用3、(2018秋•黎川县期中)如图,在正方形ABCD 中,AB=4,AE=2,DF=1,请你判定△BEF 的形状,并说明理由.【思路点拨】根据勾股定理求出BE 2、EF 2、BF 2,根据勾股定理的逆定理判断即可. 【答案与解析】解:∵△BEF 是直角三角形,理由是:∵在正方形ABCD 中,AB=4,AE=2,DF=1, ∴∠A=∠C=∠D=90°,AB=AD=DC=BC=4,DE=4﹣2=2,CF=4﹣1=3, ∵由勾股定理得:BE 2=AB 2+AE 2=42+22=20,EF 2=DE 2+DF 2=22+12=5,BF 2=BC 2+CF 2=42+32=25,∴BE 2+EF 2=BF 2, ∴∠BEF=90°,即△BEF 是直角三角形.【总结升华】本题考查了正方形性质,勾股定理,勾股定理的逆定理的应用,解此题的关键是求出BE 2+EF 2=BF 2.4、如图,P 是等边三角形ABC 内的一点,连结PA ,PB ,PC ,以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.【答案与解析】解:(1)猜想:AP=CQ证明:在△ABP 与△CBQ 中,∵ AB=CB ,BP=BQ ,∠ABC=∠PBQ=60°222AD AM DM =+22AB AD -=()()22BM DM BM DM BM DM -=+-∴∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ∴△ABP≌△CBQ∴AP=CQ(2)由PA:PB:PC=3:4:5 可设PA=3a,PB=4a,PC=5a连结PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ=60°∴△PBQ为正三角形∴PQ=4a于是在△PQC中,∵∴△PQC是直角三角形【总结升华】本题的关键在于能够证出△ABP≌△CBQ,从而达到线段转移的目的,再利用勾股定理的逆定理判断三角形的形状.举一反三:【变式】如图所示,在△ABC中,D是BC边上的点,已知AB=13,AD=12,AC=15,BD =5,求DC的长.【答案】解:在△ABD中,由可知:,又由勾股定理的逆定理知∠ADB=90°.在Rt△ADC中,.5、如果ΔABC的三边分别为,且满足,判断ΔABC的形状.【答案与解析】解:由,得:∴∵∴∵,22212513+=222AD BD AB+=22281,9DC AC AD DC=-==a b c、、222506810a b c a b c+++=++ 222506810a b c a b c+++=++2226981610250a ab bc c-++-++-+=222(3)(4)(5)0a b c-+-+-=222(3)0(4)0(5)0a b c-≥-≥-≥,,3,4, 5.a b c===222345+=∴ .由勾股定理的逆定理得:△ABC 是直角三角形.【总结升华】勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中经常要用到.类型三、勾股定理的实际应用6、如图①,一只蚂蚁在长方体木块的一个顶点A 处,食物在这个长方体上和蚂蚁相对的顶点B 处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A 处爬到B 处的最短路线长为多少?【思路点拨】将长方体表面展开,由于蚂蚁是沿长方体木块的表面爬行,且长方体木块底面是正方形,故它爬行的路径有两种情况. 【答案与解析】解:如图②③所示.因为两点之间线段最短,所以最短的爬行路程就是线段AB 的长度.在图②中,由勾股定理,得. 在图③中,由勾股定理,得.因为130>100,所以图③中的AB 的长度最短,为10,即蚂蚁需要爬行的最短路线长为10. 【总结升华】解本题的关键是正确画出立体图形的展开图,把立体图形上的折线转化为平面图形上的直线,再运用勾股定理求解. 举一反三: 【变式】(2018秋•郑州期末)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.则问题中葛藤的最短长度是多少尺?222a b c +=222311130AB =+=22268100AB =+=cm cm【答案】解:如图所示,在如图所示的直角三角形中, ∵BC=20尺,AC=5×3=15尺, ∴AB==25(尺).答:葛藤长为25尺.【巩固练习】 一.选择题1.如图,一棵大树被台风刮断,若树在离地面3处折断,树顶端落在离树底部4处,则树折断之前高( )A .5B .7C .8D .102.如图,从台阶的下端点B 到上端点A 的直线距离为( )A .15B .16C .17D .18 3.(2019春•枣阳市期末)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min ,甲客轮用15min 到达点A ,乙客轮用20min 到达点B ,若A ,B 两点的直线距离为1000m ,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是( ) A .北偏西30° B .南偏西30° C .南偏东60° D .南偏西60°mm m m mm。

勾股定理-讲义

勾股定理-讲义

勾股定理一、知识梳理1.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.2. 直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.3.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.4.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.二、经典例题+基础练习1. 勾股定理.【例1】已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对.练1.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或84练2.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.2 2. 等腰直角三角形.【例2】已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n﹣2 B.2n﹣1 C.2n D.2n+1练3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A. B. C. D.3.等边三角形的性质;勾股定理.【例3】以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是()A.2×()10厘米 B.2×()9厘米C.2×()10厘米 D.2×()9厘米练4.等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为.4.勾股定理的应用.【例4】工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm 练5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米B.米C.米或米 D.米5.平面展开-最短路径问题.【例5】如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D 出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm 练6.如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.A.4.8 B. C.5 D.三、课堂练习1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定 B. C.17 D.17或2.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:33.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米 B.15厘米 C.12或15厘米 D.12或(7+)厘米4.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.5.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.6.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)四、能力提升1.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为()A.5 B. C.5或 D.没有2.已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A.5cm B.cm C.5cm或cm D.cm3.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c2等于()A.161 B.289 C.225 D.161或2894.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.185.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.6.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.7.如图,一个长方体盒子,一只蚂蚁由A出发,在盒子的表面上爬到点C1,已知AB=5cm,BC=3cm,CC1=4cm,则这只蚂蚁爬行的最短路程是cm.8.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.9.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).10.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.勾股定理的逆定理一、知识点梳理1.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.2.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.3.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.4.方向角(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.5.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.6.作图—复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.7.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.二、经典例题+基础练习1.勾股定理的逆定理.【例1】下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5练1.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6练2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,42. 勾股定理的应用.【例2】如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米练3.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m 3.平面展开-最短路径问题.【例3】如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm练4.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.4.勾股定理的应用:方向角.【例4】已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是km;若A地在C地的正东方向,则B地在C 地的方向.练5.如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).5.坐标与图形性质;勾股定理的逆定理.【例5】在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC 是直角三角形,则满足条件的点共有()A.1个 B.2个 C.4个 D.6个练6.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.三、课堂练习1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.2.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).4.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)5.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.四、能力提升1.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3 2.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=503.以下各组数为边长的三角形中,能组成直角三角形的是()A.3、4、6 B.9、12、15 C.5、12、14 D.10、16、25 4.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米 B.米 C.米或米 D.米6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A.30厘米 B.40厘米 C.50厘米 D.以上都不对7.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm8.如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A 点爬行到C点,那么,最近的路程长为()A.7 B. C. D.59.有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A.5cm B.cm C.4cm D.3cm 10.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB 的距离为4,且△ABC是直角三角形,则满足条件的点C有个.11.设a>b,如果a+b,a﹣b是三角形较小的两条边,当第三边等于时,这个三角形为直角三角形.12.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.13.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.14.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)15.校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:=1.41,=1.73)16.如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.勾股定理中的折叠问题一、经典例题例1.如图,在矩形ABCD 中,AB =6,BC =8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的逆定理(基础)【学习目标】1. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.【要点梳理】【高清课堂 勾股定理逆定理 知识要点】要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;【典型例题】类型一、原命题与逆命题1、写出下列原命题的逆命题并判断是否正确1.原命题:猫有四只脚.2.原命题:对顶角相等.3.原命题:线段垂直平分线上的点,到这条线段两端点的距离相等.4.原命题:角平分线上的点,到这个角的两边距离相等.【答案与解析】1. 逆命题:有四只脚的是猫(不正确)2. 逆命题:相等的角是对顶角(不正确)3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.•(正确)4. 逆命题:到角两边距离相等的点,在这个角的角平分线上.(正确)【总结升华】掌握原命题与逆命题的关系. 原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误.举一反三:【变式】下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a b c ,,满足222a b c +=,那么这个三角形是直角三角形.【答案】①④提示:①的逆命题“两直线平行,同旁内角互补”显然正确;②的逆命题“如果两个角相等,那么它们是直角”很明显是错误的;③的逆命题“如果两个实数的平方相等,那么这两个实数相等”,两个实数可以互为相反数,所以该命题不正确;④的逆命题“如果三角形是直角三角形,那么三角形的三边长a b c ,,满足222a b c +=”也是正确的.类型二、勾股定理的逆定理2、判断由线段a b c ,,组成的三角形是不是直角三角形.(1)a =7,b =24,c =25;(2)a =43,b =1,c =34; (3)22a m n =-,22b m n =+,2c mn =(0m n >>);【思路点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【答案与解析】解:(1)∵ 2222724625a b +=+=,2225625c ==,∴ 222a b c +=.∴ 由线段a b c ,,组成的三角形是直角三角形. (2)∵ a b c >>,222239251141616b c ⎛⎫+=+=+= ⎪⎝⎭,2241639a ⎛⎫== ⎪⎝⎭, ∴ 222b c a +≠.∴ 由线段a b c ,,组成的三角形不是直角三角形.(3)∵ 0m n >>,∴ 222m n mn +>,2222m n m n +>-.∵2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++, 22224224()2b m n m m n n =+=++,∴ 222a c b +=.∴ 由线段a b c ,,组成的三角形是直角三角形.【总结升华】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证2c 与22a b +是否具有相等关系,再根据结果判断是否为直角三角形.举一反三:【变式1】判断以线段a b c ,,为边的△ABC 是不是直角三角形,其中a =b =2c =.【答案】解:由于a c b >>,因此a 为最大边,只需看2a 是否等于22b c +即可.∵ 227a ==,223b ==,2224c ==,∴ 222a b c =+, ∴ 以线段a b c ,,为边能构成以a 为斜边的直角三角形.【变式2】(春•永州校级期中)下列四组数:①5,12,13;②7,24,25;③1,2,4;④5,6,8.其中可以为直角三角形三边长的有 .(把所有你认为正确的序号都写上)【答案】①②;解:①∵52+122=132,能构成直角三角形;②72+242=252,能构成直角三角形;③12+22≠42,不能构成直角三角形;④52+62≠82,不能构成直角三角形.所以①②.故答案为:①②.3、(春•大石桥市校级期末)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.【思路点拨】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.【答案与解析】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【总结升华】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.举一反三:【变式】如图所示,在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD 中点,试判断EC与EB的位置关系,并写出推理过程.【答案】 解:EC ⊥EB .过点C 作CF ⊥AB 于F ,则四边形AFCD 是矩形,在Rt △BCF 中,可得CF =22.则AD =CF =22,故DE =AE =12AD =2. 在Rt △ABE 和Rt △DCE 中, 2226EB AE AB =+=,2223EC DE CD =+=.∴ 229EB EC +=.∵ BC =3,∴ 222EB EC BC +=.∴ ∠CEB =90°,∴ EB ⊥EC .类型三、勾股定理逆定理的实际应用4、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【思路点拨】我们可以根据题意画出如图所示的图形,可以看到,由于“远航”号的航向已知,如果求出两艘轮船所成的角,就能知道“海天”号的航向了.【答案与解析】解:根据题意可画出上图,PQ =16×1.5=24,PR =12×1.5=18,QR =30,在△PQR 中,22222418576324900PQ PR +=+=+=,∴ 222PQ PR QR +=.∴ △PQR 是直角三角形且∠RPQ =90°.又∵ “远航”号沿东北方向航行,可知∠QPN =45°,∴ ∠RPN =45°.由此可知“海天”号沿西北方向航行.也可沿东南方向航行.【总结升华】根据勾股定理的逆定理,可判断一个角是不是90°,这里需注意与东北方向成90°角的有两个方向,即西北方向或东南方向.【巩固练习】一.选择题1.(•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .,,B .1,,C .6,7,8D .2,3,42.下列各命题的逆命题成立的是( )A. 全等三角形的对应角相等B. 如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等 D.如果两个角都是45°,那么这两个角相等.3.下列线段不能组成直角三角形的是( ).A. 6,8,10a b c ===B.3,2,1===c b aC. 43,1,45===c b aD.6,3,2===c b a 4.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).A.1∶1∶2B.1∶3∶4C.9∶25∶26D.25∶144∶1695.已知三角形的三边长为1n n m +、、(其中221m n =+),则此三角形( ).A.一定是等边三角形B.一定是等腰三角形C.一定是直角三角形D.形状无法确定 6.三角形的三边长分别为 22a b +、2ab 、22a b -(a b 、都是正整数),则这个三角形是( )A .直角三角形B . 钝角三角形C .锐角三角形D .不能确定二.填空题7.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.8.(秋•宁海县期中)观察下面几组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17; ④10,24,26;请你根据规律写出第⑤组勾股数是 .9. 已知0435=-+-+-Z y x ,则由此x y z ,,为边的三角形是 三角形.10.在△AB C 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是 .11.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .12.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.三.解答题13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD的面积.14.(秋•金东区校级期末)如图,四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?【答案与解析】一.选择题1.【答案】B ;【解析】解:A 、()2+()2≠()2,不能构成直角三角形,故错误;B 、12+()2=()2,能构成直角三角形,故正确;C 、62+72≠82,不能构成直角三角形,故错误;D 、22+32≠42,不能构成直角三角形,故错误.故选:B .2.【答案】C ;3.【答案】D ;【解析】2222(6)3+≠. 4.【答案】C ;5.【答案】C ;【解析】()()222221,211n m n n n n +=+++=+,满足勾股定理的逆定理.6.【答案】A ;【解析】()2222222()2()a b ab a b -+=+,满足勾股定理的逆定理. 二.填空题7.【答案】8;【解析】三角形是直角三角形,最短边上的高为另一条直角边8.8.【答案】12,35,37;【解析】解:观察前4组数据的规律可知:第一个数是2(n+1);第二个是:n (n+2);第三个数是:(n+1)2+1.所以第⑤组勾股数是12,35,37.故答案为:12,35,37.9.【答案】直角;10.【答案】108;【解析】△ABC 是直角三角形.11.【答案】120;【解析】这个三角形是直角三角形,设三边长为5;12;13x x x ,则512133060x x x x ++==,解得2x =,它的面积为 1151260412022x x ⋅=⨯⨯=. 12.【答案】6;【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt△.三.解答题13.【解析】解:连接AC ,在Rt △ABC 中,AC =22125+=;因为222(5)23+=,即222AC DC AD += 所以△ACD 为直角三角形.四边形ABCD 的面积为1121251522BC CD S S +=⨯⨯+⨯⨯=+△A △A . 14.【解析】证明:连接AC .∵AB=20,BC=15,∠B=90°, ∴由勾股定理,得AC 2=202+152=625.又CD=7,AD=24,∴CD 2+AD 2=625,∴AC 2=CD 2+AD 2,∴∠D=90°.∴∠A+∠C=360°﹣180°=180°.15.【解析】解:由题意:BM =2×8=16,BP =2×15=30,MP =34因为2221630256900115634+=+==所以△BMP 满足勾股定理的逆定理,△BMP 为直角三角形.因为甲船沿北偏东60°方向航行,则乙船沿南偏东30°方向航行.。

相关文档
最新文档