图形的翻折与旋转

合集下载

特殊四边形中的旋转、翻折问题

 特殊四边形中的旋转、翻折问题

专题02 特殊四边形中的旋转、翻折问题题型一 菱形中的旋转、翻折问题1.如图,在菱形纸片ABCD 中,60A Ð=°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C ¢处,则DEC Ð的大小为( )A .30°B .45°C .60°D .75°【解答】解:连接BD ,如图所示:Q 四边形ABCD 为菱形,AB AD \=,60A Ð=°Q ,ABD \D 为等边三角形,120ADC Ð=°,60C Ð=°,P Q 为AB 的中点,DP \为ADB Ð的平分线,即30ADP BDP Ð=Ð=°,90PDC \Ð=°,\由折叠的性质得到45CDE PDE Ð=Ð=°,在DEC D 中,180()75DEC CDE C Ð=°-Ð+Ð=°.故选:D .2.如图,在平面直角坐标系中,四边形OABC 是菱形,120AOC Ð=°,点B 的坐标为(6,0),点D 是边BC 的中点,现将菱形OABC 绕点O 顺时针旋转,每秒旋转60°,则第2021秒时,点D 的坐标为( )A .9(2B .9(2-,C .9(2,D .9(2-【解答】解:如图,连接OD ,过点C 作CH OB ^于H ,Q 四边形OABC 是菱形,120AOC Ð=°,点B 的坐标为(6,0),6OB \=,OC BC =,60BOC Ð=°,BOC \D 是等边三角形,6OC OB BC \===,Q 点D 是BC 中点,OD BC \^,3BD =,OD \==,CH OB ^Q ,60COB Ð=°,3OH BH \==,CH ==,\点(3,C -,Q 点D 是BC\点9(2D ,,Q 将菱形OABC 绕点O 顺时针旋转,每秒旋转60°,\第1秒后,点1D 坐标为(0,-,第2秒后,点2D 坐标为9(2-,,第3秒后,点3D 坐标为9(2-,,第4秒后,点4D 坐标为(0,,第5秒后,点5D 坐标为9(2,第6秒后,点6D 坐标为9(2,,¼由上可知,点D 的坐标每6个为一组依次循环着,202163715\¸=¼,\第2021秒时,点D 的坐标为9(2,故选:A .3.如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 逆时针旋转105°至111OA B C 的位置,若2OA =,120C Ð=°,则点1B 的坐标为( )A .(-B .(3,C .(D .【解答】解:连接AC 与OB 相交于点E ,过点1B 作1BF x ^轴,垂足为F ,Q 四边形OABC 为菱形,120C Ð=°,OA OC =,60AOC \Ð=°,2OC OA AC ===,AC OB ^Q ,\在Rt OAE D 中,2OA =,112AE AC ==,OE \===,OB \=,又1302AOB AOC Ð=Ð=°Q ,1105BOB Ð=°,111801803010545B OF AOB BOB \Ð=°-Ð-Ð=°-°-°=°,在Rt △1B OF 中,1OB OB ==,1OF B F =,22211OF B F OB \+=,可得1OF B F ==,Q 点1B 在第二象限,\点1B 的坐标为(.故选:C .4.如图,在正方形ABCD 中,顶点A ,B ,C ,D 在坐标轴上,且(4,0)B ,以AB 为边构造菱形ABEF ,将菱形ABEF 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转45°,则第164次旋转结束时,点164F 的坐标为( )A .(4-,B .(4,--C .,4)-D .(-,4)-【解答】解:Q 点(4,0)B ,4OB \=,4OA \=,AB \==,Q 四边形ABEF 是菱形,AF AB \==,\点F ,4),由题意可得每次8旋转一个循环,1648204\¸=¼,\点164F 的坐标与点F 坐标关于原点对称,\点164F 的坐标(-,4)-,故选:D .5.如图,已知菱形ABCD 的边长2,60A Ð=°,点E 、F 分别在边AB 、AD 上,若将AEF D 沿直线EF 折叠,使得点A 恰好落在CD 边的中点G 处,则EF【解答】解:延长CD ,过点F 作FM CD ^于点M ,连接GB 、BD ,作FH AE ^交于点H ,如图所示:60A Ð=°Q ,四边形ABCD 是菱形,60MDF \Ð=°,30MFD \Ð=°,设MD x =,则2DF x =,FM =,1DG =Q ,1MG x \=+,222(1))(22)x x \++=-,解得:0.3x =,0.6DF \=, 1.4AF =,10.72AH AF \==,sin 1.4FH AF A =Ð==g ,CD BC =Q ,60C Ð=°,DCB \D 是等边三角形,G Q 是CD 的中点,BG CD \^,2BC =Q ,1GC =,BG \=,设BE y =,则2GE y =-,222(2)y y \+=-,解得:0.25y =,1.75AE \=,1.750.7 1.05EH AE AH \=-=-=,EF \===.6.已知菱形ABCD 中,120ABC Ð=°,12AB =,点E ,F 分别在边AD ,AB 上,将AEF D 沿着直线EF 折叠,使得点A 落在G 点.(1)如图1,若点G 恰好落在AC 上,且3CG =,求DE 的长;(2)如图2,若点G 恰好落在BD 上,且3BG =,求DE 的长.【解答】解:(1)连接BD ,交AC 于点O ,Q 四边形ABCD 是矩形,1602ABD ABC \Ð=Ð=°,90AOB Ð=°,2AC AO =,在Rt AOB D 中易得到AO =,AC =Q 菱形ABCD 中,AD DC =,DAC DCA \Ð=Ð,Q 点A 与点G 关于EF 轴对称,AE EG \=,DAC EGA \Ð=Ð,DCA EGA \Ð=Ð,//EG DC \,\DE CG AD AC =,\12DE =,DE \=.(2)Q菱形ABCD中,120ABCÐ=°,AD AB\=,60AÐ=°,ABD\D是等边三角形,60EDG FBGÐ=Ð=°,又由翻折可得60EGF AÐ=Ð=°,又EGB EGF FGB DEG EDG Ð=Ð+Ð=Ð+Ð,FGB DEG\Ð=Ð.DEG BGF\D D∽,\DE DG EG BG BF FG==,设DE x=,则12EG AE x==-,\9123x xBF FG-==,27BFx\=,363x FGx-=,又12 AB AF BF FG BF=+=+=,\2736312xx x-+=,解得:215x=,即215 DE=.7.四边形ABCD为菱形,BD为对角线,在对角线BD上任取一点E,连接CE,把线段CE绕点C顺时针旋转得到线段CF,使得ECF BCDÐ=Ð,点E的对应点为点F,连接DF.(1)如图1,求证:BE DF=;(2)如图2,若2DFC DBCÐ=Ð,在不添加任何辅助线的前提下,请直接写出五对线段,使每对线段的和等于(BD BE和DE除外).【解答】(1)证明:Q 四边形ABCD 为菱形,BC CD \=,Q 把线段CE 绕点C 顺时针旋转得到线段CF ,CE CF \=,ECF BCD Ð=ÐQ ,BCE DCF \Ð=Ð,在BCE D 与DCF D 中,BC CD BCE DCF CE CF =ìïÐ=Ðíï=î,()BCE DCF SAS \D @D ,BE DF \=.(2)解:BCE DCF D @D Q ,BE DF \=,BEC DFC Ð=Ð,CB CD =Q ,CBD CDE \Ð=Ð,2DFC CBD Ð=ÐQ ,2BEC CDE \Ð=Ð,CEB CDE ECD Ð=Ð+ÐQ ,EDC ECD \Ð=Ð,ED EC CF \==,BD BE EC BE CF DF DE DF CE DF CF \=+=+=+=+=+.8.如图,平行四边形ABCD 中,AB AC ^,1AB =,BC =,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC ,AD 于点E ,F .(1)证明:当90AOF Ð=°时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,AF 与CE 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AOF Ð度数.【解答】(1)证明:当90AOF Ð=°时,//AB EF ,//AF BE Q ,\四边形ABEF 是平行四边形.(2)证明:Q 四边形ABEF 是平行四边形,AO CO \=,//AF EC ,FAO ECO \Ð=Ð,在AOF D 和COE D 中,FAO OCE OA OCAOF COE Ð=Ðìï=íïÐ=Ðî,AOF COE \D @D ,AF CE \=.(3)解:结论:四边形BEDF 可能是菱形.AOF COE D @D Q ,OE OF \=,EF \与BD 互相平分,\四边形BEDF 是平行四边形,\当EF BD ^时,四边形BEDF 是菱形,在Rt ABC D 中,2AC =,1OA AB \==,AB AC ^Q ,45AOB \Ð=°,45AOF \Ð=°,\当四边形BEDF 是菱形时,45AOF Ð=°.9.如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,//AD x 轴且4AD =,60A Ð=°,将菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C 的对应点的坐标是( )A .(0,B .(2,4)-C .0)D .(0,或(0,-【解答】解:根据菱形的对称性可得:当点C 旋转到y 轴负半轴时,A 、B 、C 均在坐标轴上,如图,60BAD Ð=°Q ,4AD =,30OAD \Ð=°,2OD \=,AO OC \====,\点C 的坐标为(0,-,同理:当点C 旋转到y 轴正半轴时,点C 的坐标为,\点C 的坐标为或(0,-,故选:D .10.如图,在菱形ABCD 中,1AB =,60DAB Ð=°,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ¢¢¢,其中点C 的运动路径为 CC ¢,则图中阴影部分的面积为 342p +【解答】解:连接CD ¢和BC ¢,60DAB Ð=°Q ,30DAC CAB \Ð=Ð=°,30C AB Т¢=°Q ,A \、D ¢、C 及A 、B 、C ¢分别共线.AC \=\扇形ACC ¢4p =,AC AC =¢Q ,AD AB¢=\在OCD D ¢和△OC B ¢中,CD BC ACO AC D COD C OB ¢=¢ìïÐ=Т¢íïТ=ТîOCD \D ¢@△()OC B AAS ¢.OB OD \=¢,CO C O=¢60CBC Т=°Q ,30BC O Т=°90COD \Т=°1CD AC AD ¢=-¢=-Q 1OB C O +¢=\在Rt BOC D ¢中,222(1)1)BO BO +-=解得12BO =,32C O ¢=-,1324OC B S BO C O ¢\=¢=-V g \图中阴影部分的面积为:3242OC B ACC S S p¢¢-=+V 扇形.故答案为:342p+-题型二 矩形中的旋转、翻折问题11.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )A .9(5-,12)5B .12(5-,95C .16(5-,125D .12(5-,16)5【解答】解:过点1C 作1C N x ^轴于点N ,过点1A 作1A M x ^轴于点M ,由题意可得:1190C NO A MO Ð=Ð=°,123Ð=Ð=Ð,则△1A OM ∽△1OC N ,5OA =Q ,3OC =,15OA \=,13A M =,4OM \=,\设3NO x =,则14NC x =,13OC =,则22(3)(4)9x x +=,解得:35x =±(负数舍去),则95NO =,1125NC =,故点C 的对应点1C 的坐标为:9(5-,12)5.故选:A .12.如图,在矩形ABCD 中,3AB =,4BC =,将矩形ABCD 绕点C 旋转,点A 、B 、D 的对应点分别为A ¢、B ¢、D ¢,当A ¢落在边CD 的延长线上时,边A D ¢¢与边AD 的延长线交于点F ,联结CF ,那么线段CF【解答】解:Q 四边形ABCD 是矩形,3AB CD \==,4AD BC ==,90ADC Ð=°,90A DF CDF ¢\Ð=Ð=°,由旋转的性质得:3CD CD ¢==,4A D AD ¢¢==,90ADC A D C ¢¢Ð=Ð=°,5A C ¢\==,532A D A C CD ¢¢\=-=-=,在Rt CDF D 和Rt △CD F ¢中,CF CF CD CD =ìí¢=î,Rt CDF Rt \D @△()CD F HL ¢,DF D F ¢\=,设DF D F x ¢==,则4A F x ¢=-,在Rt △A DF ¢中,由勾股定理得:2222(4)x x +=-,解得:32x =,32DF \=,CF \===.13.如图,矩形纸片ABCD 中,6AD =,E 是CD 上一点,连结AE ,ADE D 沿直线AE 翻折后点D 落到点F ,过点F 作FG AD ^,垂足为G .若3AD GD =,则DE 的值为( )A B .52C D 【解答】解:过点E 作EH FG ^,交FG 于点H ,如图,由题意:AEF AED D @D ,则6AF AD ==,DE EF =.6AD =Q ,3AD GD =,2GD \=.624AG AD DG \=-=-=.FG AD ^Q ,FG \===.Q 四边形ABCD 是矩形,90D \Ð=°,FG AD ^Q ,EH FG ^,\四边形GHED 为矩形.GH DE \=,2HE GD ==.设DE x =,则GH EF x ==,HF x =,在Rt HEF D 中,222HF HE EF +=Q ,\222)2x x -+=.解得:x =DE \=故选:C .14.如图,点E 在矩形ABCD 边CD 上,将ADE D 沿AE 翻折,点D 恰好落在BC 上的点F 处,若2AB CF =,3CE =,连接DF ,与AE 交于H 点,连接BH ,则点F 到BH 的距离为【解答】解:根据折叠的性质知:AD AF BC ==,DE EF =,AE 是线段DF 的垂直平分线,H 是DF 的中点,设DE EF x ==,则3DC AB x ==+,11(3)22FC AB x ==+,在Rt EFC D 中,222FC EC EF +=,即2221[(3)]32x x ++=,解得:5x =或3x =-(舍去),538DC AB \==+=,4FC =,设AD AF BC y ===,则4BF y =-,在Rt ABF D 中,222AB BF AF +=,即2228(4)y y +-=,解得:10y =,6BF \=,过H 作HN BC ^于N ,过F 作FM BH ^于M ,Q 四边形ABCD 是矩形,//HN CD \,142HN CD \==,122FN FC ==,8BN BF FN \=+=,由勾股定理得:BH ==,1122BHF S BF HN BH FM D =´=´Q ,BF HN FM BH ´\===15.如图,在平面直角坐标系中,四边形OABC 是矩形,6OA =,将ABC D 沿直线AC 翻折,使点B 落在点D 处,AD 交x 轴于点E ,若30BAC Ð=°,则点D 的坐标为( )A .2)-B .3)-C .3)-D .(3,-【解答】解:过D 点作DF x ^轴,垂足为F ,则//DF y 轴,Q 四边形AOCB 为矩形,90OAB AOC B \Ð=Ð=Ð=°,6BC AO ==,AB OC =,\=,OC AB12AC==,由折叠可知:30Ð=Ð=°,AD ABDAC BAC==,\Ð=°,OAE30OE\=,AE=,\=,ED//Q轴,DF y\Ð=Ð=°,30EDF EAODF=,\=,3EF\=+=,OF OE EF-,\点坐标为,3)D故选:B.16.如图,四边形ABCD中,//AD BC,AB BCBCDÐ=°,将CD绕点D逆时针旋转90°至ED,^,45延长AD交EC于点F.(1)求证:四边形ABCF是矩形;AD=,3(2)若2BC=,求AE的长.【解答】(1)证明://BCDÐ=°,^,45Q,AB BCAD BCBCD FDCÐ=Ð=°,\Ð=Ð=°,4590B BAFQ将CD绕点D逆时针旋转90°至ED,Ð=°,EDCDE DC\=,90EDF FDC\Ð=°=Ð,45\^,DF CE\Ð=°,AFC90即90Ð=Ð=Ð=°,B BAF AFC\四边形ABCF是矩形;(2)解:Q四边形ABCF是矩形,\==,AF BC3\=-=,321DFQ,90Ð=°,DFEÐ=°45EDF\Ð=Ð=°,45DEF EDF\==,1DF EF在Rt AFED中,由勾股定理得:AE===.AB=,217.如图,矩形OABC中,1¢¢,则AO=,将矩形OABC绕点O按顺时针转90°,得到矩形OA B CBB¢【解答】解:如图所示:Q矩形OABC中,1AB=,2AO=,将矩形OABC绕点O按顺时针转90°,得到矩形OA B C¢¢,B D¢=,\=,13BD则BB¢==..AB=,618.如图,在矩形ABCD中,4D沿AE折叠,使点B落在矩形BC=,点E为BC的中点,将ABE内点F处,连接CF,则CF的长为( )A .95B .125C .165D .185【解答】解:连接BF ,6BC =Q ,点E 为BC 的中点,3BE \=,又4AB =Q ,5AE \==,由折叠知,BF AE ^(对应点的连线必垂直于对称轴)125AB BE BH AE ´\==,则245BF =,FE BE EC ==Q ,90BFC \Ð=°,185CF \==.故选:D .19.已知,如图,四边形ABCD 中,90D Ð=°,AB AC =,DAC B Ð=Ð,点E 是BC 的中点.(1)求证:四边形AECD 是矩形;(2)若8AD =,6CD =,点F 是AD 上的点,连接CF ,把D Ð沿CF 折叠,使点D 落在点G 处.当AFG D 为直角三角形时,求CF 的长度.【解答】解:(1)证明:AB AC =Q ,B ACB \Ð=Ð.DAC B Ð=ÐQ ,DAC ACB \Ð=Ð.//AD EC \.AB AC =Q ,E 是BC 的中点,AE BC \^.90AEC \Ð=°.18090EAD AEC \Ð=°-Ð=°.90D Ð=°Q ,\四边形AECD 为矩形.(2)当90AGF Ð=°时,G 在AC 上,如图,8AD =Q ,6CD =,10AC \==.CG CD =Q ,4AG AC CG \=-=.设DF x =,则8AF x =-,GF DF x ==,由勾股定理得:222AG GF AF +=.2224(8)x x \+=-.解得:3x =.\CF ===当90AFC Ð=°时,G 在CE 上,此时四边形CDFG 为正方形,如图:CF \=;当90FAG Ð=°时,G 在AB 上,此时6CG CD ==,而8CE AD ==,Q斜边大于直角边,\不可能在AB边上.G综上,CF=.20.矩形ABCD绕点A顺时针旋转至矩形AEFG,使B点正好落在CD上的点E处,连BE.(1)求证:2Ð=Ð;BAE CBE(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN的数量关系,并证明你的结论.【解答】(1)证明:Q四边形ABCD是矩形,\Ð=Ð=°,C CBA90CBE ABE\Ð+Ð=°,90Q将矩形ABCD绕点A顺时针旋转至矩形A点正好落在CD上的点E处,=,Ð=°,AE AB\=,90BC AGEAG\Ð=Ð,ABE AEBQ,Ð+Ð+Ð=°BAE ABE AEB180\Ð+Ð=°,ABE BAE2180Q,Ð+Ð=°CBE ABE90\Ð+Ð=°,CBE ABE22180\Ð=Ð.BAE CBE2(2)2=,AF MN证明:过B作BO AE^于O,连接EG,Q四边形AEFG是矩形,Ð=Ð=°,MAG BOM\=,90AF EG90C CBA Ð=Ð=°Q ,90AEB ABE CBE \Ð=Ð=°-Ð,90CEB CBE Ð=°-Ð,CEB OEB \Ð=Ð,在CBE D 和OBE D 中,90CBE OBE C BOE BE BE Ð=ÐìïÐ=Ð=°íï=î,()CBE OBE AAS \D @D ,EC OE \=,BO BC AD AG ===,在BOM D 和GAM D 中,AMG BME BOM GAM BO AG Ð=ÐìïÐ=Ðíï=î,()BOM GAM AAS \D @D ,BM GM \=,Q 点N 为BE 的中点,12MN EG \=,EG AF =Q ,2AF MN \=.题型三 正方形中的旋转、翻折问题21.如图,在正方形ABCD 中,E 是BC 边上的一点,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC于G ,连接AG ,则EAG Ð= 45 度.【解答】解:Q 四边形ABCD 是正方形,AB AD \=,90ABE BAD ADG Ð=Ð=Ð=°,由翻折可知:AB AF =,90ABE AFE AFG Ð=Ð=Ð=°,BAE EAF Ð=Ð,90AFG ADG Ð=Ð=°Q ,AG AG =,AD AF =,Rt AGD Rt AGF(HL)\D @D ,GAF GAD Ð=Ð,1()452EAG EAF GAF BAF DAF \Ð=Ð+Ð=Ð+Ð=°.故答案为:45.22.如图,正方形ABCD 的边长为1,将其绕顶点C 按逆时针方向旋转一定角度到如图所示的位置,使得点B 落在对角线CF 1- .【解答】解:方法一:正方形ABCD 的边长为1,将其绕顶点C 按逆时针方向旋转一定角度到CEFG 位置,使得点B 落在对角线CF 上,1EF CE \==,CF \=,1BF \=-,45BFE Ð=°Q ,\阴影部分的面积211111)122=´´-´=-;方法二:Q 过E 点作//MN BC 交AB 、CD 于M 、N 点,设AB 与EF 交于点P 点,连接CP ,如下图所示,B Q 在对角线CF 上,45DCE ECF \Ð=Ð=°,1EC =,ENC \D 为等腰直角三角形,MB CN \===,又BC AD CD CE ===,且CP CP =,PEC D 和PBC D 均为直角三角形,Rt PEC Rt PBC(HL)\D @D ,PB PE \=,又45PFB Ð=°,45FPB MPE \Ð=°=Ð,MPE \D 为等腰直角三角形,设MP x =,则EP BP ==,MP BP MB +=Q ,\x +=x =,1BP \==-,\阴影部分的面积12211)12PBC S BC BP D ==´´´=´-=-.1.23.如图,将边长为3的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形AB C D ¢¢¢,则图中阴影部分面积为 9-【解答】解:连接AE ,如图所示:由旋转的性质可知:AB AB =¢.在Rt △AB E ¢和Rt ADE D 中,AE AE AB AD =ìí¢=î,Rt \△Rt ADE(HL)AB E ¢@D .DAE B AE \Ð=Т,ADE AB E S S D ¢=V .30BAB Т=°Q ,1(9030)302DAE \Ð=´°-°=°.又3AB =Q ,DE AB \==132ADE S D \==,又239ABCD S ==Q 正方形,929S \=-=-阴影.故答案为:9-.24.如图是一张正方形纸片ABCD ,将其对折使AB 与DC 重合,折痕EF 分别与BC ,AD 交于点E ,F ,再将点D 对折到线段AE 上,折痕AG 交DC 于点G ,则DC GC【解答】解:如图,连接EG ,设DG D G x ¢==,2AB a =,由折叠得:BE EC a ==,2AD AD a ¢==,2CG a x \=-,由勾股定理得:AE ==,2D E a ¢\=-,在Rt EGD ¢D 和Rt EGC D 中,2222(2)2)a a x x a +-=+-,解得1)x a =-,\DC GC =..25.如图,将边长为12的正方形纸片ABCD 折叠,点A 与CD 边中点M 重合,折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与BC 交于点G ,则DE 长度为 92 ,BG 与BC 的数量关系为 .【解答】解:过A 作AH MG ^于H ,连接AG ,如图:设DE x =,则12AE ME x ==-,Rt DME D 中,162DM DC ==,222DM DE ME +=,2226(12)x x \+=-,解得92x =,92DE \=,Q 正方形纸片ABCD 折叠,点A 与CD 边中点M 重合,MAB AMG \Ð=Ð,//DC AB Q ,DMA MAB \Ð=Ð,DMA AMG \Ð=Ð,在ADM D 和AHM D 中,90,D AHM DMA AMG AM AMÐ=Ð=°ìïÐ=Ðíï=î,()ADM AHM AAS \D @D ,AD AH \=,6MH MD ==,AH AD AB \==,在Rt AHG D 和Rt ABG D 中,AH ABAG AG =ìí=î,Rt AHG Rt ABG(HL)\D @D ,HG BG \=,设BG y =,则HG y =,12CG y =-,Rt CMG D 中,162CM DC ==,6MG MH HG y =+=+,222CM CG MG +=,2226(12)(6)y y \+-=+,解得245y =,245BG \=,\2425125 BGBC==,25BG BC\=.故答案为:92,25BG BC=.26.如图,已知正方形ABCD的边长为6,以点C为直角顶点的等腰Rt CEFD绕C旋转一圈,且保持2CE=,过点C作CH DE^于H交直线BF于M,连AM,则AM的最小值为 1- .【解答】解:如图1中,作//BT CF交CM分延长线于T.//BT CFQ,T FCM\Ð=Ð,CH DE^Q,ECFD是等腰直角三角形,90CHE ECF\Ð=Ð=°,90FCM ECH\Ð+Ð=°,90ECH DECÐ+Ð=°,DEC FCM T\Ð=Ð=Ð,90DCB DHCÐ=Ð=°Q,90BCT DCH \Ð+Ð=°,90DCH CDE Ð+Ð=°,TCB CDE \Ð=Ð,CB CD =Q ,()BCT DCE AAS \D @D ,BT EC CF \==,TMB CMF Ð=ÐQ ,T MCF Ð=Ð,()TBM CFM AAS \D @D ,BM FM \=,如图2中,取BC 的中点N ,连接AN ,MN .Q 四边形ABCD 是正方形,6AB BC \==,90ABN Ð=°,3BN NC ==Q ,AN \===,BM MF =Q ,BN NC =,112MN CF \==,AM AN MN -Q …,1AM \…,AM \的最小值为1-.故答案为:1-.27.在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,AE 与BF 相交于点G .(1)如图1,求证:AE BF ^;(2)如图2,将BCF D 沿BF 折叠,得到BPF D ,延长FP 交BA 的延长线于点Q ,若4AB =,求QF 的值【解答】(1)证明:E Q ,F 分别是正方形ABCD 边BC ,CD 的中点,CF BE \=,在ABE D 和BCF D 中,AB BC ABE BCFBE CF =ìïÐ=Ðíï=îRt ABE Rt BCF(SAS)\D @D ,BAE CBF \Ð=Ð,又90BAE BEA Ð+Ð=°Q ,90CBF BEA \Ð+Ð=°,90BGE \Ð=°,AE BF \^;(2)解:Q 将BCF D 沿BF 折叠,得到BPF D ,FP FC \=,PFB BFC Ð=Ð,90FPB Ð=°,//CD AB Q ,CFB ABF \Ð=Ð,ABF PFB \Ð=Ð,QF QB \=,设QF x =,4PB BC AB ===,2CF PF ==,QB x \=,2PQ x =-,在Rt BPQ D 中,222(2)4x x \=-+,解得:5x=,QF=.即528.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当55Ð的度数;BEAÐ=°时,求HADÐ的大小;(2)设BEA aÐ=,试用含a的代数式表示DFAÐ有怎样的数量关系,并说明理由.(3)点E运动的过程中,试探究BEAÐ与FEA【解答】解:(1)Q四边形ABCD是正方形,90\Ð=Ð=°,EBA BAD\Ð=°-Ð=°-°=°,90905535EAB BAE\Ð=Ð-Ð-Ð=°-°-°=°;90453510HAD BAD EAF EAB(2)Q四边形ABCD是正方形,\Ð=Ð=Ð=°,90EBA BAD ADF\Ð=°-Ð=°-,9090EAB BAE a\Ð=Ð-Ð-Ð=°-°-°-=-°,DAF BAD EAF EAB a a9045(90)45\Ð=°-Ð=°--°=°-;9090(45)135DFA DAF a aÐ=Ð,理由如下:(3)BEA FEA=,连接AI.延长CB至I,使BI DFQ四边形ABCD是正方形,\=,90AD ABÐ=Ð=°,ADF ABC90\Ð=°,ABIQ,又BI DF=\D@D,()DAF BAI SASÐ=Ð,\=,DAF BAIAF AIEAI BAI BAE DAF BAE EAF\Ð=Ð+Ð=Ð+Ð=°=Ð,45D的公共边,D与EAFQ是EAI又AEEAI EAF SAS\D@D,()\Ð=Ð.BEA FEA=,过D作DG EF29.在正方形ABCD中,点E、F分别在边BC、AD上,DE EF^于点H,交AB边于点G.(1)如图1,求证:DE DG=;(2)如图2,将EF绕点E逆时针旋转90°得到EK,点F对应点K,连接KG,EG,若H为DG中点,EG.在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG长度相等的线段(不包括)【解答】解:(1)Q四边形ABCD是正方形,DAG DCEÐ=Ð=°,AD BC,90AD DC\=,//\Ð=Ð,DEC EDFQ,DE EF=\Ð=Ð,EFD EDF\Ð=Ð,EFD DECQ于H,DG EF^\Ð=°,GHF90AGH AFH\Ð+Ð=°,180Q,Ð+Ð=°AFH EFD180DGA EFD DEC \Ð=Ð=Ð,在DAG D 和DCE D 中:DGA DEC DAG DCEDA DC Ð=ÐìïÐ=Ðíï=î()DAG DCE AAS \D @D ,DG DE \=.(2)KE EF ^Q ,DG EF ^,//KE DG \,且DG EF KE DE ===,\四边形KEDG 是平行四边形,且DG DE =,\四边形KEDG 是菱形,GK DG KE DE \===,DG EF ^Q ,H 是DG 的中点,EG DE \=,EG DE DG GK KE EF \=====.30.如图,已知正方形ABCD 的边长是2,EAF m Ð=°,将EAF Ð绕点A 顺时针旋转,它的两边分别交BC 、CD 于点E 、F ,G 是CB 延长线上一点,且始终保持BG DF =.(1)求证:ABG ADF D @D ;(2)求证:AG AF ^;(3)当EF BE DF =+时:①求m 的值;②若F 是CD 的中点,求BE的长.【解答】解:(1)证明:在正方形ABCD 中,2AB AD BC CD ====,90BAD C D ABC ABG Ð=Ð=Ð=Ð=Ð=°.BG DF =Q ,在ABG D 和ADF D 中,AB AD ABG ADF BG DF =ìïÐ=Ðíï=î,()ABG ADF SAS \D @D ;(2)证明:ABG ADF D @D Q ,GAB FAD \Ð=Ð,GAF GAB BAF\Ð=Ð+Ð90FAD BAF BAD =Ð+Ð=Ð=°,AG AF \^;(3)①解:ABG ADF D @D ,AG AF \=,BG DF =.EF BE DF =+Q ,EF BE BG EG \=+=.AE AE =Q,。

图形的旋转与翻折变换

图形的旋转与翻折变换

图形的旋转与翻折变换数学是一门抽象而又实用的学科,其中的几何学更是与我们生活息息相关。

在初中数学学习中,图形的旋转与翻折变换是一个重要的内容,它不仅能够帮助我们更好地理解几何形状,还可以应用于实际问题的解决。

本文将围绕图形的旋转与翻折变换展开讨论,希望能够给中学生及其父母带来一些启示和帮助。

一、图形的旋转变换图形的旋转变换是指围绕某一点或某一直线旋转图形,使得图形在平面上发生位置改变。

旋转变换有两个重要的概念:旋转中心和旋转角度。

以正方形为例,当我们将正方形绕着一个点旋转时,这个点就是旋转中心。

而旋转角度则是指旋转的角度大小,可以是顺时针或逆时针旋转。

通过旋转变换,我们可以观察到图形在平面上的位置、大小和形状的改变。

例如,我们可以通过旋转变换将一个正方形变成一个菱形,或者将一个长方形变成一个平行四边形。

这种变换不仅可以让我们更好地理解图形之间的关系,还可以应用于实际问题的解决。

二、图形的翻折变换图形的翻折变换是指将图形沿着某一直线对称翻折,使得图形在平面上发生位置改变。

翻折变换有两个重要的概念:对称轴和对称点。

以三角形为例,当我们将三角形沿着一条直线对称翻折时,这条直线就是对称轴。

对称点则是指对称轴上的一个点,使得该点与图形上的另一个点关于对称轴对称。

通过翻折变换,我们可以观察到图形在平面上的位置、大小和形状的改变。

例如,我们可以通过翻折变换将一个正方形变成一个长方形,或者将一个长方形变成一个平行四边形。

这种变换不仅可以帮助我们更好地理解图形之间的关系,还可以应用于实际问题的解决。

三、应用举例图形的旋转与翻折变换在实际问题中有广泛的应用。

我们可以通过一些例子来说明。

例一:小明要设计一个标志,标志上有一个正方形和一个菱形,他希望将正方形旋转一定角度后与菱形重叠,从而形成一个新的图形。

他应该如何选择旋转的角度呢?解析:首先,我们可以确定旋转中心为正方形的中心点。

然后,通过观察可以发现,当正方形旋转45度时,它与菱形重叠。

平移旋转翻折

平移旋转翻折

平移旋转翻折在数学几何中,平移、旋转和翻折是常见且重要的变换方式。

它们不仅被广泛应用于各个领域,如计算机图形学、工程建模以及几何推理,还在日常生活中起到一定的作用。

本文将重点介绍平移、旋转和翻折的概念、特点以及应用。

一、平移平移是指在平面上将一个图形沿着一定方向不改变形状和大小地移动。

在数学中,平移可以用向量来表示。

假设平移向量为[dx, dy],那么图形上任意一点(x, y)经过平移后的坐标为(x+dx, y+dy)。

可以看出,平移只改变了图形的位置,而不会改变图形本身的性质。

平移在几何中有广泛的应用。

比如在地图制图中,将地图上的城市标记进行平移,便可以得到不同的地理分布方案。

此外,在工程制图中,平移也是非常常见的操作,可以通过平移来移动图形的位置,以获得更合理和更美观的设计。

二、旋转旋转是指将一个图形以某个点为中心按一定角度旋转,保持形状和大小不变。

数学中,我们可以使用旋转矩阵来描述一个图形的旋转变换。

设旋转角度为θ,旋转中心为(x0, y0),图形上任意一点(x, y)经过旋转后的坐标计算公式如下:x' = (x - x0) * cosθ - (y - y0) * si nθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0可以看出,旋转的本质是改变了图形的方向和位置,但不改变图形本身的性质。

旋转在许多领域都有重要的应用。

例如,在航空航天领域中,飞行器的姿态控制需要进行旋转变换来实现平衡和机动性能。

此外,在艺术设计中,通过旋转变换可以创造出丰富多样的视觉效果。

三、翻折翻折是指将一个图形沿着某条直线对称地翻转,即将图形中的点关于对称轴做镜像对称。

在数学中,翻折也可以通过矩阵变换来表示。

设对称轴为直线y=kx+b,图形上任意一点(x, y)经过翻折后的坐标计算公式如下:x' = x - 2 * (k * x + b) / (k^2 + 1)y' = y - 2 * (k * x + b) * k / (k^2 + 1) - 2 * b / (k^2 + 1)翻折改变了图形的方向和位置,同时也改变了图形的性质。

图形的旋转、平移与翻折

图形的旋转、平移与翻折

图形的旋转、平移与翻折在几何学中,图形的旋转、平移与翻折是常见的操作,可以通过这些操作改变图形的位置、形状和方向。

这些操作在数学、物理学和计算机图形学等领域都有广泛的应用。

本文将介绍图形的旋转、平移与翻折的基本概念和相关应用。

一、图形的旋转图形的旋转是指将图形绕一个旋转中心按一定角度旋转。

旋转可以使图形发生变化,同时保持图形的大小和形状不变。

旋转操作常用的单位是度数,顺时针为正方向,逆时针为负方向。

图形的旋转可以通过旋转矩阵来描述。

设图形的坐标为(x, y),旋转的角度为θ,旋转中心为(x0, y0),则旋转后的坐标可以表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0通过这个公式,我们可以将任意点围绕旋转中心进行旋转变换。

图形的旋转可以应用于很多领域,例如地理学中的地图旋转变换、物理学中的刚体旋转运动等。

在计算机图形学中,旋转操作经常用于图像处理、动画制作等方面。

二、图形的平移图形的平移是指将图形沿着特定的方向和距离进行移动。

平移操作只改变图形的位置而不改变图形的形状和方向。

图形的平移可以通过平移向量来表示。

设图形的坐标为(x, y),平移向量为(dx, dy),则平移后的坐标可以表示为:x' = x + dxy' = y + dy通过这个公式,我们可以将图形沿水平方向和垂直方向进行平移变换。

图形的平移操作在几何学中经常用于研究几何关系、证明定理等方面。

在计算机图形学中,平移操作经常用于图像编辑、游戏开发等方面。

三、图形的翻折图形的翻折是指将图形在一个轴线上进行对称变换。

翻折操作将图形上的每个点关于轴线镜像对称,使得图形在镜像轴两侧成为对称的。

图形的翻折可以通过翻折矩阵来表示。

设图形的坐标为(x, y),轴线为x轴或y轴,对称变换为x轴翻折或y轴翻折,对应的翻折矩阵为:对于x轴翻折:x' = xy' = -y对于y轴翻折:x' = -xy' = y通过这个公式,我们可以将图形关于x轴或y轴进行翻折变换。

旋转平移翻折的几何变换与性质

旋转平移翻折的几何变换与性质

旋转平移翻折的几何变换与性质旋转、平移和翻折是几何中常见的基本变换方式,它们在空间和平面几何中发挥着重要的作用。

本文将介绍旋转平移翻折的几何变换及其性质,推导其数学表达式,并通过具体的实例来说明其应用。

一、旋转变换旋转是指将平面或空间中的图形按照一定角度绕着旋转中心进行旋转的操作。

对于平面上的点(x, y),其绕原点逆时针旋转θ度后的新坐标可以由以下公式计算得出:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ其中,x'和y'分别表示旋转后点的坐标,θ为旋转角度。

二、平移变换平移是指将平面或空间中的图形沿着指定的方向和距离进行移动的操作。

平移变换可以用一个向量来表示。

对于平面上的点(x, y),其平移(dx, dy)后的新坐标可以由以下公式计算得出:x' = x + dxy' = y + dy其中,(dx, dy)为平移向量,x'和y'分别表示平移后点的坐标。

三、翻折变换翻折是指将平面或空间中的图形沿着指定的轴进行对称的操作。

对于平面上的点(x, y),其关于直线y=k翻折后的新坐标可以由以下公式计算得出:x' = xy' = 2k - y其中,(x', y')为翻折后点的坐标,k为翻折轴的位置。

以上是旋转、平移和翻折的几何变换的数学表达式。

下面将通过实例说明它们在几何问题中的应用。

实例一:旋转变换假设有一张平面上的三角形ABC,顶点分别为A(1, 2),B(3, 4)和C(5, 6)。

现在需要将该三角形绕原点顺时针旋转60度,求旋转后各顶点的坐标。

根据旋转变换的公式,旋转角度θ=60°,原点为旋转中心,可以计算得出旋转后的各顶点坐标为:A'(1*cos60° - 2*sin60°, 1*sin60° + 2*cos60°) = (0.5, 2.598)B'(3*cos60° - 4*sin60°, 3*sin60° + 4*cos60°) = (-1.133, 4.330)C'(5*cos60° - 6*sin60°, 5*sin60° + 6*cos60°) = (1.333, 7.464)实例二:平移变换假设有一条直线L,其方程为y = 2x - 1。

形的旋转平移和翻折操作总结

形的旋转平移和翻折操作总结

形的旋转平移和翻折操作总结形的旋转、平移和翻折是我们在几何学中经常遇到的操作。

通过这些操作,我们可以改变形状的位置、方向和形式。

在本文中,我们将对这些操作进行总结,以便更好地理解和应用它们。

一、形的旋转形的旋转是指将形状绕着一个中心点旋转一定角度,从而得到一个新的形状。

旋转可以是顺时针或逆时针方向的,取决于旋转角度的正负。

旋转操作的关键是确定旋转的中心点和旋转角度。

中心点可以是一个顶点、一个线段的中点或任意一点。

旋转角度通常用度数表示,如顺时针旋转90度或逆时针旋转45度。

例如,我们可以将一个三角形绕着顶点A顺时针旋转90度,得到一个新的三角形。

旋转后的三角形与原三角形共边,但是位置和方向不同。

二、形的平移形的平移是指保持形状不变,但将其整体沿着一个方向平行移动一定距离。

平移操作可以是水平、垂直或斜向的,取决于平移的方向。

平移操作的关键是确定平移的方向和距离。

方向可以是上、下、左、右或任意一个斜向的方向。

距离可以用长度单位表示,如平移2个单位或平移5个厘米。

例如,我们可以将一个矩形向右平移3个单位,得到一个与原矩形形状相同但位置发生改变的新矩形。

三、形的翻折形的翻折是指将形状沿着一个轴线对称折叠,从而得到一个镜像对称的新形状。

翻折操作有水平翻折和垂直翻折两种形式。

水平翻折是指将形状从上至下对称折叠,垂直翻折是指将形状从左至右对称折叠。

翻折轴线可以是一条边、一条对角线或任意一条直线。

例如,我们可以将一个正方形沿着一条垂直轴线翻折,得到一个左右对称的新正方形。

综上所述,形的旋转、平移和翻折是几何学中常见的操作。

通过这些操作,我们可以改变形状的位置、方向和形式,使得几何问题的解决更加灵活和多样化。

在实际应用中,我们可以利用这些操作解决一些形状变换和位置确定的问题,提高几何学的应用能力。

三年级数学认识平移旋转与翻折

三年级数学认识平移旋转与翻折

三年级数学认识平移旋转与翻折数学是一门既有趣又充满挑战的学科,而对于三年级的学生来说,他们正处于接触和学习基本几何概念的阶段。

其中,平移、旋转与翻折是他们学习的重点之一。

本文将详细介绍这三个概念以及它们在三年级数学中的应用。

平移是指将一个图形沿着平面内的某条线段按照指定的方向和距离移动的操作。

在平移中,图形的大小和形状保持不变,只是位置发生改变。

例如,将一个正方形沿着x轴向右平移3个单位长度,那么正方形的每个边上的点都将向右移动3个单位长度。

平移可以让学生直观地感受到图形之间的位置关系。

旋转是指将一个图形沿着围绕某个点旋转一定角度的操作。

在旋转中,图形的大小和形状保持不变,只是方向发生改变。

例如,将一个矩形绕着它的中心点逆时针旋转90度,那么矩形的每个边将沿逆时针方向转动90度。

旋转可以让学生更好地理解图形之间的方向关系。

翻折是指将一个图形沿着一条线折叠成新的图形的操作。

在翻折中,图形的大小和形状保持不变,只是位置发生改变。

例如,将一个长方形沿着竖直中线对折,那么对折后的图形与原图形完全重合。

翻折可以帮助学生了解图形之间的对称性。

在三年级数学中,平移、旋转与翻折并不只是简单的操作,还需要学生能够通过抽象思维来分析和解决问题。

通过这些概念的学习,学生可以培养几何思维、观察比较和逻辑推理的能力。

其中,平移的重要性在于让学生认识到物体的位置会因平移而发生变化,进而理解平面上点的坐标和方向的概念。

通过平移,学生可以观察和描述移动后图形的位置,并学习如何使用坐标表示它们。

旋转的重要性在于让学生感受到物体旋转后形状和方向的变化。

通过旋转,学生可以观察和描述旋转后图形的特征,并学习如何使用角度来表示旋转。

翻折的重要性在于让学生理解图形的对称性。

通过翻折,学生可以观察和描述改变后图形的对称特征,并学习如何使用折线来表示对称轴。

在三年级数学的学习中,平移、旋转与翻折不仅仅是为了解决具体问题,更是为了培养学生的思维能力和几何思维。

四边形的旋转与翻折

四边形的旋转与翻折

建筑设计:利用旋转创造出独特且美观的建筑结构
机械制造:旋转运动在各种机械装置中起到关键作用,如旋转门、旋转餐桌等
物理实验:通过旋转来研究物体在旋转状态下的物理特性,例如陀螺仪的工作原理 艺术创作:旋转在舞蹈、音乐和视觉艺术中也有广泛应用,例如旋转木马和旋转舞台 的设计
四边形的翻折
翻折能够完全重合。
在实际应用中,需要考虑四边形旋转和翻折后的稳定性和可行性,以确保实际操作的安全性和可靠性。
拓展几何思维:通过四边形的旋转与翻折, 可以帮助学生深入理解几何图形的性质和 变化,拓展几何思维。
增强空间观念:旋转与翻折操作可以帮助 学生建立空间观念,提高解决实际问题的 能力。
培养创新能力:综合应用旋转与翻折技巧, 可以启发学生的创新思维,培养他们探索 新方法的意识。
添加标题
添加标题
添加标题
添加标题
旋转过程中,相对边保持平行且长 度不变
旋转后,对应点的坐标会发生变化
旋转的性质:旋转不改变图形 的形状和大小,只改变其位置
旋转作图的步骤:确定中心点、 标记角度和方向、旋转图形
旋转在几何问题中的应用:通 过旋转将复杂问题转化为简单 问题,便于求解
常见的旋转操作:旋转变换、 旋转对称、旋转群等
实例解析:通过 具体的实例解析, 展示如何将四边 形的旋转与翻折 应用到实际问题 中,例如设计商 标、图案等。
注意旋转和翻折的角度和方向,确保符合题意和实际需求。 考虑四边形在旋转和翻折过程中的形状和大小变化,避免出现不符合逻辑的情况。 注意旋转和翻折后形成的新的四边形的边长和角度,确保其满足四边形的性质。
四边形的旋转与翻折
汇报人:XX
目录
四边形的旋转
四边形的翻折
四边形旋转与翻折 的综合应用

专题35 几何图形翻折与旋转【热点专题】(含答案解析)

专题35  几何图形翻折与旋转【热点专题】(含答案解析)

专题35几何图形翻折与旋转【热点专题】几何图形的翻折与旋转问题是历年中考的热点问题,题型问题立意新颖,变幻巧妙,对培养识图能力及灵活运用数学知识解决问题的能力非常有效.同样的翻折与旋转类题目,条件不一样,用到的知识和方法也不尽相同.(1)旋转后的图形与原图形是全等;(2)旋转前后两个图形对应点到旋转中心的距离相等;(3)对应点与旋转中心所连线段的夹角都等于旋转角;题型一:点、线旋转(2021·黑龙江牡丹江·中考真题)【例1】1.如图,△AOB中,OA=4,OB=6,AB=,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.(4)或(﹣4)C .(﹣2)或(2)D .(2,﹣2,(2021·江苏扬州市·中考真题)【例2】2.如图,一次函数y x =的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30︒交x 轴于点C ,则线段AC 长为()AB .C .2D题型二:面的旋转(2021·辽宁大连·中考真题)【例3】3.如图,在ABC 中,90ACB ∠=︒,BAC α∠=,将ABC 绕点C 顺时针旋转90°得到A B C ''△,点B 的对应点B '在边AC 上(不与点A ,C 重合),则AA B ''∠的度数为()A .αB .45α-︒C .45α︒-D .90α︒-(2021·四川巴中·中考真题)【例4】4.如图,把边长为3的正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,DE 与BC 交于点P ,ED 的延长线交AB 于点Q ,交OA 的延长线于点M .若BQ :AQ =3:1,则AM =__________.题型三:三角形翻折问题(2021·四川凉山彝族自治州·中考真题)【例5】5.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE V 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198B .2C .254D .74(2021·重庆中考真题)【例6】6.如图,三角形纸片ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,BF =4,CF =6,将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为__________.题型四:四边形翻折问题【例7】7.如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则ADDF的值为()A .1113B .1315C .1517D .1719(2021·四川自贡市·中考真题)【例8】8.如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN ,连接DN ,则DN 的长是()A .52B .958C .3D .655(2021·湖北黄石·中考真题)9.如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是()A .()2,3-B .()2,3-C .()2,2-D .()3,2-(2021·湖南益阳·中考真题)10.如图,Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=,将ABC 绕A 点顺时针方向旋转角9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB ' 的面积之比等于_______.(2021·江苏苏州·中考真题)11.如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.(2021·四川成都市·中考真题)12.如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为B',则线段BF 的长为_______;第二步,分别在,'EF A B ¢上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.(2021·新疆·中考真题)13.如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE 按逆时针方向旋转得DCF ,连接EF ,分别交BD ,CD 于点M ,N .若25AE DN =,则sin EDM ∠=__________.(2021·四川绵阳·中考真题)14.如图,点M 是ABC ∠的边BA 上的动点,6BC =,连接MC ,并将线段MC 绕点M 逆时针旋转90︒得到线段MN .(1)如图1,作MH BC ⊥,垂足H 在线段BC 上,当CMH B ∠=∠时,判断点N 是否在直线AB 上,并说明理由;(2)如图2,若30ABC ∠=︒,//NC AB ,求以MC 、MN 为邻边的正方形的面积S .(2021·山西·中考真题)15.综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在ABCD Y 中,BE AD ⊥,垂足为E ,F 为CD 的中点,连接EF ,BF ,试猜想EF 与BF 的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将ABCD Y 沿着BF (F 为CD 的中点)所在直线折叠,如图②,点C 的对应点为'C ,连接'DC 并延长交AB 于点G ,请判断AG 与BG 的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将ABCD Y 沿过点B 的直线折叠,如图③,点A 的对应点为'A ,使'A B CD ⊥于点H ,折痕交AD 于点M ,连接'A M ,交CD 于点N .该小组提出一个问题:若此ABCD Y 的面积为20,边长5AB =,BC =部分(四边形BHNM )的面积.请你思考此问题,直接写出结果.(2021·山东日照·中考真题)16.问题背景:如图1,在矩形ABCD 中,AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的BEF △绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AEDF=_____;②直线AE 与DF 所夹锐角的度数为______.(2)小王同学继续将BEF △绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF △旋转至D 、E 、F 三点共线时,则ADE V 的面积为______.(2021·辽宁阜新·中考真题)17.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .18.已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0),点B (0,6),点P 为BC 边上的动点(点P 不与点B 、C 重合),经过点O 、P 折叠该纸片,得点B′和折痕OP .设BP=t .(Ⅰ)如图①,当∠BOP=300时,求点P 的坐标;(Ⅱ)如图②,经过点P 再次折叠纸片,使点C 落在直线PB′上,得点C′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA 上时,求点P 的坐标(直接写出结果即可).参考答案:1.C【分析】先求出点A 的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A ′的坐标.【详解】过点A 作AC OB ⊥于点C .在Rt △AOC 中,222AC OA OC =-.在Rt △ABC 中,()22222AC AB CB AB OB OC =-=--.∴()2222OA OC AB OB OC -=--.∵OA =4,OB =6,AB =,∴2OC =.∴AC =∴点A 的坐标是(2,.根据题意画出图形旋转后的位置,如图,∴将△AOB 绕原点O 顺时针旋转90°时,点A 的对应点A ′的坐标为()2-;将△AOB 绕原点O 逆时针旋转90°时,点A 的对应点A ′′的坐标为()2-.故选:C .【点睛】本题考查了解直角三角形、旋转中点的坐标变换特征及旋转的性质.(a ,b )绕原点顺时针旋转90°得到的坐标为(b ,-a ),绕原点逆时针旋转90°得到的坐标为(-b ,a ).2.A【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB 的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【详解】解:∵一次函数y x=的图像与x轴、y轴分别交于点A、B,令x=0,则y y=0,则x=,则A(,0),B(0),则△OAB为等腰直角三角形,∠ABO=45°,∴AB,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x,∴BD,又BD=AB+AD=2+x,∴2+x,解得:x∴AC x)+故选A.【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.3.C【分析】由旋转的性质可得CA B CAB α''∠=∠=,90,ACA AC A C ''∠=︒=,进而可得45AA C '∠=︒,然后问题可求解.【详解】解:由旋转的性质可得:CA B CAB α''∠=∠=,90,ACA AC A C ''∠=︒=,∴ACA ' 等腰直角三角形,∴45AA C '∠=︒,∴45AA B α''∠=︒-;故选C .【点睛】本题主要考查旋转的性质,熟练掌握旋转的性质是解题的关键.4.25【分析】连接OQ ,OP ,利用HL 证明Rt △OAQ ≌Rt △ODQ ,得QA =DQ ,同理可证:CP =DP ,设CP =x ,则BP =3-x ,PQ =x +34,在Rt △BPQ 中,利用勾股定理列出方程求出x =95,再利用△AQM ∽△BQP 可求解.【详解】解:连接OQ ,OP ,∵将正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,∴OA =OD ,∠OAQ =∠ODQ =90°,在Rt △OAQ 和Rt △ODQ 中,OQ OQ OA OD =⎧⎨=⎩,∴Rt △OAQ ≌Rt △ODQ (HL ),∴QA =DQ ,同理可证:CP =DP ,∵BQ:AQ=3:1,AB=3,∴BQ=94,AQ=34,设CP=x,则BP=3-x,PQ=x+3 4,在Rt△BPQ中,由勾股定理得:(3-x)2+(94)2=(x+34)2,解得x=9 5,∴BP=6 5,∵∠AQM=∠BQP,∠BAM=∠B,∴△AQM∽△BQP,∴13 AM AQBP BQ==,∴1 63 5AM=,∴AM=2 5.故答案为:2 5.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识,利用全等证明QA=DQ,CP=DP是解题的关键.5.D【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.【详解】解:∵∠ACB=90°,AC=8,BC=6,∴AB,∵△ADE沿DE翻折,使点A与点B重合,∴AE=BE,AD=BD=12AB=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中∵BE 2=BC 2+CE 2,∴x 2=62+(8-x )2,解得x =254,∴CE =2584-=74,故选:D .【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.6.【分析】根据折叠的性质得到DE 为ABC 的中位线,利用中位线定理求出DE 的长度,再解t R ACE △求出AF 的长度,即可求解.【详解】解:∵将这张纸片沿直线DE 翻折,点A 与点F 重合,∴DE 垂直平分AF ,AD DF =,AE EF =,ADE EDF ∠=∠,∵DE ∥BC ,∴ADE B ∠=∠,EDF BFD ∠=∠,90AFC ∠=︒,∴B BFD ∠=∠,∴BD DF =,∴BD AD =,即D 为AB 的中点,∴DE 为ABC 的中位线,∴152DE BC ==,∵AF =EF ,∴AEF △是等边三角形,在t R ACE △中,60CAF ∠=︒,6CF =,∴tan 60CF AF ==︒∴AG =∴四边形ADFE 的面积为122DE AG ⋅⨯=,故答案为:.【点睛】本题考查解直角三角形、中位线定理、折叠的性质等内容,掌握上述基本性质定理是解题的关键.7.C【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由∠EOF=∠BOP 、∠B=∠E 、OP=OF 可得出△OEF ≌△OBP (AAS ),根据全等三角形的性质可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=4-x 、BF=PC=3-x ,进而可得出AF=1+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出cos ∠ADF 的值.【详解】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∵90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE ﹣EF =4﹣x .又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC ﹣BP =3﹣x ,∴AF =AB ﹣BF =1+x .在Rt △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4﹣x )2,解得:x =0.6,∴DF =4﹣x =3.4,∴1517AD DF =.故选C .【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x ,求出AF 的长度是解题的关键.8.D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∴2AM =,4DM =,∵将BMA △沿BM 对折至BMN ,四边形ABCD 是正方形,∴90BNE C ∠=∠=︒,AB AN BC ==,∴Rt BNE Rt BCE ≌(HL),∴NE CE =,∴2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,∴3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∴MDE NFE ∽,∴25EF NF NE DE MD ME ===,∴125NF =,95EF =,∴65DF =,∴DN =,故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.9.B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3).故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.10.9:4【分析】先根据正切三角函数的定义可得32AC AB =,再根据旋转的性质可得,,AB AB AC AC BAB CAC α''''==∠=∠=,从而可得1AC AB AC AB =='',然后根据相似三角形的判定可得CAC BAB ''~ ,最后根据相似三角形的性质即可得.【详解】解: 在Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=,32AC AB ∴=,由旋转的性质得:,,AB AB AC AC BAB CAC α''''==∠=∠=,1AC AB AC AB ∴=='',在CAC '△和BAB ' 中,AC AB AC AB CAC BAB ''''⎧=⎪⎨⎪∠=∠⎩,CAC BAB ''~∴ ,294CAC BAB AC S AB S ''⎛⎫== ⎪⎝⎭∴ ,即CAC '△与BAB ' 的面积之比等于9:4,故答案为:9:4.【点睛】本题考查了正切三角函数、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.11.245【分析】添加辅助线,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .根据旋转的性质,得到''A B O ABO ≅ ,在'Rt A PO ∆和中,'B OA BOA ∠=∠,根据三角函数和已知线段的长度求出点A '到射线ON 的距离=A'P d .【详解】如图所示,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P.∵线段AB 绕点O 按逆时针方向旋转得到对应线段A B ''∴'8OA OA ==,''B OB A OA∠=∠∴''''B OB BOA A OA BOA ∠-∠=∠-∠即''B OA BOA∠=∠∵点B 在线段OA 的垂直平分线l 上∴118422OC OA ==⨯=,5OB AB ==3BC ===∵''B OA BOA∠=∠∴'sin ''sin 'A P BC B OA BOA A O OB ∠==∠=∴'385A P =∴24'5d A P ==【点睛】本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.12.1【分析】第一步:设EF 与AA’交于点O ,连接AF ,易证明△AOE △ADC ,利用对应边成比例可得到OA =2OE ,由勾股定理可求出OE =5,从而求得OA 及OC ;由AD ∥BC ,易得△AOE ∽△COF ,由对应边成比例可得AE 、FC 的关系式,设BF =x ,则FC =8-x ,由关系式可求得x 的值;第二步:连接NE ,NF ,根据折叠的性质,得到NF =NE ,设B’N =m ,分别在Rt △NB F '和Rt △EA N '中,利用勾股定理及NF =NE 建立方程,可求得m ,最后得出结果.【详解】如图所示,连接AF ,设EF 与AA’交于点O ,由折叠的性质得到AA’⊥EF ,3A E AE '==∵四边形ABCD 是矩形∴∠ADC =90°,CD =AB =4,AD ∥BC∵∠AOE =∠ADC ,∠OAE =∠DAC∴△AOE △ADC ,∴12OE CD OA AD ==,∴OA =2OE ,在直角△AOE 中,由勾股定理得:2249OE OE +=,∴OE =5,∴OA在Rt △ADC 中,由勾股定理得到:AC =,∴OC =令BF =x ,则FC =8-x ,∵AD ∥BC ,∴△AOE ∽△COF ,∴37OA AE OC FC ==,即7AE =3FC∴3(8-x )=7×3解得:1x =,∴BF 的长为1.连接NE ,NF ,如图,根据折叠性质得:BF =B’F =1,MN ⊥EF ,NF =NE ,设B’N =m ,则22222213(4)NF m NE m =+==+-,解得:m =3,则NF ,∵EF =∴MF∴MN故答案为:1【点睛】本题主要考查了折叠的性质、勾股定理、三角形相似的判定与性质,矩形的性质等知识,熟练运用这些知识是解决本题的关键,本题还涉及到方程的运用.13【分析】过点E 作EP ⊥BD 于P ,将∠EDM 构造在直角三角形DEP 中,设法求出EP 和DE 的长,然后用三角函数的定义即可解决.【详解】解:∵四边形ABCD 是正方形,∴AB ∥DC ,∠A =∠BCD =∠ADC =90°,AB =BC =CD =DA =1,BD =.∵△DAE 绕点D 逆时针旋转得到△DCF ,∴CF =AE ,DF =DE ,∠EDF =∠ADC =90°.设AE =CF =2x ,DN =5x ,则BE =1-2x ,CN =1-5x ,BF=1+2x .∵AB ∥DC ,∴~FNC FEB ∆∆.∴NC FC EB FB =.∴1521212x x x x-=-+.整理得,26510x x +-=.解得,116x =,21x =-(不合题意,舍去).∴1221233AE x EB x ===-=,.∴DE ===过点E 作EP ⊥BD 于点P ,如图所示,设DP =y,则BP y =.∵22222EB BP EP DE DP -==-,∴)2222233y y ⎛⎛⎫-=- ⎪ ⎝⎭⎝⎭.解得,y =∴3EP ===.∴在Rt △DEP中,sin 3EP EDP ED∠==sin 5EDM ∠=.【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质、勾股定理、锐角三角函数、方程的数学思想等知识点,熟知各类图形的性质与判定是解题的基础,构造直角三角形,利用锐角三角函数的定义是解题的关键.14.(1)点N 在直线AB 上,见解析;(2)18【分析】(1)根据CMH B ∠=∠,90CMH C ∠+∠=︒,得到90B C ∠+∠=︒,可得线段CM 逆时针旋转90︒落在直线BA 上,即可得解;(2)作CD AB ⊥于D ,得出45MCN ∠=︒,再根据平行线的性质得到45BMC ∠=︒,再根据直角三角形的性质计算即可;【详解】解:(1)结论:点N 在直线AB 上;∵CMH B ∠=∠,90CMH C ∠+∠=︒,∴90B C ∠+∠=︒,∴90BMC ∠=︒,即CM AB ⊥.∴线段CM 逆时针旋转90︒落在直线BA 上,即点N 在直线AB 上.(2)作CD AB ⊥于D ,∵MC MN =,90CMN ∠=︒,∴45MCN ∠=︒,∵//NC AB ,∴45BMC ∠=︒,∵6BC =,30B ∠=︒,∴3CD =,MC =∴218S MC ==,即以MC 、MN 为邻边的正方形面积18S =.【点睛】本题主要考查了旋转综合题,结合平行线的性质计算是解题的关键.15.(1)EF BF =;见解析;(2)AG BG =,见解析;(3)223.【分析】(1)如图,分别延长AD ,BF 相交于点P ,根据平行四边形的性质可得//AD BC ,根据平行线的性质可得PDF C ∠=∠,P FBC ∠=∠,利用AAS 可证明△PDF ≌△BCF ,根据全等三角形的性质可得FP FB =,根据直角三角形斜边中线的性质可得12EF BP =,即可得EF BF =;(2)根据折叠性质可得∠CFB =∠C′FB =12∠CFC′,FC =FC′,可得FD =FC′,根据等腰三角形的性质可得∠FDC′=∠FC′D ,根据三角形外角性质可得∠CF C′=∠FDC′+∠FC′D ,即可得出∠C′FB =∠FC′D ,可得DG//FB ,即可证明四边形DGBF 是平行四边形,可得DF =BG =12AB ,可得AG =BG ;(3)如图,过点M 作MQ ⊥A ′B 于Q ,根据平行四边形的面积可求出BH 的长,根据折叠的性质可得A ′B =AB ,∠A =∠A ′,∠ABM =∠MBH ,根据'A B CD ⊥可得A ′B ⊥AB ,即可证明△MBQ 是等腰直角三角形,可得MQ =BQ ,根据平行四边形的性质可得∠A =∠C ,即可得∠A ′=∠C ,进而可证明△A ′NH ∽△CBH ,根据相似三角形的性质可得A ′H 、N H 的长,根据NH //MQ 可得△A ′NH ∽△A ′MQ ,根据相似三角形的性质可求出MQ 的长,根据S 阴=S △A′MB-S △A′NH 即可得答案.【详解】(1)EF BF =.如图,分别延长AD ,BF 相交于点P ,∵四边形ABCD 是平行四边形,∴//AD BC ,∴PDF C ∠=∠,P FBC ∠=∠,∵F 为CD 的中点,∴DF CF =,在△PDF 和△BCF 中,P FBC PDF C DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PDF ≌△BCF ,∴FP FB =,即F 为BP 的中点,∴12BF BP =,∵BE AD ⊥,∴90BEP ∠=︒,∴12EF BP =,∴EF BF =.(2)AG BG =.∵将ABCD Y 沿着BF 所在直线折叠,点C 的对应点为'C ,∴∠CFB =∠C′FB =12∠CFC′,'FC FC =,∵F 为CD 的中点,∴12FC FD CD ==,∴'FC FD =,∴∠FDC′=∠FC′D ,∵'CFC ∠=∠FDC′+∠FC′D ,∴'1'2FC D CFC ∠=∠,∴∠FC′D =∠C′FB ,∴//DG FB ,∵四边形ABCD 为平行四边形,∴//DC AB ,DC =AB ,∴四边形DGBF 为平行四边形,∴BG DF =,∴12BG AB =,∴AG BG =.(3)如图,过点M 作MQ ⊥A ′B 于Q ,∵ABCD Y 的面积为20,边长5AB =,'A B CD ⊥于点H ,∴BH =50÷5=4,∴CH 2=,A ′H =A ′B -BH =1,∵将ABCD Y 沿过点B 的直线折叠,点A 的对应点为'A ,∴A ′B =AB ,∠A =∠A ′,∠ABM =∠MBH ,∵'A B CD ⊥于点H ,AB //CD ,∴'A B AB ⊥,∴∠MBH =45°,∴△MBQ 是等腰直角三角形,∴MQ =BQ ,∵四边形ABCD 是平行四边形,∴∠A =∠C ,∴∠A ′=∠C ,∵∠A ′HN =∠CHB ,∴△A ′NH ∽△CBH ,∴'CH BH A H NH =,即241NH=,解得:NH =2,∵'A B CD ⊥,MQ ⊥A ′B ,∴NH //MQ ,∴△A ′NH ∽△A ′MQ ,∴''A H NH AQ MQ=,即125MQ MQ =-,解得:MQ =103,∴S 阴=S △A′MB-S △A′NH =12A ′B ·MQ -12A ′H ·NH =12×5×103-12×1×2=223.【点睛】本题考查折叠的性质、平行四边形的判定与性质、全等三角形的判定与性质及相似三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.16.(1)2,30°;(2【分析】(1)通过证明FBD EBA ∆∆∽,可得AE BE DF BF ==BDF BAE ∠=∠,即可求解;(2)通过证明ABE DBF ∆∆∽,可得AE BE DF BF ==,BDF BAE ∠=∠,即可求解;拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.【详解】解:(1)如图1,30ABD ∠=︒ ,90DAB ∠=︒,EF BA ⊥,cos BE AB ABD BF DB ∴∠==如图2,设AB 与DF 交于点O ,AE 与DF 交于点H ,BEF ∆ 绕点B 按逆时针方向旋转90︒,90DBF ABE ∴∠=∠=︒,FBD EBA ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠,又DOB AOF ∠=∠ ,30DBA AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒,故答案为:2,30︒;(2)结论仍然成立,理由如下:如图3,设AE 与BD 交于点O ,AE 与DF 交于点H ,将BEF ∆绕点B 按逆时针方向旋转,ABE DBF ∴∠=∠,又 BE AB BF DB ==ABE DBF ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠,又DOH AOB ∠=∠ ,30ABD AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒.拓展延伸:如图4,当点E 在AB 的上方时,过点D 作DG AE ⊥于G ,AB = 30ABD ∠=︒,点E 是边AB 的中点,90DAB ∠=︒,BE ∴=2AD =,4DB =,30EBF ∠=︒ ,EF BE ⊥,1EF ∴=,D 、E 、F 三点共线,90DEB BEF ∴∠=∠=︒,DE ∴30DEA ∠=︒ ,12DG DE ∴==由(2)可得:AE BE DF BF ==,AE ∴=ADE ∴∆的面积1122AE DG =⨯⨯=⨯;如图5,当点E 在AB 的下方时,过点D 作DG AE ⊥,交EA 的延长线于G ,同理可求:ADE ∆的面积1122228AE DG =⨯⨯=⨯⨯=;【点睛】本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.17.(1)O ,180;(2)图见解析,()0,1,90;(3)22,33⎛⎫ ⎪⎝⎭,2α【分析】(1)根据图形可以直接得到答案;(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【详解】解:(1)由图象可得,图形1G 与图形2G 关于原点成中心对称,则将图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;故答案为:O ,180;(2)1G ,2G 如图;由图形可得,将图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,故答案为:()0,1,90;(3)∵当G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G 时,1G 与2G 关于原点(0,0)对称,即图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;当G 关于y 轴和直线1y x =+的对称图形1G ,2G 时,图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,点(0,1)为直线1y x =+与y 轴的交点,90度角为直线1y x =+与y 轴夹角的两倍;又∵直线1:22l y x =-+和2:l y x =的交点为22,33⎛⎫ ⎪⎝⎭,夹角为α,∴当直线1:22l y x =-+和2:l y x =所夹锐角为α,图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕22,33⎛⎫ ⎪⎝⎭点(用坐标表示)顺时针旋转2α度(用α表示),可以得到图形2G .故答案为:22,33⎛⎫ ⎪⎝⎭,2α.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.18.(Ⅰ)点P 的坐标为(6).(Ⅱ)2111m t t 666=-+(0<t <11).(Ⅲ)点P 6,6).【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P ≌△OBP ,△QC′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案.(Ⅲ)首先过点P 作PE ⊥OA 于E ,易证得△PC′E ∽△C′QA ,由勾股定理可求得C′Q 的长,然后利用相似三角形的对应边成比例与2111m t t 666=-+,即可求得t 的值:【详解】(Ⅰ)根据题意,∠OBP=90°,OB=6.在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t .∵OP 2=OB 2+BP 2,即(2t )2=62+t 2,解得:t 1=t 2=-.∴点P 的坐标为(6).(Ⅱ)∵△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,∴△OB′P ≌△OBP ,△QC′P ≌△QCP .∴∠OPB′=∠OPB ,∠QPC′=∠QPC .∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ .又∵∠OBP=∠C=90°,∴△OBP ∽△PCQ .∴OB BP PC CQ =.由题意设BP=t ,AQ=m ,BC=11,AC=6,则PC=11-t ,CQ=6-m .∴6t 11t 6m =--.∴2111m t t 666=-+(0<t <11).(Ⅲ)点P 6,6).过点P 作PE ⊥OA 于E ,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A .∴△PC′E ∽△C′QA .∴''=PE PC AC C Q.∵PC′=PC=11-t ,PE=OB=6,AQ=m ,C′Q=CQ=6-m ,∴AC '==.∴.∵6116=--t t m ,即6116-=-t t m 6=t ,即.将2111m t t 666=-+代入,并化简,得2322360-+=t t .解得:12t t ==∴点P ,6)或(113+,6).。

初中数学中的形的平移旋转与翻折

初中数学中的形的平移旋转与翻折

初中数学中的形的平移旋转与翻折初中数学中的形的平移、旋转与翻折形的平移、旋转与翻折是初中数学中的重要概念和技巧。

通过学习这些内容,我们可以深入理解几何图形的性质和变化规律,提高数学解题的能力和思维逻辑能力。

本文将着重介绍初中数学中形的平移、旋转与翻折的概念、性质和相关解题方法。

一、形的平移1. 平移的概念平移是指在平面上,将一个点或者图形沿着特定的方向和距离移动之后的位置与移动前的位置相对应的变换。

2. 平移的性质(1)平移不改变图形的大小和形状。

(2)平移保持图形内部的所有角度和线段的相对关系不变。

(3)平移不改变图形的面积和周长。

3. 平移的表示方法和步骤平移可以用向量表示或者用坐标表示。

对于向量表示,我们可以通过指定平移向量的大小和方向来表示平移的规律。

对于坐标表示,我们可以通过向图形内的每个点添加相同的坐标改变量来得到平移后的图形。

平移的步骤一般为:(1)标出移动前的图形和参考点;(2)选择适当的方向和距离,确定平移的规律;(3)根据规律,将每个点移动到对应的位置,得到平移后的图形。

二、形的旋转1. 旋转的概念旋转是指在平面或空间中,围绕特定的中心点,按照一定的角度和方向,将一个点或者图形转到另一个位置的变换。

2. 旋转的性质(1)旋转不改变图形的形状。

(2)旋转保持图形内角度大小和线段的相对关系不变。

(3)旋转不改变图形的面积和周长。

3. 旋转的表示方法和步骤旋转可以通过给出旋转的中心点、旋转的角度和方向来表示旋转的规律。

在实际解题中,我们常常使用逆时针旋转的角度来表示旋转。

旋转的步骤一般为:(1)标出旋转前的图形和旋转的中心点;(2)选择适当的旋转角度和方向,确定旋转的规律;(3)根据规律,将图形的每个点旋转对应的角度和方向,得到旋转后的图形。

三、形的翻折1. 翻折的概念翻折是指通过将图形沿着一条直线对称折叠,使得折叠后的一部分与折叠前的另一部分重合的变换。

2. 翻折的性质(1)翻折不改变图形的形状。

图形的平移、翻折与旋转

图形的平移、翻折与旋转

图形的平移、翻折与旋转引言在几何学中,图形的变换是一个重要的概念。

变换可以改变图形的位置、形状或者方向。

其中,平移、翻折和旋转是最基本和常见的图形变换操作。

这些变换不仅在数学中有重要意义,而且在日常生活和工程应用中也得到广泛应用。

本篇文章将详细介绍图形的平移、翻折和旋转,包括定义、特征和实际应用。

1. 图形的平移图形的平移是指将图形沿着一定的方向和距离移动。

平移后的图形与原图形形状相同,只是位置发生了改变。

平移可以通过向量进行描述,即将图形上的所有点都沿着相同的平移向量移动。

1.1 平移的定义设P为平面上的一个点,平移向量为v,则P经过平移变换后的新位置记为P’,满足以下关系:P’ = P + v1.2 平移的特征•平移保持图形的形状不变,只改变位置。

•所有图形上的点,都具有相同的平移向量。

•平移变换是可逆的,即可通过反向平移将图形还原。

1.3 平移的应用平移在日常生活和工程应用中得到广泛应用。

以下是几个常见的应用场景:•地图上的标记:在地图中,经纬度坐标可以通过平移变换来实现标记点的移动。

•机器人运动:机器人在空间中的移动可以通过平移来描述。

•平面设计:平移是平面设计中常用的变换方式,可以用来设计标志、海报等。

2. 图形的翻折图形的翻折是指将图形沿着某条直线镜像对称,使得图形的镜像与原图形保持相等但位置相反。

翻折操作可以通过将图形上的点关于翻折轴进行对称得到。

2.1 翻折的定义设P为平面上的一个点,翻折轴为l,则P经过翻折变换后的新位置记为P’,满足以下关系:P’ = P关于l的对称点2.2 翻折的特征•翻折保持图形的形状不变,只改变位置。

•所有图形上的点,都关于翻折轴对称。

•翻折变换是可逆的,即可通过再次翻折将图形还原。

2.3 翻折的应用翻折在生活和工程中也有广泛应用。

以下是几个常见的应用场景:•双面印刷:在双面印刷中,通过翻折可以在一张纸上印刷两个不同的图案。

•镜子反射:镜子中的物体是通过翻折得到的反射图像。

平移旋转与翻折的变换

平移旋转与翻折的变换

平移旋转与翻折的变换在几何学中,平移、旋转和翻折是常见的图形变换方式。

它们不仅在数学中有重要的应用,也在日常生活中无处不在。

本文将分别介绍这三种变换方式,探讨它们的特点及其在几何学和实际生活中的应用。

一、平移变换平移是将一个图形沿着一定方向,按照一定距离进行移动的变换方式。

在平移变换中,图形保持形状和大小不变,只是位置发生了改变。

以二维平面为例,我们可以通过向量的加法来表示平移变换。

设平面上的点P(x,y),平移向量为v,那么通过平移变换得到的新点P'的坐标可以表示为P'(x+v_x, y+v_y)。

平移变换在实际生活中有许多应用,比如地图上标注位置、电脑屏幕上的拖动操作等。

此外,在计算机图形学中,平移变换被广泛用于物体的移动和动画效果的实现。

二、旋转变换旋转是将一个图形绕着某个点或某个轴进行转动的变换方式。

在旋转变换中,图形保持大小不变,只是形状和方向发生了改变。

同样以二维平面为例,我们可以通过矩阵乘法或复数运算来表示旋转变换。

设平面上的点P(x,y),绕原点逆时针旋转角度为θ,那么通过旋转变换得到的新点P'的坐标可以表示为P'(x',y'),其中x' = x*cosθ -y*sinθ,y' = x*sinθ + y*cosθ。

旋转变换在实际生活中也有许多应用。

比如地球的自转、机械设备的旋转运动等都属于旋转变换。

此外,在计算机图形学和计算机游戏中,旋转变换被广泛用于物体的旋转、摄像机的视角调整等。

三、翻折变换翻折是将一个图形按照某个轴进行对称的变换方式。

在翻折变换中,图形的所有点都关于某条轴对称。

以二维平面为例,我们可以通过矩阵乘法来表示翻折变换。

设平面上的点P(x,y),关于x轴进行翻折,那么通过翻折变换得到的新点P'的坐标可以表示为P'(x',y'),其中x' = x,y' = -y。

旋转与翻折的立体几何变换方法

旋转与翻折的立体几何变换方法

旋转与翻折的立体几何变换方法立体几何是数学中的一个重要分支,研究的是空间中的图形和物体。

在立体几何中,旋转和翻折是常见的几何变换方法,它们可以改变一个图形或物体的位置和形状,使之具有不同的视觉效果和空间特征。

本文将探讨旋转和翻折的立体几何变换方法,并介绍其应用领域和实际意义。

一、旋转的立体几何变换方法旋转是指将一个物体或图形绕某个轴心进行转动的几何变换方法。

在立体几何中,旋转可以分为二维旋转和三维旋转两种形式。

二维旋转是指将一个平面图形绕某个点进行旋转,使之保持在同一平面内。

常见的二维旋转有顺时针旋转和逆时针旋转两种方式。

通过改变旋转角度和旋转中心,可以实现不同程度和方向的旋转效果。

三维旋转是指将一个立体物体绕某个轴心进行旋转,使之在三维空间中改变位置和形状。

三维旋转可以分为绕X轴旋转、绕Y轴旋转和绕Z轴旋转三种方式。

通过改变旋转角度和旋转轴心,可以实现物体在空间中的不同方向和角度的旋转效果。

旋转在立体几何中具有广泛的应用,例如在计算机图形学中,通过旋转可以实现三维模型的动画效果;在建筑设计中,通过旋转可以改变建筑物的外观和立面效果;在机械制造中,通过旋转可以实现零件的加工和装配等。

二、翻折的立体几何变换方法翻折是指将一个图形或物体沿某个轴线进行翻转的几何变换方法。

在立体几何中,翻折可以分为二维翻折和三维翻折两种形式。

二维翻折是指将一个平面图形沿某条线进行对称翻转,使之在同一平面内改变位置和形状。

常见的二维翻折有水平翻折、垂直翻折和对角线翻折三种方式。

通过改变翻折轴线,可以实现不同方向和位置的翻折效果。

三维翻折是指将一个立体物体沿某个平面进行对称翻转,使之在三维空间中改变位置和形状。

三维翻折可以分为水平翻折、垂直翻折和对角线翻折三种方式。

通过改变翻折平面,可以实现物体在空间中的不同位置和形状的翻折效果。

翻折在立体几何中也有广泛的应用,例如在纸艺中,通过翻折可以制作出各种精美的折纸作品;在建筑设计中,通过翻折可以改变建筑物的外观和结构;在产品设计中,通过翻折可以实现产品的折叠和收纳等。

图形的翻折与旋转

图形的翻折与旋转

图形的翻折与旋转一、复习导入1.在平面内某一个图形绕一个中心旋转若干角度得到另一个图形的过程叫旋转变换。

2.翻折变换是将某一个图形沿着直线对折,翻折前后的两个图形关于这条直线轴对称。

3本质上旋转与翻折后的民原图形是全等形。

其中作用可将一些分散的元素通过翻折和旋转集中起来,旋转常用于边相等的等腰三角形、等边三角形及正方形等图形中。

二、典型例题 例1.如图,点A 是硬币圆周上一点,硬币与数轴相切于原点O (点A 与O 重合),假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A 重合,在以半径为2个单位长度在圆O 中,BC ⌒的长等于AA ’的长,则BC ⌒所对的圆心角的度数为小结:以圆滚动为背景,考查圆的周长的基本概念的基础题目。

考查实际情况中的数学问题。

1A(O)123A例2. 矩形ABCD 在边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿l 向右作无滑动地翻滚,当它翻滚至类似于开始的位置A 、B 、C 、D 时,则顶点A 所经过的路线长是小结:对于例1、例2共同之处,所考查的知识点均是以圆的周长作为知识背景,在运动过程中体会,抽象出。

例3. 如图在Rt ∆ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,且∠DAE =45。

,将∆ADC 绕点A 顺时针旋转90。

后,得到∆AFB ,连接EF ,下列结论:① ∆AED ≌∆AEF ② ∆ABE ≌∆ACD ③ BE+DC =DE ④ BE 2+ DC 2=DE 2 其中一定正确的是________结论:边边若相等,旋转做实验。

CAABD ADABC D l例4.如图:梯形ABCD 中,AD ∥BC 且AB ⊥DB,AD=3,BC=5,将腰DC 绕点D 逆时针旋转90度至DE ,连结AE ,过点E 作EF ⊥AD 交AD 的延长线于F ,则EF 的长为例5.如图: 在等边三角形ABC 中,边长AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60度得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是BAA例6.如图:等腰三角形ABC 中,P 是斜边BC 的中点,以P 为顶点的直角边分别与边AB 、AC 交于E 、F 点,连接EF ,当∠EPF 绕顶点P 旋转时,∆PEF 边始终是等腰直角三角形,说明理由。

翻折与旋转

翻折与旋转

翻折与旋转近几年上海中考试题中,图形的运动成为一个命题热点。

图形的翻折是图形的运动形式之一,翻折问题是中考的热点,也是中考的一个难点。

一 认识翻折问题 1.关注“两点一线”在翻折过程中,我们应关注“两点”,即对称点,思考自问“哪两个点是对称点?” ;还应关注“一线”,即折线,也就是对称轴。

这是解决问题的基础。

2. 联想到重合与相等遇到这类问题,我们应马上联想到“重合的线段相等,重合的角相等”,这是解决问题的关键。

二 解决翻折问题我们把翻折问题分为两类:“依线翻折”和“依点翻折”。

1. 依线翻折关键是找出对称点,并画出来。

例1. 已知:在Rt △ABC 中,∠A <∠B ,CM 是斜边AB 的中线,将△ACM 沿直线CM 翻折,点A 落在点D 处,如果CD 恰好与AB 垂直, 那么∠A 等于_________度。

分析:本题是依直线CM 进行翻折的。

首先需要作出A 点关于CM 的对称点D ,这样“两点一线”就明确了。

其次联想到“重合”,从而得到相等的线段和角:CA=CD ,∠1=∠2。

根据已知CD ⊥AB ,AC ⊥CB ,可想到∠A=∠3,又CM 是斜边的中线,于是∠1=∠A.,所以∠1=∠2=∠3,故∠A=30°。

2. 依点翻折关键是找出折线,并画出来。

例2.. 已知:Rt △ABC 中,∠A<∠B , CM 是斜边AB 的中线,∠B=60将△ABC 沿某直线折叠,使点C 落在M 上,折痕与AC 的交点为E , 那么∠CEM =____度。

分析:本题是依已知点C 、M 翻折的,图中没有折线。

首先需要作出折线:CM 的垂直平分线,并标出点E 。

这样“两点一线”已经明确了。

接下来马上联想到重合的线段和重合的角。

由于CM 是斜边AB 的中线,所以可得到∠BCM=60°,于是∠ECM=30°。

而∠ECM 与∠CME 重合,所以相等,故∠CEM=180°-30°-30°=120°。

小学四年级数学重点知识总结形的旋转翻折和平移

小学四年级数学重点知识总结形的旋转翻折和平移

小学四年级数学重点知识总结形的旋转翻折和平移四年级数学重点知识总结: 形的旋转、翻折和平移在小学四年级的数学学习中,形的旋转、翻折和平移是重要的概念。

它们帮助我们理解和掌握图形的变化与移动。

本文将详细介绍形的旋转、翻折和平移的概念、性质及其在解题中的应用。

一、形的旋转形的旋转是指将一个图形围绕某一点或某一直线进行旋转,使得图形保持形状不变,只在位置上发生变化。

1. 旋转角度和方向图形的旋转角度可以是正数、负数或零,正数表示顺时针旋转,负数表示逆时针旋转,而零表示不旋转。

2. 旋转中心点旋转中心点是指图形旋转时所围绕的固定点。

根据旋转中心点的位置不同,旋转可以分为内旋和外旋。

当旋转中心点在图形内部时,为内旋;而当旋转中心点在图形外部时,为外旋。

3. 旋转后的图形在旋转后的图形中,各点到旋转中心的距离保持不变,图形的大小和形状也保持不变。

只有位置发生了改变,可以是平移、翻转等。

形的旋转在解决问题中起到了重要的作用,例如在几何题中,我们可以通过旋转寻找隐藏的对称关系,进而解题。

二、形的翻折形的翻折是指将一个图形沿着某一直线对折,使得折叠后的两部分重合,两部分之间存在对称关系。

1. 翻折直线翻折直线是指图形翻折时所选择的折叠直线。

可以是水平直线、垂直直线或斜直线,只要翻折后两部分完全重合即可。

2. 对称性形的翻折利用了图形的对称性质。

对称性是指图形中存在一条直线,将图形分成两部分,使得两部分关于这条直线完全相同。

3. 翻折后的图形翻折后的图形与折叠前的图形通过折叠直线所形成的对称关系有关。

对称的部分将重合,而非对称的部分将互相翻折。

形的翻折在解决问题中也发挥了重要作用。

例如在做几何题时,经常用到形的翻折来寻找对称关系,简化解题过程。

三、形的平移形的平移是指将一个图形沿着平行的方向移动,使得图形保持形状不变,只在位置上发生相同的移动。

1. 平移向量平移向量是指平移的位移量,即图形在横向和纵向上的移动距离。

图形的平移、旋转和翻折

图形的平移、旋转和翻折

图形的平移、旋转、翻折1、运动的性质:运动前、后的图形全等A、平移的性质:(1)对应点之间的距离等于平移的距离;(2)对应点之间的距离相等,对应角大小相等,对应线段的长度相等;(3)平移前、后的图形全等.B、旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.C、翻折的性质:(1)对应线段的长度相等,对应角的大小相等,对应点到对称轴的距离相等;(2)翻折前、后的图形全等3、中心对称图形与轴对称图形比较:例题:1、下图中,不是旋转对称图形的是( ).2、有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个3、下列图形中,既是轴对称图形,又是中心对称图形的是( )4、下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个5、已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心,并简要说明理由.6、如图,五角星可看作是由什么“基本图形”通过怎样的旋转而得到的?7、已知:如图,四边形ABCD及一点P.求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.8、如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.9、已知:如图,F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.10、已知:如图,若线段CD是由线段AB经过旋转变换得到的.求作:旋转中心O点.11、如图,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°12、如图,直线L 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:①AB CD ∥ ②AC BD ⊥ ③AO OC = ④AB BC ⊥,其中正确的结论有_______.13、如图,ABC ∆和'''A B C ∆关于直线l 对称,且90B ∠=︒,''6cm A B =,求'B ∠的度数和AB 的长。

平移旋转和翻折的变换规律

平移旋转和翻折的变换规律

平移旋转和翻折的变换规律平移、旋转和翻折是几种常见的几何变换规律,它们在数学、物理、工程和计算机图形等领域中都有广泛的应用。

通过对物体进行平移、旋转或翻折,可以改变其位置、形状和方向,从而实现对几何结构的转换和处理。

本文将深入探讨平移、旋转和翻折的变换规律,帮助读者更好地理解和运用这些重要的几何概念。

一、平移变换平移变换是指将一个几何图形沿着某个方向移动一定的距离,而不改变其形状和方向。

平移变换可以通过向量表示,假设有一个向量(a, b),表示平面上的平移向量,那么对于平面上的点P(x, y),经过平移变换后的点P'的坐标可以表示为P' = P + (a, b)。

具体来说,对于二维平面上的图形,其每个点的坐标都分别增加平移向量的分量,从而实现整体平移的效果。

在三维空间中,平移变换同样可以通过向量表示,假设有一个向量(a, b, c),表示三维空间中的平移向量,那么对于空间中的点P(x, y, z),经过平移变换后的点P'的坐标可以表示为P' = P + (a, b, c)。

与二维平移类似,三维空间中的图形的每个点的坐标都分别增加平移向量的分量,实现整体平移的效果。

二、旋转变换旋转变换是指将一个几何图形绕着某个点或轴心旋转一定的角度,而不改变其位置和形状。

旋转变换可以通过矩阵表示,假设有一个旋转矩阵R,对于二维平面上的点P(x, y),经过旋转变换后的点P'的坐标可以表示为P' = R * P。

具体来说,旋转矩阵可以根据旋转角度和旋转中心点的位置进行计算,从而实现对二维平面上的图形进行旋转变换。

在三维空间中,旋转变换同样可以通过矩阵表示,假设有一个旋转矩阵R,对于空间中的点P(x, y, z),经过旋转变换后的点P'的坐标可以表示为P' = R * P。

与二维旋转类似,三维空间中的旋转矩阵可以根据旋转角度和旋转轴心的位置进行计算,实现对空间中的图形进行旋转变换。

初中数学知识归纳平移旋转和翻折

初中数学知识归纳平移旋转和翻折

初中数学知识归纳平移旋转和翻折初中数学知识归纳:平移、旋转和翻折在初中数学学习过程中,平移、旋转和翻折是我们经常接触到的几个概念。

它们是几何变换中的重要内容,不仅能帮助我们更深入地理解空间和图形,还可以应用于解决实际问题。

本文将对平移、旋转和翻折进行归纳总结,以便更好地掌握这些知识。

一、平移平移是将一个图形沿着某个方向移动一段距离,而形状、大小和方向保持不变。

常见的平移有水平平移和垂直平移两种。

水平平移是指固定图形的上下位置,只使图形在水平方向上移动。

具体操作方法是,对于平面坐标系中的点(x, y),进行水平平移时,只需将点的横坐标x加上一个固定的值h,y坐标保持不变。

公式表示为:(x+h, y)。

垂直平移则是将图形固定在水平位置上,只使图形在垂直方向上移动。

对于给定的点(x, y),只需将点的纵坐标y加上一个固定的值k,x坐标保持不变。

公式表示为:(x, y+k)。

在实际应用中,平移可以帮助我们解决很多问题,比如:将某物体从一个位置平移至另一个位置,或者确定两个几何图形是否有平移对称性等等。

二、旋转旋转是指围绕一个中心点将图形按照一定角度旋转。

旋转主要有顺时针旋转和逆时针旋转两种。

顺时针旋转是指图形按照顺时针方向旋转一定角度。

对于给定的点(x, y),按照顺时针方向旋转角度θ后的新坐标可由以下公式得出:(x' = x*cosθ - y*sinθ, y' = x*sinθ + y*cosθ)。

逆时针旋转则是指图形按照逆时针方向旋转一定角度。

对于给定的点(x, y),按照逆时针方向旋转角度θ后的新坐标可由以下公式得出:(x' = x*cosθ + y*sinθ, y' = -x*sinθ + y*cosθ)。

旋转是一个很有趣的几何变换,我们可以通过旋转来判断图形的相似性、寻找对称性等等。

三、翻折翻折是指将图形绕一条直线折叠,使得折叠前的一部分与折叠后的另一部分完全重合。

小学数学点知识归纳平移旋转与翻折

小学数学点知识归纳平移旋转与翻折

小学数学点知识归纳平移旋转与翻折小学数学点知识归纳:平移、旋转与翻折数学作为一门基础学科,既要注重学生对基本概念的掌握,又要培养学生的思维能力和解决问题的能力。

在小学数学中,平移、旋转和翻折是重要的几何变换概念,本文将对这些知识进行归纳总结,并探讨其在小学数学中的教学。

一、平移平移是指在平面上保持形状和大小不变的情况下,将图形沿着一定方向进行移动的几何变换。

在平移中,图形的每一个点都按照相同的方向和距离进行移动。

平移有以下几个重要的特点:1. 平移后的图形与原图形全等。

平移不改变图形的形状和大小,因此平移后的图形与原图形全等。

这也是平移与其他几何变换(如旋转和翻折)的区别之一。

2. 平移是由向量描述的。

平移是由一个向量来描述的,这个向量既包括平移的方向,也包括平移的距离。

在平移时,我们可以选取任意一点作为起点,通过向量来确定平移的方向和距离。

3. 平移的性质:保持向量平行关系、保持直线平行关系、保持角度大小关系等。

平移不仅可以保持向量平行关系,还可以保持直线平行关系以及角度大小关系。

这些性质使得平移在解决实际问题中有着广泛的应用。

二、旋转旋转是指在平面上围绕某一点或某一直线进行旋转的几何变换。

旋转有以下几个重要的特点:1. 旋转后的图形与原图形形状相同,大小可以相同也可以不同。

旋转过程中,图形的形状保持相同,但其大小可以相同也可以不同。

这取决于旋转的角度。

2. 旋转是由旋转中心和旋转角度来描述的。

旋转的中心可以是图形上的一个点,也可以是平面上的某一直线。

旋转角度可以为正也可以为负,表示顺时针或逆时针旋转。

3. 旋转的性质:保持向量的大小和相对位置不变、保持角度大小不变等。

旋转可以保持向量的大小和相对位置不变,还可以保持角度大小不变。

这些性质使得旋转在解决几何问题和构造图形等方面有着重要的应用。

三、翻折翻折是指在平面上绕一条直线将图形进行镜像的几何变换。

翻折有以下几个重要的特点:1. 翻折后的图形与原图形形状完全相同,只是位置关系发生变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的翻折与旋转
一、复习导入
1.在平面内某一个图形绕一个中心旋转若干角度得到另一个图形的过程叫旋转变换。

2.翻折变换是将某一个图形沿着直线对折,翻折前后的两个图形关于这条直线轴对称。

3本质上旋转与翻折后的民原图形是全等形。

其中作用可将一些分散的元素通过翻折和旋转集中起来,旋转常用于边相等的等腰三角形、等边三角形及正方形等图形中。

二、典型例题 例1.
如图,点A 是硬币圆周上一点,硬币与数轴相切于原点O (点A 与O 重
合),假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A 重合,在以半径为2个单位长度在圆O 中,BC ⌒
的长等于AA ’的长,则BC ⌒
所对的圆心角的度数为
小结:以圆滚动为背景,考查圆的周长的基本概念的基础题目。

考查实际情况中的数学问题。

1
A(O)
1
2
3
A
例2. 矩形ABCD 在边AB =8,AD =6,现将矩形ABCD 放在直线l 上
且沿
l 向右作无滑动地翻滚,当它翻滚至类似于开始的位置A 、B 、C 、D 时,
则顶点A 所经过的路线长是
小结:对于例1、例2共同之处,所考查的知识点均是以圆的周长作为知识背景,在运动过程中体会,抽象出。

例3. 如图在Rt ∆ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,且∠DAE =
45。

,将∆ADC 绕点A 顺时针旋转90。

后,得到∆AFB ,连接EF ,下列
结论:
① ∆AED ≌∆AEF ② ∆ABE ≌∆ACD ③ BE+DC =DE ④ BE 2+ DC 2=DE 2
其中一定正确的是________
结论:边边若相等,旋转做实验。

C
A
D A
D
B
C D l
例4.如图:梯形ABCD 中,AD ∥BC 且AB ⊥DB,AD=3,BC=5,将腰DC 绕点D 逆时针旋转90度至DE ,连结AE ,过点E 作EF ⊥AD 交AD 的延长线于F ,则EF 的长为
例5.如图: 在等边三角形ABC 中,边长AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60度得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是
B
A
例6.如图:等腰三角形ABC 中,P 是斜边BC 的中点,以P 为顶点的直角边分别与边AB 、AC 交于E 、F 点,连接EF ,当∠EPF 绕顶点P 旋转时,∆PEF 边始终是等腰直角三角形,说明理由。

例7如图,四边形ABCD 是一张矩形纸片,AD=2AB ,若沿过点D 的折痕DE 将A 角翻折,使
点A 落在BC 上的A ’处,则∠EA ’B=_________度.
B
例8. 如图:在∆ABC ,以BC 边的中点M 为顶点,做∠DME =90°,两边分别交AB 于点D ,交AC 于点E 。

求证:BD+CE 〉DE
例9.如图:已知正方形ABCD 的边长为8,圆O 的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,点A 落在A ’处,并使EA 恰好与圆O 相切于点A ’(∆EFA ’与圆O 除切点外无重叠部分),延长FA ’交CD 边于点G ,则A ’G 的长是
三、小结:重在理解在什么情况下作旋转变换?在什么情况下作翻折变化? 共同点是旋转和翻折都提供了全等形!
A B F。

相关文档
最新文档