过程原理第五章 吸收
化工原理 第五章 吸收课后习题及答案
![化工原理 第五章 吸收课后习题及答案](https://img.taocdn.com/s3/m/84027e1643323968001c9219.png)
第五章 吸收相组成的换算【5-1】 空气和CO 2的混合气体中,CO 2的体积分数为20%,求其摩尔分数y 和摩尔比Y 各为多少?解 因摩尔分数=体积分数,.02y =摩尔分数 摩尔比 ..020251102y Y y ===--. 【5-2】 20℃的l00g 水中溶解lgNH 3, NH 3在溶液中的组成用摩尔分数x 、浓度c 及摩尔比X 表示时,各为多少?解 摩尔分数//117=0.010*******/18x =+浓度c 的计算20℃,溶液的密度用水的密度./39982s kg m ρ=代替。
溶液中NH 3的量为 /311017n kmol -=⨯ 溶液的体积 /.33101109982 V m -=⨯溶液中NH 3的浓度//.33311017==0.581/101109982n c kmol m V --⨯=⨯ 或 . 3998200105058218s sc x kmol m M ρ==⨯=../ NH 3与水的摩尔比的计算 //1170010610018X ==.或 ..00105001061100105x X x ===--. 【5-3】进入吸收器的混合气体中,NH 3的体积分数为10%,吸收率为90%,求离开吸收器时NH 3的组成,以摩尔比Y 和摩尔分数y 表示。
吸收率的定义为122111Y Y Y Y Y η-===-被吸收的溶质量原料气中溶质量解 原料气中NH 3的摩尔分数0.1y = 摩尔比 (11101)01111101y Y y ===-- 吸收器出口混合气中NH 3的摩尔比为 ()...211109011100111Y Y η=-=-⨯=()摩尔分数 (22200111)=0010981100111Y y Y ==++ 气液相平衡【5-4】 l00g 水中溶解lg 3 NH ,查得20℃时溶液上方3NH 的平衡分压为798Pa 。
此稀溶液的气液相平衡关系服从亨利定律,试求亨利系数E(单位为kPa )、溶解度系数H[单位为/()3kmol m kPa ⋅]和相平衡常数m 。
化工原理 第五章 气体吸收
![化工原理 第五章 气体吸收](https://img.taocdn.com/s3/m/e8ade68a02d276a200292eac.png)
Y
*
mX 1 (1 m) X
当溶液浓度很低时,上式右端分母约等于1,于是上式可简化为:
Y*=mX
20
三、 相平衡关系在吸收中的应用
(一)判断过程进行的方向
* pA pA * pA pA * pA pA
A由气相向液相传质,吸收过程 平衡状态
A由液相向气相传质,解吸过程
*或x* >x或 c * y
dc A —组分A在扩散方向z上的浓度梯度(kmol/m3)/m; dz
DAB——组分A在B组分中的扩散系数,m2/s。
负号:表示扩散方向与浓度梯度方向相反,扩散沿 着浓度降低的方向进行
28
理想气体:
pA cA RT
dc A 1 dp A = dz RT dz
DAB dpA JA RT dz
25
吸收过程: (1)A由气相主体到相界面,气相内传递; (2)A在相界面上溶解,溶解过程; (3)A自相界面到液相主体,液相内传递。
单相内传递方式:分子扩散;对流扩散 。
26
一、 分子扩散与菲克定律
分子扩散:在静止或滞流流体内部,若某一组分存 在浓度差,则因分子无规则的热运动使
该组分由浓度较高处传递至浓度较低处,
物系一定, E T 2)E大的,溶解度小,难溶气体 E小的,溶解度大,易溶气体
3)E的来源:实验测得;查手册
对于理想溶液,亨利常数即为纯溶质的饱和蒸汽压。亨利常数E值较大表示溶解度 较小。一般E值随温度的升高而增大,常压下压力对E值影响不大。
16
(二)亨利定律其它形式
cA 1)p H
体主体浓度线相交于一点E,则厚度zG为E到相界
面的垂直距离。
(二)气相传质速率方程
化工原理第五章吸收塔的计算
![化工原理第五章吸收塔的计算](https://img.taocdn.com/s3/m/d48d1f3252d380eb63946d02.png)
(1)吸收塔的塔径;
(2)吸收塔的塔高等。 2、操作型计算
(1)吸收剂的用量;
(2)吸收液的浓度;
(3)在物系、塔设备一定的情况下,对指定的生产
任务,核算塔设备是否合用。
2018/10/17
一、物料衡算和操作线方程
1、物料衡算 G——单位时间通过任一塔截
G, Y2 L, X2
2018/10/17
【特点】任一截面上的吸收的 推动力均沿塔高连续变化。
* N A KY (YA YA )
* NA K X ( X A X A)
逆流吸收塔内的吸收推动力
2018/10/17
(2)吸收塔填料层高度微分计算式 微分填料层的传质面积为:
Y2=(1-η)Y1=(1-0.95)×0.099=0.00495
据 Y*=31.13X 知: m=31.13
据
Y1 Y2 L ( ) min G Y1 / m X 2
L 0.099 0.00495 ( ) min 29.6 0.099 G 0 31.13
∴
2018/10/17
过程中L、G为常数)。以单位时间为基准,在全塔
范围内,对溶质A作物料衡算得:
G , Y2
L, X2
GY1 LX 2 GY2 LX1
(进入量=引出量) 或
G(Y1 Y2 ) L( X1 X 2 )
——全塔的物料衡算式
G, Y1 L, X1
物料衡算示意图
2018/10/17
【有关计算】 (1)吸收液的浓度 据
XXຫໍສະໝຸດ 吸收推动力2018/10/17
二、吸收剂用量与最小液气比
1、最小液气比
制冷与低温技术原理—第5章 吸收式制冷循环(氨水)
![制冷与低温技术原理—第5章 吸收式制冷循环(氨水)](https://img.taocdn.com/s3/m/79856d46c850ad02de804135.png)
•1a-1 进入精馏塔的浓溶液被加热的过程; •1-2 浓溶液在发生段的加热汽化过程; •3’’-1’’ 提馏段的热交换过程; •1’’-5’’ 精馏段热质交换过程,含水氨蒸气浓度进一步提高; •5’’-6 冷剂氨蒸气在冷凝器中的冷凝过程; •6-6a 冷剂氨蒸气在过冷器中的过冷过程; •6a-7 6点状态的过冷液体经节流阀节流到p0 压力, 其湿蒸气达到点7状态的节流过程; •7-8 蒸发器中的蒸发过程;
4. 扩散-吸收式制冷机。
课外阅读
单级可达-30℃ 多级最低可达 -55~-60℃
qk h6 h6a h8a h8
循环系统的热平衡关系:
q0 qh q k qa q R
循环的热力系数:
q0 qh
一般热力系数的范围在0.3—0.4之间。
5.2.4 其他形式的吸收式制冷机
1. 双级氨吸收式制冷循环;
2. 复合吸收式制冷循环;
3. GAX吸收制冷循环;
5.2.2 氨水吸收式制冷循环的h-w图(含过冷器)
pk p0
2 ’’ 3 ’’ 1 ’’ 8a 8 h
5 ’’
8 ’’ ’’ 7
pk p0
2
1
1a 4 a
6 6a-7 8
’
4 8’a
w ‘a w ‘r
7’ w ‘’r
w
5.2.2 氨水吸收式制冷循环的h-w图(不含过冷器)
pk p0 2 ’’ 3 ’’ 1 ’’
5.2.2 氨水吸收式制冷循环的h-w图
氨水吸收式制冷机工作循环的热力过程:
点2状态的饱和稀溶液,由发生器引出后经历热力过程; •2-2a 发生段底部引出液在溶液热交换器中的降温过程; •2a-3 降温后的引出液的节流过程(2a和3点重合); •3-8a’ 稀溶液进入吸收器后的吸收过程; 点4状态的浓溶液经溶液泵提升到pk压力,达到点4a状态, 升压过程其浓度和焓值均不变(点4a和4重合)。
化工原理第五章吸收题说课讲解
![化工原理第五章吸收题说课讲解](https://img.taocdn.com/s3/m/b715ebd10d22590102020740be1e650e52eacf76.png)
化⼯原理第五章吸收题说课讲解化⼯原理第五章吸收题六吸收浓度换算2.1甲醇15%(质量)的⽔溶液, 其密度为970Kg/m3, 试计算该溶液中甲醇的:(1)摩尔分率; (2)摩尔⽐; (3)质量⽐; (4)质量浓度; (5)摩尔浓度。
分⼦扩散2.2 估算1atm及293K下氯化氢⽓体(HCl)在(1)空⽓,(2)⽔(极稀盐酸)中的扩散系数。
2.3⼀⼩管充以丙酮,液⾯距管⼝1.1cm,20℃空⽓以⼀定速度吹过管⼝,经5 ⼩时后液⾯下降到离管⼝2.05cm,⼤⽓压为750[mmHg],丙酮的蒸汽压为180[mmHg] , 丙酮液密度为7900[kg/m3],计算丙酮蒸汽在空⽓中的扩散系数。
2.4 浅盘内盛⽔。
⽔深5mm,在1atm⼜298K下靠分⼦扩散逐渐蒸发到⼤⽓中。
假定传质阻⼒相当于3mm厚的静⽌⽓层,⽓层外的⽔蒸压可忽略,求蒸发完所需的时间。
2.5 ⼀填料塔在常压和295K下操作,⽤⽔除去含氨混合⽓体中的氨。
在塔内某处,氨在⽓相中的组成y a=5%(摩尔百分率)。
液相氨的平衡分压P=660Pa,物质通量N A= 10 - 4[kmol/m2·S],⽓相扩散系数D G=0.24[cm2/s],求⽓膜的当量厚度。
相平衡与亨利定律2.6 温度为10℃的常压空⽓与⽔接触,氧在空⽓中的体积百分率为21%,求达到平衡时氧在⽔中的最⼤浓度, (以[g/m3]、摩尔分率表⽰)及溶解度系数。
以[g/m3·atm]及[kmol/m3·Pa]表⽰。
2.7 当系统服从亨利定律时,对同⼀温度和液相浓度,如果总压增⼤⼀倍则与之平衡的⽓相浓度(或分压) (A)Y增⼤⼀倍; (B)P增⼤⼀倍;(C)Y减⼩⼀倍; (D)P减⼩⼀倍。
2.8 25℃及1atm下,含CO220%,空⽓80%(体积%)的⽓体1m3,与1m3的清⽔在容积2m3的密闭容器中接触进⾏传质,试问⽓液达到平衡后,(1)CO2在⽔中的最终浓度及剩余⽓体的总压为多少?(2)刚开始接触时的总传质推动⼒ΔP,Δx各为多少?⽓液达到平衡时的总传质推动⼒⼜为多少?仅供学习与交流,如有侵权请联系⽹站删除谢谢1362.9 在填料塔中⽤清⽔吸收⽓体中所含的丙酮蒸⽓,操作温度20℃,压⼒1atm。
化工原理28气体吸收
![化工原理28气体吸收](https://img.taocdn.com/s3/m/941451ea580216fc710afd63.png)
煤气中的芳烃,可采用洗油吸收方法回收芳烃获得粗苯.
二、吸收操作分类
*物理吸收与化学吸收 *等温吸收与非等温吸收 *单组分吸收与多组分吸收 *定态吸收与非定态吸收(过程参数是否随时间而变) 本章讨论所作的基本假定: 单组分、低浓度、连续定态逆流、等温物理吸收
三、吸收操作的经济性
吸收操作费用主要包括: ①气、液两相流经吸收设备的能量消耗; ②溶剂的挥发损失和变质损失;
=
0
dz dz dz
—d —PA = - —d P—B
dz
dz
—d C—A= - —d —CB
dz
dz
DAB = DBA = D
若选择固定的,垂直扩散方向的截面为基准,观察 扩散传质的速率。对于定态分子扩散则有
NA= JA
同理有
NB= JB
由以上讨论可知,等摩尔逆向扩散过程传质速率的大小主
要是分子扩散的贡献。
有总体流动时的传质速率: 对于B组分有: NB = JB+NBM =0
即: JB= - NBM
且
NAM
PA
——— = ———
NBM
PB
JB= -NBM = - JA
对于A组分,其传递速率 :
即:
NA = JA + NAM = JA + NBM PA / PB NA =(1+ PA / PB)JA
NA=
dCA JA= - DAB———
dZ 式中:
JA— 组分A沿Z方向的扩散通量kmol/m2 ·s; CA— 组分A在混合物中摩尔浓度kmol/ m3 ; DAB—组分A在A、B混合中的扩散系数,m2/s 。
同理,对B组分的扩散可表示为
dCB JB= - DBA———
第五章吸收解析
![第五章吸收解析](https://img.taocdn.com/s3/m/f6232b7a482fb4daa58d4bd7.png)
0.014g)。
10
影响吸收过程的因素有温度、总压、气液相组成。 在一定温度下达到平衡时,溶液的浓度随气体压力
的增加而增加。如果要使一种气体在溶液中达到某 一特定的浓度,必须在溶液上方维持较高的平衡压 力。 气体的溶解度与温度有关,一般来说,温度下降则 气体的溶解度增高。 气体在液相中的溶解度,随温度和吸收质在气相的 组成而变化。下图为SO2、NH3、HCl的气液相平衡 关系。
系服从亨利定律: PA* = E xA
式中 PA*—与稀溶液相平衡的吸收质气相平衡分压; xA—吸收质在溶液中的摩尔分数;
E—亨利系数,Pa。 吸收质在稀溶液上方的气相平衡分压与其在液相中
5
吸收设备与吸收操作
连续接触(也称微分接触):气、液 两相的浓度呈连续变化。如填料塔。
溶剂 溶剂
规整填料
散装填料
塑料丝网波纹填 塑料鲍尔环填
料
料
级式接触:气、液两相逐级接 触传质,两相的组成呈阶跃变 化。 如板式塔。
气体
气体
a 微分接触
b 级式接触
图9-2 填料塔和板式塔
6
吸收操作的分类
物理吸收(physical absorption):吸收过程溶质与溶剂不发 生显著的化学反应,可视为单纯的气体溶解于液相的过程。 如用水吸收二氧化碳、用水吸收乙醇或丙醇蒸汽、用洗油 吸收芳烃等。
溶解度/[g(NH3)/1000g(H2O)] 溶解度/[g(SO2)/1000g(H2O)]
500
0 oC
10 oC 20 oC 30 oC 40 oC 50 oC
200 150 100 50
0 oC 10 oC
20 oC 30 oC 40 oC
50 oC
化工原理第四版课件(第五章吸收)
![化工原理第四版课件(第五章吸收)](https://img.taocdn.com/s3/m/9019d730376baf1ffc4fadd8.png)
第五章:吸收 概述气液相平衡吸收过程的传质速率吸收塔的计算填料塔第一节:概述一、吸收吸收的定义:吸收是利用气态均相混合物中各组分在吸收剂中溶解度的差异来实现分离的单元操作。
吸收的目的:I.回收或捕获气体混合物中的有用物质,以制取产品II.除去工艺气体中的有害成分,使气体净化,以便进一步加工处理III.除去工业放空尾气中的有害气体,以免环境污染。
二、工业吸收了解工业生产中吸收及解吸过程、所需条件和典型设备例子工业上从合成氨原料混合气体中回收CO2乙醇胺脱硫法•需要解决的问题1.选择合适的溶剂2.提供适当的传质设备3.溶剂的再生三、溶剂的选择1.对溶质较大的溶解度;2.良好的选择性;3.温度变化的敏感性;4.蒸汽压要低;5.良好的化学稳定性;6.较低的黏度且不易生泡;7.廉价、无毒、易得、不易燃烧等经济和安全条件。
四、吸收的分类按有无化学反应:物理吸收和化学吸收按溶质气体的浓度:低浓度和高浓度吸收按溶质气体组分的数目:单组分和多组分吸收按有无热效应:等温和非等温吸收本章只讨论低浓度、单组分、等温的物理吸收过程。
五、吸收操作的经济性(费用)气液两相流经设备的能量损耗;溶剂的挥发及变质损失;溶剂的再生费用。
√六、吸收设备第二节:气液相平衡一、平衡溶解度恒温、恒压下,相互接触的气液两相的浓度不变时,气液两相之间的浓度关系。
气液两相组成的浓度分别用物质的摩尔分数来表示,即y= n i /Σn y 、x= n i /Σn x:气液两相中惰性组分的量不变,溶质与惰性组分摩尔比。
yy Y −=1xx X −=11.气体的溶解度气体在溶液中的溶解平衡是一个动态平衡,该平衡的存在是有条件的;平衡时气相中溶质的分压——平衡分压(或饱和分压),液相中溶质的浓度——平衡浓度(或饱和浓度),也即是气体在溶液中的溶解度;气体的溶解度是一定条件下吸收进行的极限程度;温度和压力对吸收操作有重要的影响;加压和降温对吸收有利;升温和降压对解吸有利。
第五章__三氧化硫的吸收..
![第五章__三氧化硫的吸收..](https://img.taocdn.com/s3/m/e31ac618376baf1ffc4fadf3.png)
第五章 三氧化硫的吸收吸收即指使用浓硫酸吸收转化气中SO 3的过程该过程是制酸过程中第三个化学变化过程。
5.1 基本原理二氧化硫转化为三氧化硫之后,气体进入吸收系统用发烟硫酸或浓硫酸吸收,制成不同规格的产品硫酸。
吸收过程可用下式表示:SO 3(g )+H 2O(l)=H 2SO 4(l) △H 298O =-134.2kJ (1—5—1)接触法生产的商品酸,通常有大于92.5%浓硫酸,大于98%浓硫酸、含游离SO 3>20%标准发烟硫酸,含游离SO 365%高浓度发烟硫酸(近年来这种发烟硫酸在化学工业等部门应用愈来愈广泛)。
三氧化硫的吸收,实际上是从气相中分离SO 3分子使之尽可能完全地转化为硫酸的过程。
该过程与净化系统所述的SO 3去除,在机理上是不同的。
采用湿法净化时,炉气中SO 3先形成酸雾,然后再从气相中清除酸雾液滴。
而在这里是采用吸收剂——硫酸直接将分子态SO 3吸收。
5.1.1 影响发烟硫酸吸收过程的主要因素吸收系统生产发烟硫酸时,首先将净转化气送往发烟硫酸吸收塔,用于产品酸浓度相近的发烟硫酸喷淋吸收。
用发烟硫酸吸收SO 3的过程并非单纯的物理过程,属化学吸收过程。
一般情况下,该吸收过程属于气膜扩散控制,吸收速率取决于传质推动力、传质系数和传质面积的大小,即: G =kF •Δp式中 G —一吸收速率;k ——吸收速率常数;F ——传质面积:Δp ——吸收推动力。
在气液相逆流接触的情况下,吸收过程的平均推动力可用下式表示。
()()()()'2"1"2'1'2"1"2'1lg 3.2p p p p p p p p p -----=∆ 式中 p 1’、p 2’——分别为进出口气体中SO 3分压,Pa ;p 1”、p 2”——分别为进出口发烟硫酸液面上SO 3的平衡分压,Pa 。
当气相中SO 3含量及吸收用发烟硫酸含量一定时,吸收报动力与吸收酸的温度密切相关。
化工原理第五章吸收课后习题及答案
![化工原理第五章吸收课后习题及答案](https://img.taocdn.com/s3/m/33602d4aa5e9856a561260c9.png)
第五章 吸收相组成的换算【5-1】 空气和CO 2的混合气体中,CO 2的体积分数为20%,求其摩尔分数y 和摩尔比Y 各为多少?解 因摩尔分数=体积分数,.02y =摩尔分数 摩尔比 ..020251102y Y y ===--. 【5-2】 20℃的l00g 水中溶解lgNH 3, NH 3在溶液中的组成用摩尔分数x 、浓度c 及摩尔比X 表示时,各为多少?解 摩尔分数//117=0.010*******/18x =+浓度c 的计算20℃,溶液的密度用水的密度./39982s kg m ρ=代替。
溶液中NH 3的量为 /311017n k m ol -=⨯ 溶液的体积 /.33101109982 V m -=⨯溶液中NH 3的浓度//.33311017==0.581/101109982n c kmol m V --⨯=⨯ 或 . 3998200105058218s sc x kmol m M ρ==⨯=../ NH 3与水的摩尔比的计算 或 ..00105001061100105x X x ===--. 【5-3】进入吸收器的混合气体中,NH 3的体积分数为10%,吸收率为90%,求离开吸收器时NH 3的组成,以摩尔比Y 和摩尔分数y 表示。
吸收率的定义为解 原料气中NH 3的摩尔分数0.1y = 摩尔比 (11101)01111101y Y y ===-- 吸收器出口混合气中NH 3的摩尔比为 摩尔分数 (22200111)=0010981100111Y y Y ==++ 气液相平衡【5-4】 l00g 水中溶解lg 3 NH ,查得20℃时溶液上方3NH 的平衡分压为798Pa 。
此稀溶液的气液相平衡关系服从亨利定律,试求亨利系数E(单位为kPa )、溶解度系数H[单位为/()3kmol m kPa ⋅]和相平衡常数m 。
总压为100kPa 。
解 液相中3NH 的摩尔分数/.//1170010511710018x ==+气相中3NH 的平衡分压 *.0798 P k P a = 亨利系数 *./.0798*******E p x ===/ 液相中3NH 的浓度 /./.333110170581 101109982n c kmol m V --⨯===⨯/ 溶解度系数 /*./../(3058107980728H c p k m o l m kP a ===⋅液相中3NH 的摩尔分数 //1170010511710018x ==+./气相的平衡摩尔分数 **.0798100y p p ==// 相平衡常数 * (079807610000105)y m x ===⨯ 或 //.76100076m E p === 【5-5】空气中氧的体积分数为21%,试求总压为.101325kPa ,温度为10℃时,31m 水中最大可能溶解多少克氧?已知10℃时氧在水中的溶解度表达式为*.6331310p x =⨯,式中*p 为氧在气相中的平衡分压,单位为kPa x ;为溶液中氧的摩尔分数。
第五章吸收式制冷循环及其它制冷循环
![第五章吸收式制冷循环及其它制冷循环](https://img.taocdn.com/s3/m/a15cd056f12d2af90242e6fe.png)
(4)、以氟利昂为制冷剂的工质对。适用于工作温度 在0℃以下的太阳能吸收式制冷机。在高发生温度、 低冷凝温度下采用R22—DMF(三甲替甲酰胺)有利。 相反的条件下采用R22-DEGDME(四甘醇二甲醚) 为好。它们无毒、无腐蚀,化学性质稳定。
氨水溶液在低温下容易析出结晶。根据浓度不同, 在-79℃时会析出NH3·H2O或2NH3·H2O等纯水 冰、纯氨冰或氨的水合物。因此,氨水溶液在 吸收式制冷机中所能达到的最低温度,受这一 性质的限制。
缺点: 1)吸收剂与制冷剂的沸点过于接近,须精馏。 2)发生温度高。
第三节、溴化锂吸收式制冷机的工作循环与热工计算
考虑到发生器和冷凝器部分的工作压力高于蒸发 器和吸收器部分的工作压力,以及发生器部分的温度 也较蒸发器高,故采用高温隔层将筒体分为高、低压 两舱。
上部为发生器、冷凝器,下部为蒸发器、吸收器。
蒸发器的冷剂水盘亦采用上述同样的绝热方法, 以防止吸收器的热量传给蒸发器的冷剂水。
高温隔层采用真空绝热或隔层中填充绝热材料的
C2氨H5固N有H2的-H毒2O性和和C爆H炸3N性H2。-H乙2O胺中因乙其胺气和压甲较胺低能,减利轻于 在吸收式热泵机组中使用。
(3)、以醇为制冷剂的工质对。
甲醇类工质对具有化学性质稳定,热物性好,对金属无 腐蚀等优点。但是其溶液密度小,蒸气压力高,在气 相中混有吸收剂,可燃,粘度大,工作范围窄。
热源蒸汽(或热水)通入发生器,在管内流过,加 热管外溶液使其沸腾并蒸发出冷剂蒸汽,而热源蒸汽 放出汽化潜热后凝结成水排出。
一般应将该凝结水回收并送回锅炉加以利用。
(完整word版)“化工原理”第5章《吸收》复习题
![(完整word版)“化工原理”第5章《吸收》复习题](https://img.taocdn.com/s3/m/3ef700b5be23482fb5da4c1a.png)
《化工原理》第五章“吸收”复习题一、填空题1。
质量传递包括有___________________等过程。
***答案***吸收、蒸馏、萃取、吸附、干燥。
2. 吸收是指_______的过程,解吸是指_____的过程。
***答案***用液体吸收剂吸收气体,液相中的吸收质向气相扩散.3. 对接近常压的低浓度溶质的气液平衡系统,当总压增加时,亨利系数E____,相平衡常数m____,溶解度系数H____。
***答案*** 不变; 减少; 不变4. 指出下列组分,哪个是吸收质,哪个是吸收剂。
(1) 用水吸收HCl生产盐酸,H2O是____,HCl是_____.(2)用98。
3%H2SO4吸收SO3生产H2SO4,SO3,是___;H2SO4是___。
(3)用水吸收甲醛生产福尔马林,H2O是____;甲醛是___。
***答案***(1)吸收剂,吸收质。
(2)吸收质,吸收剂.(3)吸收剂,吸收质。
5. 吸收一般按有无化学反应分为_____,其吸收方法分为_______。
***答案***物理吸收和化学吸收;喷淋吸收、鼓泡吸收、膜式吸收。
6。
传质的基本方式有:__________和_________.***答案*** 分子扩散,涡流扩散。
7。
吸收速度取决于_______,因此,要提高气-液两流体相对运动速率,可以____来增大吸收速率。
**答案***双膜的扩散速率,减少气膜、液膜厚度。
8。
由于吸收过程气相中的溶质分压总____液相中溶质的平衡分压,所以吸收操作线总是在平衡线的____。
增加吸收剂用量,操作线的斜率____,则操作线向____平衡线的方向偏移,吸收过程推动力(y-y*)____。
***答案***大于上方增大远离增大9。
在气体流量,气相进出口组成和液相进口组成不变时,若减少吸收剂用量,则传质推动力将____,操作线将___平衡线。
***答案*** 减少; 靠近;10。
对一定操作条件下的填料吸收塔,如将塔料层增高一些,则塔的H OG将_____,N OG将_____(增加,减少,不变)。
化工原理第五章(吸收过程的传质速率)
![化工原理第五章(吸收过程的传质速率)](https://img.taocdn.com/s3/m/c23405196edb6f1aff001f14.png)
仅为分子扩散,组分A的传质速率等于其扩散速率即
:
dc A N A J A D dz
2013-9-19
边界条件:z=0,cA=cA1;z=Z,cA=cA2;
J A J B
将以上关系式代入菲克定律式,得到:
组分A在组 分B中的扩 散系数
DAB=DBA=D
组分B在组 分A中的扩 散系数
【结论】在双组分混合物中,组分A在组分B中的扩
散系数等于组分B在组分A中的扩散系数。
2013-9-19
(4)等分子反向扩散的传质速率
【传质速率】在任一固定的空间位置上,单位时间
流体的湍动程度有关,也与流体质点的位置有关,
既不能使用公式计算,也难于用试验的方法测定。
(2)NA的表达式形式好看但不好用,并不能将NA的
表达式积分求出对流传质速率NA。
2013-9-19
4、有效层流膜模型 (1)对流传质的传质阻力全部集中在一层虚拟的层 流膜层内,膜层内的传质形式仅为分子扩散。 (2)层流膜外流体高度湍流,无浓度差(没有推动 力),故没有质量传递过程。 (3)层流膜的厚度ZL 层流内层分压梯度线延长线 与液相主体浓度线cA相交于一点L,L到相界面的垂
2013-9-19
整体流动
(5)单向扩散的传质速率方程 ①单向扩散的传质速率方程基本计算式
cA NA JA NA c
式中
JA——分子扩散(扩散流)所传递的量;
NAcA/c——主体流动所传递的量。
2013-9-19
②单向扩散传质速率方程的积分式 对于气相可推得:
化工原理吸收解析
![化工原理吸收解析](https://img.taocdn.com/s3/m/860271b4172ded630a1cb620.png)
X2 0
Lmin
G(Y1 Y2 )
Y1 m
X
2
3.125 0.096 0
869kmol / h
26.7
2020/10/31
L 1.65Lmin 1.65869 1434kmol / h
2)出塔吸收液浓度:
G(Y1 Y2 ) L(X1 X2 )
X1
X2
G(Y1 Y2 L
)
0
3.125 1434
X2 0
m 0.757
Lmin
G(Y1 Y2 )
Y1 m
X
2
34.5(0.0133 0.000133) 0.0133 0 0.757
25.8kmol/ h
L 2Lmin 2 25.8 51.6kmol/ h
2020/10/31
三、填料层高度的计算
1、填料层高度的基本计算式
对组分A作物料衡算 单位时间内由气相转入液相的 A的物质量为:
dY Y
*
Z
dZ
0
G Y1 dY Y2 KY a Y Y *
LdX KX (X * X )adZ
dZ L dX KX a X * X
Z
dZ
X1
L
dX
0
X2 K X a X * X
2020/10/31
低浓度气体吸收时填料层的基本关系式为
Z G
KY a
Y1 dY Y2 Y Y *
GdY LdX
NAdA NA(adZ )
2020/10/31
微元填料层内的吸收速率方程式为:
N A KY (Y Y * )及N A K X ( X * X )
dG KY (Y Y *)adZ dG KX (X * X )adZ
化工原理课件第五章 吸收
![化工原理课件第五章 吸收](https://img.taocdn.com/s3/m/4037d77280eb6294dd886cc3.png)
η=
被吸收的溶质量 进塔气体的溶质量
Y1 Y 2 Y1
Y2=Y1(1-η)
qn,v Y1 Y2 条件所规定
X2 一般为吸收工艺
qn ,l ,m qn,v
Y1 Y2 X1* X 2
Y1 Y2
Y1 m
X
2
qn,l=(1.1~1.5)qn,l,m
2020/7/16
16
5-14 填料层高度的计算
溶解度随温度和溶质气体的分压不同而不同,平衡时溶质在 气相中的分压称为平衡分压。溶质组分在两相中的组成服从 相平衡关系。
加压和降温有利于吸收操作,反之,升温和减压对解吸有利。 但加压、减压费用太高一般不采用。
2020/7/16
6
5-2 亨利定律
亨利定律
当总压不高(一般小于500KPa)时,在一定温度下,稀溶液上 方气相中溶质的平衡分压与其在液相中的浓度之间存在着如下 的关系:
一、 填料层高度的基本计算式
填料层高度计算涉及物料衡算、传质 速率和相平衡关系。我们前面介绍的 所有传质速率方程都适用于稳定操作 的吸收塔中的"某一横截面",而不能用 于全塔。
该微元内,吸收质的传递量dG为:
dG qn,vdY qn,ldX
由吸收速率方程可知,该微元内,气相
和液相吸收质的变化量dG为:
在相内(气相或液相)传质方式包括分子扩散和湍流扩散。
分子扩散:当流体内部某一组分存在浓度差时,因微观的分 子热运动使组分从浓度高处传递到较低处,这种现象称为分 子扩散。
湍流扩散:当流体流动或搅拌时,由于流体质点的宏观运动
(湍流),使组分从浓度高处向低处移动,这种现象称为湍
流扩散。在湍流状态下,流体内部产生旋涡,故又称为涡流
化工原理第五章吸收(传质理论之一)超详细讲解
![化工原理第五章吸收(传质理论之一)超详细讲解](https://img.taocdn.com/s3/m/3ade09ecb52acfc788ebc903.png)
被吸收NH3的体积: VNH3=80*(0.25-0.053) =15.8 m3
传热过程
吸收过程
理论 将对流给热视为壁 实质 附近滞流层的热传
导过程—付立叶定
将吸收视为A穿过相界面附 近滞流双膜的分子扩散过 程—费克定律
At
T
T
t
t
A1 (T tw1 ) A2 (tw2 t )
N
DAC
DgP
RTpBg
A(
Dl (CA CS
CSl
p )
pi) A(Ci C)
作业: P185 7
§5-3 吸收速率
吸收速率决定吸收达到平衡的时间,决定吸收操作的 生产强度,是吸收设备选型和设备设计的重要依据。
一、吸收速率定义:NA= dnA/dτ 对于稳定吸收过程:NA=nA/τ mol(A)/s 吸收过程是物质的相转移过程,通过扩散方式进行。
二、扩散 1、分子扩散:物质以分子热运动方式穿过静止或滞流流 体的传递过程——特点:传递速率慢。 2 、对流扩散:物质以相对运动方式穿过湍流流体的传递 过程——特点:传递速率快。
A(Ci
C) =klA(Ci-C)
kl
DlCT
lCS
所以,可用界面附近气膜中的扩散速率:
NA=kgA(p-pi) 或液膜中的扩散速率:
计算吸收速率。
NA=klA(Ci-C)
作业: P185 12、13
六、吸收速率方程 1 气膜吸收分速率方程
化工原理王志魁第五版习题解答:第五章 吸收
![化工原理王志魁第五版习题解答:第五章 吸收](https://img.taocdn.com/s3/m/6a3505c50029bd64793e2c4b.png)
第五章 吸收气液相平衡【5-5】空气中氧的体积分数为21%,试求总压为.101325kPa ,温度为10℃时,31m 水中最大可能溶解多少克氧?已知10℃时氧在水中的溶解度表达式为*.6331310p x =⨯,式中*p 为氧在气相中的平衡分压,单位为kPa x ;为溶液中氧的摩尔分数。
解 总压.101325 p kPa =空气中2O 的压力分数 .021A p p ==/体积分数空气中2O 的分压 *..021101325 A p kPa =⨯亨利系数 .6331310E kPa =⨯(1) 利用亨利定律*A p Ex =计算与气相分压..021101325A p kPa =⨯相平衡的液相组成为*. ..A p x kmol O kmol E ⨯===⨯⨯-6260.2110132564210 /331310溶液 此为1kmol 水溶液中最大可能溶解.6264210kmol O -⨯因为溶液很稀,其中溶质很少1kmol 水溶液≈1kmol 水=18 kg 水10℃,水的密度 .39997kg m ρ=/故 1kmol 水溶液≈.3189997m /水即 .3189997m 水中最大可能溶解.664210kmol -⨯氧 故 31m 水中最大可能溶解的氧量为 (6426421099973571018)kmol O --⨯⨯=⨯ ...4222357103211410O 114O kg g --⨯⨯=⨯=(2) 利用亨利定律*A A c p H =计算 ()...5369997== 167610/33131018ss H kmol m kPa EM ρ-≈⨯⋅⨯⨯ 31m 水中最大可能溶解的氧量为*(..)(.).5432021101325 16761035710A A c p H kmol O m --==⨯⨯=⨯/ 溶液 ...4222357103211410114kg O g O --⨯⨯=⨯=【5-9】CO 2分压力为50kPa 的混合气体,分别与CO 2浓度为./3001kmol m 的水溶液和CO 2浓度为.3005kmol m /的水溶液接触。
化工原理第五章(吸收塔的计算)
![化工原理第五章(吸收塔的计算)](https://img.taocdn.com/s3/m/3805dec3ec3a87c24028c44a.png)
【解】已知 y1=0.09 η=95%=0.95
∴
Y1
y1 1 y1
0.09 1 0.09
0.099
Y2=(1-η)Y1=(1-0.95)×0.099=0.00495
据 Y*=31.13X 知: m=31.13
据
L (G )min
Y1 Y2 Y1 / m X 2
∴
L
0.099 0.00495
2020/4/3
2、填料层高度的基本计算式 【计算依据】 (1)物料衡算式; (2)传质速率方程式。 【操作特点】在填料塔内任一截面上的吸收的推动 力(Y-Y*)均沿塔高连续变化,所以不同截面上 的传质速率各不相同。 【处理方法】不能对全塔进行计算,只可首先对一 微分段计算,得到微分式,然后得到积分式运用于 全塔。
质的摩尔比。
物料衡算示意图
逆流吸收操作线推导示意图
2020/4/3
【假设】溶剂不挥发,惰性气体不溶于溶剂(即操作
过程中L、G为常数)。以单位时间为基准,在全塔
范围内,对溶质A作物料衡算得: G, Y2
L, X2
GY1 LX2 GY2 LX1
(进入量=引出量)
或 G(Y1 Y2 ) L(X1 X2 )
2020/4/3
Y Y1 Y Y2 Y*
0
2020/4/3
NA KY (Y Y *) NA KX ( X * X )
Y=f(X)
吸收推动力 X*-X
吸收推动力 Y-Y*
X2
X
X1
X*
X
吸收推动力
二、吸收剂用量与最小液气比
1、最小液气比 【定义】对于一定的分离任务、操作条件和吸收物 系,当塔内某截面吸收推动力为零时(气液两相平 衡Y-Y*=0),达到分离要求所需塔高为无穷大时 的液气比称为最小液气比,以(L/G)min表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3.1 总传质速率方程
1. 吸收过程的单相传质速率方程
气相: N A kG ( pG pi )
液相: N A k L (ci cL )
kG--气膜传质系数或称气相分传质系 数(kmol/(m2.s.kPa)); kL--液膜传质系数(liquid-film mass-transfer coefficient) 或称气相分传质系数(kmol/(m2.s.kmol/m3)或m/s);
x 呈平衡的气相组成,摩 y 呈平衡的液相组成,摩
尔分率; 尔分率;
K y , K x 以气相、液相总摩尔分 总传质系数,
2
率差 ( y , x ) 为推动力的
kmol /( m s )
1 Ky
1 ky
m kx
1 Kx
1 mk y
1 kx
若为气膜控制,则有:
K y ky
不断变化,选不变组分为基准:
X—kmol吸收质/kmol吸收剂,kmolA/kmolS Y—kmol吸收质/kmol惰性气体,kmolA/kmolS
X x 1 x , Y y 1 y x X 1 X , y Y 1Y
将其代入 y* m x 中得:
Y* 1 Y * m X 1 X Y* m X 1 (1 m) X
若为液膜控制,则有:
K x kx
5. 传质速率方程小结 注意:“对应”一是传质阻力与传质推动力所涉及的区间
要一致;二是传质系数与传质推动力所使用的单位要一致。
气相
N
A
液相
两相间
两相间
k G ( pG p i ) k L ( c i c L ) K G ( pG p L ) K L ( c G c L )
则有: pG pi cL ci kL kG
pG pi
cL
c
2. 总传质速率方程的建立
NA pG pi 1 kG
1 kG
pi pL 1 Hk L
pG pi
pL
NA
pG p L 1 Hk L
cL
1 KG 1 kG 1 Hk
L
ci
气相阻力
L
液相阻力
6.4.1 物料衡算与操作线方程
讨论稳定逆流吸收过程,如图所示。
L X V Y1 L X 1 V Y
V,Y2
L,X2
V,Y
L,X V,Y1
V (Y Y1 ) L( X X 1 )
或: Y L V X (Y1 L V X1 )
L,X1
式中的X,Y如果用塔顶的组成X2,Y2代替,则成为全塔
5.1 概 述
气体
溶解度
液体
吸收在工业中的应用大致有以下几种:
(1)分离混合气体以获得一定的组分:用硫酸
处理焦炉气以回收其中的氨;
(2)除去有害组分以净化气体:用水或碱液脱
除合成氨原料气中的CO2;
(3)制备某种气体的溶液:用水吸收NO2以制
备HNO3等 。
解吸:在化工工业中,常常需要将吸收得到的溶质气体从 溶液中分离出来,这种使溶质从溶液里脱除的过程称为解吸 (disorption stripping)。
y 2 0 . 02
Y2 y2 1-y 2 0 . 02 1 0 . 02 0 . 02
p A 2 py 2 101 . 3 0 . 02 2 . 026 kPa
c A2 n A2 V p A2 RT 2 . 026 8 . 314 298 8 . 018 10 kmol/m
N A K G ( pG p )
KG--气相总传质系数,其单位与kG相同。
同理,若以液相浓度代替气相压力,则有:
N
A
cG ci H kG
ci c L 1 kL
cG c L H kG 1 kL
1 KL
H kG
1 kL
或 KL (
H kG
1 kL
)
-1
N A K L (cG cL )
一个完整的吸收分离操作应包括吸收和解吸两个过程。
用吸收操作分离气体混合物时须解决下述三个问题:
(1) 选择合适的溶剂;
(2)提供传质设备以实现气液两相的接触,使溶质从气 相转移至液相; (3) 溶剂的再生。
吸收剂的选择依据:
(1)对需吸收的组分要有适当的溶解度;
(2)对所处理的气体要有较好的选择性; (3)要有较低的蒸气压,以减少吸收过程中溶剂的挥发 损失,较好的化学稳定性,以免使用过程中变质; (4)吸收后的溶剂应易于再生。 此外,溶剂应有较低的粘度,不易起泡,还应尽可能满足 来源丰富,价格低廉、无毒、不易燃烧等经济和安全条件。
比较两式可知,两总传质系数间的关系:
KG H K L
3. 总传质速率方程的分析
N A K G ( pG pL )
N A K L (cG cL )
pG
pi
pL
cL
ci
cG
(1)气膜控制
1 KG 1 kG 1 Hk
L
气相阻力
液相阻力
K G kG
稀溶液:X很小,分母趋于1,故可简化为: Y*=mX
例 在一常压、298K的吸收塔内,用水吸收混合气中的SO2。已知混合气 体中含SO2的体积百分比为20%,其余组分可看作惰性气体,出塔气体中含 SO2体积百分比为2%,试分别用摩尔分率、摩尔比和摩尔浓度表示出塔气 体中SO2的组成。 解: 混合气可视为理想气体,以下标2表示出塔气体的状态。
第五章
吸收
本章要点:
(1)掌握气液相平衡原理;
(2)掌握吸收过程传质速率方程及影响速
率的因素;
(3)吸收塔的计算。
目 录
5.1 气液相平衡 5.4 高浓度气体吸收 5.1.1 相平衡关系及其表示方法 5.4.1 高浓度气体吸收的特点 5.2 传质机理与传质速率 5.4.2 非等温相平衡及操作线方程 5.2.1 分子扩散与传质 5.4.3 填料层高度计算 5.2.2 扩散系数 5.5 多组分吸收、化学吸收与解吸 5.2.3 涡流扩散与对流传质 5.5.1 多组分吸收 5.2.4 对流传质理论 5.5.2 化学吸收 5.2.5 吸收过程的双膜模型 5.5.3 解吸 5.3 低浓度气体吸收 5.6 吸收过程的几个问题 5.3.1 物料衡算及操作线方程 5.6.1 吸收剂的选择 5.3.2 填料层高度的计算 5.6.2 吸收操作参数的选择 5.3.3 传质单元数与传质单元高度 5.6.3 吸收流程 5.3.4 传质单元数的计算 5.7 填料塔 5.3.5 吸收过程塔板数的计算 5.7.1 填料塔和塔填料 5.7.2 填料塔的流体力学性能 5.7.3 填料塔的传质性能
E p
x
①m值的大小,同样可以判断溶解度大小,m增大,xA减
小,溶解度小。 ② m=f(T,p),T增大,p减小,则m增大,不利于吸收。 ③ m值可由实验测定,也可由E计算得到。
(3)两相组成均用摩尔比表示:
吸收过程中,溶质从气相到液相,故溶液及气体总量都在
①此时有: ci c L , pG pi pG p L
N A kG ( pG pL )
② H很大即平衡线斜率很小,此时较 pG
O
小的气相分压与较大的液相浓度相平衡。
③ 对于气膜控制,要提高总传质系数 pi
L
I
KG应加大气相湍动程度。
p
cG
cL c i
(2)液膜控制
kx c kL K
x
K
y
p KG
cKL
6.4 吸收塔的计算
根据给定的吸收任务(处理气量及其初、终浓度),在选定 溶剂,并得知其相平衡关系后,工艺计算主要内容有: (1)溶剂的用量(或循环量)及吸收液出口的浓度;
(2)填料塔的填料层高度或板式塔的塔板数目;
(3)塔直径的确定。由处理量和操作气速决定。
的物料衡算:
Y2
y 1 y
L V
L V
X 2 (Y1
L x
L V
X1)
L V X1)
V 1 x
(Y1
对于低浓度气体的吸收通常有
Y1 Y2 Y *1 Y *2
X≈x,Y≈y,则上式可写成:
y
X2 X1 X*2 X*1
L V
x ( y1
L V
x1 )
6.4.2 吸收剂用量与最小液气比
1 KL H kG 1 kL 气相阻力 液相阻力
K L kL
①此时有: pi pG , ci c L cG c L
N A k L (cG cL )
pG pi
O
I
②对于液膜控制,要提高总传质系数KL 应加大液相湍动程度。
pL
cG
cL
ci
4. 摩尔分率表示气、液相组成的传质速率方程
令 kx kL c
ci c
cL c
)
N A k x ( x i x)
相界面处的气液两相组成互成平衡,若服从亨利定律,则有:
yi m x i
可导出如下的传质速率方程:
NA Ky (y y )
N A K x ( x x)
式中: y 与液相组成 x 与气相组成
N
N
A