LME49600耳放制作指南

合集下载

一款巨型电子管胆机耳放的制作

一款巨型电子管胆机耳放的制作

⼀款巨型电⼦管胆机⽿放的制作⼏句废话原来随⼝把⾃⼰这次做的⽿放叫做“超级⽿放”,但是还未到正式写下制作过程和⼼得,已经被不屑。

要知道现在⼈都有很强的⾃信⼼,基本上可以做到不需要任何详细机理分析,只需搭眼⼀看,便断定你这不⾏或你这很⾏。

为了安定团结的⼤好局⾯不被我破坏,为了不致引起⼤的社会动荡,为了中国⼈民很⾏,为了中国建设很⾏,为了中国⼯商很⾏,为了中国农业很⾏,我决定把我这⽿放的称谓改作“巨型⽿放”,没有意见了吧。

怕啊~~没听江湖中常有狠话放出来:“智⼒再好,⼀砖撂倒”么?怕砖呀~~引⼦这⼀次,是认认真真为⾃⼰做件事。

尽管以前捉⼑设计过很多的东西,但是我⼀直都是听的都是个很低端的实验品,使⽤的是普普通通的被粪青所不齿的曙光管⼦。

不过毕竟设计⼯作是⾃⼰的“⽉光职业”,所以更多的时候是被主业的事物缠⾝。

静下⼼来的时候,只想在⾳乐中找点慰籍,所以并未太多在乎硬件。

很怀念上⼤学时,每个星期天早上10点钟⼏个同好静静守候在收⾳机旁如饥似渴地聆听半个⼩时的“听众点播歌曲”,现在还有这种渴求吗?还记得在炎热的夏夜,第⼀次⽤双卡收录机从岷江⾳乐台的⽴体声节⽬中听到Schoenberg的《净化之夜》,那种让⼈流泪的激荡,现在还有这种感动么?现在晚间的节⽬,不是卖鞋垫就是治肾虚,然后⼀⼤帮马甲打电话进去疯狂追捧,我呸!咋这么像我们⽹络呢?!话说回来,能够让硬件更加完善⼀些,是不是可以更好地重播⾳乐呢,正是基于这个想法,加之现在的⼯作相对轻松⼀些,于是产⽣了好好犒劳⾃⼰的不良动机。

同时这么多年也积攒了好多好元件,更由于有先前那么多或成功或失败的设计经验铺垫,所以决定⾰命了,⼲吧!从哪开始呢?想起⼀句“名正⾔顺”的成语,对啊得先取个名啊!⾳响⾥正好播到⽼柴“如歌的⾏板”,那啥就这个了,⾏板!不急不徐,中庸稳妥,andante!搞定!“未成曲调先有情”了⼀番,开始正题吧。

以前给别⼈做的设计,很多有商业⽤途,所以必须在性能和价格上作⾮常多的妥协。

LME49600中文资料

LME49600中文资料
The LME49600 offers a pin-selectable bandwidth: a low current, 110MHz bandwidth mode that consumes 8mA and a wide 180MHz bandwidth mode that consumes 14.5mA. In both modes the LME49600 has a nominal 2000V/μs slew rate. Bandwidth is easily adjusted by either leaving the BW pin unconnected or connecting a resistor between the BW pin and the VEE pin. The LME49600 is fully protected through internal current limit and thermal shutdown.
±550
±1.0
±2.5
±3.0
±5.0
7.5 5.5
±17
±60
±100
Units (Limits)
V (min) V (min) V (min)
V (min) V (min) V (min)
mA mA (max) mA (max)
μA (max) μA (max)
MΩ MΩ mV (max) μV/°C
Functional Block Diagram
30029805
FIGURE 1. Functional Block Diagram
Boomer® is a registered trademark of National Semiconductor Corporation.

自己动手-4合一耳放实战DIY

自己动手-4合一耳放实战DIY

一、耳放的作用。

耳放,是耳机放大器的简称,网上也俗称是耳机的二房。

目前很多高档耳机,都配有耳放,有些人也为中低档耳机、耳塞添加了耳放。

那么,耳放到底有什么作用,加不加耳放,能有多大区别呢?1,耳放作用之一,放大信号。

目前的很多音源,特别是以电池为电源的,为了降低成本、增加播放时间,输出功率都比较小,比如一般CD为10mW左右,有的CD,MD,MP3只有3-5mW,这与50-1000mW额定功率的耳机、耳塞不相适应。

虽然正常听音乐时,输出到耳机的功率只要几mW就足够了,低灵敏度的大耳机需要10mW以上,但这里的功率,是平均功率,对于大动态的音乐,峰值功率可能是平均功率的10-30倍,某些交响乐的峰值功率,可达平均功率的50倍以上,因此,1mW的平均输出功率,有时也需要30-50mW的最大输出能力,否则会出现波形削顶失真。

这个输出能力,对于很多小功率音源,甚至半数以上声卡,都是达不到的。

因此,如果耳机灵敏度不是很高,音源输出功率不是很大,加耳放,对于音质是会有明显提升的。

2,耳放作用之二,匹配阻抗。

如今的绝大部分声卡,都没有了耳机输出插孔,只有LINE OUT插孔。

但大部分人,仍直接将耳机插入LINE OUT插孔听音乐,其实这是不妥的。

LINE OUT输出阻抗很高,一般在数百至几千欧,接入功放或者耳放,阻抗可以完全匹配,接入几十欧的耳机,影响音质在所难免,而且,很多声卡输出电容只有100uF左右,甚至47uF,接入低阻耳机,会对低音信号造成严重衰减。

例如:47uF输出电容的声卡,接32欧耳机,低频截止频率在110Hz,也就是说,110Hz以下的低音,将被严重衰减,此时加耳放,对于音质的提升效果将会很明显。

3,耳放作用之三,调音作用。

很多人说,耳放就是为了保真,调音就是音染,与HIFI的目标背道而驰,调音没有必要。

我认为,适当的调音是允许的,甚至是有必要的,有以下几点原因:a,调音为了更加保真保真,是整个听音系统的事,除了耳放,还包括录音、音乐制作、音源器材、耳机(或音箱)、人耳,还有相关线材,而不仅仅是耳放1个环节的事,如果其他环节有了不可避免的失真,是有可能通过耳放调音来补偿的,虽然耳放不保真了,但整个听音系统会更加保真。

(完整word版)耳放DIY相关资料

(完整word版)耳放DIY相关资料

关键字:虚地关键字:虚地鉴于许多朋友在地通道,多通道,单电源供电,分离电源,正负平衡,地扰动等方面问题的困惑,本人特意翻译此外国优秀文章以供参考,内容仅供参考,正确性有极小部分本人未能苟同,但尚在考证中,不过,总体来说,对于无论新老耳放diye r来说,都是不可多得的上佳参考和学习资料。

参考其中作者的电路设计请注明来源和出处,请尊重知识。

选译自/elec/vgrounds.html部分内容加入了译者个人见解模拟电路经常会碰到这样的情况,电路却需要双电源,但你只能使用单电源来供电,比方说,你的设计是要用一节电池。

你要“分开"单电源,方法有很多,都可以让你令单电源工作得就像双电源那样。

本文就是要来介绍几种这样的电路和其中的利弊.两节电池解决这个双电源问题最简单的方法莫过于使用双电池,如下图这个电路的缺点在于,当一节电池消耗得比另外一节快,更严重的,在另外一节还没有怎么下降电压,它就已经压降到1v左右的时候,我所测试的运放都会开始输出直流(译者:注意,并非+-供电不平衡便会出现严重直流,而是要在供电压降到了一定程度,状况貌似于双电池供电的时候,突然拔掉一节会出现的直流,所以,一定范围内,正负供电不平衡不要紧,当然,下面提及的续航因素的情况,正负平衡是有一定重要性)。

电池之所以会消耗不恒等的原因,可以是因为你的买了太久,新旧混用,可能你用的是充电电池,但是有几个到了寿命末期,也很可能——只是因为你那时候人品差。

话说回来,在典型耳放电路上,这样的情况不会出现得很快。

事实上放大器会在电压降到这样低之前已经开始削波失真了,同时,一个电池在还有0.9v的时候已经变得没有用了,放大器会在多芯电池压降到1v范围开始出恶声.所以,最有可能发生这种状况的场合是,你让一个电池供电的耳放开着但是没有音乐播放,或者是开着音乐但是没有听—-有没有试过听着音乐睡着了?当这情况发生的时候,高偏移直流很可能会损害了你的耳机。

自作电子管耳机放大器

自作电子管耳机放大器

自作电子管耳机放大器(原创)我的耳机阻抗是300欧姆,不能插入CD机的耳机插孔欣赏CD,尤其不能用耳机听LP,于是想自己设计制作一台电子管前级+耳机放大器。

前级线路是:1、LP唱机RIAA均衡放大器部分:可以在RC衰减型和RC反馈型两种均衡模式之间在线自由切换(用两个4刀2位开关实现);2、前置放大器部分:加进了RC音调控制电路,并且可以在反馈网络和RC提升衰减音调网络之间在线自由切换(用两个3刀2位开关实现);3、信号输入/输出有5种方式可以选择(用6刀5位开关实现):(a)LP→RIAA均衡放大→前置放大→输出(b)LP→RIAA均衡放大→前置放大→耳放(c)LP→RIAA均衡放大→输出(d)CD→前置放大→输出(e)CD→前置放大→耳放虽然做好了设计,并且机箱开孔、稳压电源容量都是按照前级+耳放做的,但是由于用LT1028运放做的LP唱机RIAA均衡放大器效果出乎预料地好,所以似乎没有了马上做好前级的动力,而是把精力先投入设计制作耳机放大器。

下图是已做好的耳放图中前面两排共6个电子管是RIAA均衡放大器+前置放大器,没有实际制作,插上电子管只是为了拍照片。

后面两排共8个电子管是电源稳压器+耳机放大器,已经做好。

耳放驱动高阻和低阻耳机的效果都非常好,频响很宽,动态很好,尤其信噪比达到100db。

戴上耳机,音量电位器从头开到最大也听不到一点哼声,连轻微的咝咝声也没有,背景非常安静。

线路图如下,其中上半部分是前级(未实施),下半部分是稳压电源+耳放:3一、电路简介耳机放大器的第一级是阳极恒流源的共阴极放大器,注意这里不是SRPP。

恆流源比SRPP 面世早些,结构也几乎一样,区別是SRPP则以上管的阴极作输出,而阳极恆流源共阴放大以下管的阳极作输出,这时输出阻抗和增益都比SRPP大。

由于第二级是阴极跟随器,所以第一级输出阻抗高些无妨。

第二级是WCF(威氏阴随)。

WCF的特点是对负载的宽容度很大,故多用以作耳放,在32Ω ~ 400Ω 的范围内都不成问题。

电子管直流输出(OCL)耳机放大器的设计与制作_图文(精)

电子管直流输出(OCL)耳机放大器的设计与制作_图文(精)

电子管直流输出(OCL耳机放大器的设计与制作电子管作为一种“古老”的现代电子元器件,近年来日益散发出迷人的魅力,尤其在耳机发烧领域,大有“异军突起”的趋势。

% s0 ]0 t" i4 r电子管耳机放大器从输出形式上来看,一般可以分为变压器输出、无变压器输出(OTL两大类。

由于OTL不使用昂贵的输出变压器,且阻抗匹配较为灵活,更是得到了DIYER和厂家的青睐,市面上相当多的胆耳放都采用了OTL输出方式。

% i4 W5 Y( S" p6 _ ~关于OTL胆耳放的线路构架,请参加我在《实用影音技术》2007年1~3期的连载。

(如有需要,请向杂志社索购。

在OTL胆耳放中,又分为两种,一种为电容输出,也就是普通常见的OTL方式,还有一种无电容输出,又称为OCL。

$ J! J( l( A/ P! h$ z& |2 H# g% b( b% @, \电容输出的优点显而易见:1、电源供电简单,一般只需要高压一组、灯丝一组就可以了;2、输出电容隔绝了高压,因此,一般不必使用输出保护装置,就可以放心地使用耳机。

r/ y. N1 H7 ^& c. {, E/ t当然,电容输出的缺点也很明显:1、由于耳机的阻抗一般在30~300之间,一般都需要100~500UF的电容,这就不可避免地使用电解电容,而优良的电解电容往往价格很高; Y: |7 B# `. y7 u2、当OTL胆耳放匹配不同阻值耳机的时候,由于低频截至的限制,不同阻抗的耳机对输出电容的容量要求是不一样的,比如30欧姆的耳机,为了能达到10赫兹的低频截至,就必须使用470UF以上的电解,而300欧姆的耳机,则需要50~60UF电容就差不多了;这样,阻抗匹配依然存在问题;而且,由于大容量电解电容的存在,在很大程度上了压缩了声场,出现了较为严重的“头部效应”$ K5 Q5 E' G3 ^ e! jb9 i- a2 U% {, M4 E9 Y于是,OCL就应运而生了。

耳机放大器制作教程

耳机放大器制作教程

耳机放大器制作教程作为一名从小就喜欢音乐的爱乐人士,我身边的音乐播放设备越来越多,体积越来越小,音乐素材的更新也越来越快。

我欣赏音乐的方式也不再局限于传统的CD音源、功放、音箱、线材、听音室这几大件了。

高保真耳机这种灵巧轻便的播放设备逐渐成为我欣赏音乐的首选。

为了让高保真耳机发挥最优效果,需要一台性能优良的耳机放大器(以下简称耳放)来和它搭配。

这里我给大家介绍一个便携耳放,它结构简单,容易上手制作成功,经过实际听音测试,可以很好的与常见的高保真耳机和MP3,MP4等小型音源搭配,发挥出不俗的性能。

关于高保真耳机放大器的制作文章,大家可能看的已经很多了。

它们大都设计讲究,制作复杂,有的甚至是针对某一品牌或者特定型号的耳机来教音,这往往使得一些从音箱烧过渡到耳机烧的朋友对耳放的制作没什么把握。

通过对这台便携耳放的制作,可以让你对耳机放大器的制作有一定了解,建立起自己的一套耳机音乐欣赏系统,为以后制作更高品质的耳机放大器做准备。

先来分析一下耳机放大器的工作特点:1,功率,耳机不同于音箱,市面上常见的高保真耳机,只需要十毫瓦的功率就可以驱动到完美状态。

但是耳放依然是一种功率放大器,不要把它和前级这样的电压放大器混淆了。

2,频响,发烧耳机的频响都很宽,这就要求我们制作的耳机放大器亦应当有足够宽频响,否则就会造成系统瓶颈。

3,信噪比,因为耳机是贴耳聆听的器材,一点点底噪都会影响欣赏音乐的心情。

耳机放大器对信噪比要求比功放要高。

4,阻尼,一般来说,耳机放大器的阻尼应该做成比功率放大器大一些,这样可以有效的改善一些低品质耳机声音浑浊的问题。

5,接口匹配,便携音源大都没有单独的线路输出接口,我们只能使用它的耳机输出接口,。

一款分立元件经典传统线路耳放的制作电路)

一款分立元件经典传统线路耳放的制作电路)

一款分立元件经典传统线路耳放的制作电路【图文】[日期:2012-03-05] 来源:土炮网作者:佚名[字体:大中小]全分离甲类耳放应该说是耳放DIY的最高境界,分立元件不同于集成电路,需要前期精密的设计和元件配对,后期复杂的调试,不少朋友对于这种放大器都有点头疼。

其实电路设计本身并不难,难的是如何把电路做成一台高品质的耳机放大器。

国内的电子书籍讲理论是头头是道,实践绝对是垃圾到家,这里推荐大家看一下科学出版社出版的《晶体管电路设计》非常实用。

辽宁大学耳机爱好者联盟在一年之前推出了一款便携式耳放作为试水之作,反响还不错,运放搭配合适很容易出好声。

今年在多方帮助下我们设计并制作了我们辽宁大学耳机爱好者联盟第一款全分立元件甲类耳机放大器,和大家交流一下,希望通过本文能激发大家DIY此类耳放的兴趣,同时能更好的识别市面常见耳放的线路,对症下药的进行磨改。

目前市面上使用分立元件的耳放其实不少,但多数都不是全分立元件的,这倒不是成本的原因,采用运放输入,能有效简化线路,利于批量化生产。

全分立元件的优势和缺陷同样明显,和使用运放输入的相比,不容易出好声,不过如果调教得宜那么效果也不是使用运放比得了的。

运放的优势是晶体管配对性非常好,体积小,测试数值较高,不过由于在一个小硅片上做出全部电路,因此存在耐压低,元器件数值有限制,电路不能随意调节等问题。

耳机放大器可以简单地分解成输入级电压放大级和输出级三部分。

输入级是整机的咽喉,对于整机性能有重要影响,不少耳放都采用运放担任输入放大以简化线路。

分立元件耳放一般是采用差分输入其中包括单差分和全对称双差分两种,具体根据使用元件不同又可以分为BJT和F ET两种。

欧洲机器使用单差分比较多,日本机器则喜欢全对称双差分。

这两种线路本身没有高低之分,使用得当都能做出高品质机器。

从DIY的角度讲,我更倾向单差分,因为双差分线路需要异极性配对,成本高一些。

为了提高整机性能,一般输入级都使用了恒流源和共基共射(沃尔曼)线路,一个比较典型的线路如下高文线路这里借用别人一张图,对图片原作者表示感谢。

聊聊一款经典线路耳放的设计与制作

聊聊一款经典线路耳放的设计与制作

聊聊⼀款经典线路⽿放的设计与制作⽿放是个很简单的东西,在⼗⼏年前甚⾄⼆⼗⼏年前模拟线路就已经发展到了⾼峰,我们⽬前看到的各类模拟放⼤器差不多都可以归纳到⼏种电路构架中,但是每家的产品⼜有⾃⼰独特的风格。

所谓“运⽤之妙,存乎⼀⼼”在电路构架类似的情况下,通过调整⼀些细微之处就能有不同的效果,这也是为什么不少国外⽿放看上去成本很低,但效果并不差的原因。

⽿放尤其是台式⽿放,其实就是⼀个输出功率⽐较⼩负载阻抗⽐较⾼的功率放⼤器,线路上完全可以通⽤功放的线路,只不过细微之处需要加以调整。

这种调整不是说把⼤功率输出管换成中功率输出管那么简单,⽽是针对不同类型的负载进⾏优化。

以莱曼⽿放的线路为例,这是个很简单也很经典的线路,运放OPA2134负责电压放⼤,⼀对⼩功率互补管BC550/560剖相并驱动另外⼀对中功率互补管BD139/140缓冲输出。

就我们⽬前的普遍评价来看,这个⽿放⽐较适合推HD650等中⾼阻抗的⽿机,但是有时候我们会发现这个⽿放的动态是不特别好,推低阻抗⽿机也有些疲软。

难道这个线路就不适合驱动低阻抗⽿机吗?显然不是这样,如果你将供电电压提⾼到±18V甚⾄更⾼,⽤100Ω的电阻替换那个47Ω,此时推动管BC550/560的⼯作电流由原来的9.31ma降到9.00ma,但输出管BD139/140的⼯作电流却由43.76ma提⾼到90ma(注意此时最好给BD139/140增配更⼤尺⼨的散热器)。

较⾼的静态电流意味着可以提供更⼤的甲类输出功率,在应对低阻抗⽿机是也就会有更好地表现。

(电路图引⽤⽿机⼤家坛zst1982413,在此表⽰感谢。

) 这种调整并不难,尤其是对于我们⽬前常见的那⼏个⽿放电路,有点电路知识的朋友都能明⽩,但很多时候我们并没有在意它,⽽是纠结⽤什么⾼端运放去替换OPA2134,或者换上⾼速整流管和⾼品质电容。

我不否认⾼品质器件的作⽤,但是明明两个电阻就能解决的问题,为什么⾮要⽤⼏⼗块钱甚⾄上百元去解决呢?这也是为什么我在标题中写——将简单的东西做得更好。

你还觉得胆机很复杂吗?-著名的PCB哥教你纯手工打造低成本胆机耳放

你还觉得胆机很复杂吗?-著名的PCB哥教你纯手工打造低成本胆机耳放

你还觉得胆机很复杂吗?-著名的PCB哥教你纯手工打造低成本胆机耳放首先说明一下,如果你是DIY爱好者的话,本期专题绝对是一篇会让你觉得“过瘾”的DIY专题,大家可以将这期专题看成是PCB哥纯手工做胆机的直播专题,本期专题的最最主要的篇幅是DIY全过程的实况照片,很“真实”也很“过瘾”,但真的有很多很多照片哦,本来想分两期推出,但考虑到DIYer们普遍是“急脾气”的性格,PCB 哥决定将全部DIY过程统一在本期完成,所以呢,本期专题是会消耗些流量的哦,所以呢,各位看官,三思啊!~言归正传,如果你决定看下去,著名的PCB哥是很欢迎也很欣慰的,那么,就跟随PCB哥的镜头,了解一下一堆废物零部件是如何变身成为一台胆机耳放的吧。

对了,看完觉得还不错的朋友,记得要点赞或者转发到朋友圈哦,你们的支持永远是PCB哥的动力,这话一点都不假!~谈到胆机,在以前的专题中我们就已经有所提及,所以对胆机的概念和其他更详细的信息,在这里不再赘述,大家可以回顾往期推送阅读相关内容,而对于很多DIYer来说,或者说是胆机之于DIY,更多的观念应该会是“高成本”、“复杂”、“调试难度大”等等,而这些观念中的很多“负能量”往往使得很多DIYer望而却步,而事实的真相又会是如何呢?下面我们开始这款低成本胆机的DIY !著名的PCB哥要让大家知道,你也是可以轻松DIY出属于你自己的胆机的~下图为DIY胆机耳放用到的电路,方案为6N2推6N1,这里需要说明的是,虽然6N1输出功率不大,但对于本次胆耳放的制作而言,是比较合适的。

另外需要重点提出的是:虽然胆机并不像很多人想象的那么复杂,但在制作过程中仍需要注意很多技巧,只有相对严格的DIY工艺才能更容易实现优质的音效,反之,不严谨的工艺往往会带来更多电路干扰,使得整机的效果不尽如人意,对于胆机制作过程中的工艺技巧和相关注意事宜,我想,如果大家感兴趣的话,在以后的专题中,PCB哥会专门去讲,这次专题我们只看DIY过程,不深究其他问题,也希望大家在看完整个DIY过程后可以有所思考。

[电子电路]6P9P制作的耳放电路

[电子电路]6P9P制作的耳放电路

6P9P制作的耳放电路感谢到访我的主页:/hechaoscut(文档西游)本文档格式为WORD,若不是word文档,则说明不是原文档。

若图片过大,下载后拉小即可。

在音响家族的系统终端,是电能—声能的转换,音箱和耳机都起到这样的作用。

与音箱相比,耳机有很多局限,比如低音虽然丰厚,但只在耳膜边鼓噪,没有音箱带来的切身震撼感。

此外还有声场,似乎老在前额和脑颅内转,久听容易疲劳。

但耳机也有其先天的优势,耳机基本都是一片轻巧的震膜涵盖全频,没有大部分音箱由多单元组成所带来的分频问题。

频响曲线比较平直,而且有着极佳的瞬态,能轻而易举地捕捉到音乐中的细节。

还有相对低廉的价格,音箱要做到等同的音色和瞬态,价格不知道要上翻多少倍。

此外,虽然只能单人独享,但却可以在大音量下听音乐而不影响他人。

所以买不起天价的音箱,又对音质苛求的,或者家居环境局限没有良好听音环境,耳机发烧实在是一个捷径。

此外,要锻炼自己对声音的鉴别能力,形成自己的听音标准,拥有一套高质量的耳机无疑很有帮助。

一.初识森海塞尔笔者喜欢聆听耳机,特别是高质量的监听耳机。

而在众多品牌当中,对森海塞尔的监听耳机特别情有独钟。

早在1945年森海塞尔(sennheiser)这个德国的公司就成功设计出性能极佳的话筒和耳机,并深受业界好评。

无论从音质、质量、舒适度以及工艺等方面,森海塞尔都有独到之处,其生产的奥费斯(OrpheHS)耳机系统几乎就是世界最佳耳机的参考标准。

笔者是在20世纪90年代初通过音响类的报刊杂志认识这个品牌,了解了当时动圈耳机的“盟主”HD580,在一本地发烧友的家中实听过HD580之后,深深震撼于那细小的方寸之后的庞大场面。

那丝般细滑的高音,空灵飘渺犹如仙境飘来;低频的霸气让人无法想象这阵阵的“气浪”是如何从这小小的耳机里涌出的。

而最让人难以忘怀的是那声音的真实,仿佛在零距离聆听歌者的演唱、乐者的弹奏。

对于当时没有真正接触过什么高档器材、在家里以一堆土炮自乐的笔者来说,这等声音就如同仙乐,简直不是来自人间。

lme49600

lme49600

LR FBVLME49600 SNAS422E–JANUARY2008–REVISED APRIL2013 LME49600High-Performance,High-Fidelity,High-Current Headphone BufferCheck for Samples:LME49600FEATURES DESCRIPTIONThe LME49600is a high performance,low distortion •Pin-Selectable Bandwidth and Quiescenthigh fidelity250mA audio buffer.The LME49600is Currentdesigned for a wide range of applications.It can be •Pure Fidelity,Pure Performance used inside the feedback loop of op amps.•Short Circuit ProtectionThe LME49600offers a pin-selectable bandwidth:a •Thermal Shutdown low current,110MHz bandwidth mode that consumes7.3mA and a wide180MHz bandwidth mode that •TO–263Surface-Mount Packageconsumes13.2mA.In both modes the LME49600hasa nominal2000V/μs slew rate.Bandwidth is easily APPLICATIONSadjusted by either leaving the BW pin unconnected or •Headphone Amplifier Output Drive Stage connecting a resistor between the BW pin and the •Line Drivers V EE pin.•Low Power Audio Amplifiers The LME49600is fully protected through internalcurrent limit and thermal shutdown.•High-Current Operational Amplifier OutputStageKEY SPECIFICATIONS•ATE Pin Driver Buffer•Low THD+N(V OUT=3V RMS,f=1kHz,•Power Supply RegulatorFigure26):0.00003%(typ)•Slew Rate:2000V/μs(typ)•High Output Current:250mA(typ)•Bandwidth–BW Pin Floating:110MHz(typ)–BW Connected to V EE:180MHz(typ)•Supply Voltage Range:±2.25V≤V S≤±18V Typical Application DiagramFigure1.High Performance,High Fidelity LME49600Audio Buffer ApplicationPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.All trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date.Copyright©2008–2013,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters.V INV OUTEE )OUTV CCV EE LME49600SNAS422E –JANUARY 2008–REVISED APRIL 2013Functional Block DiagramFigure 2.Simplified Circuit Diagram (Note:I 1and I 2are mirrored from I)Connection DiagramThe KTT package is non-isolated package.The package's metal back and any heat sink to which it is mounted are connected to the same potential as the -V EE pin.Figure 3.KTT Package (Top View)See Package Number KTT0005BThese devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.2Submit Documentation FeedbackCopyright ©2008–2013,Texas Instruments IncorporatedProduct Folder Links:LME49600LME49600 SNAS422E–JANUARY2008–REVISED APRIL2013ABSOLUTE MAXIMUM RATINGS(1)(2)(3)Supply Voltage±20V ESD Ratings(4)2000V ESD Rating(5)200V Storage Temperature−40°C to+150°C Junction Temperature150°C Thermal ResistanceθJC4°C/WθJA65°C/WθJA(6)20°C/W Soldering Information TO-263Package(10seconds)260°C(1)All voltages are measured with respect to ground,unless otherwise specified.(2)Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions forwhich the device is functional,but do not ensure specific performance limits.Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not ensured for parameters where no limit is given,however,the typical value is a good indication of device performance.(3)If Military/Aerospace specified devices are required,please contact the Texas Instruments Sales Office/Distributors for availability andspecifications.(4)Human body model,100pF discharged through a1.5kΩresistor.(5)Machine Model,220pF–240pF discharged through all pins.(6)The maximum power dissipation must be derated at elevated temperatures and is dictated by T JMAX,θJA,and the ambient temperatureT A.The maximum allowable power dissipation is P DMAX=(T JMAX–T A)/θJA or the number given in Absolute Maximum Ratings,whichever is lower.For the LME49600,typical application(shown in Figure26)with V SUPPLY=30V,R L=32Ω,the total power dissipation is1.9W.θJA=20°C/W for the TO–263package mounted to16in21oz copper surface heat sink area.OPERATING RATINGS(1)(2)Temperature Range T MIN≤T A≤T MAX−40°C≤T A≤85°C Supply Voltage±2.25V to±18V(1)All voltages are measured with respect to ground,unless otherwise specified.(2)Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions forwhich the device is functional,but do not ensure specific performance limits.Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not ensured for parameters where no limit is given,however,the typical value is a good indication of device performance.Copyright©2008–2013,Texas Instruments Incorporated Submit Documentation Feedback3Product Folder Links:LME49600LME49600SNAS422E–JANUARY2008–REVISED SYSTEM ELECTRICAL CHARACTERISTICS FOR LME49600The following specifications apply for V S=±15V,f IN=1kHz,unless otherwise specified.Typicals and limits apply for T A= 25°C.LME49600Units Symbol Parameter Conditions(Limits)Typical(1)Limit(2)I OUT=0I Q Total Quiescent Current BW pin:No connect7.310.5mA(max)BW pin:Connected to V EE pin13.218mA(max)A V=1,V OUT=3V RMS,R L=32Ω,BW=80kHz,THD+N Total Harmonic Distortion+Noise(3)closed loop see Figure26.f=1kHz0.000035%f=20kHz0.0005%30≤BW≤180MHzSR Slew Rate2000V/μsV OUT=20V P-P,R L=100ΩA V=–3dBBW pin:No ConnectR L=100Ω100MHzR L=1kΩ110MHz BandwidthA V=–3dBBW pin:Connected to V EE pinBW RL =100Ω160MHzR L=1kΩ180MHzf=10kHz3.0nV/√HzBW pin:No ConnectVoltage Noise Densityf=10kHz2.6nV/√HzBW pin:Connected to V EE pinΔV=10V,R L=100Ω1%Accuracyt s Settling TimeBW pin:No connect200nsBW pin:Connected to V EE pin60nsV OUT=±10VR L=67Ω0.930.90V/V(min)A V Voltage GainR L=100Ω0.950.92V/V(min)R L=1kΩ0.990.98V/V(min)PositiveI OUT=10mA V CC–1.4V CC–1.6V(min)I OUT=100mA V CC–2.0V CC–2.1V(min)I OUT=150mA V CC–2.3V CC–2.7V(min)V OUT Voltage OutputNegativeI OUT=–10mA V EE+1.5V EE+1.6V(min)I OUT=–100mA V EE+3.1V EE+2.4V(min)I OUT=–150mA V EE+3.5V EE+3.2V(min)I OUT Output Current±250mABW pin:No Connect±490mA(max)I OUT-SC Short Circuit Output CurrentBW pin:Connected to V EE pin±490±550mA(max)V IN=0VI B Input Bias Current BW pin:No Connect±1.0±2.5μA(max)BW pin:Connected to V EE pin±3.0±5.0μA(max)R L=100ΩZ IN Input Impedance BW pin:No Connect7.5MΩBW pin:Connected to V EE pin 5.5MΩV OS Offset Voltage±17±60mV(max)V OS/°C Offset Voltage vs Temperature40°C≤T A≤+125°C±100μV/°C(1)Typical specifications are specified at25°C and represent the parametric norm.(2)Tested limits are ensured to AOQL(Average Outgoing Quality Level).(3)This is the distortion of the LME49600operating in a closed loop configuration with an LME49710.When operating in an operationalamplifier's feedback loop,the amplifier’s open loop gain dominates,linearizing the system and determining the overall system distortion.4Submit Documentation Feedback Copyright©2008–2013,Texas Instruments IncorporatedProduct Folder Links:LME496001MFREQUENCY (Hz)-505101520G A I N (d B )10M 100M 1G1M10M 100M 1GFREQUENCY (Hz)P H A S E (°)1MFREQUENCY (Hz)-55101520G A I N (d B )10M 100M 1G1M10M 100M 1GFREQUENCY (Hz)P H A S E (°)1MFREQUENCY (Hz)-505101520G A I N (d B )10M 100M 1G10M 100M FREQUENCY (Hz)P H A S E (°)LME49600SNAS422E –JANUARY 2008–REVISED APRIL 2013TYPICAL PERFORMANCE CHARACTERISTICSGain vs Frequency vs Quiescent CurrentFigure 4.Figure 5.Gain vs Frequency vs Power Supply VoltagePhase vs Frequency vs Supply VoltageWide BW ModeFigure 6.Figure 7.Gain vs Frequency vs Power Supply VoltagePhase vs Frequency vs Supply VoltageLow I Q ModeFigure 8.Figure 9.Copyright ©2008–2013,Texas Instruments Incorporated Submit Documentation Feedback5Product Folder Links:LME496001MFREQUENCY (Hz)-505101520G A I N (d B )10M100M1GFREQUENCY (Hz)P H A S E (°)1M10M 100M 1GFREQUENCY (Hz)P H A S E (°)FREQUENCY (Hz)G A I N (d B )1MFREQUENCY (Hz)-505101520G A I N (d B )10M100M1G1M10M100M1GFREQUENCY (Hz)P H A S E (°)LME49600SNAS422E –JANUARY 2008–REVISED APRIL 2013TYPICAL PERFORMANCE CHARACTERISTICS (continued)Gain vs Frequency vs R LOADPhase vs Frequency vs R LOADWide BW ModeFigure 10.Figure 11.Gain vs Frequency vs R LOADPhase vs Frequency vs R LOADLow I Q ModeFigure 12.Figure 13.Gain vs Frequency vs C LOADPhase vs Frequency vs C LOADWide BW ModeFigure 14.Figure 15.6Submit Documentation FeedbackCopyright ©2008–2013,Texas Instruments IncorporatedProduct Folder Links:LME49600607080202k 20k200kFREQUENCY (Hz)P S R R (d B )40503020001020607080202k 20k 200kFREQUENCY (Hz)P S R R (d B )40503020001020607080202k20k200kFREQUENCY (Hz)P S R R (d B )40503020001020P S R R (d B )607080202k 20k 200kFREQUENCY (Hz)405030200010201M FREQUENCY (Hz)-505101520G A I N (d B )10M100M 1G1M10M 100M 1GFREQUENCY (Hz)P H A S E (°)LME49600SNAS422E –JANUARY 2008–REVISED APRIL 2013TYPICAL PERFORMANCE CHARACTERISTICS (continued)Gain vs Frequency vs C LOADPhase vs Frequency vs C LOADLow I Q ModeFigure 16.Figure 17.+PSRR vs Frequency +PSRR vs Frequency V S =±15V,Wide BW ModeV S =±15V,Low I Q ModeFigure 18.Figure 19.+PSRR vs Frequency +PSRR vs Frequency V S =±15V,Wide BW ModeV S =±15V,Low I Q ModeFigure 20.Figure 21.Copyright ©2008–2013,Texas Instruments Incorporated Submit Documentation Feedback7Product Folder Links:LME496001100FREQUENCY (Hz)110100E Q U I V A L E N T I N P U T N O I S E V O L T A G E (n V /r t H z )101k 10k 100k1100FREQUENCY (Hz)110100E Q U I V A L E N T I N P U T N O I S E V O L T A G E (n V /r t H z )101k 10k 100kOUTPUT POWER (W)T H D +N (%)0.000010.010.000010.00010.0010.010.11100.0010.0001101000100000678101314Q U I E S C E N T P O W E R S U P P L Y C U R R E N T (m A )RESISTANCE (:)1001000012119LME49600SNAS422E –JANUARY 2008–REVISED APRIL 2013TYPICAL PERFORMANCE CHARACTERISTICS (continued)THD+N vs Output Voltage V S =±15V,R L =32Ω,f =1kHzQuiescent Current vs Bandwidth Control ResistanceBoth channels drivenFigure 22.Figure 23.High BW Noise CurveLow BW Noise CurveFigure 24.Figure 25.8Submit Documentation FeedbackCopyright ©2008–2013,Texas Instruments IncorporatedProduct Folder Links:LME49600V IN 1 k:LVR2LR FB LME49600 SNAS422E–JANUARY2008–REVISED APRIL2013TYPICAL APPLICATION DIAGRAMFigure26.High Performance,High Fidelity LME49600Audio Buffer ApplicationDISTORTION MEASUREMENTSThe vanishingly low residual distortion produced by LME49710/LME49600is below the capabilities of all commercially available equipment.This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier’s inputs and outputs.The solution,however,is quite simple:an additional resistor.Adding this resistor extends the resolution of the distortion measurement equipment.The LME49710/LME49600’s low residual distortion is an input referred internal error.As shown in Figure27, adding the10Ωresistor connected between the amplifier’s inverting and non-inverting inputs changes the amplifier’s noise gain.The result is that the error signal(distortion)is amplified by a factor of101.Although the amplifier’s closed-loop gain is unaltered,the feedback available to correct distortion errors is reduced by101, which means that measurement resolution increases by101.To ensure minimum effects on distortion measurements,keep the value of R1low as shown in Figure27.This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies.Doing so produces distortion components that are within the measurement equipment’s capabilities.This data sheet’s THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.Figure27.THD+N Distortion Test CircuitCopyright©2008–2013,Texas Instruments Incorporated Submit Documentation Feedback9Product Folder Links:LME49600LME49600SNAS422E–JANUARY2008–REVISED APPLICATION INFORMATIONHIGH PERFORMANCE,HIGH FIDELITY HEADPHONE AMPLIFIERThe LME49600is the ideal solution for high output,high performance high fidelity head phone amplifiers.When placed in the feedback loop of the LME49710,LME49720or LME49740High Performance,High Fidelity audio operational amplifier,the LME49600is able to drive32Ωheadphones to a dissipation of greater than500mW at 0.00003%THD+N while operating on±15V power supply voltages.The circuit schematic for a typical headphone amplifier is shown in Figure28.OperationThe following describes the circuit operation for the headphone amplifier’s Left Channel.The Right Channel operates identically.The audio input signal is applied to the input jack(HP31or J1/J2)and dc-coupled to the volume control,VR1. The output signal from VR1’s wiper is applied to the non-inverting input of U2-A,an LME49720High Performance,High Fidelity audio operational amplifier.U2-A’s AC signal gain is set by resistors R2,R4,and R6. To allow for a DC-coupled signal path and to ensure minimal output DC voltage regardless of the closed-loop gain,the other half of the U2is configured as a DC servo.By constantly monitoring U2-A’s output,the servo creates a voltage that compensates for any DC voltage that may be present at the output.A correction voltage is generated and applied to the feedback node at U2-A,pin2.The servo ensures that the gain at DC is unity. Based on the values shown in Figure28,the RC combination formed by R11and C7sets the servo’s high-pass cutoff at0.16Hz.This is over two decades below20Hz,minimizing both amplitude and phase perturbations in the audio frequency band’s lowest frequencies.Figure28.LME49600Delivers High Output Current for this High Performance Headphone Amplifier10Submit Documentation Feedback Copyright©2008–2013,Texas Instruments IncorporatedProduct Folder Links:LME49600R L LME49600 SNAS422E–JANUARY2008–REVISED APRIL2013 AUDIO BUFFERSAudio buffers or unity-gain followers,have large current gain and a voltage gain of one.Audio buffers serve many applications that require high input impedance,low output impedance and high output current.They also offer constant gain over a very wide bandwidth.Buffers serve several useful functions,either in stand-alone applications or in tandem with operational amplifiers. In stand-alone applications,their high input impedance and low output impedance isolates a high impedance source from a low impedance load.SUPPLY BYPASSINGThe LME49600will place great demands on the power supply voltage source when operating in applications that require fast slewing and driving heavy loads.These conditions can create high amplitude transient currents.A power supply’s limited bandwidth can reduce the supply’s ability to supply the needed current demands during these high slew rate conditions.This inability to supply the current demand is further exacerbated by PCB trace or interconnecting wire inductance.The transient current flowing through the inductance can produce voltage transients.For example,the LME49600’s output voltage can slew at a typical±2000V/μs.When driving a100Ωload,the di/dt current demand is20A/μs.This current flowing through an inductance of50nH(approximately1.5”of22 gage wire)will produce a1V transient.In these and similar situations,place the parallel combination of a solid 5μF to10μF tantalum capacitor and a ceramic0.1μF capacitor as close as possible to the device supply pins. Ceramic capacitors with values in the range of10μF to100μF,ceramic capacitor have very lower ESR(typically less than10mΩ)and low ESL when compared to the same valued tantalum capacitor.The ceramic capacitors, therefore,have superior AC performance for bypassing high frequency noise.In less demanding applications that have lighter loads or lower slew rates,the supply bypassing is not as critical. Capacitor values in the range of0.01μF to0.1μF are adequate.SIMPLIFIED LME49600CIRCUIT DIAGRAMThe LME49600’s simplified circuit diagram is shown in Figure2.The diagram shows the LME49600’s complementary emitter follower design,bias circuit and bandwidth adjustment node.Figure29shows the LME49600connected as an open-loop buffer.The source impedance and optional input resistor,R S,can alter the frequency response.As previously stated,the power supplies should be bypassed with capacitors connected close to the LME49600’s power supply pins.Capacitor values as low as0.01μF to0.1μF will ensure stable operation in lightly loaded applications,but high output current and fast output slewing can demand large current transients from the power supplies.Place a recommended parallel combination of a solid tantalum capacitor in the5μF to10μF range and a ceramic0.1μF capacitor as close as possible to the device supply pins.Figure29.Buffer ConnectionsCopyright©2008–2013,Texas Instruments Incorporated Submit Documentation Feedback11Product Folder Links:LME49600LME49600SNAS422E–JANUARY2008–REVISED OUTPUT CURRENTThe LME49600can continuously source or sink250mA.Internal circuitry limits the short circuit output current to approximately±450mA.For many applications that fully utilize the LME49600’s current source and sink capabilities,thermal dissipation may be the factor that limits the continuous output current.The maximum output voltage swing magnitude varies with junction temperature and output ing sufficient PCB copper area as a heat sink when the metal tab of the LME49600’s surface mount TO–263 package is soldered directly to the circuit board reduces thermal impedance.This in turn reduces junction temperature.The PCB copper area should be in the range of3in2(12.9cm2)to6in2(38.7cm2).THERMAL PROTECTIONLME49600power dissipated will cause the buffer’s junction temperature to rise.A thermal protection circuit in the LME49600will disable the output when the junction temperature exceeds150°C.When the thermal protection is activated,the output stage is disabled,allowing the device to cool.The output circuitry is enabled when the junction temperature drops below150°C.The TO–263package has excellent thermal characteristics.To minimize thermal impedance,its exposed die attach paddle should be soldered to a circuit board copper area for good heat dissipation.Figure30shows typical thermal resistance from junction to ambient as a function of the copper area.The TO–263’s exposed die attach paddle is electrically connected to the V EE power supply pin.LOAD IMPEDANCEThe LME49600is stable under any capacitive load when driven by a source that has an impedance of50Ωor less.When driving capacitive loads,any overshoot that is present on the output signal can be reduced by shunting the load capacitance with a resistor.OVERVOLTAGE PROTECTIONIf the input-to-output differential voltage exceeds the LME49600’s Absolute Maximum Rating of3V,the internal diode clamps shown in Figure2and conduct,diverting current around the compound emitter followers of Q1/Q5 (D1–D7for positive input),or around Q2/Q6(D8–D14for negative inputs).Without this clamp,the input transistors Q1/Q2and Q5/Q6will zener and damage the buffer.To ensure that the current flow through the diodes is held to a save level,the internal200Ωresistor in series with the input limits the current through these clamps.If the additional current that flows during this situation can damage the source that drives the LME49600’s input,add an external resistor in series with the input(see Figure29).BANDWITH CONTROL PINThe LME49600’s–3dB bandwidth is approximately110MHz in the low quiescent-current mode(7.3mA typical). Select this mode by leaving the BW pin unconnected.Connect the BW pin to the V EE pin to extend the LME49600’s bandwidth to a nominal value of180MHz.In this mode,the quiescent current increases to approximately13.2mA.Bandwidths between these two limits are easily selected by connecting a series resistor between the BW pin and V EE.Regardless of the connection to the LME49600’s BW pin,the rated output current and slew rate remain constant. With the power supply voltage held constant,the wide-bandwidth mode’s increased quiescent current causes a corresponding increase in quiescent power dissipation.For all values of the BW pin voltage,the quiescent power dissipation is equal to the total supply voltage times the quiescent current(I Q*(V CC+|V EE|)).BOOSTING OP AMP OUTPUT CURRENTWhen placed in the feedback loop,the LME49600will increase an operational amplifier’s output current.The operational amplifier’s open loop gain will correct any LME49600errors while operating inside the feedback loop. To ensure that the operational amplifier and buffer system are closed loop stable,the phase shift must be low. For a system gain of one,the LME49600must contribute less than20°at the operational amplifier’s unity-gain frequency.Various operating conditions may change or increase the total system phase shift.These phase shift changes may affect the operational amplifier's stability.12Submit Documentation Feedback Copyright©2008–2013,Texas Instruments IncorporatedProduct Folder Links:LME49600LME49600 SNAS422E–JANUARY2008–REVISED APRIL2013Unity gain stability is preserved when the LME49600is placed in the feedback loop of most general-purpose or precision op amps.When the LME46900is driving high value capacitive loads,the BW pin should be connected to the V EE pin for wide bandwidth and stable operation.The wide bandwidth mode is also suggested for high speed or fast-settling operational amplifiers.This preserves their stability and the ability to faithfully amplify high frequency,fast-changing signals.Stability is ensured when pulsed signals exhibit no oscillations and ringing is minimized while driving the intended load and operating in the worst-case conditions that perturb the LME49600’s phase response.HIGH FREQUENCY APPLICATIONSThe LME49600’s wide bandwidth and very high slew rate make it ideal for a variety of high-frequency open-loop applications such as an ADC input driver,75Ωstepped volume attenuator driver,and other low impedance loads. Circuit board layout and bypassing techniques affect high frequency,fast signal dynamic performance when the LME49600operates open-loop.A ground plane type circuit board layout is best for very high frequency performance results.Bypass the power supply pins(V CC and V EE)with0.1μF ceramic chip capacitors in parallel with solid tantalum10μF capacitors placed as close as possible to the respective pins.Source resistance can affect high-frequency peaking and step response overshoot and ringing.Depending on the signal source,source impedance and layout,best nominal response may require an additional resistance of 25Ωto200Ωin series with the input.Response with some loads(especially capacitive)can be improved with an output series resistor in the range of10Ωto150Ω.THERMAL MANAGEMENTHeatsinkingFor some applications,the LME49600may require a heat sink.The use of a heat sink is dependent on the maximum LME49600power dissipation and a given application’s maximum ambient temperature.In the TO-263 package,heat sinking the LME49600is easily accomplished by soldering the package’s tab to a copper plane on the PCB.(Note:The tab on the LME49600’s TO-263package is electrically connected to V EE.)Through the mechanisms of convection,heat conducts from the LME49600in all directions.A large percentage moves to the surrounding air,some is absorbed by the circuit board material and some is absorbed by the copper traces connected to the package’s pins.From the PCB material and the copper,it then moves to the air. Natural convection depends on the amount of surface area that contacts the air.If a heat conductive copper plane has perfect thermal conduction(heat spreading)through the plane’s total area, the temperature rise is inversely proportional to the total exposed area.PCB copper planes are,in that sense,an aid to convection.These planes,however,are not thick enough to ensure perfect heat conduction.Therefore, eventually a point of diminishing returns is reached where increasing copper area offers no additional heat conduction to the surrounding air.This is apparent in Figure30as the thermal resistance reaches an asymptote above a copper area of8in2).As can be seen,increasing the copper area produces decreasing improvements in thermal resistance.This occurs,roughly,at4in2of1oz copper board.Some improvement continues until about 16in2.Boards using2oz copper boards will have decrease thermal resistance providing a better heat sink compared to1oz.copper.Beyond1oz or2oz copper plane areas,external heat sinks are required.Ultimately, the1oz copper area attains a nominal value of20°C/W junction to ambient thermal resistance(θJA)under zero air flow.Copyright©2008–2013,Texas Instruments Incorporated Submit Documentation Feedback13Product Folder Links:LME496000246810121416COPPER HEAT SINK AREA (in 2)203040506070T H E R M A L I M P E D A N C E (T J A )135********LME49600SNAS422E –JANUARY 2008–REVISED APRIL Figure 30.Thermal Resistance for 5-lead TO–263Package Mounted on 1oz.CopperA copper plane may be placed directly beneath the tab.Additionally,a matching plane can be placed on theopposite side.If a plane is placed on the side opposite of the LME49600,connect it to the plane to which thebuffer’s metal tab is soldered with a matrix of thermal vias per JEDEC Standard JESD51-5.Determining Copper AreaFind the required copper heat sink area using the following guidelines:1.Determine the value of the circuit’s power dissipation,P D .2.Specify a maximum operating ambient temperature,T A(MAX).(Note that the die temperature,T J ,will be higherthan T A by an amount that is dependent on the thermal resistance from junction to ambient,θJA ).Therefore,T A must be specified such that T J does not exceed the absolute maximum die temperature of 150°C.3.Specify a maximum allowable junction temperature,T J(MAX),This is the LME49600’s die temperature when thebuffer is drawing maximum current (quiescent and load).It is prudent to design for a maximum continuousjunction temperature of 100°C to 130°C.Ensure,however,that the junction temperature never exceeds the150°C absolute maximum rating for the part.4.Calculate the value of junction to ambient thermal resistance,θJA5.θJA as a function of copper area in square inches is shown in Figure 30.Choose a copper area that will ensurethe specified T J(MAX)for the calculated θJA .The maximum value of junction to ambient thermal resistance,θJA ,isdefined as:θJA =(T J(MAX)-T A(MAX))/P D(MAX)(°C/W)where•T J(MAX)=the maximum recommended junction temperature •T A(MAX)=the maximum ambient temperature in the LME49600’s environment•P D(MAX)=the maximum recommended power dissipation (1)NOTEThe allowable thermal resistance is determined by the maximum allowable temperatureincrease:T RISE =T J(MAX)-T A(MAX)Thus,if ambient temperature extremes force T RISE to exceed the design maximum,the part must be de-rated byeither decreasing P D to a safe level,reducing θJA further or,if available,using a larger copper area.Procedure1.First determine the maximum power dissipated by the LME49600,P D(MAX).For the simple case of the bufferdriving a resistive load,and assuming equal supplies,P D(MAX)is given by:P DMAX(AC)=(I S x V S )+(V S )2/(2π2R L )(Watts)(2)14Submit Documentation FeedbackCopyright ©2008–2013,Texas Instruments IncorporatedProduct Folder Links:LME49600。

耳放2

耳放2

末级电流放大级是普通的射极跟随器,采用普通的中功率管进行电流放大,其偏置是由两个二极管组成的简单回路。

最后的输出级还有一个R5、C6组成的茹贝尔网络,防止整机高频自激震荡,接到耳机输出端时还串联一个47Ω电阻(R7),防止短路。

这个输出电阻R7的阻值越小对音质越有利(特别是使用低阻抗耳机时),低于1Ω最理想,但因为本机输出无保护,可能会对耳机有一些冲击,所以折衷取值为47~100Ω,既安全又靓音。

末级的射极电阻R2、R6小一些有助于提高输出电流,但因输出是耳机,电阻不必很小,这样可以增加该级的反馈量,降低失真,提高整机的稳定性。

本机的电源使用一个外置的变压器,经1m连接线和插头连接到耳放,就像使用一个普通的小电源一样,如图2所示。

其连接到耳放中由D1、D4、D7和D8半波整流成±15.6V 的电源对本机的电流输出级供电,同时经R 28、R29、DW1、DW2、C13和C14组成的并联稳压电源降压成±12V 对运放的电压放大级供电。

对元器件的要求也不高,只要质量合格即可。

这对于业余制作来说实在是非常方便。

电阻使用的是蓝色的五环金属膜电阻,精度较高。

实际上,这个耳放中使用的电阻采用普通的四环电阻即可,但五环电阻的价格也贵不了多少,何乐而不为呢?不过电路中有几个电阻的取值对耳放性能有很大影响,更改时一定要注意。

小电容使用了普通的涤纶和瓷片电容,有条件的话可将输入端的100pF 电容改成独石或涤纶电容,这对音质肯定有帮助,如果将它取消也不错。

几个电解电容都是国产合资厂的正品,如换成日本的Rubycon 或Nichicon 电解电容则音质会更佳。

将输入端耦合用的4.7μF无极性电解电容换成Wima的1μF以上普通电容后,如果用好一点的耳机可以听得出其中的差别。

整机的电路设计十分简单,由于电压较低,因此没有使用保护电路,输出直接连接到负载。

这也间接地提高了音质,因为看似图 2 外接电源图 1 耳放的电路图图 3 机壳部分的材料 将所有元器件分类整理好后按电阻、电容、电解电容、有源器件和开关插座等归类后放在摊平的白纸上,并在其旁边标注数值。

diy制作超薄耳放

diy制作超薄耳放

diy制作超薄耳放
做了很长时间洞洞板,决定自己开板设计台耳放,但是因为自己还不会protel99,所以PCB基本是边学边做,用了10天时间学习基本操作,20天搞定了双面板全贴片的pcb,最难的是那些该死的封装要自己搞。

耳放电路结构是op+buf三通道,四倍扩流可以满足所有低阻耳塞了,实际可以看耳机增减buf,如果是大电流op也可取消buf。

电路设置了增益切换开关,此外也可以选择无电容信号直通模式,只需把两颗WIMA电容取消,背面小电容换成电阻即可。

整个电路板加元件厚度仅为8mm,电位器和电源开关垂直于PCB安装,符合人体工程学原理,音量旋钮从侧面可以当滚轮使用,手感非常好。

地通道调整了很长时间,最后用了一颗大电流单运放。

运放虽然没有自激,47p电容经反复斟酌还是做调音手段加上了,听感不错,高频不刺耳,人声不肥不瘦,鼓点有力,一些细节用我原来的耳放都没有发现,至于测试,示波器我这没有只能凭耳朵和经验了。

先上个前期用layout软件画的概念图,进行了2次布局优化,电路板尺寸差不多5cm*5cm,下面还得用protel重新画成pcb格式才能送去开板
一次layout
优化后
protel99画的原理图和正面pcb图
加工好的PCB,1.2mm厚,双面70u铺铜加沉金#p#分页标题#e#
焊接好的耳放板,有个小bug,飞线解决,还算完美
最后利用有机玻璃做了个透明外壳,一颗螺丝和旋钮有干涉,不得不锉刀伺候,材料太好了磨到手抽筋。

下面是做好后拍的几张照片,后来又作了调整,换了运放。

至此
一台心中构想已久的耳放完成了,同时也基本学会了protel99的基本操作,真是一举两得。

(责任编辑:admin)。

自制耳机放大器跟我自制耳机放大器

自制耳机放大器跟我自制耳机放大器

自制耳机放大器跟我自制耳机放大器跟我制自耳机大放器七十年以代,后机技耳有了迅速的发术和提展,其高重的放果几效乎到达了美完程度。

而的 世界上最著今的名声电、电器厂家,如德国的海塞尔森S(ENHNESIRE、拜)亚力动b(eeyrdynami),c奥利的地爱技(AKG)科美国,歌的德(GARDO、高)(斯OSS)K日本,的三角铁(uAdoiTeancica、)尼索(OSY)更是生N产了量不大系列同同不格规的优耳质机这。

耳机中有些的响超越频人了听的范觉(2围H0z—20k—Hz,达到)了Hz—553Hk,谐波z失真互和调失也减少真了到小0于1%的.高标。

它们准音的已质显明超过声器扬放声系统。

国德名交响乐著指家卡拉扬,挥对在了很多比体声立声扬系器、统耳机统以后系曾经非,常定地肯说:后能够更者好重现音乐的的立体感因,而具有强更的烈临场果。

效是,但大多绝的数优耳机质仅仅借凭随身、C听D机、MD、M机3P或机者脑声电卡来动推远不是能发出挥它们的优性能的异在,多很况下还情要一需个间中设备—耳—机音频率功放大 器eHadhopenmAliers,p常通简为耳放称。

么什那是么耳放?就让呢我们来它给个一切的确义吧,定耳放—就—提供是给机放耳系声音频功率、并对其重放的统音、色音及量立声体态进状行节与控制的调立独置。

所谓装独立的装,置相是对有于机子中内置的耳些放路电言的而。

们不把这我内些置耳的电路放定为耳放义的围。

范实听际证音明耳,的作用的确放很大而且,同不结构的耳具放不有的声同音风格特和,点很得耳机和值音爱好乐们者玩味可。

是场上的商品耳放动辄市元千以,电子管上耳放是更价惊格,人而且种又少,很难品满我们足需要。

所的以“在ID”风Y盛的日天,今“IDY耳”也应放成一为种时尚。

己动手“自IY耳D放”可以随改时变线路聆听不,线同搭路配起的引声音微妙化;还能变使你略领成的功悦和品喜尝犹咖如啡般甘苦的味!动心了吧滋那就赶快,体验来这其的乐趣中吧!跟“自我耳放制由四”篇章文组成分别介绍“集,电成耳机放大器路”“、晶体管机耳大放器”“OT、L电子管机放耳器”、“带输大变出器压的电子耳管机放器”大的制。

民间也有高手一款前级兼耳放的制作

民间也有高手一款前级兼耳放的制作

民间也有高手一款前级兼耳放的制作制作这款前级的初衷实际上是因为买了一副耳机,虽然这个耳机直接插在IPAD上也是可以听的,而且效果还不是太差,但很想知道配了耳放以后会是什么效果,也是就决定弄一个耳放...坛子里,某宝上看了N天,什么黑鸟,小刺猬,莱曼等等看得眼花,但都觉得不是自己想要的东东,盘算着这家里什么6010,胆前等已都一堆了,唯一就是分离石机前级还只弄过一次,而且效果并不太好,于是决定弄一个石机前级兼耳放,看了坛子里的一些相关资料,一款仿音乐之旅的前级进入视野,这款前级坛子里已有好几位大侠弄过了,而且电路图齐全,这个非常重要,要知道现在光卖板子不提供电路图的很多,很多都是卖了PCB后就石沉大海,更不用说什么技术支持了,更坑爹的是还到处留下BUG和陷阱,呵呵,所以必须要求电路图...于是决定弄这款前级.下面正式开始我的音乐之旅.国际惯例,先上电路图(这款前级坛子里早已有电路图了,但为文章的完整性,还是在这里贴出来,关于电路图的具体分析其他帖子已有详细描述,我这里就不再说了),这个主放大电路,据描述是参考了音乐之旅的某合并机的电路:顺便找了音乐之旅AW120的电路图如下,大家可比较一下:下面是电源的电路:接下来当然就是开始采购材料了,为方便,直接连PCB带零件买了全套,据说这PCB已是第五版了,这个ROE的电容看起来不错,最后的效果也证明了这款电容的实力.接下来是让人头大的变压器,家里存货不少,但都没有合适的电压,这款机器要双38V到42v左右,看了很多,箭猪的,TALEMA的等等,不是电压不合适就是价格太烫手,偶然看到一家定制O型牛的,这O型牛是久仰大名,但一直没有尝试过,看了价格觉得还可以接受,于是定了两头100瓦的,经过漫长的大半个月的等待,东西到手,制作还算精致,开始看到引出线是白色的,还以为是用的铝线,后来使用了才弄清楚是用的纯无氧铜线,只不过外面有一层白色镀层,实际用下来,效果非常好,电位器则用了几年前买的一款继电器分流式遥控音量、输入选择组件,就不多说了,后面整机图片中可看到.制作过程倒是比较轻松愉快,这个是电源模块,包括主放大电路及音量控制和保护系统的供电都在这里了.所有变压器都采用吊装,支撑立柱采用尼龙和铜两种材料,取其不同的协震频率,感觉还是很有效的.再来张俯视.由于买的是成品机箱,所以相对来说,金工活路不多,只弄了点小东西,看看这个东西是干啥的?折弯器还是用的这个,买了好多年了,很好用.谜底揭晓.电路板的焊接调整就不多说了,按部就班.至此基本的电路板安装已完成,开始总装和调试.目前用的耦合只是RIFA 10U的,初步听起来,效果不错,完全发挥了我那耳机的潜力,看来制作还是很成功的,下一步是漫长的校音了,准备多弄些耦合电容来试,M-CAP,U-CAM,V-CAP...做梦中,呵呵!。

LME49600TS中文资料

LME49600TS中文资料

Key Specifications
■ Low THD+N
(VOUT = 3VRMS, f = 1kHz, Figure 2)
0.00003% (typ)
■ Slew Rate
2000V/μs (typ)
■ High Output Current
250mA (typ)
■ Bandwidth
BW pin floating
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature TA. The maximum allowable power dissipation is PDMAX = (TJMAX–TA)/θJA or the number given in Absolute Maximum Ratings, whichever is lower. For the LME49600, typical application (shown in Figure 3) with VSUPPLY = 30V, RL = 32Ω, the total power dissipation is 1.9W. θJA = 20°C/W for the TO–263 package mounted to 16in2 1oz copper surface heat sink area.
Symbol
Parameter
VOUT
Voltage Output
IOUT IOUT-SC
Output Current Short Circuit Output Current

耳机放大器电路图

耳机放大器电路图

耳机放大器电路图发布时间:2010-1-8 16:00 发布者:我爱电路图阅读次数:194用头戴式耳机,尤其是小型耳机听音乐,总感到音乐味不够足,在低频段的效果更差。

因此用本机增强耳机的低频特性,并采用立体声反相合成的办法,加上内藏简易矩阵环绕声电路,能获得强劲的低音和在较宽的范围内展宽音域。

本机称为超级广场效果。

这种扣人心弦的力量,不亚于实况立体声。

电路原理本机电路大致可分为下面三部分:1.由电阻电容组成的低频增强电路。

2.利用功率放大器IC的反馈输入,组成立体声反相合成电路。

3.利用功率放大器IC,组成头戴耳机的驱动电路。

从输入端IC之间的电阻电容起到增强低频特性的作用,因为加有电位器,低频部分的增强量可在0--10倍之间连续可调。

立体声反相合成电路IC 2脚和8脚的直流耦合电容之后,由0.47UF和50K的电位器组成。

在此电路中,把立体声的广场效果成分中的高音部分左右分别反相后合成,起到增强效果的作用。

用东芝TA7376P推动头戴式耳机。

这种IC内藏两个通道,外接元件少,可在低电压下工作。

负载阻抗较低时,可重放出动人效果的低频声音。

电源若改用5#电池,用四只串联,电压为6V,可直接驱动高输出的扬声器。

若将三个200UF/10V的电容增加到1000UF左右,可获得更好的效果。

元件所有元件没有什么特殊的。

电阻均为1/8W。

0.1UF和0.47UF的电容用独石电容,其它的用电解电容。

电位器中,20K为双连电位器,50K用带开关电位器。

插头用立体声插头。

制作制作极其简单,即使是初学者,有一天的时间就足够了。

要留心IC的脚和电解电容的极性。

电位器的接线比较凌乱,不要搞错了。

若没有接线错误和焊接不良,一定会马到成功。

接入头戴式立体声耳机或普通耳机,装入电池,打开开关。

若两个旋钮配合得好,收听音乐可得到极其感人的效果,。

根据聆听的音乐和音源适当的调整,这就是本机的使用方法要点。

不用说,和小型音响,电视,CD相连会得到更佳的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LME49600 HeadphoneAmplifier Evaluation Board User's GuideNational Semiconductor Application Note 1768Kevin Hoskins February 29, 2008Quick Start GuideApply a ±2.5V to ±17V power supply’s voltage to the respec-tive “V +”, “GND” and “V -” pins on JU19Apply a stereo audio signal to the RCA jacks J1 (Right) and J2 (Left) or jumpers JU1 (Right) and JU17 (Left), observing the signal input pin and the ground (GND) pin. Though not typically installed, a stereo signal can also be applied to head-phone jack HPJ1.Connect a load to JU14 (Left) and another load to JU15(Right), observing the signal output pin and the ground (GND)pin. The stereo signal output is also available on the 1/8”stereo headphone jack located in the board's “OUTPUT” sec-tionUse VR1 to control the output signal amplitude.Apply power. Make measurements. Plug in a pair of head-phones. Enjoy.IntroductionTo help the user investigate and evaluate the LME49600's performance and capabilities, a fully populated demonstration board was created. Please contact the National Semiconduc-tor Corporation's Audio Products Group for availability. This board is shown in Figure 1. Connected to an external power supply (±2.5V to ±17V ) and a signal source. The LME49600demonstration board easily demonstrates the amplifier's fea-tures.30047312FIGURE 1. The LME49600/LME49720 Stereo Headphone Amplifier Demonstration Board© 2008 National Semiconductor Corporation LME49600 Headphone Amplifier Evaluation Board User's GuideAN-1768General DescriptionThe LME49600 is a high performance, low distortion high fi-delity 250mA audio buffer. Whereas there are many uses for the LME49600, this application note describes a headphone amplifier circuit and associated demonstration board. De-signed for use inside an operational amplifier’s feedback loop,it increases output current, improves capacitive load drive,and eliminates thermal feedback.The LME49600 offers a pin-selectable bandwidth: a low cur-rent, 110MH z bandwidth mode that consumes 8mA and a wide 180MHz bandwidth mode that consumes 15mA. In both modes the LME49600 has a nominal 2000V/μs slew rate.Bandwidth is easily adjusted by either leaving the BW pin un-connected, connecting a resistor between the BW pin and the V EE pin or connecting the BW pin directly to the V EE pin.The LME49600 is fully protected through internal current limit and thermal shutdown.Operating Conditions■ Temperature Range –40°C ≤ T A ≤ 85°C■ Amplifier PowerSupply Voltage2.5V ≤ V S ±17VBoard FeaturesThe LME49600/LME49720 Stereo H eadphone Amplifier demonstration board has all of the necessary connections,using RCA jacks, 1/8” stereo headphone jack and 0.100”headers, to apply the power supply voltage and the audio in-put signals. The amplified audio signal is available on both a stereo headphone jack and auxiliary output connections.Also present on the demonstration board is a potentiometer to control the stereo output signal magnitude.SchematicFigure 2 shows the LME49600/LME49720 Stereo H ead-phone Amplifier Demonstration Board schematic. Refer to Table 3 for a list of the connections and their functions.30047317Figure 2. The LME49600 Demonstration Board Schematic Note: The LM4562, LME49720, or LME49860 can be used. 2A N -1768ConnectionsConnecting to the world is accomplished through a combina-tion of RCA jacks, 1/8” stereo headphone jacks and 0.100”headers on the LME49600 demonstration board. The func-tions of the different headers, 1/8” headphone jacks and RCA jacks are detailed in Table 1.TABLE 1. LME49600 Demonstration Board ConnectionsDesignator Function or UseJU17This is the connection to the amplifier’s left channel input. Apply an external signal source’s positive voltage to the JU17 pin labeled “LT IN” and the signal source’s ground signal to the pin labeled“GND.”J2This is an RCA connector that parallels the pins on JU17.HPJ1Stereo, 1/8” headphone jack. Used for stereo signal input. Left channel input is on the tip connector and the right channel input is on the ring connector. Ground is on the sleeve connector.J1This is an RCA connector that parallels the pins on JU1.JU1This is the connection to the amplifier’s right channel input. Apply an external signal source’s positive voltage to the JU1 pin labeled “RT IN” and the signal source’s ground signal to the pin labeled“GND.”JU19Power supply connection. Connect an external split power supply’s voltage source ±2.5V to ±17V to the JU19 pin labeled (“V+” and “V-”)” and the supply’s ground source to the pin labeled “GND.”JU14This is the connection to the amplifier’s single-ended, ground-referenced left channel output.Connect the JU14 pin labeled “LT OUT” and the pin labeled “GND” to the positive and ground inputs,respectively, of an external signal measurement device. JU14’s pin labeled “LT OUT” correspondsto the headphone jack’s “tip” connection. J5’s pin labeled “GND“ corresponds to the headphonejack’s “sleeve” (or ground) connection.HPJ2Stereo, 1/8” headphone jack. Used for stereo signal output. Left channel output is on the tip connector and the right channel output is on the ring connector. Ground is on the sleeve connector.JU15This is the connection to the amplifier’s ground-referenced right channel output. Connect the JU15 pin labeled “RT OUT” and the pin labeled “GND” to the positive and ground inputs, respectively, ofan external signal measurement device. JU15’s pin labeled “RT OUT” corresponds to theheadphone jack’s “ring” connection. J4’s pin labeled “GND“ corresponds to the headphone jack’s“sleeve” (or ground) connection.JU4, JU6These connections allow monitoring the left and right channel DC servo outputs, respectively.PCB Layout GuidelinesThis section provides general practical guidelines for PCB layouts that use various power and ground traces. Designers should note that these are only "rule-of-thumb" recommen-dations and the actual results are predicated on the final layout.POWER AND GROUND CIRCUITSStar trace routing techniques can have a major positive im-pact on low-level signal performance. Star trace routing refersto using individual traces that radiate from a signal point tofeed power and ground to each circuit or even device.AN-1768Bill of MaterialsRefDesPart DescriptionValue ToleranceRatingPackage TypeManufacturer and Part Number BAT1– BAT29V Battery Terminal (male &female) [Not Installed] KEYSTONE593 (Female) & 594 (Male)C1 – C8MULITYLAYER CERAMIC CAPACITOR1.0μF ±20%25V 805TDKC2012X5R1E105M C9 C10, C23 – C24TANTALUM ELECTROLYTIC CAPACITOR 4.7μF ±10%35V B CASE AVXTPSB475K035R0700C12, C1422μF ±20%25V C CASE AVXTPSD226M025#011C19 – C22CERAMIC CAPACITOR 0.1μF ±10%25V 603TDKC1608X7R1E104K HPJ1– HPJ21/8” Stereo Headphone JackJ1 – J2RCA jackJU1, JU4, JU6,JU14, JU15, JU17100mil pin pitch, two pin JU19100mil pin pitch, three pinR1 – R61/4W resistor 1k Ω±1%1/4W 1/4W, Axial YAGEOMFR-25FBF-1K00R9 – R121/4W resistor1M Ω±1%1/4W 1/4W, Axial YAGEOMFR-25FBF-1M00S1SWITCH SLIDE DPDT [Not Installed]DPDTU1, U2LME49720NA (Can also use LM4562, LME49860)National Semiconductor Corp.LME49720NA(LM4562NA or LME49860NA)U3, U4LME49600National Semiconductor Corp.LME49600TS VR1Dual gauged potentiometer10k ΩPANASONIC EVJ-Y00F30A14 4A N -1768Demonstration Board PCB Layout Figures 3 through 6 show the different layers used to create the LME49600 demonstration board. Figure 3 is the silkscreen that shows parts location. Figure 4 is the top layer. Figure 5 is the bottom layer. Figure 6 is the bottom silkscreen layer.30047316Figure 3. Top Silkscreen30047315Figure 4. Top Layer AN-176830047313Figure 5. Bottom Layer30047314Figure 6. Bottom Silk Layer 6A N -1768Typical Performance30047360FIGURE 7: THD+N vs Output PowerLME49720/LME49600 headphone amplifierinto (from top to bottom at 0.1mW): 16Ω, 32Ω, 64Ω, 300Ω(VS = ±3V, f = 100Hz, 22Hz ≤ BW ≤ 22kHz)30047361FIGURE 8: THD+N vs Output PowerLME49720/LME49600 headphone amplifierinto (from top to bottom at 10mW): 16Ω, 32Ω, 64Ω, 300Ω(VS= ±9V, f = 100Hz, 22Hz ≤ BW ≤ 22kHz)30047362FIGURE 9: THD+N vs Output PowerLME49720/LME49600 headphone amplifierinto (from top to bottom at 10mW): 16Ω, 32Ω, 64Ω, 300Ω(VS = ±15V, f = 100Hz, 22Hz ≤ BW ≤ 22kHz)30047366FIGURE 10: THD+N vs Output PowerLME49720/LME49600 headphone amplifierinto (from top to bottom at 0.1mW): 16Ω, 32Ω, 64Ω, 300Ω(VS= ±3V, f = 1kHz, 400Hz ≤ BW ≤ 22kHz)30047367FIGURE 11: THD+N vs Output PowerLME49720/LME49600 headphone amplifierinto (from top to bottom at 10mW): 16Ω, 32Ω, 64Ω, 300Ω(VS = ±9V, f = 1kHz, 400Hz ≤ BW ≤ 22kHz)FIGURE30047368FIGURE 12: THD+N vs Output PowerLME49720/LME49600 headphone amplifierinto (from top to bottom at 10mW): 16Ω, 32Ω, 64Ω, 300Ω(VS= ±15V, f = 1kHz, 400Hz ≤ BW ≤ 22kHz)AN-176830047363FIGURE 13: THD+N vs Output Power LME49720/LME49600 headphone amplifierinto (from top to bottom at 0.1mW): 16Ω, 32Ω, 64Ω, 300Ω(V S = ±3V, f = 10kHz, 400Hz ≤ BW ≤ 80kHz)3004736414: THD+N vs Output PowerLME49720/LME49600 headphone amplifierinto (from top to bottom at 20mW): 16Ω, 32Ω, 64Ω, 300Ω(V S = ±9V, f = 10kHz, 400Hz ≤ BW ≤ 80kHz)30047365FIGURE 15: THD+N vs Output Power LME49720/LME49600 headphone amplifierinto (from top to bottom at 20mW): 16Ω, 32Ω, 64Ω, 300Ω(V S = ±15V, f = 10kHz, 400Hz ≤ BW ≤ 80kHz)30047369FIGURE 16: THD+N vs FrequencyLME49720/LME49600 headphone amplifierinto (from top to bottom at 5kHz): 16Ω at 3mW, 32Ω at 3mW300Ω at 0.3mW, and 64Ω at 1.5mW (V S = ±3V, < 10Hz ≤ BW ≤ 80kHz)30047370FIGURE 17: THD+N vs FrequencyLME49720/LME49600 headphone amplifierinto (from top to bottom at 5kHz): 16Ω at 100mW, 32Ω at100mW64Ω at 35mW, and 300Ω at 8mW (V S = ±9V, < 10Hz ≤ BW ≤ 80kHz)30047371FIGURE 18: THD+N vs FrequencyLME49720/LME49600 headphone amplifierinto (from top to bottom at 5kHz): 16Ω at 100mW, 32Ω at100mW64Ω at 150mW, and 300Ω at 30mW (V S = ±15V, < 10Hz ≤ BW ≤ 80kHz) 8A N -1768AN-1768 Revision HistoryRev Date Description1.002/29/08Initial release.NotesA N -1768L M E 49600 H e a d p h o n e A m p l i f i e r E v a l u a t i o n B o a r d U s e r 's G u i d eFor more National Semiconductor product information and proven design tools, visit the following Web sites at:ProductsDesign SupportAmplifiers /amplifiers WEBENCH /webench Audio/audio Analog University /AU Clock Conditioners /timing App Notes /appnotes Data Converters /adc Distributors /contacts Displays /displays Green Compliance /quality/green Ethernet /ethernet Packaging/packaging Interface /interface Quality and Reliability /quality LVDS/lvds Reference Designs /refdesigns Power Management /power Feedback /feedback Switching Regulators /switchers LDOs /ldo LED Lighting /led PowerWise/powerwise Serial Digital Interface (SDI)/sdiTemperature Sensors /tempsensors Wireless (PLL/VCO)/wirelessTHE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF TH E CONTENTS OF TH IS PUBLICATION AND RESERVES TH E RIGH T TO MAKE CH ANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITH OUT NOTICE. NO LICENSE, WH ETH ER EXPRESS,IMPLIED, ARISING BY ESTOPPEL OR OTH ERWISE, TO ANY INTELLECTUAL PROPERTY RIGH TS IS GRANTED BY TH IS DOCUMENT.TESTING AND OTH ER QUALITY CONTROLS ARE USED TO TH E EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WH ERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR TH EIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS TH AT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WH ATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO TH E SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCH ANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGH T OR OTH ER INTELLECTUAL PROPERTY RIGHT.LIFE SUPPORT POLICYNATIONAL ’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN L IFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.Copyright© 2008 National Semiconductor CorporationFor the most current product information visit us at National Semiconductor Americas Technical Support Center Email:new.feedback@ Tel: 1-800-272-9959National Semiconductor Europe Technical Support CenterEmail: europe.support@ German Tel: +49 (0) 180 5010 771English Tel: +44 (0) 870 850 4288National Semiconductor Asia Pacific Technical Support Center Email: ap.support@National Semiconductor Japan Technical Support Center Email: jpn.feedback@。

相关文档
最新文档