Functions of Matrices-Theory and Computation(slides)

合集下载

Random matrix theory and L-functions at s = 12

Random matrix theory and L-functions at s = 12

Y
p
1 1 ? =X 1 ; 1 ? ps ns
1
n
(2)
=1
for Res > 1, and by an analytical continuation in the rest of the complex plane. We conjectured that the moments of (1=2 + it) high on the critical line t 2 R factor into a part which is speci c to the Riemann zeta function, and a universal component which is the corresponding moment of the characteristic polynomial Z (U; ) of matrices in U (N ), de ned with respect to an average over the CUE. The connection between N and the height T up the critical line corresponds to equating the mean density of eigenvalues N=2 with the mean density of zeros log T . This idea has subsequently been applied by Brezin and Hikami 2] to other random matrix ensembles, and by Coram and Diaconis 4] to other statistics. Our purpose here is to extend these calculations to SO(2N ) and USp(2N ), and to compare the results with what is known about the L-functions. (Only SO(2N ) is relevant, because a family

vfcp软件包用户指南说明书

vfcp软件包用户指南说明书

Package‘vfcp’October12,2022Type PackageDate2017-10-24Title Computation of v Values for U and Copula C(U,v)Version1.4.0Author Josef BrejchaMaintainer Josef Brejcha<****************>Depends copula,extraDistr,stringrSuggests knitr,rmarkdownDescription Computation the value of one of two uniformlydistributed marginals if the copula probability value is knownand the value of the second marginal is also known.Computation and plotting corresponding cumulativedistribution function or survival function.The numerical definition of a common area limited by linesof the cumulative distribution function and survival function.Approximate quantification of the probability of this area.In addition to'amh',the copula dimension may be larger than2.License GPL(>=3)Encoding UTF-8LazyData TRUERoxygenNote6.0.1NeedsCompilation noRepository CRANDate/Publication2017-10-2713:02:22UTCR topics documented:vfcp-package (2)gentruk (3)kopula (4)prosim (5)12vfcp-package prunikus (6)trimeze (7)vfalihaq (8)vfclayton (9)vfenuo (10)vfex (11)vffgm (11)vffrank (13)vfgumbel (14)vfjoe (15)vfmrg (16)vfploto (17)vfprifo (18)vfpripo (19)Index20 vfcp-package Computation of v Values for U and Copula C(U,v)DescriptionComputation v when u and C(u,v)copula are known.Calculation and plotting of cumulative distribution and survival function when u,C(u,v)copula and marginal distributions are known.These calculations can be tabulated as option.The numerical definition of a common area limited by lines of the cumulative distribution function and survival function.Approximate quantification of the probability of this area.In addition to’amh’,the copula dimension may be larger than2. DetailsPackage:vfcpType:PackageVersion: 1.4.0Date:2017-10-24License:GPL(>=3)Author(s)Josef BrejchaMaintainer:Josef Brejcha<****************>gentruk3ReferencesA.K.SUZUKI,F.LOUZADA and V.G.CANCHO,On estimation and influence diagnostics fora Bivariate Promotion Lifetime Model Based on the FGM Copula:A Fully Bayesian Compu-tation,Tendencias em Matematica Aplicada e Computacional,14,N.3(2013),441-461,http://www.scielo.br/pdf/tema/v14n3/a14v14n3.pdfM.Mahfoud,"Bivariate Archimedean copulas:an application to two stock market indices",VrijeUniversiteit Amsterdam,BMI Paper,Amsterdam-2012,/24882927-Bivariate-archimedean-co htmlCopula(probability theory),https:///wiki/Copula_(probability_theory)Statistical-Distributions-Inverted Beta distribution-Example,/ibeta.htmgentruk Creating an object for CDF and copula survivalDescriptionFor given inputs,the coordinates of the object defined by the CDF and the survival function for thecopula object are created.Usagegentruk(tht,fm,C,pro)Argumentstht Copula parameter.If fam="fgm",it must be a vector of size dm∗(dm−1)/2+1.fm Family name copula.These can be:"clayton","gumbel","frank","joe","amh","fgm".C Probability value of the copula.Single value.pro Numeric vector.Its pro[1:k]are upper values of the u.Next pro[-c(1:k)]are then all greater than or equal to1.ValueA list with components as trimeze value.Author(s)Josef Brejcha4kopulaExamplestht=0.6cx=c(0.025,0.05,0.1,0.15,0.25)pro=c(0.99999,0.9999,0.999,0.99,24,16,8,4)dm=2fam="fgm"marg=c("weibull","betapr")xo=c(200,2.75,16.5,6.60)e12=vfenuo(marg,xo)p=numeric(length(cx))x12=qweibull(0.975,scale=xo[1],shape=xo[2])y12=qbetapr(0.975,shape1=xo[3],shape2=xo[4])mtit=paste(fam,"...",marg[1],"(",xo[1],",",xo[2],")","",marg[2],"(",xo[3],",",xo[4],")",sep="")plot(NULL,NULL,xlim=c(0,x12),ylim=c(0,y12),xlab=paste("x,E[x]=",round(e12[1],2)),ylab=paste("y,E[y]=",round(e12[2],2)),main=mtit)points(e12[1],e12[2],pch=20)abline(h=e12[2],v=e12[1])grid(col="grey50")#===========================kop2=kopula(fam,tht,dm)fmc=c("","","clayton","gumbel","frank","joe")pro=c(0.999999,0.99999,0.9999,16,8,4,2)tm3=list()tmk=list()for(k in1:length(cx)){tm3=gentruk(tht,fm=fam,C=cx[k],pro)tmk[[k]]=tm3}p=prosim(C=cx,fam,tht,dm,no=100000)#=============xa=c("u")ya=c("v")for(k in1:length(cx)){mspx=vfmrg(rdj=marg,i=1,cosi=tmk[[k]]$sp$s1,yo=xo,cdf=TRUE)mspy=vfmrg(rdj=marg,i=2,cosi=tmk[[k]]$sp$s2,yo=xo,cdf=TRUE)mcpx=vfmrg(rdj=marg,i=1,cosi=tmk[[k]]$cp$c1,yo=xo,cdf=TRUE)mcpy=vfmrg(rdj=marg,i=2,cosi=tmk[[k]]$cp$c2,yo=xo,cdf=TRUE)lines(mspx,mspy,col=k)lines(mcpx,mcpy,col=k)}legend("topleft",legend=c("C",cx),text.col=c(1,1:length(cx)),bty="n")legend("topright",legend=c("p",round(p,4)),text.col=c(1,1:length(cx)),bty="n")kopula Copula objectprosim5DescriptionGenerate the copula object.Usagekopula(fam,tht,dm)Argumentsfam Family name copula.These can be:"clayton","gumbel","frank","joe","amh", "fgm".tht Copula parameter.dm Copula dimension.ValueCopula objectAuthor(s)Josef Brejchaprosim Monte Carlo methodDescriptionProbability of the inside of an object as defined by CDF and survival.For this,the Monte Carlo method is used.Usageprosim(C,fam,tht,dm,no)ArgumentsC single numeric;CDF value.Survival value is1-CDF.fam Family name copula.These can be:"clayton","gumbel","frank","joe","amh", "fgm".tht Copula parameter.If fam="fgm",it must be a vector of size dm∗(dm−1)/2+ 1.dm Copula dimensionno Monte Carlo sample sizeValueProbability6prunikus Author(s)Josef BrejchaExamplestht=10.6cx=c(0.05,0.1,0.15,0.25)pro=c(0.99999,0.9999,0.999,0.99,24,16,8,4)dm=4fam="gumbel"marg=rep(c("weibull","betapr"),2)xo=rep(c(200,2.75,16.5,6.60),2)#===========================kop2=kopula(fam,tht,dm)fmc=c("","","clayton","gumbel","frank","joe")pro=c(0.999999,0.99999,0.9999,16,8,4,2)tm3=list()tmk=list()#di=dm*(dm-1)/2for(k in1:length(cx)){tm3=gentruk(tht,fm=fam,C=cx[k],pro)tmk[[k]]=tm3}np=5no=100000ncx=length(cx)p=array(0,c(np*ncx,2))colnames(p)=c("C","p")k=0for(i in1:length(cx)){for(j in1:np){k=k+1p[k,1]=cx[i]p[k,2]=prosim(C=cx[i],fam,tht,dm,no)}}plst=list()print(paste(fam,"dim=",dm,"tht=",tht,"n=",no,"nrep.",np))for(k in1:ncx){plst[[k]]=summary(p[p[,1]==cx[k],2])print(paste("cx=",cx[k]))print(plst[[k]])}prunikus The coordinates of the intersection lines of the cumulative distributionfunction and survival functiontrimeze7DescriptionThe coordinates of the intersection lines of the cumulative distribution function and survival func-tion.Usageprunikus(x,y)Argumentsx Numeric vector of size4.The horizontal coordinates of opposite points.y Numeric vector of size4.The vertical coordinates of opposite points.ValueNumeric vector size2.Author(s)Josef BrejchaReferencesLine-line intersection,https:///wiki/Line-line_intersectiontrimeze Coordinates of an object defined by CDF and survival functionsDescriptionCalculates the coordinates of the object defined matrices C1and C23.Both matrices are two-row. Usagetrimeze(C1,C23)ArgumentsC1numerical probability two-row matrix defining survival lineC23numerical probability two-row matrix defining CDF line8vfalihaqValueA list with components as follows:tlc upper left corner coordinatesbrc bottom right corner coordinatessp survival line coordinatescp CDF line coordinatesAuthor(s)Josef Brejchavfalihaq Ali-Mikhail-Haq Copula Variable Given Second One and CopulaProbabilityDescriptionv for Ali-Mikhail-Haq copula C(u,v)given probability C(u,v)and u.Usagevfalihaq(C,u,tht)ArgumentsC Probability value of the Ali-Mikhail-Haq copula.It can be a vector.u Thefirst variable value of the C(u,v).u can be a vector if C is a single.u is a matrix with nrow=length(C)if C is a vector.tht Copula parameterDetailsThe value of the u must be grater than C.ValueThe value of the second variable depending on thefirst variable and copula probability value.Author(s)Josef Brejchavfclayton9Examplesrequire(copula)C=0.3tht=0.5u=c(0.35,0.40,0.45)v<-vfalihaq(C,u,tht)kali<-archmCopula(family="amh",param=tht,dim=2)pCopula(cbind(u,v),kali)#Cf<-c(0.3,0.4)mx<-matrix(c(seq(0.35,0.45,0.05),seq(0.5,0.6,0.05)),nrow=2,ncol=3,byrow=TRUE)rownames(mx)<-Cfvfalihaq(C=Cf,u=mx,tht=0.5)#[,1][,2][,3]#0.30.80198020.67741940.5918367#0.40.75000000.67391300.6153846vfclayton Clayton Copula Variable Given Second One and Copula ProbabilityDescriptionv for Clayton copula C(u,v)given probability C(u,v)and u.Usagevfclayton(C,u,tht)ArgumentsC Probability value of the Clayton copula.It can be a vector.u Thefirst variable value of the C(u,v).u can be a vector if C is a single.u is a matrix with nrow=length(C)if C is a vector.tht Copula parameterDetailsThe value of the u must be grater than C.ValueThe value of the second variable depending on thefirst variable and copula probability value.Author(s)Josef Brejcha10vfenuoExamplesC<-0.3tht<-6u<-c(0.35,0.4,0.45)v<-vfclayton(C,u,tht)kop=claytonCopula(tht)pCopula(cbind(u,v),kop)#Cf<-c(0.3,0.4)mx<-matrix(c(seq(0.35,0.45,0.05),seq(0.5,0.6,0.05)),nrow=2,ncol=3,byrow=TRUE)rownames(mx)<-Cfvfclayton(C=Cf,u=mx,tht=7)#[,1][,2][,3]#0.30.31832610.30619260.3025859#0.40.41355550.40645300.4033610vfenuo Expected values of marginal distributionsDescriptionAuxiliary function that calculates the expected values of marginal distributions.Usagevfenuo(marg,xo)Argumentsmarg Character vector size greater than or equal to2.Its components can now be c("weibull","gamma","lnorm","norm","betapr","beta").xo Vector size2*length(marg)of parameters of marg.xo[odd]scale,meanlog,mean,shape1xo[even]shape,sdlog,sd,shape2ValueNumeric vector size equal to length(marg).Author(s)Josef Brejchavfex11Examplesvfenuo(marg=c("betapr","beta","norm","weibull"),xo=c(5,5,3,20,30,5,100,1.5))vfex Compute vector V for C(u,V)DescriptionA vector v is computed for C and numeric probability vector u.Usagevfex(C,u,th,fm)ArgumentsC Copula probability.It is a single value.u Probability vector.All its components are greater than C.th Copula parameter.fm character;A name of copula.One of c("clayton","frank","gumbel","amh", "joe","fgm")."amh","joe","fgm"names are for Ali-Mikhail-Haq,Joe,Farlie-Gumbel-Morgenstern copulas.ValueNumeric vector.Author(s)Josef Brejchavffgm Farlie-Gumbel-Morgenstern Copula Variable Given Second One andCopula ProbabilityDescriptionv for Farlie-Gumbel-Morgenstern copula C(u,v)given probability C(u,v)and u.Usagevffgm(C,u,tht)12vffgm ArgumentsC Probability value of the Farlie-Gumbel-Morgenstern copula.It can be a vector.u Thefirst variable value of the C(u,v).u can be a vector if C is a single.u is a matrix with nrow=length(C)if C is a vector.tht Copula parameterDetailsThe value of the u must be grater than C.ValueThe value of the second variable depending on thefirst variable and copula probability value.Author(s)Josef BrejchaReferencesA.K.SUZUKI,F.LOUZADA and V.G.CANCHO,On estimation and influence diagnostics for aBivariate Promotion Lifetime Model Based on the FGM Copula:A Fully Bayesian Computation, Tend^encias em Matem´atica Aplicada e Computacional,14,N.3(2013),441-461,http://www.scielo.br/pdf/tema/v14n3/a14v14n3.pdfExamplesrequire(copula)C=0.3tht=0.5u=c(0.35,0.40,0.45)v<-vffgm(C,u,tht)kfgm<-fgmCopula(tht)pCopula(c(u,v),kfgm)#Cf<-c(0.3,0.4)mx<-matrix(c(seq(0.35,0.45,0.05),seq(0.5,0.6,0.05)),nrow=2,ncol=3,byrow=TRUE)rownames(mx)<-Cfvffgm(C=Cf,u=mx,tht=0.5)#[,1][,2][,3]#0.30.80640520.68530090.6007056#0.40.75357510.67816480.6195239vffrank13 vffrank Frank Copula Variable Given Second One and Copula ProbabilityDescriptionv for Frank copula C(u,v)given probability C(u,v)and u.Usagevffrank(C,u,tht)ArgumentsC Probability value of the Frank copula.It can be a vector.u Thefirst variable value of the C(u,v).u can be a vector if C is a single.u is a matrix with nrow=length(C)if C is a vector.tht Copula parameterDetailsThe value of the u must be grater than C.ValueThe value of the second variable depending on thefirst variable and copula probability value.Author(s)Josef BrejchaExamplesC<-0.3tht<-6u<-c(0.35,0.4,0.45)v<-vffrank(C,u,tht)kop=frankCopula(tht)pCopula(cbind(u,v),kop)14vfgumbel vfgumbel Gumbel Copula Variable Given Second One and Copula ProbabilityDescriptionv for Gumbel copula C(u,v)given probability C(u,v)and u.Usagevfgumbel(C,u,tht)ArgumentsC Probability value of the Gumbel copula.It can be a vector.u Thefirst variable value of the C(u,v).u can be a vector if C is a single.u is a matrix with nrow=length(C)if C is a vector.tht Copula parameterDetailsThe value of the u must be grater than C.ValueThe value of the second variable depending on thefirst variable and copula probability value.Author(s)Josef BrejchaExamplesC<-0.3tht<-6u<-c(0.35,0.4,0.45)v<-vfgumbel(C,u,tht)kop=gumbelCopula(tht)pCopula(cbind(u,v),kop)#vfgumbel(c(0.3,0.4),u=rbind(seq(0.35,0.45,0.05),seq(0.45,0.55,0.05)),8)#[,1][,2][,3]#[1,]0.31845040.30539870.3017235#[2,]0.41848190.40519360.4015295vfjoe15 vfjoe Joe Copula Variable Given Second One and Copula ProbabilityDescriptionv for Joe copula C(u,v)given probability C(u,v)and u.Usagevfjoe(C,u,tht)ArgumentsC Probability value of the Joe copula.It can be a vector.u Thefirst variable value of the C(u,v).u can be a vector if C is a single.u is a matrix with nrow=length(C)if C is a vector.tht Copula parameterDetailsThe value of the u must be grater than C.ValueThe value of the second variable depending on thefirst variable and copula probability value. Author(s)Josef BrejchaExamplesC<-0.3tht<-6u<-c(0.35,0.4,0.45)v<-vfjoe(C,u,tht)kop=joeCopula(tht)pCopula(cbind(u,v),kop)#Cf<-c(0.3,0.4)mx<-matrix(c(seq(0.35,0.45,0.05),seq(0.5,0.6,0.05)),nrow=2,ncol=3,byrow=TRUE)rownames(mx)<-Cfvfjoe(C=Cf,u=mx,tht=6)#[,1][,2][,3]#[1,]0.40212160.35137410.3274672#[2,]0.43795310.41847460.408714316vfmrg vfmrg Auxiliary functionDescriptionAuxiliary function used in vfploto.It computes random variable value of the CDF or survival which can be one of the c("weibull","gamma","lnorm","norm","betapr","beta").Usagevfmrg(rdj,i,cosi,yo,cdf)Argumentsrdj A character vector.Its components are from c("weibull","gamma","lnorm", "norm","betapr","beta").i An index of the rdjcosi A vector of probabilitiesyo Vector size2*length(rdj)of parameters of rdjyo[1],yo[3]scale,meanlog,mean,shape1yo[2],yo[4]shape,sdlog,sd,shape2cdf Cumulative distribution function when TRUE,survival otherwise.Details"betapr"is the name of’BetaPrime’distribution from extrDistr package.The other name’Be-taPrime’is’Inverted Beta’.ValueNumeric vectorAuthor(s)Josef Brejchavfploto17 vfploto Plotting the cumulative distribution function or survival functionDescriptionPlotting the cumulative distribution function or survival function.Usagevfploto(cx,pro,fam,marg,xo,tht,cdf=TRUE,plt=TRUE,rtn=FALSE,ped=TRUE)Argumentscx A vector of copula probabilities.pro Numeric vector.Its pro[1]is upper value of the u.Next pro[-1]are then all greater than or equal to1.The second case of pro is all pro less than1.Thefirst case is an extra calculation of the u values.In the latter case,u values canbe pre-selected.fam character;A name of copula.One of c("clayton","frank","gumbel","amh", "joe","fgm")."amh","joe","fgm"names are for Ali-Mikhail-Haq,Joe,Farlie-Gumbel-Morgenstern copulas.marg A vector bination of these marginals:c("weibull","gamma","lnorm","norm","betapr","beta").xo A vector of marginal distribution parameters.It is size4with these components:xo[1],xo[3]scale,meanlog,mean,shape1xo[2],xo[4]shape,sdlog,sd,shape2tht copula parametercdf logical;Computation for CDF when TRUE.If FALSE is the same for Survival.plt Plot only when TRUE.rtn Print output value only when TRUE.ped Compute and add to plot an expected values o f marginal distributions when ped=T RUE.DetailsMust not be plt and rtn at the same time equal to FALSE.18vfprifoValueIf rtn is TRUE,then a list of these components:Type character;"CDF"or"Survival"P numeric;CDF or Survival valuex numeric vector of thefirst marginal values for Py numeric vector of the second marginal values for Pu numeric vector of thefirst copula marginal valuesv numeric vector of the second copula marginal valuesAuthor(s)Josef BrejchaExamplesrequire(copula)tht=0.475cx=c(0.0025,0.05,seq(0.1,0.9,0.1),0.95,0.975)#nC=length(cx)proh=c(0.9999999,8,4,4,4)prod=c(0.999,8,4,4,4)fam="clayton"marg=c("weibull","lnorm")xo=c(100,1.5,3,0.425)suro=vfploto(cx,proh,fam,marg,xo,tht,cdf=FALSE,plt=TRUE,rtn=FALSE)cdfo=vfploto(cx,prod,fam,marg,xo,tht,cdf=TRUE,plt=TRUE,rtn=FALSE)##cx=0.4vfploto(cx,proh,fam,marg,xo,tht,cdf=TRUE,plt=FALSE,rtn=TRUE,ped=TRUE)vfprifo Computation of the vector u to compute the second vector vDescriptionAuxiliary function.Each vector value u must be greater than the probability of the copula. Usagevfprifo(ck,pro)Argumentsck Copula probability.Single value.Not a vector.pro Numeric vector.All its components are less than1.u can be pre-set in the desired values.vfpripo19ValueNumeric vector.Author(s)Josef Brejchavfpripo Computation of the vector u to compute the second vector vDescriptionAuxiliary function.Each vector value u must be greater than the probability of the copula. Usagevfpripo(ck,pro)Argumentsck Copula probability.Single value.Not a vector.pro Numeric vector.Its pro[1:k]are upper values of the u.Next pro[-c(1:k)] are then all greater than or equal to1.ValueNumeric vector.Author(s)Josef BrejchaExamplesprk=c(0.99999,0.9999,0.999,0.99,8,4,2)C=0.1u=vfpripo(ck=C,pro=prk)Indexgentruk,3kopula,4prosim,5prunikus,6trimeze,3,7vfalihaq,8vfclayton,9vfcp-package,2vfenuo,10vfex,11vffgm,11vffrank,13vfgumbel,14vfjoe,15vfmrg,16vfploto,17vfprifo,18vfpripo,1920。

Eigenvectors of Permutation Matrices

Eigenvectors of Permutation Matrices

Eigenvectors of Permutation MatricesM. Isabel Garca-Planas;M. Dolors Magret【期刊名称】《理论数学进展(英文)》【年(卷),期】2015(5)7【摘要】The spectral properties of special matrices have been widely studied, because of their applications. We focus on permutation matrices over a finite field and, more concretely, we compute the minimal annihilating polynomial, and a set of linearly independent eigenvectors from the decomposition in disjoint cycles of the permutation naturally associated to the matrix.【总页数】5页(P390-394)【关键词】Permutation;Matrices;Eigenvalues;Eigenvectors【作者】M. Isabel Garca-Planas;M. Dolors Magret【作者单位】Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Barcelona, Spain【正文语种】中文【中图分类】O1【相关文献】1.Some Properties of Eigenvalues and Eigenvectors of Wilkinson Matrices [J], WU Xiao-qian;CHEN De-qiangpleteness of the system of eigenvectors of off-diagonal operator matrices and its applications in elasti.city theory [J], 黄俊杰; 阿拉坦仓; 王华pleteness of the system of eigenvectors of off-diagonal operator matrices and its applications in elasticity theory [J], Huang Jun-Jie; Alatancang; Wang Hua4.Symplectic eigenvector expansion theorem of a class of operator matrices arising from elasticity theory [J], Wang Hua; Alatancang; Huang Jun-Jie5.Symplectic eigenvector expansion theorem of a class of operator matrices arising from elasticity theory [J], 王华; 阿拉坦仓; 黄俊杰因版权原因,仅展示原文概要,查看原文内容请购买。

Notes_01b Review of Matrices and Vectors

Notes_01b Review of Matrices and Vectors
d ( v1 , v 2 ) = v1 − v 2
2
Note that: d ( v 1 , v 2 ) = 0 iff v 1 = v 2 v1 v2
v1 – v2
9/45
Angle Between Vectors & Inner Product: v 2 Motivate the idea in R : A cos θ = v A A sin θ θ u Note that:
x+y=y+x
1. Commutativity 2. Associativity 3. Distributivity 4. Scalar Unity & Scalar Zero
αx = xα
(x + y ) + z = y + (x + z ) α(βx) = (αβ)x
α ( x + y ) = αx + α y (α + β)x = αx + βx
a1 a= " a N αa1 " αa = α a N
…changes the vector’s length if |α| ≠ 1 … “reverses” its direction if α < 0
3/45
Arithmetic Properties of Vectors: vector addition and scalar multiplication exhibit the following properties pretty much like the real numbers do Let x, y, and z be vectors of the same dimension and let α and β be scalars; then the following properties hold:

university and their function

university and their function


• (P3)It enables man to construct an intellectual vision of a new world , and it preserves the zest of life by the suggestion of satisfying purposes. • People with imagination will be able to form a new outlook which is different from that of people without imagination. Imagination is capable of preserving people’s enthusiasm for life because it can show people that life has many purposes which can be pleasing.
• Alfred North Whitehead (1861– 1947) was a British mathematician, logician and philosopher best known for his work in mathematical logic and the philosophy of science. In collaboration with Bertrand Russell, he authored the landmark three-volume Principia Mathematica《数学原理》 (1910, 1912, 1913) and contributed significantly to twentieth-century logic, philosophy of science and metaphysics形而上学.

离散数学及其应用重要名词中英对应以及重要概念解释与举例

离散数学及其应用重要名词中英对应以及重要概念解释与举例

离散数学及其应用重要名词中英对应以及重要概念解释与举例1 The Foundations: Logic and Proofs(逻辑与证明)1.1 Propositional Logic(命题逻辑)Propositions(命题)——declarative sentence that is either true or false, but not both.判断性语句,正确性唯一。

Truth Table(真值表)Conjunction(合取,“与”,and),Disjunction(析取,or,“相容或”),Exclusive(异或),Negation(非,not),Biconditional(双条件,双向,if and only if)Translating English Sentences1.2 Propositional Equivalences(命题等价)Tautology(永真式、重言式),Contradiction(永假式、矛盾式),Contingency(偶然式)Logical Equivalences(逻辑等价)——Compound propositions that have the same truth values in all possible cases are called logical equivalent.(真值表相同的式子,p<->q是重言式)Logical Equivalences——Page24Disjunctive normal form(DNF,析取范式)Conjunctive normal form(CNF,合取范式) 见Page27~291.3 Predicates and Quantifiers(谓词和量词)Predicates——谓词,说明关系、特征的修饰词Quantifiers——量词? Universal Quantifier(全称量词) "全部满足? Existential Quantifier(存在量词) $至少有一个Binding Variables(变量绑定,量词作用域与重名的问题)Logical Equivalence Involving QuantifiersNegating Quantified Expressions(量词否定表达:否定全称=存在否定,否定存在=全程否定) Translating from English into Logical Expressions(自然语句转化为逻辑表达)Using Quantifiers in System SpecificationsExamples from Lewis Carrol——全称量词与条件式(p->q)搭配,存在量词与合取式搭配。

数学专业英语第八讲附数学课程英文表达ppt

数学专业英语第八讲附数学课程英文表达ppt

• 代数几何: 1、Harris,Algebraic Geometry: a first course:代数几何得入门教材; 2、Algebraic Geometry Robin Hartshorne :经典得代数几何教材,难度很高; 3、Basic Algebraic Geometry 1&2 2nd ed、 I、R、Shafarevich、:非常好得代数几 何入门教材; 4、Principles of Algebraic Geometry by giffiths/harris:全面、经典得代数几何参考 书,偏复代数几何; 5、mutative Algebra with a view toward Algebraic Geometry by Eisenbud:高级得 代数几何、交换代数得参考书,最新得交换代数全面参考; 6、The Geometry of Schemes by Eisenbud:很好得研究生代数几何入门教材; 7、The Red Book of Varieties and Schemes by Mumford:标准得研究生代数几何入 门教材; 8、Algebraic Geometry I : plex Projective Varieties by David Mumford:复代数几 何得经典。
数学专业英语第八讲附数学课程英文表达
• 数学类
• 第一学年 几何与拓扑: 1、James R、 Munkres, Topology
• 2、Basic Topology by Armstrong 3、Kelley, General Topology:
• 4、Willard, General Topology:一般拓扑学 5、Topology and geometry:
• 代数拓扑: 1、Algebraic Topology, A、 Hatcher:最新得研究生代数拓扑标准教材; 2、Spaniers “Algebraic Topology”:经典得代数拓扑参考书; 3、Differential forms in algebraic topology, by Raoul Bott and Loring W、 Tu:研究生代数拓扑标准教材; 4、Massey, A basic course in Algebraic topology:经典得研究生代数拓扑教材

离散数学中英文名词对照表

离散数学中英文名词对照表

离散数学中英⽂名词对照表离散数学中英⽂名词对照表外⽂中⽂AAbel category Abel 范畴Abel group (commutative group) Abel 群(交换群)Abel semigroup Abel 半群accessibility relation 可达关系action 作⽤addition principle 加法原理adequate set of connectives 联结词的功能完备(全)集adjacent 相邻(邻接)adjacent matrix 邻接矩阵adjugate 伴随adjunction 接合affine plane 仿射平⾯algebraic closed field 代数闭域algebraic element 代数元素algebraic extension 代数扩域(代数扩张)almost equivalent ⼏乎相等的alternating group 三次交代群annihilator 零化⼦antecedent 前件anti symmetry 反对称性anti-isomorphism 反同构arboricity 荫度arc set 弧集arity 元数arrangement problem 布置问题associate 相伴元associative algebra 结合代数associator 结合⼦asymmetric 不对称的(⾮对称的)atom 原⼦atomic formula 原⼦公式augmenting digeon hole principle 加强的鸽⼦笼原理augmenting path 可增路automorphism ⾃同构automorphism group of graph 图的⾃同构群auxiliary symbol 辅助符号axiom of choice 选择公理axiom of equality 相等公理axiom of extensionality 外延公式axiom of infinity ⽆穷公理axiom of pairs 配对公理axiom of regularity 正则公理axiom of replacement for the formula Ф关于公式Ф的替换公式axiom of the empty set 空集存在公理axiom of union 并集公理Bbalanced imcomplete block design 平衡不完全区组设计barber paradox 理发师悖论base 基Bell number Bell 数Bernoulli number Bernoulli 数Berry paradox Berry 悖论bijective 双射bi-mdule 双模binary relation ⼆元关系binary symmetric channel ⼆进制对称信道binomial coefficient ⼆项式系数binomial theorem ⼆项式定理binomial transform ⼆项式变换bipartite graph ⼆分图block 块block 块图(区组)block code 分组码block design 区组设计Bondy theorem Bondy 定理Boole algebra Boole 代数Boole function Boole 函数Boole homomorophism Boole 同态Boole lattice Boole 格bound occurrence 约束出现bound variable 约束变量bounded lattice 有界格bridge 桥Bruijn theorem Bruijn 定理Burali-Forti paradox Burali-Forti 悖论Burnside lemma Burnside 引理Ccage 笼canonical epimorphism 标准满态射Cantor conjecture Cantor 猜想Cantor diagonal method Cantor 对⾓线法Cantor paradox Cantor 悖论cardinal number 基数Cartesion product of graph 图的笛卡⼉积Catalan number Catalan 数category 范畴Cayley graph Cayley 图Cayley theorem Cayley 定理center 中⼼characteristic function 特征函数characteristic of ring 环的特征characteristic polynomial 特征多项式check digits 校验位Chinese postman problem 中国邮递员问题chromatic number ⾊数chromatic polynomial ⾊多项式circuit 回路circulant graph 循环图circumference 周长class 类classical completeness 古典完全的classical consistent 古典相容的clique 团clique number 团数closed term 闭项closure 闭包closure of graph 图的闭包code 码code element 码元code length 码长code rate 码率code word 码字coefficient 系数coimage 上象co-kernal 上核coloring 着⾊coloring problem 着⾊问题combination number 组合数combination with repetation 可重组合common factor 公因⼦commutative diagram 交换图commutative ring 交换环commutative seimgroup 交换半群complement 补图(⼦图的余) complement element 补元complemented lattice 有补格complete bipartite graph 完全⼆分图complete graph 完全图complete k-partite graph 完全k-分图complete lattice 完全格composite 复合composite operation 复合运算composition (molecular proposition) 复合(分⼦)命题composition of graph (lexicographic product)图的合成(字典积)concatenation (juxtaposition) 邻接运算concatenation graph 连通图congruence relation 同余关系conjunctive normal form 正则合取范式connected component 连通分⽀connective 连接的connectivity 连通度consequence 推论(后承)consistent (non-contradiction) 相容性(⽆⽭盾性)continuum 连续统contraction of graph 图的收缩contradiction ⽭盾式(永假式)contravariant functor 反变函⼦coproduct 上积corank 余秩correct error 纠正错误corresponding universal map 对应的通⽤映射countably infinite set 可列⽆限集(可列集)covariant functor (共变)函⼦covering 覆盖covering number 覆盖数Coxeter graph Coxeter 图crossing number of graph 图的叉数cuset 陪集cotree 余树cut edge 割边cut vertex 割点cycle 圈cycle basis 圈基cycle matrix 圈矩阵cycle rank 圈秩cycle space 圈空间cycle vector 圈向量cyclic group 循环群cyclic index 循环(轮转)指标cyclic monoid 循环单元半群cyclic permutation 圆圈排列cyclic semigroup 循环半群DDe Morgan law De Morgan 律decision procedure 判决过程decoding table 译码表deduction theorem 演绎定理degree 次数,次(度)degree sequence 次(度)序列derivation algebra 微分代数Descartes product Descartes 积designated truth value 特指真值detect errer 检验错误deterministic 确定的diagonal functor 对⾓线函⼦diameter 直径digraph 有向图dilemma ⼆难推理direct consequence 直接推论(直接后承)direct limit 正向极限direct sum 直和directed by inclution 被包含关系定向discrete Fourier transform 离散 Fourier 变换disjunctive normal form 正则析取范式disjunctive syllogism 选⾔三段论distance 距离distance transitive graph 距离传递图distinguished element 特异元distributive lattice 分配格divisibility 整除division subring ⼦除环divison ring 除环divisor (factor) 因⼦domain 定义域Driac condition Dirac 条件dual category 对偶范畴dual form 对偶式dual graph 对偶图dual principle 对偶原则(对偶原理) dual statement 对偶命题dummy variable 哑变量(哑变元)Eeccentricity 离⼼率edge chromatic number 边⾊数edge coloring 边着⾊edge connectivity 边连通度edge covering 边覆盖edge covering number 边覆盖数edge cut 边割集edge set 边集edge-independence number 边独⽴数eigenvalue of graph 图的特征值elementary divisor ideal 初等因⼦理想elementary product 初等积elementary sum 初等和empty graph 空图empty relation 空关系empty set 空集endomorphism ⾃同态endpoint 端点enumeration function 计数函数epimorphism 满态射equipotent 等势equivalent category 等价范畴equivalent class 等价类equivalent matrix 等价矩阵equivalent object 等价对象equivalent relation 等价关系error function 错误函数error pattern 错误模式Euclid algorithm 欧⼏⾥德算法Euclid domain 欧⽒整环Euler characteristic Euler 特征Euler function Euler 函数Euler graph Euler 图Euler number Euler 数Euler polyhedron formula Euler 多⾯体公式Euler tour Euler 闭迹Euler trail Euler 迹existential generalization 存在推⼴规则existential quantifier 存在量词existential specification 存在特指规则extended Fibonacci number ⼴义 Fibonacci 数extended Lucas number ⼴义Lucas 数extension 扩充(扩张)extension field 扩域extension graph 扩图exterior algebra 外代数Fface ⾯factor 因⼦factorable 可因⼦化的factorization 因⼦分解faithful (full) functor 忠实(完满)函⼦Ferrers graph Ferrers 图Fibonacci number Fibonacci 数field 域filter 滤⼦finite extension 有限扩域finite field (Galois field ) 有限域(Galois 域)finite dimensional associative division algebra有限维结合可除代数finite set 有限(穷)集finitely generated module 有限⽣成模first order theory with equality 带符号的⼀阶系统five-color theorem 五⾊定理five-time-repetition 五倍重复码fixed point 不动点forest 森林forgetful functor 忘却函⼦four-color theorem(conjecture) 四⾊定理(猜想)F-reduced product F-归纳积free element ⾃由元free monoid ⾃由单元半群free occurrence ⾃由出现free R-module ⾃由R-模free variable ⾃由变元free-?-algebra ⾃由?代数function scheme 映射格式GGalileo paradox Galileo 悖论Gauss coefficient Gauss 系数GBN (G?del-Bernays-von Neumann system)GBN系统generalized petersen graph ⼴义 petersen 图generating function ⽣成函数generating procedure ⽣成过程generator ⽣成⼦(⽣成元)generator matrix ⽣成矩阵genus 亏格girth (腰)围长G?del completeness theorem G?del 完全性定理golden section number 黄⾦分割数(黄⾦分割率)graceful graph 优美图graceful tree conjecture 优美树猜想graph 图graph of first class for edge coloring 第⼀类边⾊图graph of second class for edge coloring 第⼆类边⾊图graph rank 图秩graph sequence 图序列greatest common factor 最⼤公因⼦greatest element 最⼤元(素)Grelling paradox Grelling 悖论Gr?tzsch graph Gr?tzsch 图group 群group code 群码group of graph 图的群HHajós conjecture Hajós 猜想Hamilton cycle Hamilton 圈Hamilton graph Hamilton 图Hamilton path Hamilton 路Harary graph Harary 图Hasse graph Hasse 图Heawood graph Heawood 图Herschel graph Herschel 图hom functor hom 函⼦homemorphism 图的同胚homomorphism 同态(同态映射)homomorphism of graph 图的同态hyperoctahedron 超⼋⾯体图hypothelical syllogism 假⾔三段论hypothese (premise) 假设(前提)Iideal 理想identity 单位元identity natural transformation 恒等⾃然变换imbedding 嵌⼊immediate predcessor 直接先⾏immediate successor 直接后继incident 关联incident axiom 关联公理incident matrix 关联矩阵inclusion and exclusion principle 包含与排斥原理inclusion relation 包含关系indegree ⼊次(⼊度)independent 独⽴的independent number 独⽴数independent set 独⽴集independent transcendental element 独⽴超越元素index 指数individual variable 个体变元induced subgraph 导出⼦图infinite extension ⽆限扩域infinite group ⽆限群infinite set ⽆限(穷)集initial endpoint 始端initial object 初始对象injection 单射injection functor 单射函⼦injective (one to one mapping) 单射(内射)inner face 内⾯inner neighbour set 内(⼊)邻集integral domain 整环integral subdomain ⼦整环internal direct sum 内直和intersection 交集intersection of graph 图的交intersection operation 交运算interval 区间invariant factor 不变因⼦invariant factor ideal 不变因⼦理想inverse limit 逆向极限inverse morphism 逆态射inverse natural transformation 逆⾃然变换inverse operation 逆运算inverse relation 逆关系inversion 反演isomorphic category 同构范畴isomorphism 同构态射isomorphism of graph 图的同构join of graph 图的联JJordan algebra Jordan 代数Jordan product (anti-commutator) Jordan乘积(反交换⼦)Jordan sieve formula Jordan 筛法公式j-skew j-斜元juxtaposition 邻接乘法Kk-chromatic graph k-⾊图k-connected graph k-连通图k-critical graph k-⾊临界图k-edge chromatic graph k-边⾊图k-edge-connected graph k-边连通图k-edge-critical graph k-边临界图kernel 核Kirkman schoolgirl problem Kirkman ⼥⽣问题Kuratowski theorem Kuratowski 定理Llabeled graph 有标号图Lah number Lah 数Latin rectangle Latin 矩形Latin square Latin ⽅lattice 格lattice homomorphism 格同态law 规律leader cuset 陪集头least element 最⼩元least upper bound 上确界(最⼩上界)left (right) identity 左(右)单位元left (right) invertible element 左(右)可逆元left (right) module 左(右)模left (right) zero 左(右)零元left (right) zero divisor 左(右)零因⼦left adjoint functor 左伴随函⼦left cancellable 左可消的left coset 左陪集length 长度Lie algebra Lie 代数line- group 图的线群logically equivanlent 逻辑等价logically implies 逻辑蕴涵logically valid 逻辑有效的(普效的)loop 环Lucas number Lucas 数Mmagic 幻⽅many valued proposition logic 多值命题逻辑matching 匹配mathematical structure 数学结构matrix representation 矩阵表⽰maximal element 极⼤元maximal ideal 极⼤理想maximal outerplanar graph 极⼤外平⾯图maximal planar graph 极⼤平⾯图maximum matching 最⼤匹配maxterm 极⼤项(基本析取式)maxterm normal form(conjunctive normal form) 极⼤项范式(合取范式)McGee graph McGee 图meet 交Menger theorem Menger 定理Meredith graph Meredith 图message word 信息字mini term 极⼩项minimal κ-connected graph 极⼩κ-连通图minimal polynomial 极⼩多项式Minimanoff paradox Minimanoff 悖论minimum distance 最⼩距离Minkowski sum Minkowski 和minterm (fundamental conjunctive form) 极⼩项(基本合取式)minterm normal form(disjunctive normal form)极⼩项范式(析取范式)M?bius function M?bius 函数M?bius ladder M?bius 梯M?bius transform (inversion) M?bius 变换(反演)modal logic 模态逻辑model 模型module homomorphism 模同态(R-同态)modus ponens 分离规则modus tollens 否定后件式module isomorphism 模同构monic morphism 单同态monoid 单元半群monomorphism 单态射morphism (arrow) 态射(箭)M?bius function M?bius 函数M?bius ladder M?bius 梯M?bius transform (inversion) M?bius 变换(反演)multigraph 多重图multinomial coefficient 多项式系数multinomial expansion theorem 多项式展开定理multiple-error-correcting code 纠多错码multiplication principle 乘法原理mutually orthogonal Latin square 相互正交拉丁⽅Nn-ary operation n-元运算n-ary product n-元积natural deduction system ⾃然推理系统natural isomorphism ⾃然同构natural transformation ⾃然变换neighbour set 邻集next state 下⼀个状态next state transition function 状态转移函数non-associative algebra ⾮结合代数non-standard logic ⾮标准逻辑Norlund formula Norlund 公式normal form 正规形normal model 标准模型normal subgroup (invariant subgroup) 正规⼦群(不变⼦群)n-relation n-元关系null object 零对象nullary operation 零元运算Oobject 对象orbit 轨道order 阶order ideal 阶理想Ore condition Ore 条件orientation 定向orthogonal Latin square 正交拉丁⽅orthogonal layout 正交表outarc 出弧outdegree 出次(出度)outer face 外⾯outer neighbour 外(出)邻集outerneighbour set 出(外)邻集outerplanar graph 外平⾯图Ppancycle graph 泛圈图parallelism 平⾏parallelism class 平⾏类parity-check code 奇偶校验码parity-check equation 奇偶校验⽅程parity-check machine 奇偶校验器parity-check matrix 奇偶校验矩阵partial function 偏函数partial ordering (partial relation) 偏序关系partial order relation 偏序关系partial order set (poset) 偏序集partition 划分,分划,分拆partition number of integer 整数的分拆数partition number of set 集合的划分数Pascal formula Pascal 公式path 路perfect code 完全码perfect t-error-correcting code 完全纠-错码perfect graph 完美图permutation 排列(置换)permutation group 置换群permutation with repetation 可重排列Petersen graph Petersen 图p-graph p-图Pierce arrow Pierce 箭pigeonhole principle 鸽⼦笼原理planar graph (可)平⾯图plane graph 平⾯图Pólya theorem Pólya 定理polynomail 多项式polynomial code 多项式码polynomial representation 多项式表⽰法polynomial ring 多项式环possible world 可能世界power functor 幂函⼦power of graph 图的幂power set 幂集predicate 谓词prenex normal form 前束范式pre-ordered set 拟序集primary cycle module 准素循环模prime field 素域prime to each other 互素primitive connective 初始联结词primitive element 本原元primitive polynomial 本原多项式principal ideal 主理想principal ideal domain 主理想整环principal of duality 对偶原理principal of redundancy 冗余性原则product 积product category 积范畴product-sum form 积和式proof (deduction) 证明(演绎)proper coloring 正常着⾊proper factor 真正因⼦proper filter 真滤⼦proper subgroup 真⼦群properly inclusive relation 真包含关系proposition 命题propositional constant 命题常量propositional formula(well-formed formula,wff)命题形式(合式公式)propositional function 命题函数propositional variable 命题变量pullback 拉回(回拖) pushout 推出Qquantification theory 量词理论quantifier 量词quasi order relation 拟序关系quaternion 四元数quotient (difference) algebra 商(差)代数quotient algebra 商代数quotient field (field of fraction) 商域(分式域)quotient group 商群quotient module 商模quotient ring (difference ring , residue ring) 商环(差环,同余类环)quotient set 商集RRamsey graph Ramsey 图Ramsey number Ramsey 数Ramsey theorem Ramsey 定理range 值域rank 秩reconstruction conjecture 重构猜想redundant digits 冗余位reflexive ⾃反的regular graph 正则图regular representation 正则表⽰relation matrix 关系矩阵replacement theorem 替换定理representation 表⽰representation functor 可表⽰函⼦restricted proposition form 受限命题形式restriction 限制retraction 收缩Richard paradox Richard 悖论right adjoint functor 右伴随函⼦right cancellable 右可消的right factor 右因⼦right zero divison 右零因⼦ring 环ring of endomorphism ⾃同态环ring with unity element 有单元的环R-linear independence R-线性⽆关root field 根域rule of inference 推理规则Russell paradox Russell 悖论Ssatisfiable 可满⾜的saturated 饱和的scope 辖域section 截⼝self-complement graph ⾃补图semantical completeness 语义完全的(弱完全的)semantical consistent 语义相容semigroup 半群separable element 可分元separable extension 可分扩域sequent ⽮列式sequential 序列的Sheffer stroke Sheffer 竖(谢弗竖)simple algebraic extension 单代数扩域simple extension 单扩域simple graph 简单图simple proposition (atomic proposition) 简单(原⼦)命题simple transcental extension 单超越扩域simplication 简化规则slope 斜率small category ⼩范畴smallest element 最⼩元(素)Socrates argument Socrates 论断(苏格拉底论断)soundness (validity) theorem 可靠性(有效性)定理spanning subgraph ⽣成⼦图spanning tree ⽣成树spectra of graph 图的谱spetral radius 谱半径splitting field 分裂域standard model 标准模型standard monomil 标准单项式Steiner triple Steiner 三元系⼤集Stirling number Stirling 数Stirling transform Stirling 变换subalgebra ⼦代数subcategory ⼦范畴subdirect product ⼦直积subdivison of graph 图的细分subfield ⼦域subformula ⼦公式subdivision of graph 图的细分subgraph ⼦图subgroup ⼦群sub-module ⼦模subrelation ⼦关系subring ⼦环sub-semigroup ⼦半群subset ⼦集substitution theorem 代⼊定理substraction 差集substraction operation 差运算succedent 后件surjection (surjective) 满射switching-network 开关⽹络Sylvester formula Sylvester公式symmetric 对称的symmetric difference 对称差symmetric graph 对称图symmetric group 对称群syndrome 校验⼦syntactical completeness 语法完全的(强完全的)Syntactical consistent 语法相容system ?3 , ?n , ??0 , ??系统?3 , ?n , ??0 , ??system L 公理系统 Lsystem ?公理系统?system L1 公理系统 L1system L2 公理系统 L2system L3 公理系统 L3system L4 公理系统 L4system L5 公理系统 L5system L6 公理系统 L6system ?n 公理系统?nsystem of modal prepositional logic 模态命题逻辑系统system Pm 系统 Pmsystem S1 公理系统 S1system T (system M) 公理系统 T(系统M)Ttautology 重⾔式(永真公式)technique of truth table 真值表技术term 项terminal endpoint 终端terminal object 终结对象t-error-correcing BCH code 纠 t -错BCH码theorem (provable formal) 定理(可证公式)thickess 厚度timed sequence 时间序列torsion 扭元torsion module 扭模total chromatic number 全⾊数total chromatic number conjecture 全⾊数猜想total coloring 全着⾊total graph 全图total matrix ring 全⽅阵环total order set 全序集total permutation 全排列total relation 全关系tournament 竞赛图trace (trail) 迹tranformation group 变换群transcendental element 超越元素transitive 传递的tranverse design 横截设计traveling saleman problem 旅⾏商问题tree 树triple system 三元系triple-repetition code 三倍重复码trivial graph 平凡图trivial subgroup 平凡⼦群true in an interpretation 解释真truth table 真值表truth value function 真值函数Turán graph Turán 图Turán theorem Turán 定理Tutte graph Tutte 图Tutte theorem Tutte 定理Tutte-coxeter graph Tutte-coxeter 图UUlam conjecture Ulam 猜想ultrafilter 超滤⼦ultrapower 超幂ultraproduct 超积unary operation ⼀元运算unary relation ⼀元关系underlying graph 基础图undesignated truth value ⾮特指值undirected graph ⽆向图union 并(并集)union of graph 图的并union operation 并运算unique factorization 唯⼀分解unique factorization domain (Gauss domain) 唯⼀分解整域unique k-colorable graph 唯⼀k着⾊unit ideal 单位理想unity element 单元universal 全集universal algebra 泛代数(Ω代数)universal closure 全称闭包universal construction 通⽤结构universal enveloping algebra 通⽤包络代数universal generalization 全称推⼴规则universal quantifier 全称量词universal specification 全称特指规则universal upper bound 泛上界unlabeled graph ⽆标号图untorsion ⽆扭模upper (lower) bound 上(下)界useful equivalent 常⽤等值式useless code 废码字Vvalence 价valuation 赋值Vandermonde formula Vandermonde 公式variery 簇Venn graph Venn 图vertex cover 点覆盖vertex set 点割集vertex transitive graph 点传递图Vizing theorem Vizing 定理Wwalk 通道weakly antisymmetric 弱反对称的weight 重(权)weighted form for Burnside lemma 带权形式的Burnside引理well-formed formula (wff) 合式公式(wff) word 字Zzero divison 零因⼦zero element (universal lower bound) 零元(泛下界)ZFC (Zermelo-Fraenkel-Cohen) system ZFC系统form)normal(Skolemformnormalprenex-存在正则前束范式(Skolem 正则范式)3-value proposition logic 三值命题逻辑。

马尔可夫《概率演算》

马尔可夫《概率演算》

马尔可夫《概率演算》(中英文实用版)Title: Markov"s "Probability Calculus"Title: 马尔可夫《概率演算》In the world of mathematics, Andrey Markov"s work on "Probability Calculus" is highly regarded.His book, published in 1912, was one of the first to systematically study the theory of stochastic processes.在数学世界中,安德烈·马尔可夫关于《概率演算》的工作备受推崇。

他于1912年出版的书籍,是首批系统研究随机过程理论的著作之一。

Markov"s work was groundbreaking because it introduced the concept of a Markov chain, a mathematical system in which the future state of a process depends only on the current state and not on the sequence of events that preceded it.马尔可夫的工作之所以具有划时代意义,是因为他引入了马尔可夫链的概念,这是一种数学系统,其中过程的未来状态只取决于当前状态,而与之前事件的序列无关。

This idea was revolutionary because it provided a way to model and analyze complex systems that are influenced by random events.Today, Markov chains are used in a wide variety of fields, including physics, finance, economics, and computer science.这个想法之所以具有革命性,是因为它为建模和分析受随机事件影响复杂的系统提供了一种方法。

数学专有名词英文

数学专有名词英文

数学专业英语词汇英汉对照1 概率论与数理统计词汇英汉对照表Aabsolute value 绝对值accept 接受acceptable region 接受域additivity 可加性adjusted 调整的alternative hypothesis 对立假设analysis 分析analysis of covariance 协方差分析analysis of variance 方差分析arithmetic mean 算术平均值association 相关性assumption 假设assumption checking 假设检验availability 有效度average 均值Bbalanced 平衡的band 带宽bar chart 条形图beta-distribution 贝塔分布between groups 组间的bias 偏倚binomial distribution 二项分布binomial test 二项检验Ccalculate 计算case 个案category 类别center of gravity 重心central tendency 中心趋势chi-square distribution 卡方分布chi-square test 卡方检验classify 分类cluster analysis 聚类分析coefficient 系数coefficient of correlation 相关系数collinearity 共线性column 列compare 比较comparison 对照components 构成,分量compound 复合的confidence interval 置信区间consistency 一致性constant 常数continuous variable 连续变量control charts 控制图correlation 相关covariance 协方差covariance matrix 协方差矩阵critical point 临界点critical value 临界值crosstab 列联表cubic 三次的,立方的cubic term 三次项cumulative distribution function 累加分布函数curve estimation 曲线估计Ddata 数据default 默认的definition 定义deleted residual 剔除残差density function 密度函数dependent variable 因变量description 描述design of experiment 试验设计deviations 差异df.(degree of freedom) 自由度diagnostic 诊断dimension 维discrete variable 离散变量discriminant function 判别函数discriminatory analysis 判别分析distance 距离distribution 分布D-optimal design D-优化设计Eeaqual 相等effects of interaction 交互效应efficiency 有效性eigenvalue 特征值equal size 等含量equation 方程error 误差estimate 估计estimation of parameters 参数估计estimations 估计量evaluate 衡量exact value 精确值expectation 期望expected value 期望值exponential 指数的exponential distributon 指数分布extreme value 极值Ffactor 因素,因子factor analysis 因子分析factor score 因子得分factorial designs 析因设计factorial experiment 析因试验fit 拟合fitted line 拟合线fitted value 拟合值fixed model 固定模型fixed variable 固定变量fractional factorial design 部分析因设计frequency 频数F-test F检验full factorial design 完全析因设计function 函数Ggamma distribution 伽玛分布geometric mean 几何均值group 组Hharmomic mean 调和均值heterogeneity 不齐性histogram 直方图homogeneity 齐性homogeneity of variance 方差齐性hypothesis 假设hypothesis test 假设检验Iindependence 独立independent variable 自变量independent-samples 独立样本index 指数index of correlation 相关指数interaction 交互作用interclass correlation 组内相关interval estimate 区间估计intraclass correlation 组间相关inverse 倒数的iterate 迭代Kkernal 核Kolmogorov-Smirnov test 柯尔莫哥洛夫-斯米诺夫检验kurtosis 峰度Llarge sample problem 大样本问题layer 层least-significant difference 最小显著差数least-square estimation 最小二乘估计least-square method 最小二乘法level 水平level of significance 显著性水平leverage value 中心化杠杆值life 寿命life test 寿命试验likelihood function 似然函数likelihood ratio test 似然比检验linear 线性的linear estimator 线性估计linear model 线性模型linear regression 线性回归linear relation 线性关系linear term 线性项logarithmic 对数的logarithms 对数logistic 逻辑的lost function 损失函数Mmain effect 主效应matrix 矩阵maximum 最大值maximum likelihood estimation 极大似然估计mean squared deviation(MSD) 均方差mean sum of square 均方和measure 衡量media 中位数M-estimator M估计minimum 最小值missing values 缺失值mixed model 混合模型mode 众数model 模型Monte Carle method 蒙特卡罗法moving average 移动平均值multicollinearity 多元共线性multiple comparison 多重比较multiple correlation 多重相关multiple correlation coefficient 复相关系数multiple correlation coefficient 多元相关系数multiple regression analysis 多元回归分析multiple regression equation 多元回归方程multiple response 多响应multivariate analysis 多元分析Nnegative relationship 负相关nonadditively 不可加性nonlinear 非线性nonlinear regression 非线性回归noparametric tests 非参数检验normal distribution 正态分布null hypothesis 零假设number of cases 个案数Oone-sample 单样本one-tailed test 单侧检验one-way ANOVA 单向方差分析one-way classification 单向分类optimal 优化的optimum allocation 最优配制order 排序order statistics 次序统计量origin 原点orthogonal 正交的outliers 异常值Ppaired observations 成对观测数据paired-sample 成对样本parameter 参数parameter estimation 参数估计partial correlation 偏相关partial correlation coefficient 偏相关系数partial regression coefficient 偏回归系数percent 百分数percentiles 百分位数pie chart 饼图point estimate 点估计poisson distribution 泊松分布polynomial curve 多项式曲线polynomial regression 多项式回归polynomials 多项式positive relationship 正相关power 幂P-P plot P-P概率图predict 预测predicted value 预测值prediction intervals 预测区间principal component analysis 主成分分析proability 概率probability density function 概率密度函数probit analysis 概率分析proportion 比例Qqadratic 二次的Q-Q plot Q-Q概率图quadratic term 二次项quality control 质量控制quantitative 数量的,度量的quartiles 四分位数Rrandom 随机的random number 随机数random number 随机数random sampling 随机取样random seed 随机数种子random variable 随机变量randomization 随机化range 极差rank 秩rank correlation 秩相关rank statistic 秩统计量regression analysis 回归分析regression coefficient 回归系数regression line 回归线reject 拒绝rejection region 拒绝域relationship 关系reliability 可靠性repeated 重复的report 报告,报表residual 残差residual sum of squares 剩余平方和response 响应risk function 风险函数robustness 稳健性root mean square 标准差row 行run 游程run test 游程检验Ssample 样本sample size 样本容量sample space 样本空间sampling 取样sampling inspection 抽样检验scatter chart 散点图S-curve S形曲线separately 单独地sets 集合sign test 符号检验significance 显著性significance level 显著性水平significance testing 显著性检验significant 显著的,有效的significant digits 有效数字skewed distribution 偏态分布skewness 偏度small sample problem 小样本问题smooth 平滑sort 排序soruces of variation 方差来源space 空间spread 扩展square 平方standard deviation 标准离差standard error of mean 均值的标准误差standardization 标准化standardize 标准化statistic 统计量statistical quality control 统计质量控制std. residual 标准残差stepwise regression analysis 逐步回归stimulus 刺激strong assumption 强假设stud. deleted residual 学生化剔除残差stud. residual 学生化残差subsamples 次级样本sufficient statistic 充分统计量sum 和sum of squares 平方和summary 概括,综述Ttable 表t-distribution t分布test 检验test criterion 检验判据test for linearity 线性检验test of goodness of fit 拟合优度检验test of homogeneity 齐性检验test of independence 独立性检验test rules 检验法则test statistics 检验统计量testing function 检验函数time series 时间序列tolerance limits 容许限total 总共,和transformation 转换treatment 处理trimmed mean 截尾均值true value 真值t-test t检验two-tailed test 双侧检验Uunbalanced 不平衡的unbiased estimation 无偏估计unbiasedness 无偏性uniform distribution 均匀分布Vvalue of estimator 估计值variable 变量variance 方差variance components 方差分量variance ratio 方差比various 不同的vector 向量Wweight 加权,权重weighted average 加权平均值within groups 组内的ZZ score Z分数2. 最优化方法词汇英汉对照表Aactive constraint 活动约束active set method 活动集法analytic gradient 解析梯度approximate 近似arbitrary 强制性的argument 变量attainment factor 达到因子Bbandwidth 带宽be equivalent to 等价于best-fit 最佳拟合bound 边界Ccoefficient 系数complex-value 复数值component 分量constant 常数constrained 有约束的constraint 约束constraint function 约束函数continuous 连续的converge 收敛cubic polynomial interpolation method 三次多项式插值法curve-fitting 曲线拟合Ddata-fitting 数据拟合default 默认的,默认的define 定义diagonal 对角的direct search method 直接搜索法direction of search 搜索方向discontinuous 不连续Eeigenvalue 特征值empty matrix 空矩阵equality 等式exceeded 溢出的Ffeasible 可行的feasible solution 可行解finite-difference 有限差分first-order 一阶GGauss-Newton method 高斯-牛顿法goal attainment problem 目标达到问题gradient 梯度gradient method 梯度法Hhandle 句柄Hessian matrix 海色矩阵Iindependent variables 独立变量inequality 不等式infeasibility 不可行性infeasible 不可行的initial feasible solution 初始可行解initialize 初始化inverse 逆invoke 激活iteration 迭代iteration 迭代JJacobian 雅可比矩阵LLagrange multiplier 拉格朗日乘子large-scale 大型的least square 最小二乘least squares sense 最小二乘意义上的Levenberg-Marquardt method 列文伯格-马夸尔特法line search 一维搜索linear 线性的linear equality constraints 线性等式约束linear programming problem 线性规划问题local solution 局部解Mmedium-scale 中型的minimize 最小化mixed quadratic and cubic polynomial interpolation and extrapolation method 混合二次、三次多项式内插、外插法multiobjective 多目标的Nnonlinear 非线性的norm 范数Oobjective function 目标函数observed data 测量数据optimization routine 优化过程optimize 优化optimizer 求解器over-determined system 超定系统Pparameter 参数partial derivatives 偏导数polynomial interpolation method 多项式插值法Qquadratic 二次的quadratic interpolation method 二次内插法quadratic programming 二次规划Rreal-value 实数值residuals 残差robust 稳健的robustness 稳健性,鲁棒性Sscalar 标量semi-infinitely problem 半无限问题Sequential Quadratic Programming method 序列二次规划法simplex search method 单纯形法solution 解sparse matrix 稀疏矩阵sparsity pattern 稀疏模式sparsity structure 稀疏结构starting point 初始点stationary point 驻点step length 步长subspace trust region method 子空间置信域法sum-of-squares 平方和symmetric matrix 对称矩阵Ttermination message 终止信息termination tolerance 终止容限the exit condition 退出条件the method of steepest descent 最速下降法transpose 转置Uunconstrained 无约束的under-determined system 负定系统Vvariable 变量vector 矢量Wweighting matrix 加权矩阵3 样条词汇英汉对照表Aapproximation 逼近array 数组a spline in b-form/b-spline b样条a spline of polynomial piece /ppform spline 分段多项式样条Bbivariate spline function 二元样条函数break/breaks 断点Ccoefficient/coefficients 系数cubic interpolation 三次插值/三次内插cubic polynomial 三次多项式cubic smoothing spline 三次平滑样条cubic spline 三次样条cubic spline interpolation 三次样条插值/三次样条内插curve 曲线Ddegree of freedom 自由度dimension 维数end conditions 约束条件Iinput argument 输入参数interpolation 插值/内插interval 取值区间Kknot/knots 节点Lleast-squares approximation 最小二乘拟合Mmultiplicity 重次multivariate function 多元函数Ooptional argument 可选参数order 阶次output argument 输出参数Ppoint/points 数据点rational spline 有理样条rounding error 舍入误差(相对误差)Sscalar 标量sequence 数列(数组)spline 样条spline approximation 样条逼近/样条拟合spline function 样条函数spline curve 样条曲线spline interpolation 样条插值/样条内插spline surface 样条曲面smoothing spline 平滑样条Ttolerance 允许精度Uunivariate function 一元函数Vvector 向量weight/weights 权重4 偏微分方程数值解词汇英汉对照表Aabsolute error 绝对误差absolute tolerance 绝对容限adaptive mesh 适应性网格Bboundary condition 边界条件Ccontour plot 等值线图converge 收敛coordinate 坐标系Ddecomposed 分解的decomposed geometry matrix 分解几何矩阵diagonal matrix 对角矩阵Dirichlet boundary conditionsDirichlet边界条件eigenvalue 特征值elliptic 椭圆形的error estimate 误差估计exact solution 精确解Ggeneralized Neumann boundary condition 推广的Neumann边界条件geometry 几何形状geometry description matrix 几何描述矩阵geometry matrix 几何矩阵graphical user interface(GUI)图形用户界面Hhyperbolic 双曲线的Iinitial mesh 初始网格Jjiggle 微调LLagrange multipliers 拉格朗日乘子Laplace equation 拉普拉斯方程linear interpolation 线性插值loop 循环Mmachine precision 机器精度mixed boundary condition 混合边界条件NNeuman boundary condition Neuman边界条件node point 节点nonlinear solver 非线性求解器normal vector 法向量PParabolic 抛物线型的partial differential equation 偏微分方程plane strain 平面应变plane stress 平面应力Poisson’s equation 泊松方程polygon 多边形positive definite 正定Qquality 质量Rrefined triangular mesh 加密的三角形网格relative tolerance 相对容限relative tolerance 相对容限residual 残差residual norm 残差范数Ssingular 奇异的。

数学研究生书目

数学研究生书目

数学基础.假设本科具备水平代数本科·代数.Advanced.Linear.Algebra,.Steven.Roman.djvu 详情3.2MB 本科·代数.Friedberg.S.H.-.Linear.Algebra.(2Ed,Ph,.1989)(Isbn.0135371023)(Ka)(200Dpi)(545S).Mal.djvu 详情2.6MB本科·代数.Hoffman,.Kunze..Linear.algebra.(2ed,.PH,.1971)(T)(415s).djvu详情4.1MB本科·代数.J.Rotman.-.A.first.course.in.abstract.algebra.pdf详情5.1MB 本科·代数.UTM.-.Axler.S..-.Linear.Algebra.done.right.-.Springer.1997.2ed.-.ISBN.0387982590.(261s).pdf 详情1.1MB几何本科·几何.David.Hilbert.-.The.Foundations.of.Geometry.djvu详情4.2MB 本科·几何.Differential.topology.-.Pollack.djvu 详情2.7MB 本科·几何.Do.Carmo.-.Differential.Geometry.of.Curves.and.Surfaces.djvu5.1MB详情分析本科·分析.M.Spivak.-.Calculus.on.Manifolds.djvu 详情1.6MB 本科·分析.Mathematical.analysis.-.Apostol.T.M.djvu 详情10MB 本科·分析.Munkres.J.R..Analysis.on.Manifolds.djvu 详情2.2MB本科·分析.Arnold.V.I.Ordinary.Differential.Equations.(Mit,.1978)(No.To c)(T)(273S).djvu 详情6.3MB本科·分析.常微分方程(阿诺尔德).pdf 详情3.8MB本科·分析.Introductory.Real.Analysis.-.A..N..Kolmogorov,.V..Fomin.djvu 详情9.5MB数学基础本科·数学基础.Abstract_Set_Theory-Abbaham.A.Fraenkel.djvu 详情4.2MB本科·数学基础ne .djvu 详情4MB本科·数学基础.Ebbinghaus.-.Mathematical.Logic.(Springer,.1984).pdf 详情6.9MB 本科·数学基础.Enderton.H.B..A.mathematical.introduction.to.logic.(2ed.,.Ha rcourt,.2001)(K)(T)(326s)_MAml_.djvu 详情3.5MB本科·数学基础.Foundations.of.analysis..The.arithmetic.of.whole,.rational,. plex.numbers.(3ed.,.Chelsea.1966)ndau.djvu 详情850.5KB 本科·数学基础.Halmos.-.Naive.Set.Theory.pdf 详情25.9MB 数学系研究生基础课程参考书目-第1学年代数第一学年·代数.1.Abstract.Algebra.-.Dummit.djvu 详情14.6MB 第一学年·代数ng.djvu 详情7.4MB 第一学年·代数.3.Algebra.-.Thomas.W..Hungerford.djvu 详情8.4MB 第一学年·代数.4.Algebra.-.M.Artin.djvu 详情6.1MB第一学年·代数.5.Advanced.Modern.Algebra.-.J.Rotman.2003.pdf详情5.6MB第一学年·代数.6.Algebra.-.I.Martin.Isaacs.PDF 详情2MB 第一学年·代数.7.Jacobson.-.Basic.Algebra.I.0716714809.djvu详情13.4MB 第一学年·代数.7.Jacobson.-.Basic.Algebra.II.071671079X.djvu详情16.3MB分析基础第一学年·分析基础.1.Walter.Rudin.-.Principles.of.mathematical.analysis.djvu 详情2.6MB第一学年·分析基础plex.analysis.djvu 详情3MB第一学年·分析基础plex.analysis.djvu详情5.1MB 第一学年·分析基础plex.Variable.I.-.J.B.Conway.djvu 详情2.9MB 第一学年·分析基础plex.analysis.djvu 详情6.6MB 第一学年·分析基础plex.Analysis.-.Elias.M..Stein.pdf详情2.9MB 第一学年·分析基础ng.-.Real.and.Functional.analysis.djvu 详情8.3MB第一学年·分析基础.8.Royden.-.Real.analysis.djvu 详情MB 第一学年·分析基础.9.Folland.-.Real.analysis.djvu 详情4.8MB几何与拓扑第一学年·几何与拓扑.1..James.R..Munkres.-.Topology.djvu 详情4MB第一学年·几何与拓扑.2..Basic.Topology.-.A..Armstrong.djvu详情6.3MB 第一学年·几何与拓扑.3..Kelley.-.General.Topology.djvu 详情5.8MB 第一学年·几何与拓扑.4.Willard.-.General.Topology.djvu 详情11MB第一学年·几何与拓扑.5.Glen.Bredon.-.Topology.and.geometry.djvu 详情8.6MB 第一学年·几何与拓扑.6.Introduction.to.Topological.Manifolds.-.John.M..Lee.djvu详情4.8MB第一学年·几何与拓扑.7.From.calculus.to.cohomology.by.Madsen.pdf 详情12.4MB 数学系研究生基础课程参考书目-第2学年代数第二学年·代数mutative.ring.theory.-.H..Matsumura.djvu详情4.4MB 第二学年·代数mutative.Algebra.Vol..II.-..Oscar.Zariski.and.Pierre.Sa muel.djvu 详情7.8MB第二学年·代数mutative.Algebra.Volume.I.-..Oscar.Zariski,.Pierre.Samuel,.I.S..Cohen.djvu 详情6.5MB第二学年·代数mutative.Algebra.-.Atiyah.djvu 详情1.6MB 第二学年·代数.4.An.introduction.to.homological.algebra.-.Weibel.djvu 详情3MB第二学年·代数.5.A.Course.in.Homological.Algebra.-.P.J.Hilton,U.Stammbach.djvu 详情5MB 第二学年·代数.6.Homological.Algebra.-.Cartan.djvu 详情10.1MB 第二学年·代数.7.Methods.of.Homological.Algebra.by.Sergei.I..Gelfand,.Yuri.I..Manin.djvu 详情3.4MB 第二学年·代数.8.Homology.-.Saunders.MacLane.djvu 详情3.9MB第二学年·代数mutative.Algebra.with.a.view.toward.Algebraic.Geometry.-.Eisenbud.djvu 详情7.6MB代数拓扑第二学年·代数拓扑.1.Algebraic.Topology.-.A..Hatcher.PDF 详情3.5MB 第二学年·代数拓扑.2.Spaniers.-.Algebraic.Topology.djvu 详情16.1MB 第二学年·代数拓扑.3.Differential.forms.in.algebraic.topology.-.Raoul.Bott.and. Loring.W..Tu.djvu 详情6MB第二学年·代数拓扑.4.Massey.-.A.basic.course.in.Algebraic.topology.djvu 详情4MB第二学年·代数拓扑.5.Fulton.-.Algebraic.topology.a.first.course.djvu 详情7.5MB 第二学年·代数拓扑.7.Switzer.R.M.,.Algebraic.Topology.-.Homotopy.and.Homology.544s.djvu 详情7.7MB第二学年·代数拓扑.8.A.Concise.Course.in.Algebraic.Topology.-.J.P.May.pdf 详情1.3MB 第二学年·代数拓扑.9.Elements.of.Homotopy.Theory.-.G.W..Whitehead.djvu 详情5.8MB实分析泛函分析第二学年·实分析泛函分析.1.Royden.-.Real.analysis.djvu 详情3.4MB 第二学年·实分析泛函分析.3.Halmos.-.Measure.Theory.djvu 详情10.4MB 第二学年·实分析泛函分析.4.Walter.Rudin.-.Functional.analysis.djvu 详情2.4MB 第二学年·实分析泛函分析.5.Conway.-.A.course.of.Functional.analysis.djvu 详情3.5MB 第二学年·实分析泛函分析x.pdf 详情40.2MB 第二学年·实分析泛函分析.8.Functional.Analysis.-.Yoshida.djvu 详情8.2MB 第二学年·实分析泛函分析.9.Measure.Theory.(Donald.L.Cohn).0817630031.pdf 详情44.8MB微分拓扑李群李代数第二学年·微分拓扑&Lie群.1.Hirsch.-...ential.topology.djvu详情7.3MB 第二学年·微分拓扑&Lie群ng.-.Differential.and.Riemannian.manifolds.djvu 详情2.4MB 第二学年·微分拓扑&Lie3.7MB群.3.Warner.-.Foundations.of.Differentiable.manifolds.and.Lie.g roups.djvu 详情第二学年·微分拓扑&Lie群.4.Representation.theory.a.first.course.-.W..Fulton.and.J..Ha rris.djvu 详情10.2MB第二学年·微分拓扑&Lie群.6.Hsiang.W.Y.Lectures.on.Lie.groups.(WS,.2000)(T)(115s)_MPs_.djvu 详情637.9K B 第二学年·微分拓扑&Lie群.7.Introduction.to.Smooth.Manifolds.-.John.M..Lee.djvu 详情3.3MB第二学年·微分拓扑&Lie群.8.Lie.Groups,.Lie.Algebras,.and.Their.Representation.-.V.S..Varadarajan.djvu 详情7.1MB第二学年·微分拓扑&Lie群.9.Humphreys.-.Introduction.to.Lie.Algebras.and.Representatio n.Theory.djvu 详情2.8MB数学系研究生基础课程参考书目-第3学年代数几何第三学年·代数几何.1.J.Harris.-.Algebraic.Geometry.a.first.course.djvu 详情3.8MB 第三学年·代数几何.2.Algebraic.Geometry.-.Robin.Hartshorne.djvu 详情8.3MB第三学年·代数几何.3.Basic.Algebraic.Geometry.1.2nd.ed..I.R.Shafarevich.djvu 详情3.9MB第三学年·代数几何.3.Basic.Algebraic.Geometry.2.2nd.ed..I.R.Shafarevich.djvu 详情2.8MB第三学年·代数几何.4.Principles.of.Algebraic.Geometry.-.Giffiths.Harris.djvu 详情7.6MB第三学年·代数几何.6.The.Geometry.of.Schemes.-.Eisenbud.djvu详情2.7MB 第三学年·代数几何.7.The.Red.Book.of.Varieties.and.Schemes.-.Mumford.PDF 详情14.5MB 第三学年·代数几何plex.Projective.Varieties.-.David.Mumford.djvu 详情1.7MB调和分析偏微分方程第三学年·调和分析&PDE.1.An.Introduction.to.Harmonic.Analysis.Third.Edition.-.Yit zhak.Katznelson.djvu 详情5.8MB第三学年·调和分析&PDE.2.Evans.-.Partial.differential.equations.djvu 详情4.7MB第三学年·调和分析&PDE.4.L..Hormander.-.Linear.Partial.Differential.Operators.vol1.djvu 详情8.5MB第三学年·调和分析&PDE.4.L..Hormander.-.Linear.Partial.Differential.Operators.vol2.djvu 详情10.3MB第三学年·调和分析&PDE.5.A.Course.in.Abstract.Harmonic.Analysis.-.Gerald.B.Folland.0849384907.pdf 详情3.7MB第三学年·调和分析&PDE.6.Abstract.Harmonic.Analysis.vol1.-.Ross.Hewitt.djvu 详情6.9MB 第三学年·调和分析&PDE.6.Abstract.Harmonic.Analysis.vol2.-.Ross.Hewitt.djvu 详情9.5MB 第三学年·调和分析&PDE.7.Harmonic.Analysis.-.Elias.M..Stein.djvu 详情3.3MB 第三学年·调和分析&PDE.8.Gilbarg.Trudinger.-.Elliptic.partial.differential.equations.of.second.order.038713025X.djvu 详情7.7MB第三学年·调和分析&PDE.9.Rauch.J.-.Partial.Differential.Equations.djvu 详情8.7MB复分析多复变函数导论第三学年·复分析多复2MB变plex.Variable.Vol.II,.J.B.Conway.0387944605.djvu 详情第三学年·复分析多复变.2.Lectures.on.Riemann.Surfaces.-.O.Forste.djvu 详情3.1MB 第三学年·复分析多复变pact.riemann.surfaces.-.J.Jost.djvu 详情3.5MB第三学年·复分析多复变plex.Analysis.in.Several .Variables.djvu 详情2.6MB第三学年·复分析多复变.7.Riemann.Surfaces.-.Hershel.M..Farkas.djvu 详情5MB第三学年·复分析多复变plex.Variables.-.Steven.G..K rantz.djvu 详情5.6MB第三学年·复分析多复变plex.Analysis.The.Geometric.Viewpoint.-.Steven.G..Krant z.djvu 详情1.1MB微分几何第三学年·微分几何.1.Peter.Petersen.-.Riemannian.Geometry.pdf 详情3.3MB 第三学年·微分几何.2.Riemannian.Manifolds.An.Introduction.to.Curvature.-.John.M2.2MB..Lee.djvu 详情第三学年·微分几何.3.doCarmo.-.Riemannian.Geometry.djvu 详情 3MB 第三学年·微分几何prehensive.Introduction.to.Differential.G eometry.I.djvu 详情2.7MB第三学年·微分几何prehensive.Introduction.to.Differential.G eometry.II.djvu 详情11.8MB第三学年·微分几何.5.Helgason.-.Differential.Geometry,Lie.groups,and.symmetric.spaces.djvu 详情7.2MB第三学年·微分几何ng.-.Fundamentals.of.Differential.Geometry.djvu 详情5.3MB第三学年·微分几何.7.Kobayashi,.Nomizu.-.Foundations.of.Differential.Geometry.V ol..2.djvu 详情4.6MB第三学年·微分几何.7.Kobayashi,.Nomizu.-.Foundations.of.Differential.Geometry,.Vol..1.djvu 详情6.6MB第三学年·微分几何.8.W.M.Boothby.-.Introduction.to.Differentiable.manifolds.and .Riemannian.Geometry.djvu 详情3.3MB第三学年·微分几何.9.-.Riemannian.Geometry.-.I.Chavel.pdf 详情3MB第三学年·微分几何.10.Dubrovin,.Fomenko,.Novikov.-.Modern.geometry-methods.and. applications.Vol1.djvu 详情5.8MB第三学年·微分几何.10.Dubrovin,.Fomenko,.Novikov.-.Modern.geometry-methods.and. applications.Vol3.djvu 详情。

全球数学网址大全

全球数学网址大全

全球数学网址大全数理逻辑、数学理论AILAhttp://www.disi.unige.it/aila/eindex.html意大利逻辑及其应用协会的主页,包括意大利数理逻辑领域的相关内容。

Algebra and Logic/title.cgi?2110《代数与逻辑》,《西伯利亚代数与逻辑期刊》的翻译版,荷兰的Kluwer学术出版社提供其在线服务。

alt.math.undergrad-Math Forum/epigone/alt.math.undergradMsth Forum上的大学生和研究生数学论坛,提供档案文件、论题等信息。

Annals of Pure and Applied Logic/~dmjones/hbp/apal/《纯逻辑与应用逻辑学年鉴》,麻省理工大学计算理论小组主页提供其过刊的浏览,荷兰的Elservier出版社提供其电子刊的在线服务。

Archive for Mathematical Logichttp://link.springer.de/link/service/journ...00153/index.htm《数学逻辑档案》,属于德国Springer出版公司在线电子期刊的一种。

Aristotle and the Paradoxes of Logic-Gilbert Voeten/nilog/files/arist...adoxes_of_l.htm亚里士多德及其逻辑理论研究。

BLC/~exr/blc/不列颠逻辑研讨会的主页,包括数学逻辑的相关研究,如相关网站及电子期刊。

Books:Professional&Technical:Professional Science: /exec/obidos/tg/brows...3600008-7001844浏览亚马逊网上专业和技术店中的数学畅销书,提供应用范畴,混沌与系统化;几何与拓扑;数学分析;数学物理学;数字规律;纯数学;数学变换等领域,包括数理逻辑方面的畅销书的在线预览。

法国数学家拉格朗日著作《解析函数论》英文名

法国数学家拉格朗日著作《解析函数论》英文名

法国数学家拉格朗日著作《解析函数论》英文名Analysis of Functions by French mathematician LagrangeAnalysis of Functions, also known as Mémoire sur larésolution des équations numériques, is a groundbreaking work by French mathematician Joseph-Louis Lagrange. This seminal work, published in 1809, laid the foundation for the field of complex analysis and played a pivotal role in shaping modern mathematics.Lagrange's work in Analysis of Functions focused on the study of functions of a complex variable and their properties. He developed new methods for solving equations involving complex numbers, uncovering fundamental principles that would later become the basis of complex analysis. In particular, Lagrange's work on power series and their convergence properties was a major contribution to the understanding of complex functions.One of the key concepts introduced in Analysis of Functions is the concept of a holomorphic function, which is a complex function that is differentiable at every point in its domain. Lagrange's study of holomorphic functions and their propertieshelped lay the groundwork for the development of the theory of analytic functions, a central area of study in complex analysis.Analysis of Functions also includes Lagrange's work on the theory of residues, which are complex numbers associated with singularities of a complex function. Lagrange developed new techniques for calculating residues and applying them to the evaluation of complex integrals, a key tool in the study of complex functions.In addition to his mathematical contributions, Lagrange's Analysis of Functions had a significant impact on the development of mathematics as a whole. His work inspired future generations of mathematicians to explore the rich and diverse field of complex analysis, leading to further advancements in the study of functions of a complex variable.Overall, Analysis of Functions by Joseph-Louis Lagrange is a seminal work in the field of complex analysis that has had a lasting impact on the development of modern mathematics. Lagrange's innovative methods and profound insights continue to influence mathematicians to this day, making his work an essential reference for anyone studying the theory of functions of a complex variable.。

the theory of matrices in numerical analysis

the theory of matrices in numerical analysis

the theory of matrices in numerical analysis 1. 引言1.1 概述矩阵理论是数值分析中的重要组成部分。

在数学和计算机科学领域,矩阵被广泛用于描述线性系统、解决线性方程组、进行数据压缩和降维等任务。

矩阵理论提供了一种强大的数学工具,能够帮助我们处理各种复杂的数值计算问题,并提供了许多优化算法和方法来提高计算效率。

1.2 文章结构本文将探讨矩阵理论在数值分析中的重要性以及其在不同领域中的应用。

文章将包含以下内容:2. 矩阵理论在数值分析中的重要性:本节将介绍矩阵的定义与性质,探讨其在数值计算中的作用,以及与误差分析之间的关系。

3. 矩阵运算与数值稳定性分析:本节将对矩阵乘法及其算法优化进行讨论,探究特征值与特征向量求解方法及其数值稳定性分析,并对基于矩阵运算的线性方程组求解方法进行分析与评估。

4. 数值方法中的矩阵近似技术分析:本节将介绍最小二乘问题与正交矩阵分解技术的应用,讨论奇异值分解及其在数据压缩和降维中的应用,以及非负矩阵分解与文本挖掘中的应用。

5. 结论:本节将总结主要观点和结果,并对矩阵理论在数值分析中的未来发展进行展望。

1.3 目的本文旨在深入探讨矩阵理论在数值分析中的重要性以及其在不同领域中的应用。

通过对矩阵运算、数值稳定性、矩阵近似技术等方面的分析,我们将更好地理解和运用矩阵理论,提高数值计算的准确性和效率。

此外,我们还将展望矩阵理论在未来发展中可能的方向和潜力。

2. 矩阵理论在数值分析中的重要性2.1 矩阵的定义与性质矩阵是数值分析中不可或缺的基础概念。

简而言之,矩阵是按规定排列的数或表达式,并且通常由行和列组成。

在数值计算中,我们常用的矩阵包括方阵、对称矩阵、三角矩阵等等。

理解矩阵的定义和性质对于进行数值分析至关重要。

2.2 矩阵在数值计算中的作用矩阵广泛应用于各种数值计算问题,例如线性代数、微积分以及统计学等领域。

在线性代数中,我们使用矩阵来表示线性变换和线性方程组,并且通过运算得到解。

矩阵论课程学习指南

矩阵论课程学习指南

《矩阵论》课程学习指南The theory of matrices任课教师课程基本信息:选修课程课程编码:课程名称:矩阵论(The theory of matrices)授课教师:授课对象:计算数学研究生授课地点:授课时间:第三学期授课形式:课堂讲授与课堂讨论联系方式:课程教材:1.程云鹏张凯院徐仲,《矩阵论(第3版)》,西北工业大学出版社,2006年课程简介:矩阵理论在数学及其他科学技术领域如数值分析、最优化理论、多元统计分析、运筹学、控制、力学、电学、管理科学与工程等学科中都有十分重要的作用,越来越引起人们的重视。

矩阵不仅表述简洁,易于理解,而且具有适合计算机数值计算的特点。

因此,矩阵理论是从事科学研究和工程设计的科技人员必备的数学基础。

通过本课程的学习,掌握矩阵论的基本概念,基本理论和基本运算,全面了解若干特殊矩阵的标准形及其基本性质。

通过学习使学生能将向量空间及其变换的问题化为矩阵问题,用矩阵运算加以解决.课程说明:1. 教学方式:课堂讲授+课堂讨论+课后实践2.考核方式:期末考试+课堂讨论+出勤情况学期总评成绩(100%)=出勤(10%)+课堂讨论(30%)+期末考试(60%)3.实验、实习、作业要求: 每次课后安排阅读作业,提交学习笔记;课堂发言与小组讨论。

教学进度与教学内容概览主要内容及学时安排:第一章:线性空间与线性变换(4学时)·重点内容:特征值和特征向量、正交矩阵·第一节线性空间·第二节线性变换及其矩阵·第三节两个特殊的线性空间第二章:范数理论及其应用(6学时)·重点内容:矩阵范数·第一节向量范数及其性质·第二节矩阵的范数·第三节范数的一些应用第三章:矩阵分析及其应用(8学时)·重点内容:矩阵级数、矩阵函数·第一节矩阵序列·第二节矩阵级数·第三节矩阵函数·第四节矩阵的微分和积分·第五节矩阵函数的一些应用第四章:矩阵分解(16学时)·重点内容:矩阵的QR分解、矩阵的奇异值分解·第一节Gauss消去法与矩阵的三角分解·第二节矩阵的QR分解·第三节矩阵的满秩分解·第四节矩阵的奇异值分解第五章:特征值的估计及对称矩阵的极性(10学时)·重点内容:特征值的估计、广义特征值问题·第一节特征值的估计·第二节广义特征值问题·第三节对称矩阵特征值的极性第六章:广义逆矩阵(12学时)·重点内容:广义逆矩阵·第一节投影矩阵·第二节广义逆矩阵的存在、性质及构造方法·第三节广义逆矩阵的计算方法第七章:若干特殊矩阵类介绍(8学时)·重点内容:正定矩阵、对角占优矩阵·第一节正定矩阵与正稳定矩阵·第二节对角占优矩阵·第三节非负矩阵目的与要求:通过本课程的学习,掌握矩阵论的基本概念,基本理论和基本运算,全面了解若干特殊矩阵的标准形及其基本性质。

马尔可夫随机域的线性和并行学习

马尔可夫随机域的线性和并行学习

马尔可夫随机域的线性和并行学习Yariv Dror Mizrahi YARIV@MATH.UBC.CA Misha Denil MISHA.DENIL@ Nando de Freitas1;2;3 NANDO@加拿大英属哥伦比亚大学英国牛津大学加拿大先进的研究所,CIFAR NCAP程序摘要我们引入一个新的令人尴尬的并行参数马尔科夫随机学习算法不附带条件的参数是一种有效的字段为一大类的实用模型。

我们的算法并行化自然派系以及为图的有界、其复杂性是程度的线性的在派系数目。

与其竞争对手不同我们的算法是完全平行和对数它也是高效的、需要的数据模型只有数据到本地充分统计量估计参数。

1.介绍马尔可夫随机场(集控) 也称为无概率图模型、是无处不在的结构有显著影响的概率模型一大批领域、包括计算机视觉(李,2001 年; ;; ;Szeliski et al., 2008 年)、计算摄影和图形(et al.加尔, 2004 年)、计算神经科学(艾克利et al., 1985 年)、生物信息学(诺华et al., 2007 年)、传感器网络(刘& 伊勒尔, 2012年)、社会开辟(- 施特劳斯池田, 1990年)、马尔科夫逻辑(· 理查森与多明戈斯, 2006 年)、自然语言处理(拉弗蒂et al., 2001 年; ;; ;萨顿&麦卡勒姆, 2012 年) 和统计物理(Kindermann & Snell, 1980年)。

正如指出在温赖特和Jordan(2008年) 也有很多应用程序在统计中、约束满足与组合优化、纠错码和流行病学。

不出意料、这许多的综合治疗手段重要的话题似乎在过去的四年(Kindermann- 斯内尔, 1980 年; ; ;劳里岑, 1996 年; ;; ;布雷莫, 2001 年;科勒和弗里德曼, 2009 年; ;; ;墨菲, 2012 年).尽管巨大的成功,这些模型拟合的影响他们的数据仍然是一个艰巨的挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CHOL EIG FOR LONG PROD SAVE TRIU
CHOP ELSE FUN LU QR SCHU USER
CLEA END HESS MACR RAND SHOR WHAT
COND EPS HILB MAGI RANK SEMI WHIL
CONJ EXEC IF NORM RCON SIN WHO
11 / 45
Classic MATLAB
< M A T L A B > Version of 01/10/84 HELP is available <> help Type HELP followed by INTRO (To get started) NEWS (recent revisions) ABS ANS ATAN BASE CHAR DET DIAG DIAR DISP EDIT EXP EYE FILE FLOP FLPS INV KRON LINE LOAD LOG ORTH PINV PLOT POLY PRIN REAL RETU RREF ROOT ROUN SQRT STOP SUM SVD TRIL < > ( ) = . , ; \ / ’ + - * :
COS EXIT IMAG ONES RAT SIZE WHY
MIMS
Nick Higham
Functions of a Matrix
12 / 45
Classic MATLAB
<> help fun FUN For matrix arguments X , the functions SIN, COS, ATAN, SQRT, LOG, EXP and X**p are computed using eigenvalues D and eigenvectors V . If <V,D> = EIG(X) then f(X) = V*f(D)/V . This method may give inaccurate results if V is badly conditioned. Some idea of the accuracy can be obtained by comparing X**1 with X . For vector arguments, the function is applied to each component.
MIM Matrix
7 / 45
Interpolation
Definition (Sylvester, 1883; Buchheim, 1886) Distinct e’vals λ1 , . . . , λs , ni = max size of Jordan blocks for λi . Then f (A) = r (A), where r is unique Hermite interpolating poly of degree < s i =1 ni satisfying r (j ) (λi ) = f (j ) (λi ), j = 0 : n i − 1, 2 1 i = 1 : s.
MIMS
Nick Higham
Functions of a Matrix
4 / 45
Jordan Canonical Form
Z −1 AZ = J = diag(J1 , . . . , Jp ), Jk
mk × mk
=

λk
1 λk
... ...
1 λk

Definition f (A) = Zf (J )Z −1 = Z diag(f (Jk ))Z −1 , f (mk −1) )(λk ) ′ f (λk ) f (λk ) . . . (mk − 1)! . ... . f (Jk ) = . f (λk ) . ... f ′ (λ )
k
f (λk )
MIMS
Nick Higham
Functions of a Matrix
5 / 45
The Formula for f (Jk )
Write Jk = λk I + Ek ∈ Cmk ×mk . For mk = 3 we have 0 0 1 0 1 0 3 2 = 0. = 0 0 0 , Ek Ek = 0 0 1 , E k 0 0 0 0 0 0 Assume f has Taylor expansion f (j ) (λk )(t − λk )j f (t ) = f (λk ) + f (λk )(t − λk ) + · · · + + ··· . j!
MIMS
Nick Higham
Functions of a Matrix
8 / 45
Equivalence of Definitions
Theorem The three definitions are equivalent, modulo analyticity assumption for Cauchy. Interpolation: for basic properties. JCF: for solving matrix equations (e.g., X 2 = A, eX = A). For evaluation (normal A). Cauchy: various uses.
MIMS
Nick Higham
ρ(A) < 1.
Functions of a Matrix
3 / 45
Multiplicity of Definitions
There have been proposed in the literature since 1880 eight distinct definitions of a matric function, by Weyr, Sylvester and Buchheim, Giorgi, Cartan, Fantappiè, Cipolla, Schwerdtfeger and Richter. — R. F. Rinehart, The Equivalence of Definitions of a Matric Function, Amer. Math. Monthly (1955)
7 / 45
A1/2 = r (A) =
Nick Higham
Functions of a Matrix
Cauchy Integral Theorem
Definition f (A) = 1 2π i
Γ
f (z )(zI − A)−1 dz ,
where f is analytic on and inside a closed contour Γ that encloses λ(A).
Functions of a Matrix: Theory and Computation
Nick Higham School of Mathematics The University of Manchester higham@ /~higham/ Landscapes in Mathematical Science, University of Bath, November 24 2006
Function of a Matrix
f : Cn×n → Cn×n for an underlying scalar function f . These are not matrix functions: trace(A), det(A). The adjugate (or adjoint) matrix. Transfer function f (t ) = B (tI − A)−1 C . sin A = (sin aij ). These are matrix functions: A2 + ···. eA = I + A + 2! A2 A3 + + ···, log(I + A) = A − 2 3 A−1 , A1/2 .
Outline Definition of f (A) Motivation and MATLAB eA and its Frechét derivative A1/2: Modified Newton Methods
1
2
3
4
MIMS
Nick Higham
Functions of a Matrix
2 / 45
−1
y (0) = y0 ,
′ y ′ (0) = y0
√ ′ sin( A t )y0 ,
√ where A is any square root of A. MATLAB has expm, logm, sqrtm, funm.
MIMS
Nick Higham
Functions of a Matrix
MIMS
Nick Higham
Functions of a Matrix
9 / 45
Equivalence of Definitions
Theorem The three definitions are equivalent, modulo analyticity assumption for Cauchy. Interpolation: for basic properties. JCF: for solving matrix equations (e.g., X 2 = A, eX = A). For evaluation (normal A). Cauchy: various uses. For computation: Use the definitions (with care). Schur decomposition for general f . Methods specific to particular f .
相关文档
最新文档