实训报告:正弦波振荡器设计

合集下载

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告4.改变电容 C4的值,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏,并做好记录。

填入表 1.3 中。

5.将 C4 的值恢复为0.033μF,分别调节 Rp 在最大到最小之间变化时,观察振荡波形,并做好记录。

填入表 1.4 中。

四、暑假记录与数据处理1、电路的直流电路图和交流电路图分别如下:(1):直流通路图2)交流通路图2、改变电容 C 6的值时所测得的频率 f 的值如下:3、C40.033μF0.33μF0.01μFC6(pF)270470670270470670270470670F(Hz)494853.5403746.8372023.832756.832688.232814.4486357.7420875.4373357.21)、当 C4=0.033uF 时:C6=270pF 时, f= 1/T=1000000/2.0208=494853.5HZC6=470pF 时, f=1/T=1000000/2.4768=403746.8HZC6=670pF 时, f=1/T=1000000/2.6880=372023.8HZ2)、当 C4=0.33uF 时:C6=270pF 时, f= 1/T=1000000/30.5280=32756.8HC6=470uF时, f= 1/T=1000000/30.5921=32688.2HZC6=670uF 时, f= 1/T=1000000/30.4744=32814.4HZ3)、 C4=0.01时:当 C6=270uF 时,当 C6=270uF 时, f=1/T=1000000/2.0561=486357.7HZ当 C6=470uF 时, f=1/T=1000000/2.3760=420875.4HZ当 C6=670uF 时, f=1/T=1000000/2.6784=373357.2HZ2、将 C4 的值恢复为0.033μ F,分别调节 Rp 在最大到最小之间变化时的频率和波形如下:Rp(KΩ)5040302010F(HZ)403746.8416666.7420875.4425170.1422582.8529553.3(3)、当 Rp=30k 时, f= 1/T=1000000/2.3760=420875.4HZ(4)、当 Rp=20k 时, f= 1/T=1000000/2.3520=425170.1HZ(5)、当 Rp=10k 时, f= 1/T=1000000/2.3664=422582.8HZ(6)、当 Rp=0k 时, f= 1/T=1000000/2.3280=529553.3HZ总结:由表一可知,当 C4 较大(既为 0.33PF)时,不管 C6 如何变化,电路所输出的波形的频率比较稳定,而且没有失真。

模拟电子实验报告四-正弦波振荡器

模拟电子实验报告四-正弦波振荡器

模拟电子实验报告四-正弦波振荡器
正弦波振荡器是一种重要的电子器件,被广泛应用在各类电子系统中,本实验旨在使用非线性元件(晶体管)构建一个正弦波振荡电路,并且研究其工作的电压、频率和幅值等参数,以更好地理解振荡器的工作原理及应用原理。

实验准备:
操作板、非线性元件(晶体管)、电阻、电感及相关测量仪器等必备设备和元件。

实验步骤:
(1)首先,将晶体管接入操作板,并将相关电阻、电感及元件安装到板上,确保晶体管正确连接。

(2)通过对各参数(电阻,电感,电压等)的测量,确定其输出正弦波的振荡幅度以及振荡频率。

(3)设定相关电阻,电感,电压,测量振荡器的输出正弦波电压,记录测量数据。

(4)重复以上测量过程,在不同的参数条件下,测量不同的振荡参数,观察其变化情况,对照实验仪表的读数,检查测量结果的准确性。

实验结果:
随着振荡电路电压及其他参数的变化,晶体管输出正弦波的幅度、频率也发生变化。

当晶体管工作在20 V电压下,输出正弦波的幅度为2 V,频率为295 Hz。

当晶体管工作在30 V电压时,输出正弦波的幅度为2.5 V,频率为325 Hz。

当晶体管工作在40 V电压时,输出正弦波的幅度为3 V,频率为355 Hz。

通过本次实验,发现晶体管输出正弦波的幅度和频率随着电压的变化而变化,且随着电压的增加,频率有逐渐增加的趋势。

由此可见,正弦波振荡电路是一个复杂但可靠稳定的电子系统,能够实现预期的输出结果,这是通过对相关参数进行优化来实现的。

此外,它也可以应用于多种电子系统,作为信号源,应用较为广泛。

电子电路综合实验-LC正弦波振荡器报告

电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。

由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。

2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。

rc正弦波振荡实验报告

rc正弦波振荡实验报告

竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。

按图1-1连接实验电路,输出端uo接示波器。

1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。

描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。

1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。

1.4.器振荡频率fo,并与理论值进行比较。

图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。

图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。

2.(1)二极管控制电路增益,实现稳幅。

二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。

稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。

负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。

也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。

(2)若断开二极管,波形会变得极不稳定。

正弦波振荡器设计报告

正弦波振荡器设计报告

正弦波振荡器设计报告一、实验要求设计一个正弦波振荡器,工作频率在20~100MHz范围内选择,器件和电路类型自选。

使用Multisim进行仿真。

二、设计思路1.振荡器要满足振荡平衡条件、起振条件、稳定条件。

2.第八章学习了LC正弦波振荡器(包括三端式振荡器和互感耦合振荡器)和石英晶体振荡器。

相对而言,对三端式振荡器掌握较为熟练,故选择此类。

3.三端式振荡器要满足振荡的三个条件,须遵守“射同基反”原则,同时满足振幅条件。

4.三端式振荡器包括电容式三端振荡器和电感三端式振荡器。

两者相比,电容式三端振荡器具有输出波形好、频率稳定度好的优点,故选择此类。

5.课本上介绍了多种电容反馈式三端振荡器,其中Siler电路克服了前面各电路的缺陷,具有诸多优点,且在实际中应用较多,故选择此种电路。

三、电路图四、电路原理1.图中R2、R3提供固定偏置,调节R6提供起振条件,R1、C7提供自给偏置,C6、C7、C8为隔直电容,C1、C2、C3、C4、L1组成的回路提供正反馈,满足“射同基反”原则。

2.反馈系数β≈C1/C2=1/2。

振荡频率≈1/{2π×[L1(C3+C4)]}½=35.588MHz。

3.反馈系数与频率的调节互不影响。

由于C4与L1并联,所以C4的大小不影响回路的接入系数。

4.调节C4对振幅稳定度影响较小,但对振幅大小影响很明显。

振荡回路中的电容大小对振荡频率的大小影响更明显。

五、仿真结果输出波形为35.319MHz正弦波,在要求范围内,且与计算结果(35.588MHz)相差不大,波形有微弱失真。

六、问题讨论1.电路启动后,必须要调节一下滑动变阻器R6,振荡器才可以起振。

因此,此振荡属于硬自激。

2.在不加可变电容C5时,波形振幅变化很大,且波形失真严重,出现削底情况。

可能是电路的静态工作点设置的不合适,或是电路噪声过大,加上可变电容C5大大改变了电路性能。

3. 当发射极所连的电阻R 1和电容C 7过大时,调节滑动变阻器起振后,又很快停振了。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告
实验目的:验证正弦波振荡器的工作原理,并探究其参数对振荡频率的影响。

实验原理:
正弦波振荡器是一种能够产生稳定振荡信号的电路。

其基本原理是通过反馈回路将一部分输出信号重新引入到输入端,形成自激振荡。

常见的正弦波振荡器电路有震荡放大器电路和LC 震荡电路等。

实验器材:
- 正弦波振荡器电路板
- 函数发生器
- 示波器
- 电阻、电容等元器件
实验步骤:
1. 将正弦波振荡器电路与函数发生器、示波器连接起来。

2. 调节函数发生器产生一个适当的输入信号,通过示波器观察输出信号的波形。

3. 根据需要,可以调节电阻、电容等元器件的数值,观察输出信号波形的变化。

4. 记录各个参数对输出信号频率的影响。

实验结果:
根据实验步骤进行操作后,记录输出信号的波形和频率,以及各个参数的数值。

根据实验数据绘制实验曲线。

实验讨论:
根据实验结果分析各个参数对输出信号频率的影响,并探究为什么正弦波振荡器能够产生稳定振荡信号。

结论:
正弦波振荡器能够产生稳定振荡信号,并且其频率可以通过控制元器件的数值来调节。

实验结果与原理相符合,说明正弦波振荡器的工作原理有效。

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告
一、实验目的
学习RC正弦波振荡器的组成及其振荡条件。

学习如何设计、调试上述电路和测量电路输出波形的频
率、幅度。

二、实验设备
1、实验箱(台)。

2、示波器。

3、频率计。

4、毫伏表。

三、实验内容及步骤
按图13-1接线(1、2两点接通)。

本电路为文氏电桥RC正弦波振荡器,可用来产生频率范围宽、波形较好的正弦波。

电路由放大器和反馈网络组成。

有稳幅环节的文氏电桥振荡器。

(1)接通电源,用示波器观测有无正弦波电压Vo输出。

若无输出,可调节RP ,使Vo为无明显失真的正弦波,并观察Vo值是否稳定。

用毫伏表测量Vo和Vf的有效值,填入表13-1中,
( 2 )观察在R3=R4=10K2、C1=C2=0.01μf和R3=R4=10k2、C1=C2=0.02μf两种情况下的输出波形(不失真),测量V0、Vf及f0, 填入表13-2和表23-4中,并与计算结果比较。

( 2 )观察在R3=R4=10KQ2、C1=C2=0.01μf和R3=R4=10k2、C1=C2=0.02μf两种情况下的输出波形(不失真),测量V0、Vf及f0,
填入表13-2和表23-4中,并与计算结果比较。

3.无稳幅环节的文氏电桥振荡器
断开1、2两点的接线,接通电源调节RP,使Vo输出为无明显失真的正弦波,测量V0、Vf和f0 ,填入表13-3和表23-4中,并与计算结果比较。

五、实验报告
1、整理实验数据,填写表格。

2、测试Vo的频率并与计算结果比较。

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告实验目的:本实验的目的是通过搭建一个RC正弦波振荡器电路,研究RC电路的振荡特性,并分析RC电路中电流和电压的变化规律。

实验设备:- 信号发生器- 电压表- 电流表- 电阻- 电容- 电源- 连接线- 示波器实验原理:RC正弦波振荡器电路由电容C和电阻R组成。

根据基尔霍夫定律,电路中的电压满足以下方程:V = VR + VC,其中VR为电阻上的电压,VC为电容上的电压。

在电容未充电时,电流通过电阻,而电容不导电。

当电压施加到电路上时,电容开始充电,电流开始减小。

随着时间的流逝,电容上的电压也在增加。

当电容经过一段时间充电后,电压达到最大值,电流达到最小值。

此时电容开始放电,电流再次增大。

随着电容的放电,电压逐渐减小。

电容和电阻的相互作用导致电流和电压的周期性变化,形成正弦波。

实验步骤:1. 将信号发生器的正负极分别连接到电阻R和电容C的一个端口。

2. 将电容的另一个端口连接到电阻的另一端,形成一个闭合的回路。

3. 将电流表连接到电阻上,以测量通过电阻的电流。

4. 将电压表连接到电容上,以测量电容上的电压。

实验结果:通过实验观察,我们可以看到电流和电压随着时间的变化呈现正弦波形。

当电流为最大值时,电压达到最小值,当电流为最小时,电压达到最大值。

电流和电压的变化是周期性的,证明了电路中存在振荡现象。

实验讨论:1. 实验中,我们可以通过调节信号发生器的频率来改变振荡的频率。

2. 通过改变电阻R和电容C的数值,我们可以观察到振荡的幅度和频率的变化。

3. RC振荡器电路还可以应用于实际电路中,例如通信信号源的产生、交流电源的输出等。

实验总结:通过本次实验,我们成功搭建了一个RC正弦波振荡器电路,并观察到了电流和电压的周期性变化。

实验结果验证了RC电路的振荡特性,并加深了对振荡器电路的理解。

实验中我们还发现,通过调节信号发生器的频率、改变电阻和电容的数值,可以对振荡的频率和幅度进行调节。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告正弦波振荡器实验报告引言:正弦波振荡器是电子学中常见的一种电路,它能够产生稳定的正弦波信号。

在本次实验中,我们将通过搭建一个简单的正弦波振荡器电路,来探索正弦波振荡器的工作原理以及其在电子学中的应用。

一、实验目的本实验的主要目的有以下几点:1. 了解正弦波振荡器的基本原理;2. 学习如何搭建一个简单的正弦波振荡器电路;3. 观察并测量正弦波振荡器输出的波形特性;4. 分析正弦波振荡器的频率稳定性和幅度稳定性。

二、实验器材和原理1. 实验器材:- 信号发生器- 电容- 电感- 晶体管- 电阻- 示波器- 电压表- 电流表2. 实验原理:正弦波振荡器的基本原理是利用反馈回路中的放大器和RC(电阻-电容)网络来实现自激振荡。

在本次实验中,我们将使用一个简单的放大器电路和RC网络来构建正弦波振荡器。

三、实验步骤1. 搭建电路:根据实验原理,我们将放大器电路和RC网络按照图中的连接方式搭建起来。

确保电路连接正确且稳定。

2. 调节电路参数:通过调节电容、电感和电阻的数值,使得电路能够产生稳定的正弦波信号。

调节电路参数时,可以使用示波器来观察输出波形,并通过电压表和电流表来测量电路中的电压和电流数值。

3. 观察和测量输出波形:连接示波器,并调节示波器的设置,使其能够显示电路输出的正弦波信号。

观察输出波形的频率、幅度以及波形的稳定性。

4. 分析波形特性:通过改变电路参数,观察和测量不同条件下的输出波形特性。

分析正弦波振荡器的频率稳定性和幅度稳定性,并记录实验数据。

四、实验结果和数据分析在本次实验中,我们成功搭建了一个正弦波振荡器电路,并通过示波器观察到了稳定的正弦波输出。

通过测量电路中的电压和电流数值,我们得到了一系列实验数据。

根据实验数据,我们可以分析正弦波振荡器的频率稳定性和幅度稳定性。

频率稳定性是指正弦波振荡器输出信号的频率是否能够保持在一个稳定的数值范围内。

幅度稳定性是指输出信号的振幅是否能够保持稳定。

模拟电子技术---RC正弦波振荡器实验报告

模拟电子技术---RC正弦波振荡器实验报告

模拟电子技术---RC 正弦波振荡器实验报告一、实验室名称第一实训楼216二、实验目的1、 进一步学习RC 正弦波振荡器的组成及其振荡条件2、 学会测量、调试振荡器三、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。

若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。

RC 串并联网络(文氏桥)振荡器电路型式如图12-2所示。

振荡频率 RC21f O π 起振条件 |A|>3 电路特点 可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。

可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。

实验电路构成①RC 串并联选频网络②电压串联负反馈放大电路由带星号的电位器*w R 和电阻F R 构成的支路,将输出端信号引到1T 的射极,与1T 的射极电阻(1.2K )组成电压串联负反馈,从而引入两级间的电压串联负反馈。

图12-2RC串并联选频网络图12-4 RC串并联选频网络振荡器图12-2 RC串并联网络振荡器原理图注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。

四、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、频率计5、直流电压表6、 3DG12×2 或 9013×2电阻、电容、电位器等五、实验内容1、 RC串并联选频网络振荡器(1)按图12-4组接线路图12-4 RC 串并联选频网络振荡器(2) 断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。

(3) 接通RC 串并联网络,并使电路起振,用示波器观测输出电压u O 波形,调节R f 使获得满意的正弦信号,记录波形及其参数。

(4) 测量振荡频率,并与计算值进行比较。

(5) 改变R 或C 值,观察振荡频率变化情况。

(6) RC 串并联网络幅频特性的观察将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。

集成rc正弦波振荡器实验报告

集成rc正弦波振荡器实验报告

集成RC正弦波振荡器实验报告引言在电子技术领域中,正弦波振荡器是一种常见且重要的电路。

它能够产生稳定的正弦波信号,被广泛应用于通信、测量以及控制系统中。

本实验旨在通过集成RC电路设计和实现一个正弦波振荡器,并进行详细的探索和分析。

一、电路设计1. RC电路原理RC电路是由电阻(R)和电容(C)组成的一种基本电路。

在充电过程中,电容器会通过电阻放电,导致电压逐渐减小;在放电过程中,电容器会再次通过电阻充电,导致电压逐渐增大。

当电容器充放电周期很短而频率很高时,RC电路就能产生连续变化的电压,形成一个振荡器。

2. RC正弦波振荡器的设计要求一个RC正弦波振荡器的设计需要满足以下要求:•可以产生稳定的正弦波信号;•输出波形的频率和幅度应可调节。

3. RC正弦波振荡器的基本原理RC正弦波振荡器的基本原理是通过将一个放大器的输出信号反馈至输入端,形成一个正反馈回路。

当回路增益大于等于1时,系统会不断振荡产生正弦波信号。

二、电路实现1. 基本RC正弦波振荡器电路图为了实现RC正弦波振荡器,我们可以采用如下电路图:•在非反相输入端连接一个电阻R和电容C,形成一个低通RC滤波器;•输出通过一个放大器反馈至输入端,产生正反馈。

2. 具体电路参数的选择在设计RC正弦波振荡器时,我们需要选择合适的电阻和电容数值,以控制振荡器的频率和幅度。

这里我们选择R=10kΩ和C=1μF。

3. 搭建电路实验平台为了实现RC正弦波振荡器,我们需要搭建一个电路实验平台:•使用集成运算放大器(Op-Amp)作为放大器,例如LM741;•将电阻R和电容C按照电路图连接至Op-Amp;•使用函数发生器作为输入信号源,连接至Op-Amp的输入端;•连接示波器至Op-Amp的输出端,用于观测输出波形。

三、实验过程1. 搭建实验电路根据电路图和参数选择,通过实验器材搭建RC正弦波振荡器实验电路。

2. 设置函数发生器参数设置函数发生器的频率和幅度,以达到所需的正弦波输出。

《高频电子线路》正弦波振荡器实验报告

《高频电子线路》正弦波振荡器实验报告

《高频电子线路》正弦波振荡器实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:正弦波振荡器一、实验目的和要求通过实验,学习克拉泼振荡器的工作原理、电路组成和调试方法,学习电容三点式振荡器的设计方法,利用Multisim仿真软件进行仿真分析实验。

二、实验内容和原理(一)实验原理1、正弦振荡器的基本原理;2、产生等幅震荡的两个基本条件:相位条件和幅度条件)1 利用正反馈将电源接入瞬间的一个激励不断通过谐振网络滤波放大得到一个只含有一个频率成分的正弦。

2 振幅条件:环路增益在放大倍率为1时的偏导数(对输出电压)小于0.相位条件:谐振频率的信号输出相位为2π整数倍(二)实验内容(1)设计振荡频率为9.5MHz的克拉泼振荡器。

(2)用Multisim进行仿真,用双踪示波器观察振荡器器输出信号波形,并用频率计测量振荡频率,并与理论计算结果进行对比。

(3)改变电阻R3的阻值,用电压表测量振荡管的直流静态工作电压。

三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、频率计、电压表、直流电源。

四、操作方法与实验步骤及实验数据记录和处理1、设计频率为9.5MHz的克拉泼振荡器电路图。

C11000pF R212kΩR12kΩL110mHR4100ΩXSC3ABExt Trig++__+_L23.2uHC41000pFR310kΩKey=A0 %C31000pF C510µFC610µFV112VL322mH C21µFC7100pFXFC1123Q12N29232、用Multisim 进行仿真,用双踪示波器观察振荡器器输出信号波形,并用频率计测量振荡频率,并与理论计算结果进行对比。

(1)仿真波形和频率测量(2)理论分析计算根据电路图提供的振荡回路参数,计算设计电路的振荡频率与实际测试的振荡频率进行对比。

计算频率值02f LCπ==8.897MHz电路测试频率值f = 9.325MHz 00||100%f f f -=⨯=频率稳定度 5.3%对比分析其产生误差的原因:3、改变电阻R3的阻值,用电压表测量振荡管Q1的直流静态工作电压。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告引言:正弦波振荡器是一种很重要的电路,在电子工程中有着广泛的应用。

它是实现信号产生和调制的基础,因此学习正弦波振荡器是学习电子工程的基础。

在实验中,我们将会学习到如何制作一个简单的正弦波振荡器电路,以及探究它的参数和特性。

实验设计:1.电路连接正弦波振荡器的基本构成为反馈电容C和反馈电阻R,而共同作用下,振荡器能够自持续发生正弦振荡信号。

电路连接如下图所示。

2.器材准备我们需要以下器材:- 电阻R,可调范围0-22kohm;- 电容C,为470nF;- 操作放大器,使用的是UA741;- 示波器。

3.参数测量和分析首先,我们需要测量电路中的R和C值。

然后,通过调整电位器,我们可以改变电路中的R值,进而观察输出波形的变化。

利用示波器,我们可以测量电路的输出波形,并通过测量峰峰值、频率和相位等参数,从而对电路性能进行分析。

实验结果:通过测量,我们得到了以下结果:在电容值为470nF的情况下,电路的输出波形为正弦波,并且频率在1KHZ左右。

当调整电位器改变电路中的R值时,可以观察到波形振幅随着R值的增加而增大,同时频率也有所变化。

具体数据如下:R/kohm|频率/KHZ|峰-峰值/V|相位/°--|--|--|--4.7||||10|1.18|495mV||15|1.03|863mV||20|0.91|1.2V||22|0.84|1.38V||24|0.78|1.54V||从数据可以看出,随着R值的增加,频率变低,峰-峰值变大。

我们还可以发现,在较大的R值下,电路的频率变得稳定,同时峰-峰值也变得更加平稳。

结论:通过实验,我们探究了正弦波振荡器的参数和特性,并得到了如下结论:1.正弦波振荡器中,反馈电容和反馈电阻是关键构成部分,能够实现自持续发生正弦振荡信号。

2.在电容值不变的情况下,随着电阻R值的增加,电路中的正弦波的频率降低,同时峰-峰值增大。

3.当R值达到一定范围时,电路的频率和峰-峰值变得更加稳定。

正弦波电路实训报告总结

正弦波电路实训报告总结

一、实训目的本次正弦波电路实训旨在使学生了解正弦波电路的基本原理、组成和功能,掌握正弦波电路的设计、搭建、调试和分析方法,培养学生的动手能力和实际操作技能。

通过实训,使学生能够:1. 理解正弦波电路的基本原理和组成;2. 掌握正弦波振荡器的工作原理和设计方法;3. 学会使用示波器、信号发生器等仪器进行正弦波电路的调试和分析;4. 培养学生的团队合作精神和创新意识。

二、实训内容1. 正弦波振荡器的基本原理和组成正弦波振荡器是一种能够产生正弦波信号的电路,主要由放大电路、选频网络和稳幅环节组成。

放大电路用于放大输入信号,选频网络用于选择所需的振荡频率,稳幅环节用于稳定输出信号的幅度。

2. 振荡器的设计和搭建根据实训要求,选择合适的振荡器电路,如文氏电桥振荡器、LC振荡器等。

设计电路参数,如电阻、电容、电感等,并进行计算。

搭建电路,连接各个元件,注意电路的布局和布线。

3. 振荡器的调试和分析使用示波器观察输出信号的波形,调整电路参数,使输出信号满足设计要求。

分析输出信号的幅度、频率、相位等参数,与理论计算值进行比较。

4. 不同振荡器的性能比较搭建不同类型的振荡器电路,如文氏电桥振荡器、LC振荡器等,比较它们的性能差异,如振荡频率、输出幅度、波形失真等。

三、实训过程及结果1. 实训过程(1)学习正弦波电路的基本原理和组成,了解各种振荡器的工作原理。

(2)根据实训要求,选择合适的振荡器电路,进行电路设计。

(3)搭建电路,连接各个元件,注意电路的布局和布线。

(4)使用示波器观察输出信号的波形,调整电路参数,使输出信号满足设计要求。

(5)分析输出信号的幅度、频率、相位等参数,与理论计算值进行比较。

(6)搭建不同类型的振荡器电路,比较它们的性能差异。

2. 实训结果(1)成功搭建了文氏电桥振荡器,输出信号满足设计要求。

(2)通过调试,使输出信号的幅度、频率、相位等参数达到理论计算值。

(3)比较了文氏电桥振荡器和LC振荡器的性能差异,了解了不同振荡器的特点。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告实验目的,通过搭建正弦波振荡器电路,了解正弦波振荡器的工作原理,并对其性能进行测试和分析。

实验器材,电源、电阻、电容、三极管、示波器、万用表等。

实验原理,正弦波振荡器是一种能够产生稳定的正弦波信号的电路。

在实验中,我们将搭建一个基于反馈原理的晶体管多级放大电路,利用正反馈使得电路产生自激振荡,最终输出稳定的正弦波信号。

实验步骤:1. 按照电路图连接电路,确认连接无误后接通电源。

2. 调节电源电压和电流,使其符合电路要求。

3. 使用万用表测量电路中各个元器件的电压和电流,并记录下来。

4. 连接示波器,观察输出波形,并进行调节,使其尽可能接近理想的正弦波形。

5. 测量输出波形的频率、幅度等参数,并进行性能分析。

实验结果与分析:在实验中,我们成功搭建了正弦波振荡器电路,并通过调节电路参数和观察输出波形,得到了稳定的正弦波信号。

经过测量和分析,我们得到了正弦波振荡器的频率、幅度等参数,验证了电路的正弦波输出性能。

实验中还发现,电路中各个元器件的参数对正弦波振荡器的性能有着重要影响。

例如电容和电阻的数值大小,对振荡频率和幅度有着直接影响;晶体管的工作点稳定性,也对输出波形的稳定性有着重要影响。

结论:通过本次实验,我们深入了解了正弦波振荡器的工作原理,并通过实际搭建和测试,验证了其性能。

正弦波振荡器作为一种重要的信号源电路,在通信、测量、控制等领域有着广泛的应用。

因此,对正弦波振荡器的深入了解和实际操作,对我们的专业学习和工程实践有着重要意义。

通过本次实验,我们不仅学习了正弦波振荡器的基本原理和性能分析方法,也提高了实际操作能力和问题解决能力。

在今后的学习和工作中,我们将继续努力,加强对电路原理和实际应用的理解,为将来的科研和工程实践打下坚实的基础。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告引言在电子学领域中,正弦波振荡器是一种重要的电路。

它通过产生稳定且频率可调的正弦信号,在许多应用中起到关键作用。

本实验旨在设计并搭建一个正弦波振荡器电路,并详细分析其工作原理和性能。

实验装置和步骤实验中使用的装置包括:电源供应器、信号发生器、元件(如电容、电感、电阻)和示波器。

实验分为以下几个步骤:1. 搭建电路:根据给定的电路图,依次连接元件和仪器。

确保电路连接的稳定性和正确性。

2. 设置电源:将电流源供应器连接到电路,调整输出电压,并保证电源稳定。

这是实现正弦波振荡的基础。

3. 信号发生器设置:使用信号发生器提供一个直流参考电压,作为振荡器的输入信号。

逐步调整频率,找到振荡器产生最稳定的正弦波的频率。

4. 输出测量:将示波器连接到电路的输出端,通过示波器的屏幕观察输出信号的波形和频率。

调整电路中的元件数值,使输出波形尽可能接近理想的正弦波。

工作原理与分析正弦波振荡器的工作原理基于放大器和反馈网络的相互作用。

根据霍尔的理论,正弦波振荡器需要满足以下两个条件:放大环路增益大于1并且相位延迟为360度。

在本实验中,我们采用集成运算放大器作为放大器和RC网络作为反馈网络。

RC网络是由电容和电阻串联而成,起到了相位延迟的作用。

电容的充放电过程导致输出信号在反馈回路中相位延迟,满足相位延迟的要求。

此外,电容和电阻的数值也决定了输出信号的频率。

放大器的设计是整个电路中的核心部分。

通过调整放大器的增益,我们可以控制正弦波振荡器的输出信号幅度。

通过选择合适的放大器类型和元件数值,同时结合反馈网络的设计,我们可以实现一个稳定且频率可调的正弦波输出。

实验结果与讨论在实验中,我们通过调整电路中元件的数值和信号发生器的频率,成功实现了一个正弦波振荡器。

通过示波器观察到的波形可以明显地看出,输出信号接近理想的正弦波。

频率的可调范围也较广,满足了实际应用的需求。

值得注意的是,在实际电路中存在一些不理想因素,如元件本身的非线性特性、放大器的失真等。

最新正弦振荡器实验报告

最新正弦振荡器实验报告

最新正弦振荡器实验报告实验目的:本实验旨在设计、搭建并测试一个基本的正弦振荡器电路。

通过实验,我们将进一步理解正弦波的产生原理,振荡器的工作方式,以及电路元件对振荡频率和波形的影响。

实验设备和材料:1. 运算放大器(如LM741)2. 电阻器、电容器(用于形成RC振荡电路)3. 电源(±15V)4. 示波器(用于观察输出波形)5. 面包板(用于临时搭建电路)6. 跳线实验步骤:1. 根据预先设计的电路图,在面包板上搭建RC振荡器电路。

电路主要由运算放大器、电阻器和电容器组成。

2. 连接电源,为电路提供所需的±15V电压。

3. 将示波器的探头连接到振荡器电路的输出端,以便于观察输出波形。

4. 打开示波器,调整适当的时间和电压尺度,确保正弦波形清晰可见。

5. 改变电路中的电阻器和电容器的值,观察并记录不同组合下振荡频率和波形的变化。

6. 确保振荡器在不同的电源电压下都能稳定工作,并记录波形的稳定性。

实验结果:1. 在标准电阻和电容值下,振荡器成功产生了稳定的正弦波输出。

波形频率和振幅符合预期。

2. 电阻和电容值的改变导致了振荡频率的显著变化,这与理论上的RC 振荡器频率公式相符。

3. 在不同的电源电压下,振荡器的波形稳定性有所差异。

在推荐的电源电压范围内,波形最为稳定。

实验讨论:本次实验中,我们观察到的正弦波形的质量和稳定性受到电路元件参数和电源电压的影响。

通过调整元件参数,我们能够在一定范围内控制振荡频率。

此外,实验也表明,电源电压的稳定性对于振荡器的正常工作至关重要。

结论:通过本次实验,我们成功地搭建并测试了正弦振荡器电路。

实验结果验证了理论设计的正确性,并加深了对正弦波产生原理的理解。

未来的工作可以包括进一步优化电路设计,提高振荡器的频率稳定性和波形质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频电路(实训)报告项目:正弦波振荡器仿真设计班级:2014级应电2班姓名:**学号: 32摘要自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。

正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。

基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。

根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。

关键词:电容三点式;振荡器;multisim;目录1、绪论..................................................... 错误!未定义书签。

2、方案的确定............................................... 错误!未定义书签。

3、工作原理、硬件电路的设计和参数的计算..................... 错误!未定义书签。

反馈振荡器的原理和分析................................... 错误!未定义书签。

. 电容三点式振荡单元...................................... 错误!未定义书签。

电路连接及其参数计算..................................... 错误!未定义书签。

4、总体电路设计和仿真分析................................... 错误!未定义书签。

组建仿真电路.............................................. 错误!未定义书签。

仿真的振荡频率和幅度...................................... 错误!未定义书签。

5、参数调整对比/结论........................................ 错误!未定义书签。

附录........................................................ 错误!未定义书签。

附录Ⅰ元器件清单............................................ 错误!未定义书签。

附录Ⅱ电路总图.............................................. 错误!未定义书签。

1、简介振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。

凡是可以完成这一目的的装置都可以作为振荡器。

一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。

放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。

正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。

选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。

振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压U和输入电压i U要相等,这是振幅平衡条件。

二是f U和i U必须相位相同,这是相位f平衡条件,也就是说必须保证是正反馈。

一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。

本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。

电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。

因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。

本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。

报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。

主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

2、方案的确定正弦波振荡器分为LC振荡器、RC振荡器和晶体振荡器等类型。

其中LC和晶体振荡器用于产生高频正弦波,RC振荡器用于产生低频正弦波。

LC振荡器是一种能量转换器,由晶体管等有源器件和具有选频作用的无源网络及反馈网络组成LC振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。

由课程设计的技术指标来看本次正弦波振荡器课程设计选择电容反馈三点式振荡器。

电容反馈的三点式振荡器主要是通过电容反馈,所以可减弱高次谐波的反馈,使振荡产生的波形得到改善,又适用于较高波段工作,目前已被广泛的应用于本振,调频,VCO 压控振荡器等高频电路中。

3、工作原理、硬件电路的设计和参数的计算反馈振荡器的原理和分析反馈振荡器原理方框图如图所示。

反馈型振荡器是由放大器和反馈网络组成的一个闭合环路,放大器通常是以某种选频网络(如振荡回路)作负载,是一个调谐放大器。

图反馈振荡器方框图为了能产生自激振荡,必须有正反馈,即反馈到输入端的自你好与放大器输入端的信号相位相同。

定义A (S )为开环放大器的电压放大倍数:)()()(S U S U S A i o =F(S)为反馈网络的电压反馈系数:)()()('S U S U S F o i =)(S A f 为闭环电压放大倍数:)()(1)()()()(S F S A S A s U s U S A i o f ⋅-== 在振荡开始时,由于激励信号较弱,输出电压的振幅o U 则比较小,此后经过不断放大与反馈循环,输出幅度o U 开始逐渐增大,为了维持这一过程使输出振幅不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即:1)(>jw T因此起振的振幅条件是:1..>⋅F A起振的相位条件是:πϕϕn F A 2=+要使振荡器起振必须同时满足起振的振幅条件和相位条件。

其中起振的相位条件即为正反馈条件。

. 电容三点式振荡单元该单元由放大器、反馈网络和选频网络组成,放大单元由2N2923三极管构成放大电路,将反馈信号放大,反馈网络起正反馈,将信号反馈到放大单元输入,进一步放大,选频网络根据自身参数,在复杂的频谱中选取与自身谐振频率相同的频率将其反馈,所以此信号得以不断放大最终由输出端输出。

其单元电路图如图。

图振荡电路电路连接及其参数计算如图为电容反馈三点式原理电路,图中L,C4和C5组成振荡器回路,作为晶体管放大器的负载阻抗,反馈信号从C5两端取得,送回放大器输入端。

图电容三点式振荡器对于晶体管静态工作点,合理地选取振荡器的静态工作点,对振荡器的起振,工作的稳定性,波形质量的好坏有着密切的关系。

一般小功率振荡器的静态工作点应选在远离饱和区而靠近截止区的地方。

根据上述原则,一般小功率振荡器集电极电流 I CQ大约在之间选取,故本设计电路中选取I CQ=1mA V CEQ=I CQ*R2=*2000=2Vβ=100由图可知发射极与两个同性质电抗相连,集电极与基极间连接一个异性质电抗,满足了相位平衡条件。

技术指标给出f0=9MHz,令L=4μH,通过学习可知电路的振荡频率公式f0为:f0=1/2π[L(C2C1/ (C2+C1)]1/2图中的C4 与C5分别为公式中的C1和C2,通过计算可得出总电容CC = C2C1/ (C2+C1)=*10^-11F令C1 =150pF,则通过公式C = C2C1/ (C2+C1)可以计算出C2≈150pF由以上数值可以计算出电路的理论计算振荡器的频率为f0≈引起振荡频率不稳定的原因有谐振回路的参数随时间、温度和电源电压的变化而变化、晶体管参数的不稳定,以及振荡器负载的变化等。

为了得到稳定的振荡频率,除选用高质量的电路原件、采用直流稳压电源以及恒温等措施外,还应提高振荡回路的品质因数Q值,因为Q值越大,相频特性曲线在0f附近的斜率也越大,选频特性就越好。

4、总体电路设计和仿真分析组建仿真电路运用Multisim软件,在电子平台上组建仿真电路,连接如图所示仿真电路图仿真电路仿真的振荡频率和幅度(2)点击电源开关电路开始进行仿真,双击示波器,显示出如图所示震荡波形。

由波形可知振幅有效值大于5V。

图振荡波形(3)双击频率计,显示如图所示的频率仿真值图频率仿真值电路的理论计算振荡器的频率为计算得出f0≈而仿真的实际频率值f0=,与理论值稍有偏差。

4、参数调整对比/结论1、当L1=4uH,C4=150pF,C5=150pF时,振荡波形和振荡频率为当L1=8uH,C4=150pF,C5=150pF时,振荡波形和振荡频率为上面这组对比说明了:L1数值越大,输出频率越小、输出波形越宽。

2、当L1=4uH,C4=150pF,C5=150pF时,振荡波形和振荡频率为当L1=4uH,C4=300pF,C5=300pF时,振荡波形和振荡频率为上面这组对比说明了:C4、C5越大,输出频率就越小。

C4、C5越小,输出波形就越窄。

3、当L1=4uH,C4=150pF,C5=150pF时,反馈系数为: 1 振荡波形和振荡频率为当L1=4uH,C4=300pF,C5=150pF时,反馈系数为: 2 振荡波形和振荡频率为当L1=4uH,C4=150pF,C5=300pF时,反馈系数为:振荡波形和振荡频率为上面这组对比说明了:当C4的值越大的时候,输出来得波形也就高度也跟着增高,C4的值越小,输出来的波形的高度也跟着减小;C4越大、C5越小,反馈系数越大,C4越小、C5越小,反馈系数越小;当反馈等于1的时候,输出频率是最高,效果是最好的。

小结:电容三点式振荡电路优缺点:电容三点式振荡器的优点是输出波形好。

这是由于反馈电压取自电容支路,而电容对高次谐波的阻抗很小,因而输出波形中因非线性产生的高次谐波的成分较小,当振荡器较高时,可以直接利用晶体管三点式振荡电力的振荡频率。

这种电路的缺点是改变电容来调节振荡频率时,反馈系数F 也会随之改变,严重时会影响输出电压的稳定和起振条件。

此次设计主要针对各种电容反馈三点式电路提出自己的设计方案,并利用仿真软件Multisim来实现自己的设计电路图。

设计中用到了考毕兹振荡器,克拉波振荡器,西勒振荡器电路等在通信电子电路课程中学到的知识。

通过对上述振荡器的设计与仿真,了解了正弦波振荡器在结构上的利与弊,是我们在选择正弦波振荡器时更加明确哪种振荡器更适合。

这次技能训练,让我们更好的掌握了各种电路的测试与计算;熟悉了电子仿真的工作原理和其具体的使用方法.更深刻的理解课本知识。

相关文档
最新文档