超声图像研究去噪法

超声图像研究去噪法

超声图像研究去噪法

滤波图像降噪算法研究报告

研究生课程论 文 基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2018.9——2018.11 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:2018 年11月11日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有:<1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 <2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3>适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4>灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5>信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一

实验一图像去噪

实验一图像去噪 在现代医学中,医学影像技术广泛应用于医学诊断和临床治疗,成为医生诊断和治疗的重要手段和工具。如今,医学图像在医疗诊断中起着不可低估的重要作用,核磁共振,超声,计算机X射线断层扫描以及其他的成像技术等,都是无侵害的器官体外成像的有效手段。这些技术丰富了正常的何病态的解剖知识,同时也成为诊断和医疗体系的重要组成部分。 然而,由于不同的成像机理,医学图像往往存在时间、空间分辨率和信噪比的矛盾。医学成像收到各种实际因素的影响,如患者的舒适度,系统的要求等等,需要快速成像。图像中的噪声大大降低了图像的质量,使一些组织的边界变得模糊,细微结构难以辨认,加大了对图像细节识别和分析的难度,影响医学诊断。因此医学图像的去噪处理既要能有效的去处噪声,又要能很好的保留边界和结构信息。本实验通过对测试图像加不同类型的噪声,然后分别用各种滤波法处理,然后以定量分析各种滤波方法的特点。 一.实验原理 1.噪声的分类 根据噪声的统计特征可分为平稳随机噪声和非平稳随机噪声两种。根据噪声产生的来源,大致可以分为外部噪声和内部噪声两类。外部噪声主要有四种常见的形式: (1)光和电的基本性质引起的噪声。如电流可看作电子或空穴运动,这些粒子运动产生随机散粒噪声,导体中的电子流动的热噪声,光量子运动的光量子噪声等。 (2)由机械运动引起的噪声。如接头震动使电流不稳,磁头或磁带抖动等。(3)设备元器件及材料本身引起的噪声。 (4)系统内部电路的噪声。 而在图像中,噪声主要有三个特点: (1)叠加性 (2)随机性 (3)噪声和不同图像区域之间的相关性。

医学图像中,典型的噪声有:高斯噪声,锐利噪声,指数噪声,均匀噪声,脉冲噪声等等。 2.去噪的方法 人们根据实际图像的特点、噪声的统计特征和频谱分布规律, 发展了各式各样的去噪方法, 其中最为直观的方法是根据噪声能量一般集中于高频、而图像频谱则分布于一个有限区间的这一特点, 采用低通滤波来进行去噪的方法, 从本质上讲, 图像去噪的方法都是低通滤波的方法, 而低通滤波是一把双刃剑, 它在消除图像噪声的同时, 也会消除图像的部分有用的高频信息, 因此, 各种去噪方法的研究实际是在去噪和保留高频信息之间进行的权衡。 图像平滑处理视其噪声图像本身的特性而定, 可以在空间域也可以在频率域采用不同的措施。空间域里的一些方法是噪声去除, 即先判断某点是否为噪声点, 若是, 重新赋值, 如不是按原值输出。另一类方法是平均, 即不依赖于噪声点的识别和去除, 而对整个图像进行平均运算。在频域里是对图像频谱进行修正, 一般采用低通滤波方法, 而不像在空域里直接对图像的像素灰度级值进行运算。在空间域对图像平滑处理常用领域平均法,中值滤波和秩统计滤波。 2.1 多帧平均法 根据噪声空域随机性的特点,可以有效的压缩噪声,增强有用的信息。设噪声为加性噪声,即: g(x,y)=f(x,y)+n(x,y) 式中个g(x,y)为输出图像,f(x,y)为有用信息,n(x,y)为噪声。被测物保持不动,得到M帧图像,进行叠加后,除以m,使m>M,得到平均图像。 2.2 空间域滤波器 2.1.1 均值滤波 均值滤波是将一个像素及其邻域中所有像素的平均值赋给输出图像中相应的像素, 从而达到平滑的目的。其过程是使一个窗口在图像上滑动, 窗口中心位置的值用窗内各点值的平均值来代替, 即用几个像素的灰度平均值来代替一个像素的灰度。其主要的优点是算法简单、计算速度快, 但其代价是会造成图像一定程度的模糊。为解决邻域平均法造成图像模糊的问题, 可采用阈值法、K 邻点平均法、梯度倒数加权平滑法、最大均匀性平滑法、小斜面模型平滑法等。它们

医学影像工作原理及图像获取方式

医学影像工作原理及图像获取方式 2.2医学超声影像工作原理 超声是指高于人耳听觉范围的声波,通常是指频率高于20 kHz的高频振动机检波,应用于医学诊断的超声频率一般在1MHz至几十MHz之间。自1958年商用超声成像产品问世以来,超声医学设备以其实时性、对人体无损伤、无痛苦、显示方法多样,尤其对人体软组织的探测和心血管脏器的血流动力学观察有其独到之处而成为在医学中应用最为广泛的成像设备之一。 超声在医学中的重要作用在于它不但可以穿透人体,而且可以与身体组织相互作用。超声波穿过人体时要经过折射和反射,这可发生在超声波经过的任何交界面上,其作用就如同光束经过一个非均匀物质一样。超声波的波长很短,从而易于窄脉冲波束的实现,因此超声换能器可以做得小而紧凑。 超声在临床应用中主要分为诊断与治疗两个方面:超声诊断采用的是较高频率(多在2MHz以上)与较低声强的超声波,高频可提高对组织的分辨率,用以获得清晰、细致的声像图,而低声强则可降低对组织损伤的副作用。超声治疗采用的是较低频率(通常<1MHz)与较高声强的超声波,低频超声增大对组织的穿透率,而高声强(特别是聚焦后)超声可对组织产生生物效应,用于选择性破坏局灶性病变。 2.2.1超声设备与种类 超声诊断主要应用超声良好的指向性和与光相似的反射、散射、衰减及多普勒(Doppler)效应等物理特性,采用不同的扫查方法,将超声发射到人体内,并在组织中传播,当正常组织或病理组织的声阻抗有一定差异时,它们组成的界面就会发生反射和散射,再将此回波信号接收,加以检波等处理后,显示为波形、曲线或图像等。由于各种组织的界面形态、组织器官的运动状况和对超声的吸收程度等不同,其回波有一定的共性和某些特性,结合生理、病理解剖知识与临床医学,观察、分析、总结这些不同的规律,可对患病的部位、性质或功能障碍程度做出概括性以至肯定性的判断。 超声诊断仪由主机和探头构成,均包括发射、扫查、接收、信号处理和显示等五个部分。超声诊断仪的种类很多,而且互有交叉,按照显示回波方式和空间的不同,主要包括以下几种: 1.A型(Amplitude Mode)超声 A型超声是最早出现的一维超声诊断技术,它将声束传播位置上的组织按距离分布的回波信息在显示器上以幅度调制的形式显示,并从回波的幅度大小、形状及位置进行诊断,回波强则波幅高,回波弱则波幅低。常用A型法测量界面距离、脏器径值以及鉴别病变的物理性质,它是现代各种超声成像的物理基础。 2.B型(Brightness Mode)超声 B超是把组织的一个断层面上的超声回波信息以二维分布形式显示出来,组织内的散射、反射回波信息以辉度调制方式显示,回波强则光点亮,回波弱则光点暗。光点随探头的移动或晶片的交替轮换而移动扫查,由于扫查连续,可以由点、线而扫描出脏器的解剖切面,它是二维空间显示,又称二维超声。 按其成像速度的不同,可分为慢速成像和快速成像,慢速成像只能显示脏器的静态解剖图像,由于每帧图像线数甚多,图像清晰,扫查的空间范围较大。快速成像能显示脏器的活动状态,也称为实时(ReaITime)显像诊断法,但所显示的面积较小,每幅图像线数与每秒显示的帧数相互约制,互为反比。按照扫描方式的不同,又可分为电子线性扫描、电子凸阵扫描、机械扇形扫描和相控阵扫描等。 3.M(Motion Mode)型超声

浅议数字图像去噪技术及其应用

浅议数字图像去噪技术及其应用 数字图像去噪技术一直以来都是数字图像处理研究领域的一个热点问题,该技术在当代已经越来越重要,并广泛应用到人们生活的方方面面。笔者在数字图像去噪技术方面也做了一点粗浅的研究,本文就结合笔者的认识和体会谈一谈几种数字图像去噪方法和数字图像去噪技术在现实中的应用。 标签:数字图像;图像噪声;去噪技术;中值滤波;小波滤波 在数字化发展的今天,信息在人们生活和工作中的作用越来越突出,并逐渐改变着人们的生活和工作方式,其中最主要、最直观的信息就是图像信息。然而,在实际应用中数字图像经常会由于元器件、电阻、电磁干扰等设备因素,温度、光照等外界环节因素以及人为因素的影响产生图像噪声,从而使得图像质量不理想,偏离了原始图片。因此,数字图像去噪就成为一个亟待解决的问题,具有很强的现实意义。下面笔者就谈一谈几种数字图像去噪方法和数字图像去噪技术在现实中的应用。 1 数字图像去噪方法 当前,数字图像去噪的方法有很多,从本质上讲这些方法都是低通滤波的方法。低通滤波既有有利的地方,也有不利的地方,它既能消除图像噪声,又能消除图像中一些有用的高频信息。因而,我们所研究的各种数字图像去噪方法从根本上来说就是权衡去噪和保留高频信息。在数字图像去噪方法中,我们比较常见的有以下几种方法: 1.1 中值滤波算法 中值滤波算法最早是由Turky于1971年提出来的,是一种典型的非线性空间域去噪算法。其算法利用了像素点和噪声点之间的灰度值差别很大这一特性。中值滤波算法的主要原理是:以一个像素为中心取其邻域,然后对邻域中各像素的灰度值进行排序,取中值作为中心像素的灰度值,换句话说就是中心像素点的灰度值被邻域像素点灰度值的中值所替代。这种方法能很好的消灭噪声,但同时也损坏了图像的边缘,造成了部分细节的丢失。因此,部分科学家和学者在此基础上又提出了中心加权中值滤波算法、开关中值滤波算法、极值中值滤波算法等等,这些方法都是针对中值滤波算法的缺陷提出来的,具有很强的实用价值。 1.2 维纳滤波算法 维纳滤波算法是由Wiener提出来的,是一种典型的线性滤波方法。其理论依据是最小均方误差准则,该准则的具体含义是:将含有噪声的信号运用滤波变换后得到的恢复后的估计信号与原信号相比,它们之间有最小的均方差误差。维纳滤波算法既适用于连续平稳随机过程,也适用于离散平稳随机过程。但是,对于非平稳态的随机过程,一般来说,维纳滤波算法不太适用。

基于变分法的医学超声图像去噪研究

基于变分法的医学超声图像去噪研究 【摘要】目的:医学超声图像中斑点噪声的存在,降低了图像质量,本文着重讨论医学超声图像的去噪问题。方法:针对超声图像的斑点噪声,本文基于全变分正则化模型,首先对超声图像进行对数变换,将乘性斑点噪声转化为加性噪声,再对对数变换后的图像进行全变分正则化处理,最后通过指数变换重构超声图像。结果:子宫超声图像去噪实验中,将全变分法与常用的中值滤波和小波变换去噪方法进行对比,结果显示全变分法的去噪性能指标明显优于其余方法。结论:采用基于全变分正则化的方法,不仅很大程度上抑制了医学超声图像的斑点噪声,而且保留了清晰的边缘细节信息,具有重要的学术价值和现实意义。 【关键词】超声图像处理;斑点噪声去噪;全变分正则化模型 0 引言 与X光透视、CT、MRI等医学成像方法相比,医学超声成像因非侵入无创伤性、成像速度快、成本低、操作简便等优点,成为目前普遍应用的医学成像技术。超声诊断作为一种理想的无损检查方法,有着广阔的发展前景。据报道,近十年,世界医学超声仪器的数量以15%左右的速度增长

[1]。然而,由于成像机制的限制,超声图像存在固有的斑点噪声,极大地降低了超声图像质量,增加了图像特征分析的难度,影响了疾病诊断的准确度。因此,超声图像中对斑点噪声的抑制具有重要的学术价值和现实意义。 目前,超声图像去噪方法常见的有中值滤波[2]、直方图[3]和小波变换[4]等。基于小波域的去噪方法,以其良好的时频特性,广泛运用于超声图像去噪。该方法主要基于图像中有用信息和噪声之间的频率特性存在差异的假设,进行频域分析去噪。但实际上假设条件并不总是成立,图像中的有用信息部分和噪声往往在频带上存在重迭。基于小波域的去噪方法容易丢失部分高频分量――图像中的细节和边缘等有用信息,限制了图像质量的提高。最近的研究表明,全变分正则化法对稀疏或梯度稀疏图像的重构效果显著,很好地保留了图像的边缘信息。Rudin等人首次将全变分去噪法引入到图像处理中[5]。由于全变分正则化在边缘检测中的巨大应用价值,近几年研究人员提出很多基于全变分的去噪算法[6-7]。针对超声图像的去噪特殊性,本文提出基于全变分正则化的超声图像去噪方法。首先对超声图像进行对数变换,将乘性噪声转化为加性噪声,再对对数变换后的图像进行全变分正则化处理,最后通过指数变换重构超声图像。本方法去除斑点噪声的同时,能够很好地保留图像的边缘信息。 1 变分法原理

医学影像超声诊断第一部分名词解释+试题含答案

医学影像超声诊断第一部分名词解释 一、名词解释 1、超声医学:是利用超声的物理特性用于诊断人体疾病的一门影像学科。 2、声波:是一种机械波,是由频率在20~20 000 Hz之间声振动源激起的疏密波,该疏密波传播至人的听觉器官(耳)时,可以引起声音的感觉。 3、超声波:声波按其频率分类:<20 Hz为次声波,低于人耳听觉低限;频率20~20 000Hz之间为可听声;>20 000 Hz为超声波,高于人耳听觉。诊断用超声波的频率在1~300 MHz之间,常用2~20 MHz。 4、频率(f):声波在介质中传播时,每秒钟质点完成全振动的次数,单位是赫兹(Hz)。 5、波长(λ):声波在一个周期内振动所传播的距离,单位是毫米(mm)。超声波波长愈短,频率愈高,分辨率愈强。 6、声速(C):声波在介质中传播,单位时间内所传播的距离,单位是米/秒(m/s)。人体软组织的平均声速为1 540 m/s,和水的声速相近。 7、声阻抗:即声阻抗率或声特性阻抗,可以理解为声波在介质中传播所受到的阻力,等于介质的密度与超声在该介质中传播速度的乘积。设Z为声阻,ρ为密度,C为声速,则Z=ρ·C。两介质声阻相差之大小决定其界面处之反射系数。两介质声阻相差愈小,则界面处反射愈少,透入第二介质愈多;反之,声阻相差愈大,则界面处反射愈强,透入第二介质愈少。 8、反射、透射与折射:声波从一种介质向另一种介质传播时,由于声阻抗Z不同(密度ρ、声速C不同),在二种介质之间形成一个声学界面,如果该界面尺寸大于超声波波长,则一部分超声波能量返回到第一介质此即反射。另有一部分能量穿过界面进入第二介质并继续向前传播,称为透射。当两种介质的声速不同时,就会偏离入射声束的方向而传播,称折射。 9、散射:超声波在介质中传播,如果介质中含有大量杂乱的微小粒子,超声波激励这些小粒子成为新的波源,再向四周发射超声波。 10、衍射:超声波在介质中传播,如遇到的物体其直径小于1~2个波长时,则绕过物体继续向前传播,这种现象称为绕射(也称衍射)。 11、吸收与衰减:当声波穿过介质时,由于“内摩擦”或所谓“黏滞性”而使声能逐渐减小,声波的振幅逐渐减低,介质对声能的此种作用即为吸收。这种在介质中传播时出现的声波衰减称为吸收衰减。而声波在前向传播过程中因发生反射、折射及散射等现象使声能随着距离的增加而逐渐减弱,此种现象称为距离衰减。吸收与衰减的程度与超声的频率、介质的黏滞性、导热性、温度及传播的距离等因素有密切关系。 12、换能器:能使电能和机械能相互转变的装置,又称探头。 13、正压电效应:某些特异性的材料,在外部拉力或压力的作用下引起材料内部原来重合的正负电荷中心发生相对偏移,在材料表面出现符号相反的表面电荷,即由机械力的作用产生了电场,这种将机械能转变为电能的效应称为

最新数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析 1 个人信息********* 2 3 摘要:图像去噪是数字图像处理中的重要环节和步骤。本文首先介绍了常见 4 5 的图像噪声;然后,在介绍图像去噪的基本方法和原理的基础上,讨论了均值 6 滤波、中值滤波和维纳滤波三种典型的图像去噪方法;最后,对包含有高斯噪 7 声和椒盐等噪声的图像进行去噪,并对其去噪效果进行了仿真和分析比较,得8 出了三种方法各自的适用性特点。 9 关键词:图像去噪;均值滤波;中值滤波;维纳滤波 Simulation and Analysis of Image De-noising Methods 10 11 in Digital Image 12 Name:*** 13 (个人信息****) 14 Abstract: Image denoising is one of the most important parts and steps 15 of image processing. Firstly, the paper introduces the common image noise. 16 Then, based on the principle and methods of eliminating image noise, it 17 discusses mean filtering, median filtering, and Wiener filtering which 18 are typical image donoising. Finally, it uses these methods to eliminate 19 image noise which contains Gaussian noise and salt&pepper noise. And through comparing and analyzing the effect of these methods, it concludes 20 21 the applicability of each method in different application.

小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪 一、小波变换简介 在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积: () dx a b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞ ∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 二、图像去噪描述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为: g(x,y)= f(x,y)+ n(x,y), (4) 其中,n(x,y)和图像光强大小无关。 图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。 图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

图像去噪理论基础.doc

一,背景 随着各种数字仪器和数码产品的普及,图像和视频已成为人类活动中最常用的信息载体,它们包含着物体的大量信息,成为人们获取外界原始信息的主要途径。然而在图像的获取、传输和存贮过程中常常会受到各种噪声的干扰和影响而使图像降质,并且图像预处理算法的好坏又直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,所以为了获取高质量数字图像,很有必要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。所以,降噪处理一直是图像处理和计算机视觉研究的热点。 图像视频去噪的最终目的是改善给定的图像,解决实际图像由于噪声干扰而导致图像质量下降的问题。通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息,作为一种重要的预处理手段,人们对图像去噪算法进行了广泛的研究。在现有的去噪算法中,有的去噪算法在低维信号图像处理中取得较好的效果,却不适用于高维信号图像处理;或者去噪效果较好,却丢失部分图像边缘信息,或者致力于研究检测图像边缘信息,保留图像细节。如何在抵制噪音和保留细节上找到一个较好的平衡点,成为近年来研究的重点。 二,图像去噪理论基础 2.1 图像噪声概念 噪声可以理解为“妨碍人们感觉器官对所接收的信源信息理解的因素”。例如,一幅黑白图片,其平面亮度分布假定为f(x,y),那么对其接收起干扰作用的亮度分布R(x,y),即可称为图像噪声。但是,噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”。因此将图像噪声看成是多维随机过程是合适的,因而描述噪声的方法完全可以借用随机过程的描述,即用其概率分布函数和概率密度分布函数。但在很多情况下,这样的描述方法是很复杂的,甚至是不可能的。而实际应用往往也不必要。通常是用其数字特征,即均值方差,相关函数等。因为这些数字特征都可以从某些方面反映出噪声的特征。 2.2 常见的图像噪声 在我们的图像中常见的噪声主要有以下几种: (1),加性噪声 加性嗓声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的噪声的。这类带有噪声的图像g可看成为理想无噪声图像f与噪声n之和,即: (2),乘性噪声 乘性嗓声和图像信号是相关的,往往随图像信号的变化而变化,如飞点扫描图像中的嗓声、电视扫描光栅、胶片颗粒造成等,这类噪声和图像的关系是: (3),量化噪声 量化嗓声是数字图像的主要噪声源,其大小显示出数字图像和原始图像的差异,减少这种嗓声的最好办法就是采用按灰度级概率密度函数选择化级的最优化措施。 (4),“椒盐”噪声 此类嗓声如图像切割引起的即黑图像上的白点,白图像上的黑点噪声,在变换域引入的误差,使图像反变换后造成的变换噪声等。

图像去噪去噪算法研究 开题报告

图像去噪去噪算法研究论文开题报告 (1)选题的目的、意义 目的: 由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染,影响了图像的视觉效果,甚至妨碍了人们正常识别。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。这些噪声在图像上常表现为—引起较强视觉效果的孤立象素点或象素块[1]。一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。要构造一种有效抑制噪声的滤波必须考虑两个基本问题能有效地去除目标和背景中的噪声;同时,也要能很好的保护图像目标的形状、大小及特定的几何和拓扑结构特征。 意义: 噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量[2] [3]。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要[4] [5]。图像去噪作为图像处理的一个重要环节,可以帮助人们更加准确地获得我们所需的图像特征,使其应用到各个研究领域,帮助解决医学、物理、航天、文字等具体问题。如何改进图像去噪算法,以有效地降低噪声对原始图像的干扰程度,并且增强视觉效果,提高图像质量,使图像更逼真,仍存在继续研究的重要意义。 (2)国内外对本课题涉及问题的研究现状 针对图像去噪的经典算法,科学工作者通过努力,提出了一些的改进算法,比如模拟退火法[6]。但是模拟退火法存在的问题是计算过程复杂,计算量大,即使使用计算机代替人工计算也会耗用大量时间。后来在众多研究者的努力下,产生了很多其他不同的方法。而现今已卓有成效的非线性滤波方法有正则化方法、最小能量泛函方法、各向异性扩散法[7] [8]。 目前常用的降噪方法有在空间域进行的,也有将图像数据经过傅里叶等变换以后转到频域中进行的[9]。其中频域里的滤波需要涉及复杂的域转换运算,相对而言硬件实现起来会耗费更多的资源和时间。在空间域进行的方法有均值或加权后均值滤波、中值或加权中值滤波、最小均方差值滤波和均值或中值的多次迭代等。实践证明,这些方法虽有一定的降噪效果,但都有其局限性。比如加权均值在细节损失上非常明显;而中值仅对脉冲干扰有效,对高斯噪声却无能为力[10] [11] [12] [13]。实上,图像噪声总是和有效数据交织在一起,若处理不当,就会使边界轮廓、线条等变得模糊不清,反而降低了图像质量。 对于去除椒盐噪声,主要使用中值滤波算法。中值滤波是在1970年由Tukey提出的一种一维滤波器。它主要是指用实心邻域范围内的所有值的中值代替所作用的点值,但是必须注意的是邻域内的点的个数是正奇数,这是为了保证取中值的便利性,若是偶数,则中值就会产生两个[14] [15]。中值滤波以一种简单的非线性平滑技术。它是以排序统计理论作为基础,有效抑制噪声的非线性处理数字信号技术。中值滤波对消除椒盐噪声非常有效。在图像处理中,常用中值滤波保护图像边缘信息,它是一种经典的去除图像噪声算法[16]。但是它在去除图像噪声过程中,往往会将图像的细节比如细线、棱角的地方破坏掉。后来

医学影像学-超声

医学影像学-超声 声影→在超声波传播途径内,因反射体对超声的反射、折射、吸收导致超声能量衰减,使其后方呈一回声缺少的条状暗区,结石、骨骼、疤痕组织、钙化灶等后方均可形成声影。 尾随声影(彗星征)→胆囊内胆固醇沉着及眼球等部位的异物等。 声晕→围绕肿块周围出现的低回声带,肝内以恶性肿瘤常见,甲状腺内以腺瘤常见。 靶环征→①多数情况:胃肠道病变(如肿瘤或炎症)。②少数情况:肝内转移性肿瘤。 ⑵球形,类椭圆形及不规则形。 ⑶囊壁强回声反射,病灶后方增强,侧方声影。 ,但常有发热、疼痛,壁厚,内伴有坏死物质产生的强回声反射。 ⑵无回声暗区形态不规则,后方回声增强。 沿门静脉分布,与胆管相连。 ⑵当病变出现液化坏死:无回声暗区,低回声、高回声等交错在一起,病灶边缘仍模糊不清。 ⑶完全液化后:无回声暗区扩大,内伴细小光点及斑片状高回声周边回声稍强。 ⑷少数患者可见肝脓肿破溃入胸腔及门静脉,肝静脉内栓塞的征象。 “蛋壳样”钙化,后方伴声影。 肿瘤病史,壁较厚,血流丰富,ATP升高,超声导向穿刺有助诊断。 ⑵低回声型→少见,易和肝癌混淆,病灶以低回声为主,内伴有线状强回声反射,病灶周边回声较强,形成菲薄的高回声圈,偶尔也可发现与外围小血管有相连征象,肿块呈不规则类圆形。 ⑶混合型→常较大,肿块轮廓不规则,边界欠清晰,部分边缘仍可见包膜样强回声反射,病变内回声强弱不等,可见 从边缘回声、AFP、肝炎病史判断。 ⑵回声强度表现: ①低回声型→以小肝癌常见,肿块<2cm。 ②强回声型→肿块稍大,多伴声晕。 ③混合型→肿块常较大,内伴有出血坏死形成回声杂乱。

④等回声型→较少见,肿块与肝组织回声强度相似,此型易漏诊。 ⑶小肿块球形多见,大肿块轮廓多不规则,边不清,回声强弱不均或呈结中结样改变,有时在大的肿块外周伴有子结节。 ⑷肿块可导致肝体积增大,形态失常,或局部肝包膜隆起(驼峰征),肝内血管移位(如抬高或压低),门静脉或肝静脉内栓塞,肝内胆管局限性或广泛性扩张,肿块周边出现声晕。 肝实质回声均等,内见多发低回声、高回声团,边界不清,回声不均,要考虑转移性肿瘤,结合病史 “牛眼征” 。 低回声团,前者易伴钙化。 ②肝包膜锯齿状改变。 ③肝实质回声增强,光点粗大,分布不均,血管网走行不清,可伴有强回声或低回声结节。 ④门静脉高压时,门静脉内径增宽>1.3cm,侧枝循环形成(附脐静脉、食道胃底静脉、脾肾静脉)。 ⑤伴脾肿大及腹水,或肝癌及门静脉栓塞。 肝豆状核变性、糖原贮积症、白血病、结缔组织疾病、慢性肝炎,以及某些化疗药物和抗生素作用,对 ①胆囊腔内强回声团。②强回声团后方伴声影。③改变体位强回声团移动。④合并炎症时囊壁增厚, ⑵充满型结石→ ①囊壁、结石、声影三合征(WES):仅见一条半月形的强回声带,后方伴声影,或在结石与囊壁间呈现一线状暗带。 ①胆囊明显增大。②胆囊颈管及囊壁内结石改变体位不会移动。 )引起胆囊呈实体样变。 包括胆固醇性息肉、炎症性息肉、腺瘤性息肉,腺瘤、

图像椒盐噪声与高斯噪声去噪方法研究

德州学院毕业论文开题报告书 2011年3月16日院(系)物理系专业电子信息工程 姓名田程程学号200700802041 论文题目图像椒盐噪声与高斯噪声去噪方法研究 一、选题目的和意义 图像去噪的最终目的是改善给定的图像,解决实际图像由于噪声干扰而导致图像质量下降的问题。通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息,作为一种重要的预处理手段,人们对图像去噪算法进行了广泛的研究。在现有的去噪算法中,有的去噪算法在低维信号图像处理中取得较好的效果,却不适用于高维信号图像处理;或者去噪效果较好,却丢失部分图像边缘信息,或者致力于研究检测图像边缘信息,保留图像细节。如何在抵制噪音和保留细节上找到一个较好的平衡点,成为近年来研究的重点。 二、本选题在国内外的研究现状和发展趋势 随着各种数字仪器和数码产品的普及,图像和视频已成为人类活动中最常用的信息载体,它们包含着物体的大量信息,成为人们获取外界原始信息的主要途径。然而在图像的获取、传输和存贮过程中常常会受到各种噪声的干扰和影响而使图像降质,并且图像预处理算法的好坏又直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,所以为了获取高质量数字图像,很有必要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。所以,降噪处理一直是图像处理和计算机视觉研究的热点。

三、课题设计方案 本设计为图像椒盐噪声与高斯噪声去噪方法研究 一、研究高斯噪声和椒盐噪声特性 二、研究去噪算法,提出适合去除高斯噪声和椒盐噪声的算法 三、计算机仿真 四、计划进度安排 第一周至第二周:根据寒假期间针对论文题目收集的有关资料,认真分析和整理资料,形成撰写论文的大体框架。对论文的撰写形成明确地认识,认真书写开题报告,完成开题报告并上交。 第三周至第五周:学习和研究图像椒盐噪声与高斯噪声去噪方法。 第六周至第十一周:对前期的关于图像椒盐噪声与高斯噪声去噪方法的研究进行总结。 第十二周:根据论文指导意见和建议对论文进行修改和完善后形成论文终稿。

数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析 个人信息********* 摘要:图像去噪是数字图像处理中的重要环节和步骤。本文首先介绍了常见的图像噪声;然后,在介绍图像去噪的基本方法和原理的基础上,讨论了均值滤波、中值滤波和维纳滤波三种典型的图像去噪方法;最后,对包含有高斯噪声和椒盐等噪声的图像进行去噪,并对其去噪效果进行了仿真和分析比较,得出了三种方法各自的适用性特点。 关键词:图像去噪;均值滤波;中值滤波;维纳滤波 Simulation and Analysis of Image De-noising Methods in Digital Image Name:*** (个人信息****) Abstract: Image denoising is one of the most important parts and steps of image processing. Firstly, the paper introduces the common image noise. Then, based on the principle and methods of eliminating image noise, it discusses mean filtering, median filtering, and Wiener filtering which are typical image donoising. Finally, it uses these methods to eliminate image noise which contains Gaussian noise and salt&pepper noise. And through comparing and analyzing the effect of these methods, it concludes the applicability of each method in different application. Key words: image denoising; mean filtering; median filtering; Wiener filtering 0 引言 数字图像是现代人们获取信息的主要来源。由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会收到多种噪声的污染。一般来说,现实中的图像都是带噪图像。噪声使图像变得模糊,甚至淹没图

图像去噪的发展历程与方法简介

图像去噪的发展历程与方法简介 1 图像去噪的概念 2 图像去噪的发展历程与现状 2.1图像去噪传统方法 2.2全变分去噪的提出 1 图像去噪的概念 图像去噪指的是利用各种滤波模型,通过传统滤波、小波、偏微分方程等多种方法从已知的含有噪声的图像中去掉噪声部分。图像去噪从整个图像分析的流程上来讲属于图像的预处理阶段,从数字图像处理的技术角度来说属于图像恢复的技术范畴,它的存在有着非常重要的意义。 图像恢复问题是图像处理中最基本的问题,图像恢复以图像退化的数学模型为基础,通过退化现象的某种先验知识来重建、恢复原来的图像。其中图像退化的原因主要是源于图像的获取和传输的过程中受到各种因素的干扰。 对图像进行去噪是对图像作进一步处理的可靠保证,如果对含有噪声的图像进行特征提取、图像融合等处理后的结果,显然不能令人满意。另外,由于不同的成像机理,得到的初始图像中都含有大量不同性质的噪声,这些噪声的存在影响着人们对图像的观察,干扰人们对图像信息的理解。噪声严重的时候,图像几乎变形,更使得图像失去了存储信息的本质意义。显然,对图像进行去噪处理,是正确识别图像信息的必要特征。 在对有噪声图像和模糊图像恢复时,除了去除噪声外,一个很重要的目标是保护图像的重要细节(包括几何形状细节如纹理、细线、边缘和对比度变化细节)。但是噪声的去除和细节的保护是一对矛盾关系,因为噪声和细节都属于图像信号中的高频部分,很难区分出它们,所以在滤除图像噪声的同时,也会对图像的特征造成破坏,致使图像模糊。为了抑制图像中的噪声,更好地复原因噪声污染引起的图像质量退化,有必要寻找更好的去噪方法,保证在去除噪声的同时,还能保持边缘和纹理信息。近年来,为了解决这一问题,研究者们提出了很多模型和方法。 图像是人类视觉的基础,而视觉是人类最重要的感知手段,图像恰恰又客观的反映了自然景物,成为了人类认识世界和人类本身的重要源泉。随着科技的日新月异,数字图像也于20世纪50年代诞生。而所谓的数字图像,可以将其看成是一个矩阵或是一个二维数组,在计算机上表示的方式。每个像素取值为0~255的整数。取值越大,表明这个格子越亮;反之,这个格子越暗。而数字图像所载有的信息就是每个像素的取值。

基于小波变换的图像阔值降噪算法研究开题报告

中国计量大学 毕业设计(论文)开题报告 学生姓名:马日斯江·库尔班学号:1200101237专业:测控技术与仪器 班级: 12测控1班 设计(论文)题目: 基于小波变换的图像阈值降噪算法研究 指导教师:侯德鑫 系:计量测试工程学院 2016年3 月25 日

基于小波变换的图像阈值降噪算法研究 开题报告 一、课题的背景及意义: 图像降噪是图像预处理的主要任务之一,其作用是为了提高图像的信噪比,突出图像的期望特征。不同性质的噪声应采用不同的方法进行消噪。最简单的也比较通用的消噪算法,是用傅立叶变换直接进行低通滤波或带通滤波。这种方法虽然简单、易于实现,但它对滤去有用信号频带中的噪声无能为力,并且带宽的选择和高分辨率是有矛盾的。带宽选的过宽,达不到去噪的目的;选的过窄,噪声虽然滤去的多,但同时信号的高频部分也损失了,不但带宽内的信噪比得不到改善,某些突变点的信息也可能被模糊掉了。将小波变换应用于信号处理中,是因为它的主要优点是在时间域和频率域中同时具有良好的局部化特性,从而非常适合时变信号的分析和处理。特别在图像去噪领域中,小波理论受到了许多学者的重视,他们应用小波进行去噪,并获得了非常好的效果。具体来说,小波去噪方法的成功主要得益于小波变换具有以下特点: (1)低熵性由于小波系数的稀疏分布,使得图像变换后的熵降低了; (2)多分辨率由于小波采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等; (3)去相关性因为小波变换可以对信号进行去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪; (4)选基灵活性由于小波变换可以灵活选择变换基,所以对不同应用场合,对不同的研究对象,可以选用不同的小波母函数,以获得最佳的去噪效果。 因此,就信号消噪问题而言,它比传统的傅立叶频率域滤波和匹配滤波器更具有灵活性。以小波变换为基础的时变信号消噪算法是把含噪信号放在二维平面上,利用信号和噪声表现出的截然不同的特性进行分时分频处理,此方法理论上不但能够获得较高的信噪比,而且能够保持良好的时间分辨率。采用小波消噪算

基于小波变换的医学超声图像去噪方法研究

基于小波变换的医学超声图像去噪方法研究

基于小波变换的医学超声图像去噪方法研究 摘要:医学超声成像是一种重要的基于超声波的医学影像学诊断技术。超声成像相比与CT、核磁共振等其他诊断技术有其明显的优势,以其廉价、简便、迅速、安全性高、可连续动态及重复扫描等优点广泛应用于临床医学诊断中。但是超声成像也有其不足之处,最重要的是超声成像诊断的准确性容易受到外界的干扰,使其图像质量较差,影响诊断结果。这样超声图像的去噪就成为了一个重要的问题。因为超声图像中所含有的噪声是一种乘性斑点噪声,所以使医学超声图像去噪成为了一个很复杂而困难的过程。 小波变换是近几年来发展起来的一种变换分析方法,它有短时傅里叶变换局部化的特点,同时能够提供一个随频率改变的时间-频率窗口,是进行信号和图像处理的理想工具。由于小波变换在时域和频域同时具有良好的局部化特性,因此小波变换在去噪中得到广泛应用。 超声图像的去噪是超声诊断的前提,它对后面病情的识别和诊断有很重要的影响,因此超声图像的去噪在医学图像处理中有其重要的意义。围绕小波图像去噪中心问题进行了研究,提出本文的处理方法-小波变换去噪。在了解关于小波变换的基础理论后,提出相适应的去噪方法,首先把原始医学超声图像进行对数变换,然后选择合适的小波和小波分解层数对变换后的图像进行小波分解,随后对高频系数进行阈值量化,对每层选择一个阈值对其高频系数进行软阈值化处理,最后利用小波重构,得到去噪后的图像,并进行指数变换得到所需图像。实验表明,小波变换在超声图像去噪中有其很大优势。 关键词:超声成像;斑点噪声;小波变换;阈值

Abstract Abstract:Medical ultrasound imaging is a kind of important medical imaging diagnosis based on ultrasonic technology.Ultrasonic imaging compared to CT, nuclear magnetic resonance (NMR) and other diagnostic technique has the obvious superiority,With its cheap, convenient, quick, high security, a dynamic and repeat scan widely used in clinical advantages of medical diagnosis.But the ultrasonic imaging also has its shortcomings, the most important is the diagnostic accuracy of ultrasonic imaging vulnerable to outside interference, make the image quality is poorer, affect a diagnosis. Such ultrasound images of the denoising became an important question. Because the ultrasound images is contained in the noise is a kind of multiplicative noise spots, so that medical ultrasound image denoising became a very complex and difficult process. Wavelet transform is in last few years developed a kind of transformation analysis method, it has a short-time Fourier transform the characteristics of localization, and to provide a on frequency change time-frequency window, signal and image processing is the ideal tool. Because of wavelet transform in the time domain and frequency domain and has good localization characteristics, so the wavelet transform in the denoising performance of widely used. Ultrasound images of the denoising is the premise of ultrasonic diagnosis, it behind the recognition of illness and diagnosis have very important influence, so the

相关文档
最新文档