数学模型与数学实验1第一章 线性规划
数学建模实验报告
《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
数学实验与数学建模(校本教材)
x x x + + = 60
11
12
13
x x x + + = 80
21
22
23
②各销地运进的数量应等于其当地预测的销售量,即
x x + = 50
11
21
x x + = 50
12
22
x x + = 40
13
23
③从各产地运往各销地的数量不能为负值,即
x ≥ 0(i = 1,2; j = 1,2,3) ij
400
A2
400
700
300
问每个产地向每个销地各发货多少,才能使总的运费最少? 解 (1)在该问题中,所要确定的量是各产地运往各销地的香蕉数量,即决策变量是运输量。 设 Xij(i=1,2; j =1,2,3)分别表示由产地 Ai 运往销地 Bi 的数量。
(2)在解决问题的过程中,要受到如下条件限制,即约束条件: 1各产地运出的数量应等于其产量,即
a C x C x C x b ≤
+
+ ... +
≤
n
1n 1
2n 2
mn n
n
x1 + x2 + ... + xm = 1
xi ≥ 0,(i = 1,..., m)
d x d x 并使目标函数 S =
+ ... +
最小。
11
mm
一、 线性规划问题数学模型的一般形式和标准形式
上面我们建立了经济领域中常见的实际问题的数学模型,尽管这些实际问题本身是多种多样的,
42
的精确在允许的范围内。
数学实验与数学建模(校本教材)
数学实验题集
数学实验题集一.线性规划1.某厂有一台制杯机,可生产两种型号的杯子,A 型杯每6小时可生产100箱,B 型杯每5小时可生产100箱,这台机器每周生产时间为60小时,生产出的产品堆放在仓库里,库容量为15000立方米,A 型杯每箱占有空间10立方米,B 型杯每箱占有空间20立方米,生产A 型杯每箱可获利5元,B 型杯每箱可获利4.5元,客户每周到仓库提货一次,其中A 型杯需求量不超过800箱,B 型杯有多少需要多少,问每周各应生产多少箱A 、B 型杯子,使工厂获利最多。
参考答案:线性规划模型:max 215.45x x + s.t.601005100621=+x x 150********≤+x x 8001≤x 0,21≥x x 程序:ConstrainedMax 5x1 4.5x2,6100x15100x260,10x120x215000,x1800,x1,x2运行结果:5142.86,x1642.857,x2428.5712.某工厂在计划计划期内要安排生产A 、B 两种产品。
A 产品每件可获利6元,B 产品每件可获利4元,生产这两种产品每件需机器的台时数分别为2和3个单位,需劳动工时数分别为4和2个单位。
已知该厂在计划期内可提供100个单位的机器台时数和120个单位的劳动工时数。
问如何安排生产计划,才能使这个工厂获利最大。
参考答案:线性规划模型:max 2146x x +s.t. 1003221≤+x x1202421≤+x x 0,21≥x x程序:ConstrainedMax 6x14x2,2x13x2100,4x12x2120,x1,x2运行结果:200,x120,x2203.问如何安排生产计划,使得到的利润最大?参考答案:线性规划模型:max 2132x x + s.t. 122221≤+x x 8221≤+x x 1641≤x 1242≤x 0,21≥x x程序:ConstrainedMax 2x13x2,2x12x212,x12x28,4x116,4x212,x1,x2运行结果:14,x14,x224.某工厂生产A 、B 两种产品,已知制造产品A 一百桶分别需要原料P 、Q 、R5千克、300千克、12千克,可得利润8000元。
第1章 线性规划
1.1 线性规划问题及其数学模型
线性规划
该公司想达到的目标为:投资 风险最小,每年红利至少为6.5万 元,最低平均增长率为12%,最低 平均信用度为7。请用线性规划方 法求解该问题。
1.1 线性规划问题及其数学模型
解:
(1)决策变量
线性规划
本问题的决策变量是在每种投资项目上的投 资 额 。 设 xi 为 项 目 i 的 投 资 额 ( 万 元 ) ( i=1,2,,6)
(2)目标函数
本问题的目标为总投资风险最小,即
Min z 0.18x1 0.06x2 0.10x3 0.04x4 0.12x5 0.08x6
线性规划
运筹学
线性规划
线性规划
本章内容要点
线性规划问题及其数学模型;
线性规划的电子表格建模; 线性规划的多解分析。
线性规划
本章内容
1.1 线性规划问题及其数学模型
1.2 线性规划问题的图解法
1.3 用Excel“规划求解”功能求解线性规划问题
1.4 线性规划问题求解的几种可能结果
本章主要内容框架图
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解 无穷多解 无解 可行域无界(目标值不收敛)
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解
线性规划问题具有 唯一解是指该规划 问题有且仅有一个 既在可行域内、又 使目标值达到最优 的解。例1.1就是一 个具有唯一解的规 划问题
(1-1)
高中数学简单线性规划教案
高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
线性规划
矿物质(g)
维生素(mg)
0.1
0.05
0.05
0.1
0.02
0.02
0.2
0.2
0.05
0.08
希望建立数学模型,既能满足动物需要,又使总成 本最低的饲料配方
模型
饲料 符号 A1 x1 A2 x2 A3 x3 A4 x4 A5 x5
约 l2 : 12x1 8x2 480 束 12x1 8x2 480 l4 条 3x1 100 l3 : 3x1 100 件 c l4 : x1 0, l5 : x2 0 x1 , x2 0 目标 函数
l1 : x1 x2 50
x2 A
l1 B l2 C Z=3600 l3
线性规划问题的数学模型的一般形式
( 1)列出约束条件及目标函数 (2)画出约束条件所表示的可行域 (3)在可行域内求目标函数的最优解及最优值
线性规划问题的标准形式
{
max y=cTx s.t. Ax=b x≥0
求解方法: (1)单纯形法 (2)软件求解:Lindo, Lingo, matlab,sas
RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
Max z 72x1 64x2
z=c (常数) ~等值线
0
l5
Z=0
x1 D Z=2400
数学建模-数学规划模型
将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类
第1章 线性规划
第1章线性规划本章介绍了什么是线性规划,线性规划数学模型的概念及其建立数学模型方法;阐述了线性规划的图解法、解的概念及解的形式;详细介绍了普通单纯形法、人工变量单纯形法及单纯形法计算公式。
1.考核知识点(1) 基本概念:数学模型、决策变量、目标函数、约束条件、标准型、图解法、基矩阵、基变量、非基变量、可行解、基解、基可行解、最优解、基最优解、唯一解、多重解、无界解、无可行解、单纯形法、最小比值、入基变量、出基变量、解的判断、大M法、两阶段法、改进单纯形法。
(2) 建立简单的线性规划数学模型。
(3) 求解线性规划的图解法。
(4) 基、可行基及最优基的定义。
(5) 可行解、基本解、基可行解、最优解、基本最优解的定义及其相互关系。
(6) 有唯一解、有无穷多解、无界解、无可行解的判断。
(7) 求解线性规划的单纯形法。
(8) 求解线性规划的人工变量法。
(9) 单纯形法中的5个计算公式。
2.学习要求(1) 深刻领会线性规划的各种基与解的基本概念,它们之间的相互关系。
(2)掌握图解法的计算步骤,注意怎样将目标函数表达成一条直线,这条直线如何平移使得目标函数值上升或下降。
(3) 熟练掌握单纯形法计算的全过程,特别应注意如何列出单纯形表,如何由一个基可行解换到另一个基可行解,基可行解是最优解、无界解或多重解的判断准则。
(4) 理解在什么情况下加入人工变量,人工变量起何作用,用大M法计算时目标函数的变化,两阶段法计算时目标函数的构成,掌握这两种计算方法的全过程,在什么情形下线性规划无可行解。
(5) 理解用矩阵形式代替单纯形表,并用矩阵公式求解线性规划。
3.重点建立线性规划数学模型,有关线性规划解的概念、解的形式,单纯形法计算、大M法、两阶段法。
4.难点解析(1)建立线性规划数学模型建立数学模型是学习线性规划的第一步也是关键的一步。
建立正确的数学模型要掌握3个要素:研究的问题是求什么,即设置决策变量;问题要达到的目标是什么即建立目标函数,目标函数一定是决策变量的线性函数并且求最大值或求最小值;限制达到目标的条件是什么,即建立约束条件。
大学生数学建模:作业-线性规划的实验
实验课题:(一)线性规划问题1.用lingo求解下列线性规划问题:2. 某班男同学30人、女同学20人,植树。
工作效率(个/人、天)如下表。
如何安排,植树最多?3.某牧场饲养一批动物,平均每头动物至少需要 700g 蛋白质、30g 矿物质和100g 维生素。
现有A、B、C、D、E五种饲料可供选用,每千克饲料的营养成分(单位:g)与价格(单位:元/kg)如下表所示:试求能满足动物生长营养需求又最经济的选用饲料方案。
4.在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄组成一个公共农业社区。
在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。
南方农庄联盟的全部种植计划都由技术协调办公室制订。
当前,该办公室正在制订来年的农业生产计划。
南方农庄联盟的农业收成受到两种资源的制约。
一是可灌溉土地的面积,二是灌溉用水量。
这些数据由下表给出。
注:英亩-英尺是水容积单位,1英亩-英尺就是面积为1英亩,深度为1英尺的体积;1英亩-英尺≈1233.48立方米。
南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。
农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。
三家农庄达成协议:各家农庄的播种面积与其可灌溉耕地面积之比相等;各家农庄种植何种作物并无限制。
所以,技术协调办公室面对的任务是:根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的总利润,现请你替技术协调办公室完成这一决策。
对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。
5.有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如下表所示:前舱中舱后舱最大允许载重量(t)2000 3000 1000容积(m3)4000 5400 1000现有三种货物待运,已知有关数据如下表所示:商品数量(件)每件体积(m3/件)每件重量(t/件)运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 600又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页
2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见
线性规划问题求解----数学建模实验报告
由题目所给的数据可建立如下的线性规划模型:
Min z(1.250.25)(������1 ������2 )(20.35)������8 (2.80.5)������9 10������6 )
084 实验报告
1、 实验目的:
(1)学会用 matlab 软件解决线性规划问题的最优值求解问题。 (2) 学会将实际问题归结为线性规划问题用 MATLAB 软件建立恰 当的数学模型来求解。 (3)学会用最小二乘法进行数据拟合。 (4)学会用 MATLAB 提供的拟合方法解决实际问题。
2、 实验要求:
(1)按照正确格式用 MATLAB 软件解决课本第 9 页 1.1、1.3, 第 100 页 5.1、5.3 这几个问题,完成实验内容。 (2)写出相应的 MATLAB 程序。 (3)给出实验结果。 (4)对实验结果进行分析讨论。 (5)写出相应的实验报告。
3、 实验步骤:
(1)、对于习题 1.1: a.将该线性规划问题首先化成 MATLAB 标准型 b.用 MATLAB 软件编写正确求解程序:程序如下:
(4)、对于习题5.3:用MATLAB中最小二乘法求拟合表中的数据。 程序如下:x=[1:8]';
y=[15.3,20.5,27.4,36.6,49.1,65.6,87.87,117.6]'; xishu=[ones(8,1),x];%构造系数矩阵 cs=xishu\log(y);%线性最小二乘法拟合参数 cs(1)=exp(cs(1));%把lna变换成a
对应整数规划的最优解为 x11200,x2230,x30,x4859,x5571,x60,x7500,x8 500,x9324, 最优值为 z1146.414 元。
线性规划模型
(1)模型中常数数据不精确
(2)模型中常数数据可能发生变化
价值变动
min z cx s.t. Ax b x0
11/43
资源总量变动
敏感性分析
max z 60d 30t 20c 8d + 6t + c <=48 4d + 2t + 1.5c <= 20 d + 1.5t + 0.5c <=8 t <= 5
mn
满足约束条件的解称为可行解,所有可行解的集合 称为可行域 ,满足最优目标的解称为最优解 决策变量为整数时,称为整数线性规划
决策变量取0或1时,称为0-1线性规划
7/43
线性规划问题的解
线性规划问题的可行域是一个凸多边形;
线性规划问题如果存在最优解,则最优解必在可行域的
顶点处达到。
单纯形法:
约束条件右端变化一个单位时目标函数变化量,只对紧约 决策变量改变一个单位时目标函数的改变量,只有非基变 量有值 束有值
12/43
敏感性分析
Objective Coefficient Ranges Current Allowable Allowable Coefficient Increase Decrease 60.00000 0.0 8.000000 30.00000 60.00000 0.0 20.00000 2.500000 INFINITY Righthand Side Ranges Current Allowable Allowable RHS Increase Decrease 48.00000 INFINITY 2.000000 20.00000 1.333333 8.000000 8.000000 1.000000 3.000000 5.000000 INFINITY 2.000000
数学模型课程教学大纲
《数学模型》课程教学大纲课程编码:ZB0240121课程类别:专业核心必修适用专业及层次:信息与计算科学(本科)学分:4理论学时:48实践学时:32先修课程:数学分析,高等代数,数学实验,概率论等。
一、课程的性质、目的和任务本课程是信息与计算科学专业(本科)的一门专业核心必修课.也是学生参加数学建模竞赛的基础课程.数学模型是一门重要的数学技术课,目标在于培养学生利用数学知识及相关专业知识建立数学模型分析、解决实际问题的能力,并从中培养和提高学生的创新意识、创新能力及综合应用能力.设置该课程的目的是要向学生介绍数学模型的数学理论和方法,使学生了解并初步掌握应用所学的数学知识建立数学模型的基本方法和基本过程,从而培养学生应用数学的思维、知识、方法解决实际问题的意识和能力.二、课程教学的基本要求通过本课程的学习(课堂讲授、上机实习和作业),应达到目的和要求如下:1、培养学生运用数学工具解决现实生活中实际问题的能力。
2、用数学方法解决问题的能力以及用自己的研究结果解释、指导实际问题的能力,从无到有的创新能力以及写作能力。
3、通过本课程的学习,使学生了解数学建模是利用数学知识构造刻画客观事物原型的数学模型,利用计算机解决实际问题的一种科学方法。
掌握数学建模的基本步骤,即从实际问题出发,遵循“实践一一认识一一实践”的辩证唯物主义认识规律,紧紧围绕建模的目的,运用观察力、想象力和逻辑思维,对实际问题进行抽象、简化、反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。
会利用数学知识和计算机解决问题,并能够撰写符合要求的数学建模论文。
三、课程教学内容第一章线性规划【授课学时】2【教学内容】第一节线性规划问题第二节投资的收益和风险【教学要求】通过本章学习,掌握求解线性规划问题的方法和一般步骤、投资的收益和风险.【教学重难点】建立数学规划的步骤,常见处理约束条件的方法技巧。
第二章整数规划【授课学时】2【教学内容】第一节概论第二节0-1型整数规划第三节蒙特卡洛法【教学要求】通过本章学习,掌握整形规划和线性规划的区别和联系、整形规划问题的类型和常用的求解方法.【教学重难点】常见处理约束条件的方法技巧,整形规划问题的计算机求解。
线性规划
2 224
3 342
需求 40 15 35
库存容量 50 30 10
10
例5、连续投资10万元于4个项目。各项目投资时间 和本利情况如下:
项目A:从第1年 到第4年每年初要投资,次年末 回收本利1.15倍。
项目B:第3年初投资,到第5年末回收本利1.25倍 , 项目C:第最2年大初投投资资4万,元到。第5年末回收本利1.40倍 ,
解法。
实验内容
线性规划(Linear Programming)是运筹学的一个重 要
分支,在科学实践中有着广泛的应用,不仅许多实际
课题属于线性规划问题,而且运筹学其它分支中的一
些问题也可转化为线性规划问题来计算,因此,线性
规划在最优化学科中占有重要地位。本实验通过具体
问题介绍线性规划的一些基本概念和性质,给出求解
12
xik( i =1,2,…,5; k =A,B,C,D)为第i年初投k项目的
资金数.则: maxZ= 1.15x4A +1.40 x2C+1.25x3B+1.11x5D
x1A+x1D=10 x2A+x2C+x2D= 1.11 x1D x2C 3
s.t. x3A +x3B+x3D =1.15 x1A+ 1.11 x2D
仓库 车间 1
2
3 库存容量
1
213
50
2
224
30
3
342
10
需求
40 15 35
问:如何安排运输任务使得总运费最小?
9
解: 设xij为i 仓库运到 j车间的原棉数量(i =1,2,3; j =1,2,3)。则
运筹学实验报告
实验一:线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。
(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“≥”、“≤”或“=”号,如图所示。
(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。
例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。
学习理论的目的就是为了解决实际问题。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。
所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。
这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。
实验二:整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
第一讲 线性规划
xmin =3.9270,ymin = -0.0139 xmax =0.7854,ymax = 0.3224
13/16
例3.边长3米的正方形铁板,在四个角 剪去相等小正方形制成无盖水槽,问如 何使水槽容积最大?
解: 设小正方形边长为 x ,则水槽容积 V=(3 – 2x)2x 2 1.5 最大值问题: max (3 – 2x)2x
求解线性规划命令使用格式 见PDF (1) x=linprog(C, A, b) [x,fval] = linprog(C, A, b) (2) x=linprog(c,A,b,Aeq,beq) [x,fval]=linprog(c,A,b,Aeq,beq) (3) x=linprog(c,A,b,Aeq,beq,e0,e1)
7/16
3.右端项有负值的问题: 在标准形式中,要求右端项必须每一个分量非
负。
当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,
得到:-ai1 x1-ai2 x2- … -ain xn = -bi。
8/16
例:将以下线性规划问题转化为标准形式
Max f = 2 x1 -3x2 + 4 x3 s.t. 3 x1 + 4x2 - 5 x3 ≤6 2 x1 + x3 ≥8 x1 + x2 + x3 = -9 x1 , x2 , x3 ≥ 0 解:首先,将目标函数转换成极小化:
3/16
线性规划的标准化
线性规划标准形式
目标函数: Min 约束条件:
z = c 1 x1 + c 2 x2 + … + c n xn
s.t. a11 x1 + a12 x2 + … + a1n xn = b1 a21 x1 + a22 x2 + … + a2n xn = b2 …… …… a 目标最小化; m1 x1 + am2 x2 + … + amn xn = bm x 约束为等式; 1 ,x2 ,… ,xn ≥ 0,bi ≥0
2022年Python数学实验与建模第1章 线性规划
数学建模算法与应用
第1章 线性规划
5.灵敏度分析
灵敏度分析是指对系统因周围条件变化显示出 来的敏感程度的分析。
实际问题中aij ,bi ,c j是怎么来的?是确定的常数吗?
航空基础学院数学第教12研页室
数学建模算法与应用
第1章 线性规划
两个问题 (1)如果参数aij ,bi ,c j 中的一个或者几个发生了 变化,现行最优方案会有什么变化?
第三步:根据问题的目标,构造关于决策变量的 一个线性函数,即为目标函数。
航空基础学院数学第教6研页室
数学建模算法与应用
第1章 线性规划
3.线性规划模型的形式
线性规划模型的一般形式(代数形式)为
max(或min)z c1 x1 c2 x2 cn xn ,
a11 x1 a12 x2
s.t.
第1章 线性规划
约束条件——①生产甲、乙两种机床所花费的加工 时间不能超过 A、B、C 机器每天的最大可用加工时间, 故
2 x1 x2 10, x1 x2 8, x2 7.
约束条件——②甲乙两种机床的产量还应该满足非 负约束,即
xi 0, i 1, 2。
航空基础学院数学第教3研页室
数学建模算法与应用
求解数学规划模型的常用软件有 MATLAB、Python、LINGO 等
MATLAB 求解数学规划问题采用两种模式: (1)基于求解器的求解方法 (2)基于问题的求解方法
航空基础学院数学第教14研页室
数学建模算法与应用
第1章 线性规划
Naval Aeronautical University
02 线性规划模型求解及 应用
航空基础学院数学第教15研页室
数学建模算法与应用
运筹学实验报告(一)线性规划问题的计算机求解-(1)
运筹学实验报告(一)线性规划问题的计算机求解-(1)-CAL-FENGHAI.-(YICAI)-Company One1运筹学实验报告实验课程:运筹学实验日期: 任课教师:王挺第五种方案0 3 0 0第六种方案0 1 1 3第七种方案0 0 2 1设:第i种方案需要的钢管为Xi根(其中i=1,2...6),可得:minz=X1+X2+X3+X4+X5+X6+X7解:model:min= X1+X2+X3+X4+X5+X6+X7;3*X1+2*X2+2*X3+X4>=100;X2+2*X4+3*X5+X6>=150;X3+X6+2*X7>=120;endObjective value: 135.0000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX1 0.000000 0.2500000X2 0.000000 0.1666667X3 50.00000 0.000000X4 0.000000 0.8333333E-01X5 50.00000 0.000000X6 0.000000 0.1666667X7 35.00000 0.0000004人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。
班次时间所需人数班次时间所需人数1 6:00~10:00 60 4 18:00~22:00 502 10:00~14:00 70 5 22:00~2:00 203 14:00~18:00 60 6 2:00~6:00 30设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?5投资计划问题某地区在今后三年内有四种投资机会,第一种是在3年内每年年初投资,年底可获利润20%,并可将本金收回。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Aeq=[1,1,1]; beq=7; lb=zeros(3,1);
x=linprog(-f,A,b,Aeq,beq,lb);z=f’*x;
2)执行ex1_2.m
注意不同情形下的命令格式 [x,z]=linprog(f,A,b,[],[],lb,ub,x0) [x,z]=linprog(f,[],[],Aeq,beq,lb,ub,x0) [x,z]=linprog(f,A,b,Aeq,beq,[],ub) …
1 1 2 3
n
min z ci ui vi i 1
s.t.
Au v b,
u,v
0.
c
T
u
min
z c
v
s.t.
A,
A
u
v
b,
u,v 0.
2)编写m文件ex1_5.m
A=[1,-1,-1,1;1,-1,1,-3;1,-1,-2,3]; b=[-2;-1;-0.5];c=[1,2,3,4]’; f=[c;c]; Amat=[A,-A]; lb=zeros(8,1); y=linprog(f,Amat,b,[],[],lb);z=f’*y; x=y(1:4)-y(5:8);
(subject to) s.t.
2x1+x2≤10
(约束条件)
x1+x2 ≤8
x2 ≤7
x1,x2≥0
其中x1, x2称为决策变量。
定义(线性规划问题):在一组线性约 束条件下,求一线性目标函数的最大 (或最小)。
单纯形法基本思想:线性规划问题的可 行域是n维向量空间Rn中的多面凸集, 其最优值如果存在必在该凸集的某顶点 处达到。据此可以完成计算求解。
第1章 线性规划
1.1线性规划问题
当今社会现状:经济快速发展,资源急 剧消耗,地球环境不堪重负…
解决关键:如何利用现有资源安排生产, 以取得最大经济效益----数学规划。线 性规划(Linear Programming, LP)是其 中的重要分支。
1947,G.B.Dantzig,单纯形法(Simplex Method)
tmat=zeros(n);tmat(i,:)=1;Aeq2=[Aeq2,tmat]; end Aeq=[Aeq1;Aeq2]; beq1=a;beq2=b’;beq=[beq1;beq2]; [x,z]=linprog(c(:),[],[],Aeq,beq,zeros(m*n,1));
ex1_6.m
p=[0,1,2,4.5,6.5]’*1e-2;u=[0,103,198,52,40]’*1e-2;
clear;clc; m=4;n=5; a=rand(m,1);b=rand(1,n);c=rand(m,n); [x,z]=transport(a,b,c);
例1.m7in xi
max yi
xi
yi
v max yi
xi yi
gap ?
min v
s.t.vxi0y.i v, yi xi v,i 1, 2,L , n,
<1>约束风险,优化收益(模型ex1_8a); 若投资者所能承受最高风险度为a,则
n
max qi pi xi i0
ri xi Ma,i 0,1,L , n,
s.t.
n
1 pi xi
M,
i0
xi 0,i 0,1,L , n.
<2>约束收益,优化风险(模型ex1_8b); 若投资者要求的最低综合收益率为k,则
资si时,收益率qi,风险损失率ri,交易 费率为pi(购买额不超ui时按ui计算); 总体风险可用投资资产中最大的一个风 险来度量; 同期银行存款利率为q0(=5%),无交易 费无风险; 给定n=4时数据,试设计投资方案使静 收益尽可能大,总体风险尽可能小。
n=4时数据
si
qi(%) ri(%) pi(%)
3)执行ex1_5.m
例1.6 某商品有m个产地、n个销地,各 产地的产量分别为a1,a2,…,am,各销地 的需求量分别为b1,b2,…,bn。若该商品由 i产地运到j销地的单位运价为cij,问应 该如何调运才能使总运费最省?
n
xij ai , i 1, 2,L
, m,
j1
mn
m
min z
解:1)转化为Matlab标准形式
由
ui
xi xi 2
, vi
xi 2
xi
, xi
ui vi ,
xi
ui vi
u u1, u2 , u3, u4 T , v v1, v2 , v3, v4 T
且 1 1 1 1 A 1 1 1 3 , c 1, 2,3, 4T , b 2, 1, 0.5T
min
max
ri xi
n i0
n
qi
pi xi
Mk,
i0
s.t. n 1 pi xi M ,
i0
xi
0,i 0,1,L
, n.
<3>风险-收益平衡优化(模型ex1_8c),即 对风险和收益分别赋以权重s和1-s;
n
min
s
max
ri
xi
n i0
1
s
qi pi xi
i0
s.t.
n
i0
1
pi
xi
M,
xi 0,i 0,1,L , n.
(4)模型求解
a)模型<1>可改写为Matlab形式
diag r x Ma
min p qT x
s.t.1 pT x M ,
x
0.
<1>编写m文件ex1_8a.m
clear;clc;
M=1e5;
r=[0,2.5,1.5,5.5,2.6]’*1e-2;q=[5,28,21,23,25]’*1e-2;
b)投资si的交易费为 pimax{xi,ui},i=0,1,2,…,n
故投资si的净收益为Qi=qixi-pimax{xi,ui} c)要使净收益尽可能大,总体风险尽可
能小,即max ∑iQi和min R需要同时进行 ,此即多目标规划
适当条件(ui<<M)下可以考虑近似模型
max
n
qi xi pi maxxi ,ui ,
ui
s1
28
2.5
1
103
s2
21
1.5
2
198
s3
23
5.5 4.5
52
s4
25
2.6
6.5
40
(2)符号规定和基本假设
a)符号规定
<1>si表示第i种投资项目,i=0,1,…,n, s0表示存入 银行; <2>qi,pi,ri表示si的收益率,交易费率,风险损失率 ,p0=r0=0; <3>ui表示si的交易定额,u0=0; <4>xi表示投资项目si的资金; <5>R表示总体风险; <6>Q表示总体收益.
A1 A2
z
b1 b2
,
z lb.
1.2 投资的收益与风险
社会经济快速发展,各种理财产品层出 不穷,投资行为变得越来越普及(财团 、公司、boss、大妈?)。如何在当前 复杂环境下对有限资本进行合理投资?
(1)问题提出
可用投资总额为M; 市场上有n种资产si (i=1,2,…,n)可选,投
概括:在如下资源条件下,应生产甲、 乙机床各几台,才能使总利润最大?
产品甲
机器A
2
机器B
1
机器C
0
利润(元/件) 4000
产品乙 机器资源(小时)
1
10
1
8
1
7
3000
数学模型:设该厂生产x1台甲机床和x2 乙机床时总利润最大,则x1, x2应满足
(目标函数) max z = 4000x1 + 3000x2
min v
s.t.vxi0y.i v 0, yi xi v 0,i 1, 2,L , n,
改写为Matlab形式,由
x [x1, x2 ,L , xn ]T , y [ y1, y2 ,L , yn ]T ,
f = [01n , 01n ,1]T , z = [ xT , yT , v]T , lb inf, inf,L , 0T ,
b)基本假设
<1>投资数额M相当大; <2>总体风险R用所投资项目si中的最大风险度 量; <3>si之间相互独立; <4>在投资时期内,ri,pi,qi为定值,不受意外因素 影响; <5>收益Q和风险R不受其它因素干扰.
(3)模型分析与建立
a)总体风险R用所投资项目si中的最大风 险度量,即 R=max {rixi, i=0,1,…,n}
1 0 L
A 0 0 1 L
L 1 0 0L
0 1
0
0 1 L
,
b1
0
,
L
1 1n2n1
0
1 0 L
A2
0
1 L
L
0
0L
0 1 0L 0 01L
L 1 0 0 L
0 1
0
0 1 L
,
b2
0
,
L
1 1n2n1
0
得
min f T z
s.t.
(2)解的概念
LP问题标准形式
n
max z c j x j , j 1
s.t.
n j 1
ai
j
x
j
bi ,i
1, 2,L
, m,
x
j