第二章纯金属结晶作业答案
金属学及热处理练习题答案
第一章金属的晶体结构马氏体沉淀硬化不锈钢,它是美国 ARMCO 钢公司在1949年发表的,其特点是强度高,耐蚀性好,易焊接,热处理工艺简单,缺点是延韧性和切削性能差,这种马氏体不锈钢与靠间隙元素碳强化的马氏体钢不同,它除靠马氏体相变外并在它的基体上通过时效处理析出金属间化合物来强化。
正因为如此而获得了强度高的优点,但延韧性却差。
1、试用金属键的结合方式,解释金属具有良好的导电性、正的电阻温度系数、导热性、塑性和金属光泽等基本特性.答:(1)导电性:在外电场的作用下,自由电子沿电场方向作定向运动。
(2)正的电阻温度系数:随着温度升高,正离子振动的振幅要加大,对自由电子通过的阻碍作用也加大,即金属的电阻是随温度的升高而增加的。
(3)导热性:自由电子的运动和正离子的振动可以传递热能。
(4) 延展性:金属键没有饱和性和方向性,经变形不断裂。
(5)金属光泽:自由电子易吸收可见光能量,被激发到较高能量级,当跳回到原位时辐射所吸收能量,从而使金属不透明具有金属光泽。
2、填空:1)金属常见的晶格类型是面心立方、体心立方、密排六方。
2)金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有金属键的结合方式。
3)物质的原子间结合键主要包括金属键、离子键和共价键三种。
4)大部分陶瓷材料的结合键为共价键。
5)高分子材料的结合键是范德瓦尔键。
6)在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为(( 140 )) .7)在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB 晶向指数为(-110),OC晶向指数为(221),OD晶向指数为(121)。
8)铜是(面心)结构的金属,它的最密排面是(111 )。
9) α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn中属于体心立方晶格的有(α-Fe 、 Cr、V ),属于面心立方晶格的有(γ-Fe、Al、Cu、Ni ),属于密排六方晶格的有( Mg、Zn )。
第二章 纯金属的结晶答案
第二章纯金属的结晶(一) 填空题1.金属结晶两个密切联系的基本过程是形核和长大2 在金属学中,通常把金属从液态向固态的转变称为凝固,通常把金属从一种结构的固态向另一种结构的固态的转变称为固态相变。
3.当对金属液体进行变质处理时,变质剂的作用是变质剂的作用在于增加晶核的数量或者阻碍晶核长大。
钢中常用的变质剂为V,Ti,Al。
变质处理常用于大铸件,实际效果较好。
4.铸锭和铸件的区别是。
铸锭是将熔化的金属倒入永久的或可以重复使用的铸模中制造出来的。
凝固之后,这些锭(或棒料、板坯或方坯,根据容器而定)被进一步机械加工成多种新的形状。
用铸造方法获得的金属物件,即把熔炼好的液态金属,用浇注、压射、吸入或其他方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理,所得到的具有一定形状,尺寸和性能的物件。
5.液态金属结晶时,获得细晶粒组织的主要方法是控制过冷度、变质处理、振动、搅动6.金属冷却时的结晶过程是一个放热过程。
7.液态金属的结构特点为短程有序。
8.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的细,高温浇注的铸件晶粒比低温浇注的粗,采用振动浇注的铸件晶粒比不采用振动的细,薄铸件的晶粒比厚铸件细。
9.过冷度是金属的理论结晶温度与实际结晶温度之差。
一般金属结晶时,过冷度越大,则晶粒越细。
(二) 判断题1 凡是由液态金属冷却结晶的过程都可分为两个阶段。
即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。
N2.凡是由液体凝固成固体的过程都是结晶过程。
N3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。
( Y ) 4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的过程。
( N ) 金属玻璃---如果液体金属急速地降温,获得极大过冷度,以至没有形核就将温到原子扩散难以进行的温度,得到固体金属,它的原子排列状况与液态金属相似,这种材料称为非晶态金属,又称金属玻璃。
5.当纯金属结晶时,形核率随过冷度的增加而不断增加。
最新机械制造基础第二章习题及答案资料
第二章习题及答案2-1晶体和非晶体的主要区别是什么?答:晶体是指其原子呈周期性规则排列的固态物体。
晶体具有周期性规则的原子排列,主要是由于各原子之间的相互吸引力与排斥力相平衡的结果。
晶体还具有固定的熔点和各向异性的特征。
非晶体则原子排列无规则,没有固定的熔点,且各向同性。
2-2试述纯金属的结晶过程。
答:纯金属的结晶过程是在冷却曲线上平台所对应的时间内发生的,实质上是金属原子由不规则排列过渡到规则排列而形成晶体的过程,它是一个不断形成晶核和晶核不断长大的过程。
1)形核当液态金属的温度下降到接近T1时,液体的局部会有一些原子规则地排列起来,形成极细小的晶体,这些小晶体很不稳定,遇到热流和振动就会消失,时聚时散,此起彼伏。
当低于理论结晶温度时,稍大一点的细小晶体,有了较好的稳定性,就有可能进一步长大成为结晶核心,称为晶核。
晶核的形成有两种方式:一种为自发形核,即如前所述的,液态金属在过冷条件下,由其原子自己规则排列而形成晶核;一种为非自发形核,即依靠液态金属中某些现成的固态质点作为结晶核心进行结晶的方式。
非自发形核在金属结晶过程中起着非常重要的作用。
2)长大晶核形成之后,会吸附其周围液体中的原子不断长大,在晶核长大的同时,液体中又会产生新的晶核并长大,直到液态金属全部消失,晶体彼此接触为止。
2-3何谓为过冷度?影响过冷度大小的因素是什么?答:实际结晶温度低于理论结晶温度的现象,称为过冷现象。
理论结晶温度与实际结晶温度的差值,称为过冷度。
过冷度与金属液体的冷却速度有关,冷却速度越大,过冷度越大。
2-4晶粒粗细对金属的力学性能有何影响?细化晶粒可采取哪些措施?答:晶粒越细小,晶界越多、越曲折,晶粒与晶粒之间相互咬合的机会就越多,越不利于裂纹的传播和发展,增强了彼此间的结合力。
不仅使强度、硬度提高,而且塑性、韧性也越好。
为了能够获得细晶组织,实际生产中常采用增大过冷度⊿T、变质处理和附加振动等方法。
2-5什么是合金相图?什么是共晶转变和共析转变?答:合金相图是通过实验方法建立的。
金属学与热处理课后答案(崔忠圻版)
第二章纯金属的结晶2-3 为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么?答:(1)因为金属结晶时存在过冷现象,是为了满足结晶的热力学条件,过冷度越大,固、液两项的自由能差越大,相变驱动力越大。
(2)过冷度随金属的纯度不同和本性不同,以及冷却速度的差异可以再很大范围内变化。
金属不同,过冷度也不同;金属的纯度越高,则过冷度越大;冷却速度越大,过冷度越大,反之,越小。
(3)会,当液态金属的自由能低于固态时,这时实际结晶温度高于理论结晶温度T m,此时,固态金属才能自发的转变为液态金属,称为过热。
2-4试比较均匀形核与非均匀形核的异同点。
答;均匀形核是指:若液相中各区域出现新相晶核的几率是相同的;非均匀形核:液态金属中存在微小的固相杂质质点,液态金属与型壁相接触,晶核可以优先依附现成的固体表面形核。
在实际的中,非均匀形核比均匀形核要容易发生。
二者形核皆需要结构起伏,能量起伏,过冷度必须大于临界过冷度,晶胚的尺寸必须大于临界晶核半径。
2-5说明晶体成长形状与温度梯度的关系?答;正温度梯度下以平面状态的长大形态,服温度梯度下以树枝状长大。
2-6简述铸锭三晶区形成的原因及每个晶区的性能特点?(1)表层细晶区形成原因:①型壁临近的金属液体产生极大过冷度满足形核的热力学条件;②型壁可以作为非均匀形核的基地。
该晶区特点:组织细密,力学性能较好,但该晶区较薄,一般没有多大的实际意义。
(2)柱状晶区的形成原因:①液态金属结晶前沿有适当的过冷度,满足形核要求;②垂直于型壁方向散热最快,晶体向相反的方向生长;③外因是散热的方向性;④内因是晶体晶体生长的各向异性。
该晶区的特点:相互平行的柱状晶接触面及相邻垂直的柱状晶区的交界面较为脆弱,并常聚集着易熔杂质和非金属夹杂物,使铸锭在热压力加工时,容易沿着这些脆弱面开裂,组织比较致密。
(3)中心等轴晶区形成特定:①中心液体达到过冷,加上杂质元素的作用,满足形核的要求;②散热失去方向性,晶核自由生长,长大速度差不多,长成等轴区。
第二章 纯金属的结晶
均匀形核时的能量变化
第二章 纯金属的结晶 2.4 晶核的形成 假设过冷液体中出现一个半径为 r 的球形晶胚,它所引起的自由能变 化为: 4 3 G r GV 4r 2 3 在开始时,表面能项占优势,当r增加 到某一临界尺寸后,体积自由能的减 少将占优势。于是在ΔG与r的关系曲 线上有一个极大值ΔGK,与之对应的r 值为rK。 对上式进行处理,得到临界晶核半径 rK为:
第二章 纯金属的结晶 2.4 晶核的形成
临界晶核半径rK为:
2Tm 2 rK GV HT
晶核的临界半径rK与过冷度ΔT成反比,过冷度 越大,则临界半径rK越小。另外已经知道,相 起伏的最大尺寸rmax与温度有关,温度越低, 过冷度越大,相起伏的最大尺寸rmax越大。 rmax = rK 所对应的过冷度ΔT K称为临界过冷度。
第二章 纯金属的结晶 2.4 晶核的形成
在过冷液体中形成固态晶核时,若液相中各个区域出 现新相晶核的几率都是相同的,这种形核方式为均匀形核, 又称为均质形核或自发形核;
若新相优先出现在液相中某些区域,则称为非均匀形 核,又称为异质形核或非自发形核。 均匀形核是指液态金属绝对纯净,无任何杂质,也不 和型壁接触,只是依靠液态金属的能量变化,由晶胚直接 形核的理想情况。实际的液态中,总是或多或少地含有某 些杂质,晶胚常常依附于这些固态杂质质点(包括型壁) 上形核,所以,实际金属的结晶主要是按非均匀形核方式 进行。
液体
晶体
液体中的相起伏
第二章 纯金属的结晶 2.3 金属结晶的结构条件 在液态金属中,每一瞬间都涌 现出大量的尺寸不等的近程有序 原子集团。
相起伏的最大尺寸rmax与温度 有关,温度越高,尺寸越小;温 度越低,尺寸越大,越容易达到 临界晶核尺寸。 根据结晶的热力学条件,只 有在过冷液体中出现的尺寸较大 的相起伏才能在结晶时转变为晶 核,称为晶胚。 最大相起伏尺寸与 过冷度的关系
第二章 纯金属的结晶(金属学与热处理崔忠圻课后答案)
金属学与热处理第二版(崔忠圻)答案第二章纯金属的结晶2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何?答:2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。
为什么形成立方体晶核的△Gk比球形晶核要大。
答:2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么?答:金属结晶时需过冷的原因:如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。
当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。
所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使Gs<Gl,也就是在过冷的情况下才可自发地发生结晶。
把Tm-Tn的差值称为液态金属的过冷度影响过冷度的因素:金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。
固态金属熔化时是否会出现过热及原因:会。
原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<Gs,固态金属才会发生自发地熔化。
2-4 试比较均匀形核和非均匀形核的异同点。
答:相同点:形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。
具有相同的临界形核半径。
所需形核功都等于所增加表面能的1/3。
不同点:非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变化而变化。
非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。
两者对形核率的影响因素不同。
非均匀形核的形核率除了受过冷度和温度的影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。
2-5 说明晶体生长形状与温度梯度的关系。
答:液相中的温度梯度分为:正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。
结晶化学第2章习题答案
结晶化学第2章习题答案结晶化学第2章习题答案结晶化学·第二章习题与思考题1.单形的概念。
★★★★答:单形是对称要素联系起来的一组晶面的组合。
2.分别列出要求掌握的16种几何单形的名称和几何特征。
3.将16个单形(掌握)中特征相似的单形归成一组(至少3组);当你遇到其中一个时,请准确说出它的名称和特征。
★答:面类:单面、平行双面;柱类:斜方柱、四方柱、三方柱、六方柱、立方体;锥类:斜方双锥、四方双锥、六方双锥、八面体;面体类:斜方四面体、四方四面体、四面体、菱面体、菱形十二面体。
4.解释单形中一般形和特殊形的概念,以及两者的关系。
★答:一般形是指晶面与晶体中的对称要素以任意角度相交的单形;特殊形是指晶面垂直或平行于晶体中的任何一种对称要素,或与相同对称要素等角度相交。
一般形和特殊形是根据晶面与对称要素的相对位置来划分的,一个对称型中,只可能有一种一般形,晶类即以其一般形的名称来命名。
5.说明单形和结晶单形两概念的异同。
答:在概念上,单形包含了几何单形和结晶单形,一般泛指几何单形;而结晶单形同时考虑了单形的对称性和几何形态。
6.举例说明为什么中、低级晶族的晶体上必然会存在聚形现象。
★答:晶体的自限性指出晶体不可能有敞开的空间,因此,开形类的单形不可能独立地出现在晶体上,如柱类和单锥类,它们必须与低级晶族的平行双面或单面或者与其它单形相聚合构成一个封闭的空间。
例如低级晶族的斜方柱,必须与平行双面聚合;又如中级晶族的三方单锥,需与单面聚合。
7.判断后述表述的真伪并说出判别依据:①已知高级晶族的单形都是闭形,所以高级晶族的晶体上不会出现聚形现象;②推导单形时,当属于同一晶系的两个点群中同时出现名称相同的结晶单形时,这两个结晶单形的对称程度一定不同,而几何形态是一样的;③四面体可以有两个不同的单形符号;④在书写点群的国际符号时,立方晶系和四方晶系对称要素的三个选择方向是一样的。
★★★★答:①该表述为伪。
《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]
第一章金属的晶体结构1-1 作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6]等晶向。
答:1-2 立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包括(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
1-3 某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。
答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。
取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)1-4 体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H==a/2(1 0 0)==√2a/2H(1 1 0)==√3a/6H(1 1 1)面间距最大的晶面为(1 1 0)1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:==a/2H(1 0 0)H==√2a/4(1 1 0)==√3a/3H(1 1 1)面间距最大的晶面为(1 1 1)注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
答:1-7 证明理想密排六方晶胞中的轴比c/a=1.633。
第二次作业 金属的结晶
第二次作业金属的结晶(一)填空题1.结晶过程是依靠两个密切联系的基本过程来实现的,这两个过程是和。
2.在金属学中,通常把金属从液态过渡为固体晶态的转变称为;而把金属从一种固态过渡为另一种固体晶态的转变称为。
3.当对金属液体进行变质处理时,变质剂的作用是。
4.能起非自发生核作用的杂质,必须符合的原则。
5.过冷度是指,其表示符号为。
6.过冷是结晶的条件。
7.细化晶粒可以通过和两种途径实现。
8.典型铸锭结构的三个晶区分别为:、和。
(二)是非题1.凡是由液体凝固成固体的过程都是结晶过程。
()2.室温下,金属晶粒越细,则强度越高、塑性越低。
()3.金属由液态转变成固态的结晶过程,就是由短程有序状态向长程有序状态转变的过程。
()4.在实际金属和合金中,自发生核常常起着优先和主导的作用。
()5.纯金属结晶时,生核率随过冷度的增加而不断增加。
()6.当晶核长大时,随过冷度增大,晶核的长大速度增大。
但当过冷度很大时,晶核长大的速度很快减小。
()7.当过冷度较大时,纯金属晶体主要以平面状方式长大。
()8.当形成树枝状晶体时,枝晶的各次晶轴将具有不同的位向,故结晶后形成的枝晶是一个多晶体。
()9.在工程上评定晶粒度的方法是在放大100倍的条件下,与标准晶粒度图作化较,级数越高、晶粒越细。
()10.过冷度的大小取决于冷却速度和金属的本性。
()(三)选择正确答案1.金属结晶时,冷却速度越快,其实际结晶温度将:a.越高;b.越低;c.越接近理论结晶温度。
2.为细化晶粒,可采用:a.快速浇注;b.加变质剂;c.以砂型代金属型。
3.实际金属结晶时,通过控制生核速率N和长大速度G的比值来控制晶粒大小,在下列情况下获得粗大晶粒:a.N/G很大时;b.N/G很小时;c.N/G居中时。
(四)综合分析题1.如果其它条件相同,试比较在下列铸造条件下铸件晶粒的大小:1)金属模浇注与砂模浇注;2)变质处理与不变质处理;。
3)铸成薄件与铸成厚件;4)浇注时采用震动与不采用震动。
金属学与热处理试题及答案
复习自测题绪论及第一章金属的晶体结构自测题(一)区别概念1.屈服强度和抗拉强度;2.晶体和非晶体;3 刚度与强度(二)填空1.与非金属相比,金属的主要特性是2.体心立方晶胞原子数是,原子半径是,常见的体心立方结构的金属有。
3.设计刚度好的零件,应根据指标来选择材料。
是材料从状态转变为状态时的温度。
4 TK5 屈强比是与之比。
6.材料主要的工艺性能有、、和。
7 材料学是研究材料的、、和四大要素以及这四大要素相互关系与规律的一门科学;材料性能取决于其内部的,后者又取决于材料的和。
8 本课程主要包括三方面内容:、和。
(三)判断题1.晶体中原子偏离平衡位置,就会使晶体的能量升高,因此能增加晶体的强度。
( )2.因为面心立方和密排六方晶体的配位数和致密度都相同,因此分别具有这两种晶体结构的金属其性能基本上是一样的。
( )3.因为单晶体具有各向异性,多晶体中的各个晶粒类似于单晶体,由此推断多晶体在各个方向上的性能也是不相同的。
( )4.金属的理想晶体的强度比实际晶体的强度高得多。
5.材料的强度高,其硬度就高,所以其刚度也大。
(四)改错题1.通常材料的电阻随温度升高而增加。
3.面心立方晶格的致密度为0.68。
4.常温下,金属材料的晶粒越细小时,其强度硬度越高,塑性韧性越低。
5.体心立方晶格的最密排面是{100}晶面。
(五) 问答题1.从原子结合的观点来看,金属、陶瓷和高分子材料有何主要区别?在性能上有何表现?2.试用金属键结合的方式,解释金属具有良好导电性、导热性、塑性和金属光泽等基本特性。
(六) 计算作图题1.在一个晶胞中,分别画出室温纯铁(011)、(111)晶面及[111)、[011)晶向。
2.已知一直径为11.28mm,标距为50mm的拉伸试样,加载为50000N时,试样的伸长为0.04mm。
撤去载荷,变形恢复,求该试样的弹性模量。
3.已知a-Fe的晶格常数a=0.28664nm,γ-Fe的晶格常数a=0.364nm。
第二章 纯金属的结晶
界面-密排面
小平面界面
2) 粗糙界面:
以原子尺寸观察时,固相界 面上的原子高低不平,犬牙 交错分布。 微观上:平整
第二章
纯金属的结晶
第一节 金属的结晶现象
1、概念:
由液态转变为固态的过程,称凝固。如果转变成的固态是 晶体,这个过程就是结晶。
特点:(2个) 1)存在过冷现象和过冷度: 过冷现象:由热分析法测得纯金属的冷却曲线
看出:金属结晶前,温度连续下降,冷却到理论结晶温度 Tm(熔点)时,并未结晶,需继续冷却到Tm之下某一温度 Tn(实际结晶温度)时,才开始结晶,此过程称过冷现象。
N2:受原子扩散能力影响的形核率因子。温度越 高,原子的扩散能力越大,则N2越大。
N、N1、N2与温度关系的示意图如下:
由图a:△T↗→T↘→N1↗,△T↘→T↗→N2↗, 即结晶刚开始,N随△T的增大而增大;超过极大值时,N 又随△T的增大而减小 大多数金属的形核率总是随过冷度的增大而增大,如图b。 在开始一段过冷度范围内,几乎不产生晶核;当降低到某一 温度,形核率急剧增加,对应温度称有效成核温度。
过冷度:金属的实际结晶温度Tn与理论结晶温度Tm之差,
称过冷度,以△T表示。△T=Tm-Tn;
结晶的必要条件:有一定过冷度
影响过冷度的因素:
金属的本性:金属不同,过冷度不同;
金属的纯度:纯度越高,过冷度越大; 冷却速度:冷却速度越大,过冷度越大, 实际结晶温度越低;
第三章 纯金属的结晶、匀晶相图(含答案)
第二章纯金属的结晶、二元匀晶相图(含答案)一、填空题(在空白处填上正确的内容)1、纯金属的结晶过程是由________和________这两个基本过程所组成的。
答案:形核、晶粒长大2、金属的实际结晶温度低于理论结晶温度的现象叫做________,理论结晶温度与实际结晶温度之差叫做________。
答案:过冷、过冷度3、晶核的生成、存在有两种方式,即________和________。
答案:自发形核、非自发形核4、控制金属结晶后晶粒大小的主要途径有________、________和________三种。
答案:增大过冷度、变质处理、振动与搅拌5、生产中,在金属进行结晶时辅以机械振动,其目的是________。
答案:细化晶粒6、相图是表示平衡条件下物质的状态与________和________之间关系的简明图解。
答案:温度、成份7、一般来说金属的结晶是指金属由________转变为________的过程,也就是原子由不规则排列逐步过渡到规则排列的过程。
答案:液体、晶体(固体)8、金属结晶的过程为________和________。
答案:形核、晶粒长大9、在二元合金相图上,横坐标为________,纵坐标为________,图中的区域为________。
答案:成份、温度、相10、金属结晶的过程为________和________。
答案:形核、长大11、生产中,当金属进行结晶时辅以机械振动,其目的是________。
答案:细化晶粒12、在金属结晶过程中,细化晶粒的主要方法有________、________和________。
答案:增加过冷度、变质处理、振动与搅拌13、纯金属的结晶过程是由________和________这两个基本过程所组成的。
答案:形核、晶粒长大14、生产中常见的细化晶粒的方法有________、________和________三种。
答案:增大过冷度、变质处理、振动与搅拌15、合金相图是表示在平衡条件下,合金的状态有规律地随________和________的变化而变化的图解。
金属学与热处理第二章
复习重点:名词、简答、各章课堂强调的重点及书后作业第二章纯金属的结晶一、名词:结晶:金属由液态转变为固态晶体的转变过程.结晶潜热:金属结晶时从液相转变为固相放出的热量。
孕育期:当液态金属过冷至理论结晶温度以下的实际结晶温度时,晶核并末立即出生,而是经过了一定时间后才开始出现第一批晶核。
结晶开始前的这段停留时间称为孕育期。
近程有序:液态金属中微小范围内存在的紧密接触规则排列的原子集团。
远程有序:固态晶体中存在的大范围内的原子有序排列集团。
结构起伏(相起伏):液态金属中不断变化着的近程有序原子集团。
晶胚:过冷液体中存在的有可能在结晶时转变为晶核的尺寸较大的相起伏。
形核率:单位时间单位体积液体中形成的晶核数目。
过冷度:金属的实际结晶温度与理论结晶温度之差。
均匀形核:液相中各个区域出现新相晶核的几率都相同的形核方式。
非均匀形核:新相优先出现于液相中的某些区域的形核方式。
变质处理:在浇注前向液态金属中加入形核剂以促进形成大量的非均匀晶核来细化晶粒的液态金属处理方法。
能量起伏:液态金属中各微观区的能量此起彼伏、变化不定偏离平衡能量的现象。
正温度梯度:液相中的温度随至界面距离的增加而提高的温度分布状况。
负温度梯度:液相中的温度随至界面距离的增加而降低的温度分布状况细晶强化:用细化晶粒来提高材料强度的方法。
晶粒度:晶粒的大小。
缩孔:液态金属凝固,体积收缩,不再能填满原来铸型,如没有液态金属继续补充而出现的收缩孔洞。
二、简答:1. 热分析曲线表征了结晶过程的哪两个重要宏观特征?答:过冷现象、结晶潜热释放现象2. 影响过冷度的因素有那些?如何影响的?答:金属的本性、纯度和冷却速度。
金属不同,过冷度的大小也不同;金属的纯度越高,则过冷度越大;冷却速度越大,则过冷度越大。
3. 决定晶体长大方式和长大速度的主要因素?1)界面结构;2)界面附近的温度分布;3)潜热的释放与逸散4. 晶体长大机制有哪几种?1)二维晶核长大机制;2)螺型位错长大机制;3)垂直长大机制5、结晶过程的普遍规律是什么?答:结晶是形核和晶核长大的过程6、均匀形核的条件是什么?答:①要有结构起伏与能量起伏;②液态金属要过冷,且过冷度必须大于临界过冷度;③结晶必须在一定温度下进行。
纯金属的结晶考试试卷及参考答案
纯金属的结晶考试试卷及参考答案(一) 填空题1.金属结晶两个密切联系的基本过程是形核和长大。
2 在金属学中,通常把金属从液态向固态的转变称为结晶,通常把金属从一种结构的固态向另一种结构的固态的转变称为相变。
3.当对金属液体进行变质处理时,变质剂的作用是增加非均质形核的形核率来细化晶粒4.液态金属结晶时,获得细晶粒组织的主要方法是控制过冷度、加入结构类型相同的形核剂、振动、搅动5.金属冷却时的结晶过程是一个放热过程。
6.液态金属的结构特点为长程无序,短程有序。
7.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的细小,高温浇注的铸件晶粒比低温浇注的粗大,采用振动浇注的铸件晶粒比不采用振动的细小,薄铸件的晶粒比厚铸件细小。
8.过冷度是金属相变过程中冷却到相变点以下某个温度后发生转变,即平衡相变温度与该实际转变温度之差。
一般金属结晶时,过冷度越大,则晶粒越细小。
9、固态相变的驱动力是新、旧两相间的自由能差。
10、金属结晶的热力学条件为金属液必须过冷。
11、金属结晶的结构条件为在过冷金属液中具有尺寸较大的相起伏,即晶坯。
12、铸锭的宏观组织包括外表面细晶区、中间等轴晶区和心部等轴晶区。
(二) 判断题1 凡是由液态金属冷却结晶的过程都可分为两个阶段。
即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。
( ×)2.凡是由液体凝固成固体的过程都是结晶过程。
( ×) 3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。
( √)4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的过程。
( √)5.当纯金属结晶时,形核率随过冷度的增加而不断增加。
( ×) P41+76.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。
( √) P53 图2-337.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。
结晶化学第2章习题答案
结晶化学第2章习题答案结晶化学·第二章习题与思考题1.单形的概念。
★★★★答:单形是对称要素联系起来的一组晶面的组合。
2.分别列出要求掌握的16种几何单形的名称和几何特征。
3.将16个单形(掌握)中特征相似的单形归成一组(至少3组);当你遇到其中一个时,请准确说出它的名称和特征。
★答:面类:单面、平行双面;柱类:斜方柱、四方柱、三方柱、六方柱、立方体;锥类:斜方双锥、四方双锥、六方双锥、八面体;面体类:斜方四面体、四方四面体、四面体、菱面体、菱形十二面体。
4.解释单形中一般形和特殊形的概念,以及两者的关系。
★答:一般形是指晶面与晶体中的对称要素以任意角度相交的单形;特殊形是指晶面垂直或平行于晶体中的任何一种对称要素,或与相同对称要素等角度相交。
一般形和特殊形是根据晶面与对称要素的相对位置来划分的,一个对称型中,只可能有一种一般形,晶类即以其一般形的名称来命名。
5.说明单形和结晶单形两概念的异同。
答:在概念上,单形包含了几何单形和结晶单形,一般泛指几何单形;而结晶单形同时考虑了单形的对称性和几何形态。
6.举例说明为什么中、低级晶族的晶体上必然会存在聚形现象。
★答:晶体的自限性指出晶体不可能有敞开的空间,因此,开形类的单形不可能独立地出现在晶体上,如柱类和单锥类,它们必须与低级晶族的平行双面或单面或者与其它单形相聚合构成一个封闭的空间。
例如低级晶族的斜方柱,利用对称要素组合定理,分别推导出常见的10个对称型。
★★答:① L2×P⊥=L2PC,根据定理2。
② L2×L2⊥=3L2,(定理1);L2×P⊥=L2PC (定理2);L2×P//=L22P(定理3),得3L23PC。
③ L33P = L3×P//,(定理3)。
④L33L2= L3×L2⊥,(定理1)。
⑤L66L27PC:L6×L2⊥= L66L2(定理1);L6×P⊥=L6PC(定理2);L6×P//=L66P(定理3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章纯金属结晶作业答
案
-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
第二章纯金属的结晶
(一) 填空题
1.金属结晶两个密切联系的基本过程是形核和长大。
2 在金属学中,通常把金属从液态向固态的转变称为结晶,通常把金属从一种结构的固态向另一种结构的固态的转变称为相变。
3.当对金属液体进行变质处理时,变质剂的作用是增加非均质形核的形核率
来细化晶粒
4.液态金属结晶时,获得细晶粒组织的主要方法是控制过冷度、加入结构类
型相同的形核剂、振动、搅动
5.金属冷却时的结晶过程是一个放热过程。
6.液态金属的结构特点为长程无序,短程有序。
7.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的细小,高温浇注的铸件晶粒比低温浇注的粗大,采用振动浇注的铸件晶粒比不采用振动的细小,薄铸件的晶粒比厚铸件细小。
8.过冷度是金属相变过程中冷却到相变点以下某个温度后发生转变,即平衡
相变温度与该实际转变温度之差。
一般金属结晶时,过冷度越大,则晶粒越细小。
9、固态相变的驱动力是新、旧两相间的自由能差。
10、金属结晶的热力学条件为金属液必须过冷。
11、金属结晶的结构条件为在过冷金属液中具有尺寸较大的相起伏,即晶
坯。
12、铸锭的宏观组织包括外表面细晶区、中间等轴晶区和心部等轴晶区。
(二) 判断题
1 凡是由液态金属冷却结晶的过程都可分为两个阶段。
即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。
( × )
2.凡是由液体凝固成固体的过程都是结晶过程。
( × )
3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。
( √ )
4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的
过程。
( √ )
5.当纯金属结晶时,形核率随过冷度的增加而不断增加。
( × ) P41+7
6.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。
( √ ) P53 图2-33
7.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。
( √ ) P53-12
8.所有相变的基本过程都是形核和核长大的过程。
( √ )
9.在其它条件相同时,金属模浇注的铸件晶粒比砂模浇注的铸件晶粒更细(√ ) 10.在其它条件相同时,高温浇注的铸件晶粒比低温浇注的铸件晶粒更细。
( × )
11.在其它条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更细。
( √ )
12. 金属的理论结晶温度总是高于实际结晶温度。
( √ )
14.在实际生产条件下,金属凝固时的过冷度都很小(<20℃),其主要原因是由于非均匀形核的结果。
(√ )
15.过冷是结晶的必要条件,无论过冷度大小,均能保证结晶过程得以进行。
(× )
(三) 选择题
1 液态金属结晶的基本过程是A
A.边形核边长大 B.先形核后长大
C.自发形核和非自发形核 D.枝晶生长
2.液态金属结晶时, C 越大,结晶后金属的晶粒越细小。
A.形核率N B.长大率G C.比值N/G D.比值G/N
3.过冷度越大,则A
A.N增大、G减少,所以晶粒细小 B.N增大、G增大,所以晶粒细小
C N增大、G增大,所以晶粒粗大 D.N减少、G减少,所以晶粒细小4.纯金属结晶时,冷却速度越快,则实际结晶温度将 B 。
A.越高 B 越低 C.越接近理论结晶温度 D.没有变化
5.若纯金属结晶过程处在液—固两相平衡共存状态下,此时的温度将比理论结晶温度C P35-3
A.更高 B.更低 C;相等 D.高低波动
6.在实际金属结晶时,往往通过控制N/G比值来控制晶粒度。
在下列 B 情况下将获得粗大晶粒。
A.N/G很大 B.N/G很小 C.N/G居中 D.N/G=1
1、简述凝固过程的宏观特征,叙述凝固过程中晶体成长的机理。
凝固时宏观特征是:要有一定的过冷度,会放出明显的结晶潜热。
成长机理有三种:连续式成长、二维形核及借助台阶侧向生长、借螺旋位错生长。
2、叙述钢锭或连铸坯中常见的宏观组织缺陷,消除或改善方法。
宏观缺陷有:宏观偏析(如正常偏析、反常偏析、比重偏析)和带状组织以及缩孔、疏松、气泡等。
严格讲,也包括三晶区的组织不均匀性。
宏观缺陷(化学不均匀性、物理不均匀性和组织不均匀性)往往是相互联系的,一般希望尽可能多而细的中心等轴晶,可采用加孕育剂、加大冷速、加强液体运动(如电磁搅拌、机械搅拌)等方法,细化晶粒,消除柱状晶,这样与柱状晶/枝状晶区相伴随的宏观偏析和缩孔、气泡也就明显改善了。