人教版数学《二次函数》中考专题复习中考考点分析

合集下载

二次函数中考题型总结

二次函数中考题型总结

二次函数常考知识点总结整理一、函数定义与表达式1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化二、函数图像的性质——抛物线(1)开口方向——二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;(2)抛物线是轴对称图形,对称轴为直线一般式:2bx a=-对称轴顶点式:x=h一般式:2424b ac b aa ⎛⎫-- ⎪⎝⎭,顶点式:(h、k)顶点坐标y=-2x 2两根式:x=221x x +(3)对称轴位置一次项系数b 和二次项系数a 共同决定对称轴的位置。

(“左同右异”)a 与b 同号(即ab >0)对称轴在y 轴左侧a 与b 异号(即ab <0)对称轴在y 轴右侧(4)增减性,最大或最小值当a>0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而减少;在对称轴右侧(当2bx a<-时),y 随着x 的增大而增大;当a<0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而增大;在对称轴右侧(当2bx a<-时),y 随着x 的增大而减少;当a>0时,函数有最小值,并且当x=a b2-,2min 44ac b y a -=;当a<0时,函数有最大值,并且当x=ab2-,2max 44ac b y a -=;(5)常数项c常数项c 决定抛物线与y 轴交点。

初三数学《二次函数》考点整理与例题解析

初三数学《二次函数》考点整理与例题解析

初三数学《二次函数》考点整理与例题解析二次函数重难点分析:1、二次函数的图像2、二次函数的性质以及性质的综合应用3、二次函数的应用性问题:①面积最值问题②高度、长度最值问题③利润最大化问题④求近似解知识点归纳:1、二次函数的概念y=ax2+bx+c(a≠0)2、求二次函数的解析式一般式y=ax2+bx+c、顶点式y=a(x+m)2+k交点式y=a(x-x1)(x-x2)3、二次函数的图像和性质当a>0时,图像开口向上,有最低点,有最小值当a<0时,图像开口向下,有最高点,有最大值顶点式对称轴:直线x=-m一般式对称轴:直线x=-b/2a交点式对称轴:直线x=(x1+x2)/24.二次函数图像的平移函数y=a(x+m)2+k的图像,可以由函数y=ax2的图像先向右(当m<0时)或向左(m>0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到5、抛物线与系数的关系二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c)抛物线与x轴交点个数?= b2-4ac>0时,抛物线与x轴有2个交点。

?= b2-4ac=0时,抛物线与x轴有1个交点。

?= b2-4ac<0时,抛物线与x轴没有交点知识拓展:初中数学最重要的部分,在中考中占的比重大,跟其他知识点联系多,以数形结合的题型考查几何,解方程、代数等都相互联系,知识点多题型多变,压轴题多以此为出题点1、考查形式:以选择题、填空题形式考察二次函数图像的性质,以解答题形式考察以二次函数为载体的综合题。

2、考察趋势:二次函数图像与系数的关系,二次函数的应用仍是重点3、二次函数求最值的应用:依据实际问题中的数量关系,确定二次函数的解析式,结合方程、一次函数等知识解决实际问题(对于二次函数最大(小)值的确定,一定要注意二次函数自变量的取值范围,同时兼顾实际问题中对自变量的特殊约定,结合图像进行理解)经典例题。

2024年中考数学总复习:二次函数(附答案解析)

2024年中考数学总复习:二次函数(附答案解析)

2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。

中考复习二次函数知识点总结

中考复习二次函数知识点总结

中考复习二次函数知识点总结二次函数是中考数学中的重要知识点之一、下面我将从函数的定义、图像特征、解析式以及一些常见题型进行总结,希望对中考复习有所帮助。

一、函数的定义:函数是数学中最基本的概念之一,它是描述两个集合之间对应关系的规则。

在二次函数中,我们通常用y来表示函数的值,用x表示自变量。

二、图像特征:1.开口方向:二次函数的图像在x轴上开口的方向可以通过二次项的系数(即a的正负性)来判断。

当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

2.对称轴:二次函数的图像总是关于一个垂直于x轴的直线对称。

这条直线称为二次函数的对称轴,它的方程为x=-b/(2a)。

3.顶点坐标:对称轴与二次函数图像的交点称为顶点,它的坐标为:(-b/(2a),f(-b/(2a)))4.单调性:当a>0时,二次函数图像在对称轴左侧递减,在对称轴右侧递增;当a<0时,二次函数图像在对称轴左侧递增,在对称轴右侧递减。

注意:二次函数的图像开口向上时,在对称轴上有一个最小值,反之开口向下时,在对称轴上有一个最大值。

三、解析式:一般情况下,二次函数的解析式可以写成:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。

特殊情况下,二次函数的解析式还有以下两种形式:1.完全平方式:y=a(x-p)^2+q,其中p、q为常数。

此时,二次函数的对称轴的方程为x=p,顶点的坐标为(p,q)。

2.二次项因式可能性:y=a(x-h)(x-k),其中h、k为常数。

此时,二次函数的对称轴的方程为x=(h+k)/2,顶点的坐标为((h+k)/2,a(h+k)/4)。

四、常见题型:1.求顶点坐标:根据二次函数的解析式,可以直接读出顶点的坐标。

2.求对称轴方程:根据二次函数的解析式,可以直接读出对称轴的方程。

3.求图像开口方向:判断二次项的系数a的正负性即可。

4.求单调性:根据图像特征可以判断。

5. 求零点:令y=0,解方程ax^2+bx+c=0即可。

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理《二次函数》是中考数学中的重要知识点之一,也是考试中容易出错的部分。

为了帮助同学们复习和避免常见错误,下面将对《二次函数》的知识点进行梳理,详细介绍其中的易错点。

《二次函数》是形如y = ax² + bx + c的函数,其中a、b和c是常数,并且a ≠。

它的图像是一个开口向上或向下的抛物线。

下面我们来逐个讲解常见易错点。

1.函数的定义域和值域:在解析式中,x可以取任意实数值,所以函数的定义域是全体实数集R。

而在图像上,如果a>,则函数的值域是[,+∞);如果a<,则函数的值域是(-∞,]。

错误经常出在对值域的判断上,容易忽略函数的开口方向。

2.抛物线的开口和对称轴:当a>时,抛物线开口向上,对称轴是x=-b/2a;当a<时,抛物线开口向下,对称轴是x=-b/2a。

易错点在于判断抛物线的开口方向和对称轴的判断。

3.抛物线的顶点和轴对称性:顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax² + bx + c。

抛物线与对称轴关于顶点具有轴对称性,即对称轴上的点到顶点的距离与对称轴上的点到抛物线的距离相等。

4.求解方程和不等式:与二次函数相关的方程和不等式是中考数学考试中的常见题型。

对于二次方程ax² + bx + c = ,可以使用因式分解、配方法和求根公式等方法求解。

对于二次不等式ax² + bx + c > 或ax² + bx + c < ,可以通过画图法或求解方程法来确定解集。

5.函数的增减性和极值:二次函数的增减性与a的正负有关,当a>时,函数递增;当a<时,函数递减。

相应地,函数的极值与抛物线的开口方向相反,开口向上时有最小值,开口向下时有最大值。

6.函数与坐标轴的交点:函数与x轴的交点称为零点,可以通过求解方程ax² + bx + c = 来求得。

人教版初三数学下册 中考复习 二次函数

人教版初三数学下册 中考复习 二次函数

中考复习之二次函数二次函数的一般式为y=ax2+bx+c(a≠0)a控制开口方向a>0,开口向上;a<0,开口向下。

|a|越大,开口越小;|a|越小,开口越大b控制顶点坐标顶点坐标公式24 (,) 24b ac ba a--顶点坐标的横坐标决定对称轴,顶点坐标的纵坐标决定最值对称轴在y轴左边,a、b同号;对称轴在y轴右边,a、b异号,对称轴刚好是y轴,b=0。

口诀:左同右异c控制二次函数与y轴的交点二次函数与y轴一定有一个交点,这个交点坐标为(0,c)当c>0,二次函数与y轴交于正半轴当c<0,二次函数与y轴交于负半轴当c=0,二次函数经过原点(0,0)二次函数x轴的交点由Δ控制Δ>0,二次函数与x轴有2个交点Δ=0,二次函数与x轴有1个交点Δ_____,二次函数与x轴有交点Δ<0,二次函数与x轴无交点求函数与x 轴的交点=>令y=0求函数与y 轴的交点=>令x=01、抛物线y =x 2﹣4x+4的顶点坐标为( )A .(﹣4,4)B .(﹣2,0)C .(2,0)D .(﹣4,0)2、抛物线y =x 2+x ﹣1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =﹣D .直线x =3、抛物线y =x 2+1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =0D .直线y =14、抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)5、把抛物线y =﹣x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .y =﹣(x ﹣1)2+3B .y =﹣(x+1)2+3C .y =﹣(x+1)2﹣3D .y =﹣(x ﹣1)2﹣36、函数y =kx 2﹣4x+2的图象与x 轴有公共点,则k 的取值范围是( )A .k <2B .k <2 且 k ≠0C .k ≤2D .k ≤2 且 k ≠07、二次函数y =kx 2﹣2x ﹣3的图象和x 轴有交点,则k 的取值范围是( )A .k >31- B .k >31-且k ≠0 C .k ≥31- D .k ≥31-且k ≠0例1、二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,给出下列结论:①abc<0 ②b2>4ac ③4a+2b+c<0 ④2a+b=0其中正确的结论有()A.4个B.3个C.2个D.1个例2、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0②b﹣a>c ③4a+2b+c>0 ④3a>﹣c ⑤a+b>m(am+b)(实数m≠1)。

中考专题复习二次函数知识点总结

中考专题复习二次函数知识点总结

中考专题复习二次函数知识点总结知识点一:二次函数的定义1.二次函数的定义:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数.其中a是二次项系数,b是一次项系数,c是常数项.知识点二:二次函数的图象与性质⇒⇒⇒抛物线的三要素:开口、对称轴、顶点2. 二次函数()2=-+的图象与性质y a x h k(1)二次函数基本形式2=的图象与性质:a的绝对值越大,抛物线的开口越小y ax(2)2=+的图象与性质:上加下减y ax c(3)()2y a x h =-的图象与性质:左加右减(4)二次函数()2y a x h k =-+的图象与性质3. 二次函数c bx ax y ++=2的图像与性质(1)当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. (2)当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.4. 二次函数常见方法指导(1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 可以由抛物线2ax 经过适当的平移得到具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:,已知图象上三点或三对、的值,通常选择一般式.②顶点式:,已知图象的顶点或对称轴,通常选择顶点式.③交点式:,已知图象与轴的交点坐标、.(4)求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. (5)抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样. ②b 和a 共同决定抛物线对称轴的位置由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故 如果0=b 时,对称轴为y 轴;如果0>a b(即a 、b 同号)时,对称轴在y 轴左侧; 如果0<ab(即a 、b 异号)时,对称轴在y 轴右侧.③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置当0=x 时,c y =,所以抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ),故 如果0=c ,抛物线经过原点; 如果0>c ,与y 轴交于正半轴; 如果0<c ,与y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数c bx ax y ++=2,当0y =时,得到一元二次方程20ax bx c ++=,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解6.拓展:关于直线与抛物线的交点知识(1)y 轴与抛物线c bx ax y ++=2得交点为(0,)c .(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx n y ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题。

人教版初中数学二次函数知识点总复习附解析

人教版初中数学二次函数知识点总复习附解析

人教版初中数学二次函数知识点总复习附分析一、选择题1.抛物线y1=ax2 +bx+c 与直线y2=mx+n 的图象以下图,以下判断中:① abc< 0;② a+b+c> 0;③5 a-c=0;④ 当x<或x>6 时, y1> y2,此中正确的个数有()A.1B. 2C. 3D. 4【答案】 C【分析】【剖析】【详解】解:依据函数的张口方向、对称轴以及函数与y 轴的交点可知: a 0, b 0, c 0,则abc 0,则①正确;依据图形可得:当 x=1 时函数值为零,则a+b+c=0,则②错误;依据函数对称轴可得: - b=3,则 b=-6a,依据 a+b+c=0 可知: a-6a+c=0,-5a+c=0,则 5a-2ac=0,则③正确;依据函数的交点以及函数图像的地点可得④正确.点睛:本题主要考察的就是函数图像与系数之间的关系,属于中等题目,假如函数张口向上,则 a 大于零,假如函数张口向下,则 a 小于零;假如函数的对称轴在y 轴左边,则 b 的符号与 a 相同,假如函数的对称轴在y 轴右边,则 b 的符号与 a 相反;假如函数与 x 轴交于正半轴,则 c 大于零,假如函数与x 轴交于负半轴,则 c 小于零;对于出现 a+b+c、 a-b+c、 4a+2b+c、 4a-2b+c 等状况时,我们需要找详细的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界限,而后进行分状况议论.2.二次函数y =ax2bx c (a≠0)图象以下图,以下结论:① abc > 0;②2a b =0;③当m ≠1时,a b>am2bm ;④a b c >0;⑤若 ax12bx1= ax22bx2,且 x1≠x2,则x1x2=2.此中正确的有()A.①②③B.②④C.②⑤D.②③⑤【答案】 D【分析】【剖析】由抛物线的张口方向判断 a 与 0 的关系,由抛物线与 y 轴的交点判断 c 与 0 的关系,而后依据对称轴及抛物线与 x 轴交点状况进行推理,从而对所得结论进行判断【详解】解:抛物线的张口向下,则a< 0;抛物线的对称轴为x=1,则 - b=1, b=-2a2a∴b>0, 2a+b=0 ②抛物线交 y 轴于正半轴,则c> 0;由图像知 x=1 时 y=a+b+c 是抛物线极点的纵坐标,是最大值,当m≠1 y=am2bm +c不是极点纵坐标,不是最大值∴ a b>am2bm (故③正确):b >0, b+2a=0;(故② 正确)又由①②③得: abc< 0(故① 错误)由图知:当 x=-1时, y< 0;即 a-b+c< 0,b >a+c;(故④错误)⑤若 ax12bx1= ax22bx2得 ax12bx1-( ax22bx2)= ax12bx1-ax22-bx2=a(x12-x22)+b(x1-x2)=a(x1+x2)(x1-x2) +b(x1-x2 )= ( x1 -x2) [a(x1+x2)+b]= 0∵x1≠x2∴a(x1+x2)+b=0∴x1+x2=应选 D.b2a=2 (故⑤正确)a a考点:二次函数图像与系数的关系.3.已知抛物线y ax2bx c 与 x 轴的一个交点坐标为(4,0) ,其部分图象以下图,下列结论:① 抛物线必定过原点;②方程 ax2bx c0 a 0 的解为 x 0 或4;③ a b c 0 ;④当0x 4 时,ax2bx c0;⑤当 x 2 时, y 随x增大而增大.此中结论正确的个数有()A.1B. 2C. 3D. 4【答案】 D【分析】【剖析】依据题意,求得a, b, c ,依据二次函数的图像和性质,联合选项进行逐个剖析,即可判断.【详解】b2 ,与 x 轴的一个交点坐标为(4,0) ,则另一个交点坐标为0,0 ,由题可知2a故可得故可得16a 4b c0 ,c = 0,4a b,c0①因为 c = 0 ,故①正确;②因为二次函数过点0,0 , 4,0 ,故②正确;③当 x 1 时,函数值为 a b c0,故③正确;④ 由图可知,当0x 4 时,y0,故④正确;⑤ 由图可知,当x 2 时, y 随x增大而减小,故⑤错误;应选: D.【点睛】本题考察二次函数的图像和性质,波及二次函数的增减性,属综合中档题.4.二次函数y ax2bx c(a 0) 的图象以下图,以下结论① b24ac ,②abc 0 ,③ 2a b c 0 ,④ a b c 0 .此中正确的选项是()A.①④B.②④C.②③D.①②③④【答案】 A【分析】【剖析】①抛物线与 x 轴由两个交点,则 b 24ac0 ,即b24ac ,所以①正确;②由二次函数图象可知, a 0 , b0 ,c0 ,所以 abc0,故②错误;③对称轴:直线 x b2a,所以2a b c4a c ,1, b2a2a b c 4a c0,故③ 错误;④对称轴为直线 x1,抛物线与x轴一个交点3x1 2 ,则抛物线与x 轴另一个交点 0 x2 1 ,当x1时, y a b c0,故④正确.【详解】解:① ∵抛物线与x 轴由两个交点,∴ b 24ac0 ,即 b24ac ,所以① 正确;② 由二次函数图象可知,a 0 , b0 ,c0,∴ abc 0 ,故② 错误;③ ∵对称轴:直线 x b 1,2a∴ b2a ,∴ 2a b c4a c ,∵ a0 ,4a0 ,c 0, a0 ,∴ 2a b c4a c 0,故③ 错误;④ ∵对称轴为直线x 1 ,抛物线与x轴一个交点 3 x1 2 ,∴抛物线与 x 轴另一个交点0x2 1 ,当 x 1 时,y a b c0,故④ 正确.应选: A.【点睛】本题考察了二次函数图象与系数的关系,娴熟掌握二次函数图象的性质是解题的重点.5.如图,二次函数 y=ax2+ bx+c 的图象过点 (-1,0)和点 (3,0),有以下说法:① bc< 0;② a+ b+ c>0 ;③2a+ b= 0;④4ac> b2.此中错误的选项是 ()A.②④B.①③④C.①②④D.②③④【答案】 C【分析】【剖析】利用抛物线张口方向获得a0 ,利用对称轴在y 轴的右边获得 b 0,利用抛物线与 y 轴的交点在 x 轴下方获得 c0,则可对 A进行判断;利用当x 1 时,y 0可对B进行判断;利用抛物线的对称性获得抛物线的对称轴为直线xb1,则可对 C 进行判断;2a依据抛物线与 x 轴的交点个数对 D 进行判断.【详解】解: Q 抛物线张口向上,a0,Q 对称轴在y轴的右边,a 和b异号,b0 ,Q 抛物线与y轴的交点在 x 轴下方,c0 ,bc0,所以① 错误;Q 当x 1 时,y 0,a b c 0 ,所以②错误;Q 抛物线经过点( 1,0) 和点 (3,0) ,抛物线的对称轴为直线x 1 ,b即1,2a2a b 0 ,所以③正确;Q 抛物线与 x 轴有2个交点,△ b24ac 0 ,即4ac b2,所以④错误.综上所述:③ 正确;①②④错误.应选: C.【点睛】本题考察了二次函数图象与系数的关系:对于二次函数y ax2bx c(a 0) ,二次项系数 a 决定抛物线的张口方向和大小;一次项系数 b 和二次项系数 a 共同决定对称轴的地点(左同右异).常数项 c 决定抛物线与y 轴交点(0, c).抛物线与x 轴交点个数由△决定.6.如图,抛物线 y= ax2+bx+c( a≠0)与 x 轴交于点 A( 1, 0),对称轴为直线 x=﹣ 1,当y >0 时, x 的取值范围是()A.﹣ 1< x< 1B.﹣ 3< x<﹣ 1C. x< 1D.﹣ 3< x<1【答案】 D【分析】【剖析】依据已知条件求出抛物线与x 轴的另一个交点坐标,即可获得答案.【详解】解:∵抛物线y= ax2+bx+c 与 x 轴交于点 A( 1, 0),对称轴为直线x=﹣ 1,∴抛物线与 x 轴的另一交点坐标是(﹣ 3,0),∴当 y> 0 时, x 的取值范围是﹣ 3<x< 1.所以答案为: D.【点睛】本题考察抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标 .7.二次函数y ax2bx c(a, b, c 为常数,且a0 )中的x与 y 的部分对应值如表:x·y·10131353··以下结论错误的选项是()A.ac02B.3是对于x的方程axb 1 x c 0的一个根;C.当x1时, y 的值随x值的增大而减小;D.当- 1 < x < 3时,ax2b 1 x c0.【答案】C【分析】【剖析】依据函数中的x 与 y 的部分表,能够求得a、 b、c 的而后在依据函数分析式及其象即可各个做出判断.【解】解:依据二次函数的x 与 y 的部分可知:当 x 1 ,y1,即a b c1,当 x0 ,y 3 ,即c 3 ,当 x 1 ,y 5 ,即a b c 5 ,a b c1立以上方程:c3,a b c5a1解得: b 3 ,c3∴ y x23x 3 ;A、ac1330,故本正确;B、方程ax2b 1 x c0可化x22x 3 0 ,将 x3代入得:322339630 ,∴ 3是对于 x 的方程ax2b 1 x c0 的一个根,故本正确;C、y x23x 3 化点式得: y( x 3 )221,24∵ a10 ,抛物的张口向下,∴当 x 3x 的增大而减小;当x3, y 的随, y 的随x的增大而增大;22故本;D、不等式ax2 b 1 x c0 可化x22x 3 0,令 y x22x 3 ,由二次函数的象可得:当y0 ,- 1 < x < 3,故本正确;故: C.【点睛】本考了待定系数法求二次函数分析式、二次函数的性、二次函数与不等式的关系,依据表中数据求出二次函数分析式是解的关.8.一列自然数0, 1,2 ,3,⋯, 100.挨次将列数中的每一个数平方后除以100,获得一列新数.以下正确的选项是()A.原数与新数的差不行能等于零B.原数与新数的差,跟着原数的增大而增大C.当原数与新数的差等于21 ,原数等于30D .当原数取 50 时,原数与对应新数的差最大 【答案】 D【分析】【剖析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为 m ,则新数为1m 2 ,100设新数与原数的差为 y则 y m1 m2 1 m 2 m ,100100易得,当 m = 0 时, y =0,则 A 错误∵1100m ﹣ b﹣ 1150时, y 有最大值.则 B 错误, D 正确.当 2a 2 ﹣100 当 y = 21 时,1 m2 m = 21100解得 m 1 =30, m 2 = 70,则 C 错误.故答案选: D .【点睛】本题以规律研究为背景,综合考察二次函数性质和解一元二次方程,解题时要注意将数字规律转变为数学符号.9.已知二次函数 y=ax 2 +bx+c 的图象以下图,有以下结论:① a+b+c < 0;② a ﹣b+c > 1; ③ abc > 0;④9a ﹣ 3b+c < 0; ⑤ c ﹣a > 1.此中全部正确结论的序号是 ()A .①②B . ①③④C . ①②③④D . ①②③④⑤【答案】 D【分析】【剖析】依据抛物线的张口方向可得出a 的符号,再由抛物线与 y 轴的交点可得出 c 的值,而后进一步依据对称轴以及抛物线得出当 x 1、 x1、 x3 时的状况进一步综合判断即可. 【详解】由图象可知, a < 0, c=1,b 1,对称轴: x=2a∴b=2a ,① 由图可知:当x=1 时, y < 0,∴ a+b+c < 0,正确;② 由图可知:当 x=-1 时, y > 1,∴ a- b+c >1,正确; ③ abc=2a 2 >0,正确;④ 由图可知:当 x=-3 时, y < 0,∴ 9a- 3b+c <0,正确;⑤ c-a=1-a > 1,正确;∴①②③④⑤ 正确.应选: D .【点睛】本题主要考察了抛物线的函数图像性质的综合运用,娴熟掌握有关观点是解题重点.10. 函数 yax b 和 y ax 2 bx c 在同向来角坐标系内的图象大概是()A .B .C .D .【答案】 C【分析】【剖析】依据 a 、 b 的符号,针对二次函数、一次函数的图象地点,张口方向,分类议论,逐个排除.【详解】当 a > 0 时,二次函数的图象张口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故 A 、 D 不正确;由 B 、 C 中二次函数的图象可知,对称轴x=- b> 0,且 a > 0,则 b < 0,2a但 B 中,一次函数 a > 0,b > 0,清除 B .应选 C .11. 如图是二次函数yax 2bxc 的图象,有下边四个结论:① abc0;② ab c0 ;③2a3b0 ;④c4b0 ,此中正确的结论是()A.①②B.①②③C.①③④D.①②④【答案】 D【分析】【剖析】依据抛物线张口方向获得a0 ,依据对称轴xb0获得b 0,依据抛物线与y轴2a的交点在 x 轴下方获得 c 0,所以 abc0 ; x 1 时,由图像可知此时y 0,所以a b c0 ;由对称轴x b12a 3b0;当 x 2 时,由图像可知此时2a,可得3y0,即 4a 2b c0 ,将 2a3b 代入可得 c4b0 .【详解】① 依据抛物线张口方向获得a0,依据对称轴x b0 获得b0,依据抛物线与y 2a轴的交点在 x 轴下方获得c0 ,所以 abc0,故①正确.②x1时,由图像可知此时y0,即a b c0,故②正确 .b12a3b02a3b 0 错误,故③错误;③由对称轴 x,可得,所以2a3④当 x 2 时,由图像可知此时y0,即4a 2b c0,将③中2a3b 0 变形为2a3b,代入可得 c4b0,故④正确.故答案选 D.【点睛】本题考察了二次函数的图像与系数的关系,注意用数形联合的思想解决问题。

2024年中考数学一轮复习考点精讲课件—二次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—二次函数的图象与性质

前提条件
当已知抛物线上的无规律的三个点的坐标时,常用
一般式求其表达式.
顶点式
y=a(x–h)²+k(a,h,k为常数, 当已知抛物线的顶点坐标(或者是对称轴) 时,常用
a≠0),顶点坐标是(h,k)
交点式
y=a(x–x1)(x–x2) (a≠0)
顶点式求其表达式.
其中x1,x2是二次函数与x轴的交点的横坐标,若题
【详解】解:∵二次方程 2 + + = 0的两根为−1和 5,

1−+ =0
= −4
,解得

25 + 5 + = 0
= −5
∴二次函数 = 2 + + = 2 − 4 − 5 = ( − 2)2 − 9,
∵ 1 > 0,
∴当 = 2时,有最小值,最小值为−9,
2)自变量的最高次数是2;
3)二次项系数a≠0,而b,c可以为零.
根据实际问题列二次函数关系式的方法:
1)先找出题目中有关两个变量之间的等量关系;
2)然后用题设的变量或数值表示这个等量关系;
3)列出相应二次函数的关系式.
考点一 二次函数的相关概念
二次函数的常见表达式:
名称
解析式
一般式
y=ax²+bx+c (a≠0)
状相同,
∴可设该二次函数的解析式为 = ±3 − ℎ
2
+ ,
∵该二次函数的顶点为 1,4 ,
∴该二次函数的解析式为 = ±3 − 1
2
+ 4,
∴该二次函数的解析式为 = 3 2 − 6 + 7或 = −3 2 +

2024年中考数学总复习考点梳理第三章第六节二次函数的图象与性质

2024年中考数学总复习考点梳理第三章第六节二次函数的图象与性质

第六节 二次函数的图象与性质
返回目录
命题点2 二次函数图象与系数a,b,c的关系(2020.10) 课标要求 1.通过图象了解二次函数的性质,知道二次函数系数与图象形状和对称 轴的关系;(2022年版课标新增) 2.知道二次函数和一元二次方程之间的关系.(2022年版课标新增)
第六节 二次函数的图象与性质
考情及趋势分析
年份 2020
题号 10
题型 选择题
分值 3
考情分析 已知条件
函数图象、对称轴x=1
返回目录
考查设问 下列结论正确的是
第六节 二次函数的图象与性质
返回目录
命题点3 二次函数解析式的确定(6年4考,均在二次函数综合题考查)
考情及趋势分析
年份 题号 题型 分值 2022 23(1) 解答题(三) 5 2021 25(1) 解答题(三) 3
y=ax2+b
①C(0,-3),②y=x+m
【考情总结】考查特点:除2021年考查三个系数未知外,其余年份均考查两个系数未知.
第六节 二次函数的图象与性质
返回目录
命题点4 二次函数图象的平移(6年2考) 考情及趋势分析
考情分析
年份 题号 题型 分值 平移次数 平移方式 设问
溯源教材
教材改编维度
2021 12 填空题 4
第六节 二次函数的图象与性质
返回目录
3. [人教九上P47习题改编]如图,抛物线y=ax2+bx+c(a≠0)与x
轴的一个交点坐标为(-1,0),对称轴为直线x=1.下列结论正
确的有____②__③__⑥______.(填序号)
①bc<0;②2a+b=0;③9a+3b+c=0;
④4a+2b+c>0;⑤2c-3b<0;

中考数学复习考点知识归类讲解20 二次函数的图象与系数的关系问题

中考数学复习考点知识归类讲解20 二次函数的图象与系数的关系问题

中考数学复习考点知识归类讲解 专题20 二次函数的图象与系数的关系问题知识对接考点一、二次函数图象与系数的关系问题 1.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 考点二、用待定系数法求二次函数解析式的步骤 (1)设:巧设二次函数的解析式;(2)代:根据已知条件,得到关于待定系数的方程(组);(3)解:解方程(组),求出待定系数的值,从而得到函数的解析式.专项训练 一、单选题1.已知抛物线2y ax bx =+,当0a <,0b >时,它的图象经过() A .第一,二,三象限 B .第一,二,四象限 C .第一,三,四象限D .第一,二,三,四象限2.函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)经过点(﹣1,0)、(m ,0),且1<m<2,当x <﹣1时,y 随x 增大而减小,下列结论:①abc >0;②a +b <0;③若点A (﹣3,y 1),B (3,y 2)在抛物线上,则y 1<y 2;④方程ax 2+bx +c -2=0必有两个不相等实数根;⑤c ≤﹣1时,则b 2﹣4ac ≤4a .其中结论正确的有( )个 A .1个B .2个C .3个D .4个3.如图,二次函数()2y ax bx ca 0=++≠的图象与x 轴正半轴相交于A ,B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >; ②930a b c ++<; ③1c >-;④关于x 的方程20ax bx c ++=有一个根为1a-. 其中正确的结论个数有()A .1个B .2个C .3个D .4个4.抛物线2y ax bx c =++的对称轴为直线1x =-,图象过(1,0)点,部分图象如图所示,下列判断中:其中正确的个数是()①0abc >;②240b ac ->;③930a b c -+=;④若点()()122.5,,0.5,y y --均在抛物线上,则12y y >;⑤520a b c -+<. A .2个B .3个C .4个D .5个5.如图,二次函数y =ax 2+bx +c (a >0)的图象的顶点为点D ,其图象与轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C ,在下面四个结论中,其中正确的结论是()A .2a ﹣b =0B .a +b +c >0C .c <﹣3aD .当ax 2+bx +c +2=0有实数解时,则a ≥0.56.已知点()13,P y -,()25,Q y ,()3,M m y 均在抛物线2y ax bx c =++上,其中20am b +=.若321y y y >,则m 的取值范围是()A .3m <-B .1mC .31m -<<D .15m <<7.已知二次函数2y ax bx c =++,若0a <,0a b c -+>,则一定有() A .240b ac -≥B .240b ac ->C .240b ac -≤D .240b ac -<8.如图,已知二次函数()20y axbx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc >;②930a b c ++=;③20a b -=;④2am bm a b +<+(m 是任意实数);⑤c-a <-1,其中正确的是( )A .①②⑤B .②③C .①②③⑤D .②③④9.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0)和B ,与y 轴的正半轴交于点C .下列结论:①abc >0;②4a ﹣2b +c >0;③2a ﹣b >0;④3a +c <0,其中正确结论的个数为()A .1个B .2个C .3个D .4个10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(1,﹣4a ),点A (4,y 1)是该抛物线上一点,若点D (x 2,y 2)是抛物线上任意一点,有下列结论:①4a ﹣2b +c >0;②若y 2>y 1,则x 2>4;③若0≤x 2≤4,则0≤y 2≤5a ;④若方程a (x +1)(x ﹣3)=﹣1有两个实数根x 1和x 2,且x 1<x 2,则﹣1<x 1<x 2<3.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(2,0)-,()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方,下列结论:①0abc >;②420a b c -+=;③0a b c -+<;④20a c +>.其中正确的有_______.(填序号)12.如图,二次函数2() 0y ax bx c a =++≠的图像过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c <3b ;③8a +7b +2c >0;④若点A (-3,1y )、点B (21,2y -)、点C (37,2y )在该函数图像上,则132y y y <<:⑤若方程()()153a x x +-=-的两根为12,x x ,且12x x <,则12-15. x x <<<其中正确的结论有__________. (只填序号)13.抛物线2y ax bx c =++的图象如图所示,则a +b +c ______0.(填“<”“=”“>”)14.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为12x =且经过点(2,0).下列说法:①若(﹣3,y 1),(π,y 2)是抛物线上的两点,则y 1<y 2;②c =2b ;③关于x 的一元二次方程ax 2+bx +1=0(a ≠0)一定有两个不同的解;④()4bm am b ≥+(其中m 为实数).其中说法正确的是_______.15.已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)的图象如图所示,下面四个结论,①abc <0;②a +c <b ;③2a +b =1;④a +b ≥m (am +b ),其中全部正确的是______三、解答题16.已知二次函数y =ax 2+bx +c (a <0)过点C (0,2)、点A (2,0). (1)求证:b =﹣2a ﹣1;(2)若平行于x 轴的直线y =2﹣a 与抛物线有交点,求a 的取值范围.(3)若a 为整数,n 为正整数,当n <x <n +2时,对应函数值有且只有9个整数,求a 、n 的值.17.在平面直角坐标系中,二次函数221y x mx =-+图像与y 轴的交点为A ,将点A 向右平移4个单位长度得到点B . (1)直接写出点A 与点B 的坐标;(2)若函数221y x mx =-+的图像与线段AB 恰有一个公共点,求m 的取值范围. 18.在平面直角坐标系中,抛物线解析式为222422y x mx m =-+-+,直线l :y =-x +1与x 轴交于点A ,与y 轴交于点B .(1)如图1,当抛物线经过点A 且与x 轴的两个交点都在y 轴右侧时,求抛物线的解析式.(2)在(1)的条件下,若点P 为直线l 上方的抛物线上一点,过点P 作PQ ⊥l 于Q ,求PQ 的最大值.(3)如图2,点C (-2,0),若抛物线与线段AC 只有一个公共点,求m 的取值范围.19.在平面直角坐标系xOy 中,已知抛物线22y ax ax c =-+与直线3y =-有且只有一个公共点.(1)直接写出抛物线的顶点D 的坐标,并求出c 与a 的关系式;(2)若点(),P x y 为抛物线上一点,当1t x t ≤≤+时,y 均满足233y at -≤≤-,求t 的取值范围;(3)过抛物线上动点(),M x y (其中3x ≥)作x 轴的垂线l ,设l 与直线23y ax a =-+-交于点N ,若M 、N 两点间的距离恒大于等于1,求a 的取值范围.20.在平面直角坐标系xOy 中,已知抛物线y=x 2﹣4x+2m ﹣1与x 轴交于点A ,B .(点A 在点B 的左侧) (1)求m 的取值范围;(2)当m 取最大整数时,求点A 、点B 的坐标.21.二次函数y =ax 2+bx +c 的图象如图所示,且P =|2a +b |+|3b -2c |,Q =|2a -b |-|3b +2c |,试判断P ,Q 的大小关系.22.设二次函数y =ax 2+bx+c (a >0,c >1),当x =c 时,y =0;当0<x <c 时,y >0. (1)请比较ac 和1的大小,并说明理由; (2)当x >0时,求证:021a b cx x x++>++. 23.己知抛物线()()22113y m x m x =-+++(m 为常数).(1)若该抛物线经过点(1,m +7),求m 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m ; (3)将该抛物线向下平移若干个单位长度,所得的新抛物线经过P (5-,1y ),Q (7,2y )(其中12y y <)两点,当53x -≤≤时,点P 是该部分函数图象的最低点,求m 的取值范围.。

人教版中考数学考点系统复习 第三章 函数 第八节 二次函数的实际应用

人教版中考数学考点系统复习 第三章 函数 第八节 二次函数的实际应用

此类问题一般涉及抛球、投篮、隧道、拱桥、喷泉水柱等.解决此类问 题的关键是理解题目中的条件所表示的几何意义.最高点为抛物线的顶 点,抛出点为抛物线中的 c 值,落地点为抛物线与 x 轴的交点,落地点 到抛出点的水平距离是此落地点横坐标的绝对值.
(1)抛球运动判断球是否过网即判断此点的坐标是否在抛物线上方;(2) 投篮判断是否能投中即判断篮网是否在球的运动轨迹所在的抛物线上; (3)判断货车是否能通过隧道即判断两端点的坐标是否在抛物线的下方; (4)判断船是否能通过拱桥即判断船两端的高度是否比桥上对应点到水 面的距离小;(5)判断人是否会被喷泉淋湿即判断人所处位置的水的高度 是否比人的身高高.
Ⅱ)为庆祝节日,在钢缆和拱桥之间竖直装饰若干条彩带,求彩带长度的
最小值. 【分层分析】Ⅱ)设彩带长度为 Lm,则 L=y2-y1=x182x2-x-+x4+4,所以当
x=44时,L 有最小值为 22 m. m
解:设彩带的长度为 L m,则 L=y2-y1=112(x-6)2+1--214x2=18x2-x+4=18(x-4)2+2, ∴当 x=4 时,L 最小值=2, 答:彩带长度的最小值是 2 m.
【分层分析】(1)设 y 与 x 之间的函数解析式为 y=kx+b(k≠0),取表格 中任两组对应数据,用待定系数法解得 k=--22,b=224400,因此 y 与 x 之间的函数解析式为 yy==--2x 2+x+240. 解:设 y 与 x 之间的函数24解0析式为 y=kx+b(k≠0),
将(56,128)和(65,110)分别代入,得 56k+b=128, k=-2, 65k+b=110,解得b=240, ∴y 与 x 之间的函数解析式为 y=-2x+240.
★(2022·南充)如图,水池中心点 O 处竖直安装一水管,水管喷头喷出 抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水 柱落点与点 O 在同一水平面.安装师傅调试发现,喷头高 2.5 m 时,水 柱落点距 O 点 2.5 m;喷头高 4 m 时,水柱落点距 O 点 3 m.那么喷头高 8 8 m 时,水柱落点距 O 点 4 m.

2023学年数学(人教版)中考复习重难点突破——二次函数的最值【附解析】

2023学年数学(人教版)中考复习重难点突破——二次函数的最值【附解析】

2023学年数学中考复习重难点突破——二次函数的最值一、单选题1.当二次函数y=x 2+4x+9取最小值时,的值为( )A .-2B .1C .2D .9 2.对于二次函数y =2(x+1)(x ﹣3),下列说法正确的是( )A .图象过点(0,﹣3)B .图象与x 轴的交点为(1,0),(﹣3,0)C .此函数有最小值为﹣6D .当x <1时,y 随x 的增大而减小3.二次函数y=ax 2+bx+a (a≠0)的最大值是零,则代数式|a|+ 2244a b a - 化简结果为( ) A .a B .1 C .﹣a D .0 4.已知a≥2,m 2﹣2am+2=0,n 2﹣2an+2=0,则(m ﹣1)2+(n ﹣1)2的最小值是( ) A .6 B .3 C .﹣3 D .05.二次函数 23324y x ⎛⎫=-+ ⎪⎝⎭ 的图象 ()13x ≤≤ 如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是( )A .1y ≥B .13y ≤≤C .334y ≤≤ D .03y ≤≤6.如图,在△ABC 中,∠B=90°,tan ∠C= 34 ,AB=6cm .动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,△PBQ 的最大面积是( )A.18cm2B.12cm2C.9cm2D.3cm2 7.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D( 2, y2)、E(2,y3),则y1、y2、y3的大小关系是().A.y1< y2< y3B.y1 < y3< y2C.y3< y2< y1D.y2< y3< y18.二次函数y=ax2+bx+c (a、b、c为常数且a≠0)中的x与y的部分对应值如下表,x…-3-2-1012345…y…1250-3-4-30512…①二次函数y=ax2+bx+c 有最小值,最小值为-3;②抛物线与y轴交点为(0,-3);③二次函数y=ax2+bx+c 的图像对称轴是x=1;④本题条件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.其中正确结论的个数是()A.4B.3C.2D.19.如图,在矩形ABCD中,AB=8,AD=6,点M为对角线AC上的一个动点(不与端点A,C重合),过点M作ME⊥AD,MF⊥DC,垂足分别为E,F,则四边形EMFD 面积的最大值为()A.6B.12C.18D.2410.已知函数y=22(0)(0)x x xx x x⎧-⎨--<⎩,当a≤x≤b时,﹣14≤y≤14,则b﹣a的最大值为()A.1B2+1C.2212D.22二、填空题11.已知二次函数y=x 2﹣4x+m 的最小值是﹣2,那么m 的值是 . 12.二次函数y=x 2﹣2x ﹣5的最小值是 .13.如图,在边长为6cm 的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm/s 的速度向点B 、C 、D 、A 匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小,其最小值是 cm 2.14.飞机着陆后滑行的距离S (单位:m )与滑行的时间t (单位:s )的函数关系式是S=80t ﹣2t 2,飞机着陆后滑行的最远距离是 m .15.已知二次函数 2y ax bx c =++ (a≠0)的图象如图所示,有下列5个结论: ①abc >0;②b <a+c ;③4a+2b+c >0;④2c <3b ;⑤a+b >m(am+b),(m≠l 的实数).其中正确的结论有 (只填序号).三、解答题16.把函数y=3x 2+6x+10转化成y=a (x-h )2+k 的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.17.如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y(cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围;(2)求△PBQ的面积的最大值.18.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= 2x,y=2(x-1)2+1的最大值和最小值.(2)对于二次函数y=2(x-m)2+m-2,当2≤x≤4时有最小值为1,求m的值.19.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400200▲ 250x▲w (元)最大?最大利润是多少?20.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.21.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,。

二次函数中考复习题型总结归纳

二次函数中考复习题型总结归纳

中考专题之二次函数考点一:二次函数解析式【知识点】三种解析式形式 1.一般式:2+y ax bx c =+(a ≠0).若已知条件是图象上的三个点,则设所求二次函数为2y ax bx c =++,将已知条件代入,求出a 、b 、c 的值.2.交点式(双根式):12()()(0)y a x x x x a =--≠.若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为12()()y a x x x x =--,将第三点(m ,n)的坐标(其中m 、n 为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式. 3.顶点式:2()(0)y a x h k a =-+≠.若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为2()y a x h k =-+,将已知条件代入,求出待定系数,最后将解析式化为一般形式. 【经典例题】例1 已知一条抛物线经过点 (0,0),(2,4),(4,0),求这个函数关系式。

【变式练习】1.已知二次函数的图象经过A (0,3)、B (1,3)、C (-1,1)三点,求该二次函数的解析式。

2.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。

3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。

4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。

5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。

考点二:二次函数图像【知识点】一、各种形式的二次函数的图像性质如下表:1.抛物线c bx ax y ++=2中的系数c b a ,,(1)a 决定开口方向,几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.当0>a 时,抛物线开口向上,顶点为其最低点;当0<a 时,抛物线开口向下,顶点为其最高点. (2)b 和a 共同决定抛物线对称轴的位置:当0=b 时,对称轴为y 轴;当a 、b 同号时,对称轴在y 轴左侧;当a 、b 异号时,对称轴在y 轴右侧.(3)c 决定抛物线与y 轴交点位置:当0=c 时,抛物线经过原点; 当0>c 时,相交于y 轴的正半轴;当0<c 时,则相交于y 轴的负半轴. (4).抛物线与x 轴的交点设二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定: (1)240b ac ->⇔抛物线与x 轴有两个交点;(2)240b ac -=⇔抛物线与x 轴有一个交点(顶点在x 轴上); (3)240b ac -<⇔抛物线与x 轴没有交点. 要点诠释:当x =1时,函数y =a+b+c ; 当x =-1时,函数y =a-b+c ; 当a+b+c >0时,x =1与函数图象的交点在x 轴上方,否则在下方; 当a-b+c >0时,x =-1与函数图象的交点在x 轴的上方,否则在下方. 2.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,顶点是),(ab ac a b 4422--,对称轴是直线ab x 2-=。

中考数学复习知识点专题讲解9---二次函数考点探究

中考数学复习知识点专题讲解9---二次函数考点探究
2 / 18
是( ) A.a>0 B.当 x>1 时,y 随 x 的增大而增大 C.c<0 D.3 是方程 ax2+bx+c=0 的一个根 考点二、利用二次函数图象判断 a,b,c 的符号 【例 2】如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:
①a+b+c=0;②b>2a;③ax2+bx+c=0 的两根分别为-3 和 1;④a-2b+c>0.其 中正确的命题是__________.(只要求填写正确命题的序号)
8 / 18
点 A(1,0)及点 B.
(第 5 题图) (1)求二次函数与一次函数的解析式; (2)根据图象,写出满足 kx+b≥(x-2)2+m 的 x 的取值范围. 6.已知:如图,抛物线 y=a(x-1)2+c 与 x 轴交于点 A(1- 3,0)和点 B,将抛 物线沿 x 轴向上翻折,顶点 P 落在点 P′(1,3)处.
3. ∴抛物线的解析式为 y=- 3(x-2)2+ 3. 解法二:设这个抛物线的解析式为 y=ax2+bx+c,由已知抛物线经过 A(1,0),
B(3,0),C(2, 3)三点,
a+b+c=0, 得9a+3b+c=0,
4a+2b+c= 3,
a=- 3, 解这个方程组,得b=4 3,
c=-3 3.
∴抛物线的解析式为 y=- 3x2+4 3x-3 3.
(1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级 5 班的小明在解答此题时顿生灵感:过点 P′作 x 轴的平行线交抛物线于 C,D 两点,将翻折后得到的新图象在直线 CD 以上的部分去 掉,设计成一个“W”型的班徽,“5”的拼音开头字母为 W,“W”图案似大鹏展翅,寓意 深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2a 2a
4a
4a(a

3)

(2a

1)2
=
8a

1
<0,所以这条抛物线的顶点一定在第三象限,故选C.
4a
4a
3.(2018湖北黄冈,6,3分)当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为 ( ) A.-1 B.2 C.0或2 D.-1或2
答案 D y=x2-2x+1=(x-1)2,当a≥1时,函数y=x2-2x+1在a≤x≤a+1内,y随x的增大而增大,其最小值为a2-2a+1, 则a2-2a+1=1,解得a=2或a=0(舍去);当a+1≤1,即a≤0时,函数y=x2-2x+1在a≤x≤a+1内,y随x的增大而减小,其 最小值为(a+1)2-2(a+1)+1=a2,则a2=1,解得a=-1或a=1(舍去);当0<a<1时,函数y=x2-2x+1在x=1处取得最小值,最 小值为0,不合题意.综上,a的值为-1或2,故选D.
平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.
解析 (1)令y=0,则- 1 x2+2x+6=0,
∴x1=-2,x2=6,
2
∴A(-2,0),B(6,0).
由函数图象得,当y≥0时,-2≤x≤6.
(2)由题意得B1(6,m),∴B2(6-n,m),B3(-n,m),
2.(2018陕西,10,3分)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
答案 C 当x=1时,y=a+2a-1+a-3>0,解得a>1,又根据抛物线顶点坐标公式可得- b =- 2a 1 <0, 4ac b2 =
关于a的不等式;解法二:分别在a<0和a>0两种情况下满足
有解,解之即可.
x a 1 0,

x
2

2ax

0
难点突破 根据二次函数图象的特点分a<0和a>0两种情况考虑是解答本题的突破口.
6.(2019内蒙古呼和浩特,16,3分)对任意实数a,若多项式2b2-5ab+3a2的值总大于-3,则实数b的取值范围是 .
考点一 二次函数的图象与性质
1.(2019浙江温州,9,4分)已知二次函数y=x2-4x+2,关于该函数在-1≤x≤3的取值范围内,下列说法正确的是 () A.有最大值-1,有最小值-2 B.有最大值0,有最小值-1 C.有最大值7,有最小值-1 D.有最大值7,有最小值-2
答案 D y=x2-4x+2=(x-2)2-2(-1≤x≤3). 由图象可知当x=2时,y取得最小值-2,当x=-1时,y取得最大值7.故选D.
备用图
解析 (1)当a=1时,抛物线C1:y=x2-4x-5. (1分) 令y=0,则x2-4x-5=0, 解得x1=-1,x2=5, ∴抛物线C1与x轴的交点坐标为(-1,0),(5,0), (2分) 对称轴为直线x=2. (3分) (2)①由抛物线C1:y=ax2-4ax-5(a>0),
1
1
12
12
7.(2019浙江温州,21,10分)如图,在平面直角坐标系中,二次函数y=- 1 x2+2x+6的图象交x轴于点A,B(点A在点
B的左侧).
2
(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围;
(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左
解法二:∵直线l分别与函数y=x-a+1和y=x2-2ax的图象相交于P、Q两点,且都在x轴的下方,
∴令y=x-a+1<0,解得x<a-1. 令y=x2-2ax<0,当a>0时,解得0<x<2a;当a<0时,解得2a<x<0. 分两种情况:
①当a>0时,若
有解,则a-1>0,解得a>1;
x a 1,
答案 -6<b<6
解析
2b2-5ab+3a2=3 a2


5 3
ab

25 36
b2

- 1225 b2+2b2=3 a
5 6
b
2
- 1 b2,又因为对于任意实数a,多项式2b2-5ab+3a2
12
即3

a

5 6
b
2

- b2的值总大于-3,所以- b2>-3,所以-6<b<6.
Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是
.
答案 a>1或a<-1
解析 解法一:函数y=x2-2ax的图象与x轴的交点为(0,0),(2a,0),函数y=x-a+1的图象与x轴的交点为(a-1,0),与y 轴的交点为(0,1-a). 分两种情况:①当a<0时,如图(1),要满足题意,则需a-1>2a,可得a<-1; ②当a>0时,如图(2),要满足题意,则需a-1>0,可得a>1. 综上,实数a的取值范围是a>1或a<-1.
函数图象的对称轴为直线x= =2.
∵点B2,B3在二次函数图象上且纵坐标相同,
2 6

Байду номын сангаас
=2,∴n=1,
2
∴m=- ×(-1)2+2×(-1)+6= ,
∴m6,nn的值(分n) 别为 ,1.
2
1
7
2
2
7
2
8.(2017江西,22,9分)已知抛物线C1:y=ax2-4ax-5(a>0). (1)当a=1时,求抛物线与x轴的交点坐标及对称轴; (2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标; ②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式; (3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.
4.(2017甘肃兰州,9,4分)将抛物线y=3x2-3向右平移3个单位长度,得到新抛物线的表达式为 ( ) A.y=3(x-3)2-3 B.y=3x2 C.y=3(x+3)2-3 D.y=3x2-6
答案 A 直接根据二次函数图象“左加右减,上加下减”的平移规律进行解答即可.选A.
5.(2019安徽,14,5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x-a+1和y=x2-2ax的图象相交于P,
②当a<0时,若 0 x 2a 有解,则2a<a-1,解得a<-1.
综上,实数a的取x值 a范围1, 是a>1或a<-1. 2a x 0
思路分析 考虑到二次函数图象的对称轴方程是x=a,故分a<0和a>0两种情况,解法一:由于二次函数的图 象过原点,结合图象知只需满足直线y=x-a+1与二次函数图象相交的最左边交点在x轴的下方即可,从而得出
相关文档
最新文档