第1章-刚体转动动力学基础
刚体的平衡与转动定律的应用
刚体的平衡与转动定律的应用在物理学中,刚体是指其形状和大小在外力作用下不发生变化的物体。
刚体的平衡和转动定律是刚体力学中的重要概念,它们被广泛应用于各种实际工程问题的分析和解决。
一、刚体的平衡刚体的平衡是指刚体在受到外力作用时,保持静止或以一定的速度进行匀速直线运动的状态。
刚体的平衡有两种类型:平稳平衡和不平衡。
1. 平稳平衡当刚体处于平稳平衡状态时,它的重心和支持点重合,不会发生任何转动。
这意味着刚体所受到的合力和合力矩都为零。
根据平衡条件,我们可以得出:∑F = 0 (合力为零)∑M = 0 (合力矩为零)其中,∑F表示合力矢量的矢量和,∑M表示合力矩矢量的矢量和。
平稳平衡的一个典型例子是悬挂在弹簧上的质点。
当质点受到向下的重力和向上的弹簧力之和为零时,质点处于平稳平衡状态。
2. 不平衡当刚体处于不平衡状态时,它的重心和支持点不重合,会发生转动。
此时,刚体所受的合力和合力矩都不为零。
根据不平衡条件,我们可以得出:∑F ≠ 0 (合力不为零)∑M ≠ 0 (合力矩不为零)不平衡的一个典型例子是一个倾斜的物体,当物体所受到的重力分量不平衡时,物体将发生转动。
二、转动定律的应用转动定律是描述刚体转动的物理定律,通过转动定律,我们可以对刚体的转动进行详细的分析。
1. 动量定理动量定理是刚体转动定律的基础,它描述了刚体转动的动力学关系。
根据动量定理,刚体所受的合外力矩等于刚体动量的变化率。
即:∑M = dL/dt其中,∑M表示合外力矩的矢量和,L表示刚体的角动量,t表示时间。
通过动量定理,我们可以计算刚体受到的合力矩以及刚体角动量的变化情况。
2. 角动量守恒定律角动量守恒定律是转动定律中十分重要的一个定律。
它描述了刚体在没有外力矩作用下的转动规律。
根据角动量守恒定律,如果刚体在某一时刻的合外力矩为零,则刚体的角动量将保持不变。
即:∑M = 0 时,L = 常数通过角动量守恒定律,我们可以解决一些与刚体转动相关的问题,如旋转飞盘的角速度变化、自行车的倾斜和转弯等。
刚体旋转知识点归纳总结
刚体旋转知识点归纳总结1. 刚体旋转的基本概念刚体是指在一定时间内,其内部各点的相对位置不改变的物体。
刚体旋转是指刚体围绕固定点或固定轴发生的旋转运动。
在刚体旋转中,需要引入一些基本概念:1.1 刚体的转动刚体的旋转可以是定点转动,也可以是定轴转动。
在定点转动中,刚体绕固定点旋转,而在定轴转动中,刚体绕固定轴旋转。
定点转动和定轴转动都是刚体旋转运动的两种基本形式。
1.2 刚体的转动角度和角速度刚体的转动角度是刚体在单位时间内所转过的角度,通常用θ表示。
刚体的角速度是指刚体单位时间内转过的角度,通常用ω表示。
在刚体定点转动中,角速度是刚体绕定点旋转的角度速度;在刚体定轴转动中,角速度是刚体绕定轴旋转的角度速度。
1.3 刚体的转动惯量刚体的转动惯量是衡量刚体抵抗旋转的惯性大小,通常用I表示。
刚体转动惯量的大小取决于刚体形状、质量分布以及旋转轴的位置。
对于质点组成的刚体,其转动惯量可以通过对质点的质量进行积分得到。
1.4 刚体的角动量刚体的角动量是刚体旋转运动的物理量,通常用L表示。
角动量的大小和方向分别由角速度和转动惯量决定。
在定点转动中,如果刚体的角速度和转动惯量都不变,那么刚体的角动量也保持不变;在定轴转动中,如果刚体绕固定轴旋转,那么刚体的角动量也保持不变。
2. 刚体的转动力学刚体的转动力学研究刚体在旋转运动中所受的力和力矩,包括转动定律、角动量定理、动能定理等内容。
2.1 刚体的平衡刚体旋转平衡需要满足一定的条件,包括力矩平衡条件和动量平衡条件。
刚体力矩平衡条件是指刚体所受的合外力矩为零;刚体动量平衡条件是指刚体所受的合外力矩关于某一点的力矩为零。
2.2 刚体的角动量定理刚体的角动量定理描述了刚体在受到外力矩作用下,其角动量的变化规律。
根据角动量定理,刚体所受外力矩产生的角动量变化率等于刚体所受外力矩的矢量和。
2.3 刚体的动能定理刚体的动能定理描述了刚体在旋转运动中,其动能的变化规律。
根据动能定理,刚体所受外力矩产生的功率等于刚体动能的变化率。
大学工程力学重点知识点总结—期末考试、考研必备!!
工程力学重点总结—期末考试、考研必备!!第一章静力学的基本概念和公理受力图一、刚体P2刚体:在力的作用下不会发生形变的物体。
力的三要素:大小、方向、作用点。
平衡:物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1、力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2、二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。
3、加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4、作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。
5、刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力1、柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体。
2、光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力。
3、光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定。
4、链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。
刚体动力学刚体的转动与角动量守恒定律
刚体动力学刚体的转动与角动量守恒定律刚体动力学——刚体的转动与角动量守恒定律刚体动力学是研究刚体运动的物理学分支,主要研究刚体的平动和转动。
在刚体的运动过程中,角动量的守恒定律是关键的一条定律,它在很多物理问题的求解中起着重要的作用。
一、刚体转动的基本概念刚体是指具有一定形状和大小的物体,在运动过程中保持其形状和大小不变的情况下,绕一个固定轴线进行旋转。
在刚体转动的过程中,存在着固定轴线上的角位移、角速度、角加速度等概念。
角位移表示刚体在转动过程中的角度变化,通常用符号θ表示;角速度表示单位时间内刚体转动的角度变化率,通常用符号ω表示;角加速度表示单位时间内角速度的变化率,通常用符号α表示。
二、刚体的转动与力矩刚体在转动过程中需受到外力的作用,这些外力可以将刚体带动产生转动现象。
力矩是刚体转动的重要力学量,它描述了力对于刚体转动的影响程度。
力矩的大小等于力乘以作用点到转轴的距离,用数学式表示为:τ = F × r其中τ表示力矩,F表示力的大小,r表示作用点到转轴的距离。
三、刚体的转动惯量与角动量刚体的转动惯量与角动量是刚体转动过程中的另外两个重要概念。
转动惯量描述了刚体对于转动的惯性程度,它的大小取决于刚体的质量分布和几何形状。
角动量描述了刚体在转动过程中的旋转性质,它等于刚体质量的转动惯量乘以角速度,用数学式表示为:L = I × ω其中L表示角动量,I表示转动惯量,ω表示角速度。
四、角动量守恒定律角动量守恒定律是刚体动力学中的一个基本定律,它表明在没有外力矩作用的情况下,刚体转动过程中的角动量保持不变。
如果一个刚体在初态时角动量为L1,在末态时角动量为L2,且没有外力矩作用,则有L1 = L2。
这一定律体现了一个自然规律,对于理解刚体的转动过程和求解相关物理问题具有重要意义。
五、应用案例角动量守恒定律可以应用于各种实际物理问题的求解中,例如刚体的转动稳定性、陀螺的运动等。
《刚体动力学 》课件
牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
刚体转动惯量及其计算方法(毕业论文)
本科毕业论文题目:刚体转动惯量及其计算方法目录1、引言 (1)2基本概念 (1)2。
1描述刚体位置的独立变量 (1)2.2 刚体运动的分类 (2)3 刚体力学中的质量和惯性 (2)3.1 刚体力学中的惯性运动 (2)3。
2 惯性运动在刚体力学中的应用 (3)4 刚体的几种基本运动 (3)4。
1 定轴转动 (3)4.2 刚体平面平行运动 (3)4。
3 定点转动 (4)4。
4 一般运动 (4)5 刚体转动惯量的计算方法 (4)5.1 转动惯量的引入 (4)5。
2 转动惯量的计算方法 (6)5.2.1定义法 (6)5.2.2惯量椭球法 (7)5.2.3 惯量主轴法 (8)5.2.4 实验方法测量 (9)5。
2。
5 陀螺运动的描述 (10)6 结论 (13)参考文献: (13)致谢.............................................. 错误!未定义书签。
刚体转动惯量及其计算方法摘要:在刚体动力学中,有大量的篇幅研究刚体的转动问题,无论是定轴转动、平面平行运动,还是绕定点的转动,其动力学方程中均含有转动惯量。
转动惯量在刚体力学中有很重要的的地位,相当于质点在动力学中的质量地位相当,应用较为广泛。
本文对质量各种分布刚体的转动惯量进行浅谈,及对定点转动问题进行定量分析。
关键词:刚体;运动;转动惯量;定点转动.本科毕业生毕业论文1、引言随着科学技术的迅猛发展,转动惯量作为一个重要的工程参数,在越来越多的领域受到重视,如何更方便,快捷,准确的计算转动惯量成为了一个迫切需要解决的问题。
转动惯量等于刚体中每个质元的质量与这一质元到转轴的垂直距离的平方的乘积的和,而与质元的运动速度无关。
与质点的平动动能比较而言,转动惯量相当于平动时的质量。
物体转动时转动惯量是表示物体在转动中惯性大小的量度.关于转动惯量的研究由来已久,现在所取得的成果就是前人一点一滴积累来的。
本文将在此基础上,本着循序渐进的原则,对转动惯量及多种计算方法进行探讨。
高中物理竞赛辅导之刚体动力学
其轴的转动惯量与圆盘的相同。
球体绕其直径的转动惯量
将均质球体分割成一系
列彼此平行且都与对称轴垂
直得圆盘,则有
JO
1 dm r 2 2
1 2
r 2dz
r
2
R 1( R2 z2 )2 dz
R 2
8 R5 2 mR2
15
5
z
r
z
dz R
om
JO
2 mR2 5
设任意物体绕某固定轴O的转动惯量为J,绕 通过质心而平行于轴O的转动惯量为Jc,则有
0 t 2 gt R
达到纯滚动时有: vc R
解得作纯滚动经历的时间:
t v0 2g h R
3 g
3 g
2)达到纯滚动时经历的距离:
x
v0t
1 2
at 2
v02
3 g
1 2
g
v02
3g 2
5v02
5h R
18 g 9
例 5 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
J 1 ml2 3
球壳: 转轴沿直径
J 2 mr2 3
竿
子
长
些
还
是
短
些
较
安
飞轮的质量为什么
全
大都分布于外轮缘?
?
例1 一长为 l 质量为 m 匀质细杆竖直放置,其
下端与一固定铰链 O 相接,并可绕其转动. 由于此竖
直放置的细杆处于非稳定平衡状态,当其受到微小扰
动时,细杆将在重力作用下由静止开始绕铰链O 转动.
压力N 和刹车片与圆盘间的摩擦系数均已被实验测出.试
刚体力学基础
非专业训练,请勿模仿
例 解 由转动定律得
1 mgl sin J 2 1 2 式中 J ml 3 3g sin 得 2l
角加速度与质量无关,与长 度成反比,竹竿越长越安全。
-------------------------------------------------------------------------------
刚体的一般运动 质心的平动
+
绕质心的转动
-------------------------------------------------------------------------------
二、刚体绕定轴转动定律
F外力 F内力 mi ai
ai :质元绕轴作圆运动
-------------------------------------------------------------------------------
二、定轴转动的角动量守恒定律
质点角动量(相对O点)
定轴转动刚体
L r p r mv
-------------------------------------------------------------------------------
解:
M 1l gdl cos M mgL cos 2 m g1 l cos dl cos mgl M 2 3g cos L 1 22 J 2l M ml L g 3 cos L 2 3g cos d d d d 1 2 l dt cos d d mgL dt 2
2 法向: F cos F cos m r 法向力的作用线过转轴 i i i i. 内力 ,其力矩为零 外力 切向:F外力 sin i F内力 sin i mi ri
刚体定轴转动(公式)
旋转木马通常配备安全带、护栏等安全措施,以确保乘客安全。
儿童游乐设施
旋转木马是儿童游乐场常见的设施之一,为儿童提供娱乐和刺激。
电风扇的转动
电风扇的工作原理
电风扇通过电机驱动叶片 旋转,产生风流,实现送 风效果。
风力调节
电风扇通常配备调速器, 可调节电机转速,从而调 节风力大小。
维护保养
定期清洗电风扇叶片和外 壳,检查电线和开关是否 正常,以确保安全和正常 使用。
04
刚体定轴转动的实例分析
匀速转动的飞轮
01
02
03
飞轮的转动
飞轮在匀速转动时,其角 速度保持恒定,不受外力 矩作用。
动能与势能转换
飞轮在转动过程中,动能 和势能之间相互转换,但 总能量保持不变。
平衡状态
在匀速转动状态下,飞轮 的合力矩为零,处于平衡 状态。
旋转木马的转动
旋转木马的转动原理
旋转木马通过电机驱动,使木马旋转,当木马旋转时,离心力作 用使木马保持稳定。
力矩平衡方程
合力矩=0,即所有作用在刚体上的力对旋转轴产生的力矩之和为零。
注意事项
在应用力矩平衡方程时,需要明确各个力的作用点和方向,并计算其对旋转轴产生的力矩。同时,需要注意力的 方向和力臂的长度对力矩的影响。
如何应用动量矩守恒定律?
动量矩守恒定律
在没有外力矩作用的情况下,刚体的动量矩是守恒的。
05
刚体定轴转动的常见问题与解决方案
如何计算转动惯量?
转动惯量计算公式
I=mr^2,其中m是刚体的质量,r是质心到旋转轴的距离。
注意事项
在计算转动惯量时,需要明确旋转轴的位置,并计算质心到旋转轴的距离。同时 ,需要考虑刚体的质量分布情况,因为不同位置的质量对转动惯量的贡献不同。
转动力学刚体的转动平衡与角动量守恒
转动力学刚体的转动平衡与角动量守恒转动力学是力学研究的一个重要分支,它主要研究刚体的旋转运动。
刚体的旋转运动受到力矩和角加速度的作用,其中转动平衡和角动量守恒是转动力学的基本原理。
一、转动平衡刚体的转动平衡是指刚体处于稳定的旋转状态,不受到外力的扰动,既不会产生角加速度,也不会改变角速度。
要实现转动平衡,必须满足以下条件:1. 力矩平衡条件力矩平衡条件是指刚体上作用的力矩的代数和为零。
对于一个刚体绕固定轴的旋转运动,力矩平衡条件可以表示为:∑M = ∑(r × F) = 0其中,∑表示对刚体上所有力矩求和,r表示作用力的杠杆臂,F表示作用力。
根据力矩平衡条件,可以求解出刚体的转动平衡状态。
2. 重心位置与支撑点位置的关系对于一个转动平衡的刚体,重心必须位于支撑点上方以保持稳定。
当重心位于支撑点下方时,刚体会不稳定,并发生滚动现象。
3. 稳定、不稳定和中立平衡刚体的转动平衡可以分为稳定、不稳定和中立平衡三种情况。
当刚体偏离平衡位置时,稳定平衡会使刚体回复原位置,而不稳定平衡会使刚体继续偏离平衡位置。
中立平衡则是指刚体在偏离平衡位置后,不会有任何变化。
二、角动量守恒角动量守恒是指一个刚体在没有外力矩作用下,角动量的大小和方向保持不变。
对于一个旋转的刚体,角动量可以表示为:L = Iω其中,L表示角动量,I表示转动惯量,ω表示角速度。
根据角动量守恒定律,在没有外部力矩作用下,刚体的角动量将保持不变。
三、应用举例下面通过一个实际例子来说明转动平衡和角动量守恒的应用。
假设有一个均匀的圆盘,圆盘质量为M,半径为R。
将圆盘以转轴垂直于盘面且通过重心的方式固定,使其处于转动平衡状态。
此时,圆盘的转动平衡可以通过力矩平衡条件来解释。
由于圆盘的重心位于转轴上,且没有施加外力矩,所以∑M=0,根据这个条件可以得到圆盘上各点产生的力矩之和为零。
进一步分析可以发现,圆盘上受重力的作用产生的力矩沿转轴方向相互抵消,所以圆盘能够保持转动平衡。
《刚体的平面运动》课件
刚体平动的实例分析
总结词
刚体平动的实例分析主要介绍了刚体在平面内沿某一方向做直线运动的情况,包 括匀速平动和加速平动。
详细描述
刚体平动的实例分析中,我们可以通过观察汽车在路面上行驶、火车在铁轨上飞 驰等实际现象,理解刚体平动的概念和特点。同时,通过分析匀速平动和加速平 动的动力学特征,可以深入了解刚体的平动运动规律。
03
刚体的平面运动的动力学
刚体的平动的动力学方程
平动的动力学方程:$F = ma$
描述刚体在平面内平动时的加速度和力之 间的关系。 适用于刚体在平面内直线运动或曲线运动 的情况。 考虑了刚体的质量对运动的影响。
刚体的定轴转动的动力学方程
定轴转动的动力学方程:$T = Ialpha$
描述刚体绕固定轴转动时的角加速度和力 矩之间的关系。 适用于分析刚体在平面内定轴转动的情况 。 考虑了刚体的转动惯量对运动的影响。
特点
刚体上任意一点的速度方 向都与该固定轴线平行, 且各点的速度大小相等。
应用
许多机械的运动可以简化 为刚体的定轴转动,如车
轮、电机转子等。
刚体的平面运动
定义
刚体在平面内既有平动又有定轴转动的运 动。
特点
刚体的运动轨迹是一个平面曲线,同时具 有平动和定轴转动的特征。
应用
许多复杂的机械运动可以简化为刚体的平 面运动,如曲柄连杆机构、凸轮机构等。
刚体的平面运动的运动学方程
平面运动定义
刚体在平面内既有平动又有定轴转动 。
运动学方程
解释
该方程描述了刚体在平面内既有平动 又有定轴转动的复杂运动,需要综合 考虑平动和定轴转动的运动学方程来 描述其运动轨迹。
需要将平动和定轴转动的运动学方程 结合起来,描述刚体在平面内的运动 轨迹。
(完整版)转子动力学基础
4
两边对时间求两次导数得:
代入牛顿方程得 o点的运动微分方程
根据动量矩定理,可得圆盘绕重心c转动的微分方程:
I&& T ke(x cos y sin) 对于稳态涡动, && 0 &
2020/2/19
5
代入牛顿方程得 o点的运动微分方程
及支反力幅值F。
解:弹性轴质量: ms ( 1.52 ) / 4 57 7.8 10-3 0.7856 kg
圆盘质量: mD ( 16 2 ) / 4 2 7.8 10-3 3.137 kg
弹性轴中点刚度:
k 48EJ / l3 (48 20.58 106 1.54 ) /(573 64) 1325 .553 N / cm
不计轴质量时临界转速:
cr
60
2
k 30 12325.553103 1962.96r / min
mD
3.137
2020/2/19
13
计入弹性轴等效质量,按照振动理论,梁在中点的等效质 量为原质量的17/35,则临界转速为:
cr
60
2
k mD+ms17 / 35
30
arctan
10/2/19
/ p
/ p
8
= p
r= e
0
低转速区 圆盘重边飞出
2020/2/19
p
r? e
90
共振区
? p
re
180
高转速区
圆盘轻边飞出; 自动定心或质心转向
9
刚体动力学的基本概念
刚体动力学的基本概念第二篇动力学第五章刚体动力学的基本概念一、目的要求 1.深入地理解力、刚体、平衡和约束等重要概念。
2.静力学公理(或力的基本性质)是静力学的理论基础,要求深入理解。
3. 能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解。
4. 理解力对点之矩的概念,并能熟练地计算。
5.深入理解力偶和力偶矩的概念,明确力偶的性质和力偶的等效条件。
6.明确和掌握约束的基本特征及约束反力的画法。
7.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。
二、基本内容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。
在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。
2)刚体:在力作用下不变形的物体。
刚体是静力学中的理想化力学模型。
3)约束:1/ 11对非自由体的运动所加的限制条件。
在刚体静力学中指限制研究对象运动的物体。
约束对非自由体施加的力称为约束反力。
约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。
4)力:物体之间的相互机械作用。
其作用效果可使物体的运动状态发生改变和使物体产生变形。
前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。
力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。
5)力的分类:集中力、分布力;主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。
按其作用线所在的位置,力系可以分为平面力系和空间力系,按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。
7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。
8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。
9)力的合成与分解:若力系与一个力FR等效,则力FR称为力系的合力,而力系中的各力称为合力FR的分力。
1.第一章 刚体的受力分析及其平衡规律
6
三、平衡、平衡力系 平衡、
合力:若一个力与一个力系等效, 合力:若一个力与一个力系等效,则称这个力为 该力系的合力, 该力系的合力,该力系中的各力称为该合力的分 力。
力系的合成
分力
力的分解
合力 合力
分力
7
四、力的基本性质 公理一 二力平衡公理
要使刚体在两个力作用下维持平衡状态, 要使刚体在两个力作用下维持平衡状态,必须也 只须这两个力大小相等、方向相反、 只须这两个力大小相等、方向相反、沿同一直线 作用。 (等值、反向、共线) 作用。 等值、反向、共线) 二力杆件: 二力杆件:只在两个力作用下平衡的刚体叫二力 杆件。 杆件。
A
或 F
N 等。
F
4.力的单位 力的单位 在国际单位制中,力的单位是牛顿 在国际单位制中,力的单位是牛顿 (N) ) 1 N = 1公斤 米/秒2 (kg •m/s2 ) 公斤•米 秒 公斤
3
q(x)
5.力的分类 力的分类
⑴力的分类 力
体积力 表面力 集中力 分布力 均布力 非均布力 a
A l/2 l
R = Rx + Ry = ∑ X + ∑ Y
2 2 2
2
R tg θ = R
y x
41
(二)平面汇交力系的平衡、平衡方程 平面汇交力系的平衡、
平面汇交力系平衡的必要与充分条件是该力系 的合力为零。 的合力为零。
R = 0 ⇒ Rx + R y = X 2 + Y 2 = 0
2 2
∑X =0 ∑Y = 0
T a
A b B
Q
q b B
⑵均布载荷 用载荷集度q (N /m)表示, 载荷集度 )表示, q 指单位轴长上的载荷量。 指单位轴长上的载荷量。
刚体基本运动
即:转动刚体内任一点的法向加速度(又称向心加速度)的大小, 等于刚体角速度的平方与该点到轴线的垂直距离的乘积,它的 at 方向与速度垂直并指向轴线。
w
a
M
r a n
j
s
M0
O
2.3 转动刚体内各点的速度和加速度
点的全加速度为:
a
at
j
a at 2 an2 R a 2 w 4 at a tan 2 an w
2.1 刚体的平行移动
如果在物体内任取一直线段,在运动过程 中这条直线段始终与它的最初位置平行,这种 运动称为平行移动,简称平动。
此处有影片播放
2.1刚体的平行移动
C
D
A
摆式输送机的料槽 筛分机构
B
直线行驶的列车车厢
2.1刚体的平行移动
在刚体上任取两点,令A的矢径为rA, B的矢径为rB,两条 矢端曲线是两点的轨迹。
动点的速度矢等于它的矢径对时间的一阶导数。
r dr v lim dt t 0 t
动点的速度矢沿着矢径的矢端曲线的切线,即沿 动点运动轨迹的切线,并与此点运动的方向一致。
1.1 矢量法
3. 加速度 点的速度矢对时间的变化率称为加速度。点的加 速度也是矢量,它表征了速度大小和方向的变化。 点
1.3 自然法
全加速度为at和an的矢量和
a a t an
全加速度的大小和方向由下列二式决定:
v
大小:
at
a a t an
2
2
M
方向:
| at | tan an
an
a
例2:下图为料斗提升机示意图。料斗通过钢丝绳由绕水平轴O 转动的卷筒提升。已知:卷筒的半径为R=16cm,料斗沿铅垂提 升的运动方程为y=2t2,y以cm记,t 以s计。求卷筒边缘一点M在 t=4s时的速度和加速度。
刚体力学基础知识点总结
刚体力学基础知识点总结一、刚体的定义与特性刚体是指物体在力的作用下,无论受到多大的力或力矩,形状和体积都不发生变化的物体。
刚体具有以下特性:1. 刚体的质点间距不变:刚体上的质点在受力作用下,相对位置保持不变。
2. 刚体不发生形变:刚体的内部结构在受力作用下不发生变化,保持原有的形状和体积。
二、刚体的平衡条件刚体的平衡条件是指刚体处于平衡状态时,满足的力学条件。
刚体平衡有两个条件:1. 力的平衡条件:刚体平衡时,合外力和合内力矩均为零。
2. 力矩的平衡条件:刚体平衡时,对于刚体上的任意一点,合外力和合内力矩的代数和为零。
三、刚体的转动刚体的转动是指刚体围绕某个轴线或转动点进行旋转的运动。
刚体的转动有以下特点:1. 轴线:刚体转动的轴线是指固定刚体上任意两质点连线的延长线的交点。
2. 转动角速度:刚体绕轴线旋转时,每个质点的角速度相等。
3. 转动惯量:刚体绕轴线旋转时,转动惯量是刚体抵抗转动的物理量,与刚体的质量分布有关。
4. 转动定律:刚体绕轴线旋转时,转动定律描述了刚体的转动状态和转动惯量之间的关系。
四、刚体的平动与转动刚体的平动是指刚体作为一个整体沿直线运动的运动形式,而刚体的转动是指刚体围绕某个轴线旋转的运动形式。
刚体的平动与转动有以下关系:1. 平动转动定理:刚体的平动和转动可以相互转化,平动转动定理描述了平动和转动之间的转化关系。
2. 转动轴与平动方向垂直:刚体的转动轴与刚体的平动方向垂直。
五、刚体静力学刚体静力学是研究刚体在不动力学平衡状态下的力学性质和相互作用的学科。
刚体静力学包括以下内容:1. 刚体的受力分析:通过力的平衡条件和力矩的平衡条件,分析刚体所受到的各个力和力矩的大小和方向。
2. 支持反力:刚体在平衡状态下,受到支持反力的作用,支持反力可以分为支持力和摩擦力。
3. 杠杆原理:杠杆原理描述了杠杆平衡的条件,即杠杆两边所受的力矩相等。
六、刚体的碰撞刚体的碰撞是指两个或多个刚体之间发生的相互作用过程。
《刚体运动学》课件
理解定轴转动的定义和性质是掌握刚体运动学的基础。
详细描述
定轴转动是指刚体绕某一固定轴线旋转的刚体运动,具有角速度和角加速度两个重要的物理量。刚体在定轴转动 时,其上任意一点都以相同的角速度和角加速度绕轴线旋转。
定轴转动的合成与分解
总结词
掌握定轴转动的合成与分解是解决刚体动力学问题的关键。
详细描述
合成与分解的方法
通过选择合适的参考系和坐标系,利用矢量合成 和分解的方法进行计算。
刚体的定点平面运动
定义:刚体绕某一固定点在平 面内作圆周运动或椭圆运动。
描述参数:刚体的位置、速度 和加速度可以用定点、角位移 、角速度和角加速度等参数描
述。
动力学方程:根据牛顿第二定 律和刚体的转动定理,建立定 点平面运动的动力学方程。
在物理学中的应用
01
力学
刚体运动学是力学的一个重要分支,用于研究刚体的运动规律和力学性
质。通过刚体运动学分析,可以了解物体在不同力场作用下的运动状态
和变化规律。
02
天体物理学
在天体物理学中,刚体运动学用于研究天体的运动和演化。通过对天体
的刚体运动进行分析,可以了解天体的轨道、速度和加速度等运动参数
要点二
分解
空间运动的分解是指将一个复杂的运动分解为若干个简单 的运动。
刚体的定点空间运动
定义
刚体的定点空间运动是指刚体绕一个固定点在空间中的 旋转运动。
性质
定点空间运动具有旋转轴、旋转角速度和旋转中心等物 理量,其运动状态可以通过这些物理量来描述。
06
刚体运动学的应用
在工程中的应用
机械工程
刚体运动学在机械工程中广泛应用于机构分析和设计,如连杆机构、凸轮机构和齿轮机构等。通过刚体运动学分析, 可以确定机构的运动轨迹、速度和加速度,优化机构设计。
高等机构学第1章-数学基础课件.ppt
cos cos (1 cos) cos sin cos2 (1 cos) cos
cos cos (1 cos) cos sin
cos cos (1 cos) cos sin
cos
cos
(1
cos )
cos
sin
cos2 (1 cos) cos
表 1-1 方阵[Cij ] 中元素的表达式
xj
yj
zj
xi c11 cos(xi , xj ) c12 cos(xi , y j ) c13 cos(xi , z j )
yi c21 cos( yi , xj ) c22 cos( yi , y j ) c23 cos( yi , z j )
1.1.4、刚体的定点转动
图 1-9 刚体的旋转变换
坐标系 xi yi zi 可取为研究刚体运动的参考坐标系 xyz 。 xj yjzj 可认为是固结在刚体上的动坐标系( z 轴垂直于 纸面)。设动坐标系与参考坐标系重合时,刚体所处的 位置为起始位置 1;刚体绕 z 轴转动后的位置 2,系相 当于动坐标系处于图示 xj y j z j 的方向。
x j 轴、 y j 轴和 z j 轴关于 xi yi zi 的方向角分别是1, 1,1;2, 2, 2 和 3, 3,3 。用 i1,i2,i3 和 j1, j2, j3 分别表示两组坐标系的坐标矢量
i1 j1 cos1 j2 cos2 j3 cos3 i2 j1 cos 1 j2 cos 2 j3 cos 3 i3 j1 cos1 j2 cos 2 j3 cos 3
0
[Ci(j
, , )
]
sin
cos
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cos cos n Cb sin sin cos cos sin -cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos
-sin cos cos cos
2013-7-17 10
§1.1 刚体的角位置与角速度描述方法
四 定点转动刚体角位置的欧拉角描述 选用三个独立的角度来表示定点转动刚体的方位。 依次的三次转动,转动轴的选取产生两类欧拉角。
两类欧拉角的差别在于:在第三次转动时,是用第 一次转动用过的轴还是用前两次都未用过的轴。
2013-7-17 11
cos( zb , xn ) c32 cos( zb , yn ) c33 cos( zb , zn )
yb c21 cos( yb , xn ) c22 cos( yb , yn ) c23 cos( yb , zn )
zb c
2013-7-17
31
确定刚体坐标系三根轴的九个方向余弦(一个3×3 的矩阵),可以确定刚体的角位置。
20
§1.2 常用参考坐标系
三 地理坐标系 1. 地固地理坐标系
坐标系的原点选在地球上任一点,三根轴与地球固 结,东北天指向。
(ie ) xn 0 n n ωin ωie (ie ) yn ie cos (ie ) zn ie sin
2013-7-17
V ωe cos sin K Re ωe cos cos K V sin K ωe sin tg K Re
x 2 0 0 0 C 2 C1 0 C 2 0 1 n 1 y2 z 2 0
2013-7-17
x 2 sin 0 0 0 0 y2 z 2 cos 0 sin cos
对于刚体的一个角位置,有唯一的一个方向余弦 矩阵,反之亦然。
2013-7-17 7
讨论:
方向余弦矩阵的应用:坐标变换及基本公式
xb xn cos( xb , xn ) yn cos( xb , yn ) zn cos( xb , zn ) yb xn cos( yb , xn ) yn cos( yb , yn ) zn cos( yb , zn ) z x cos( z , x ) y cos( z , y ) z cos( z , z ) n b n n b n n b n b
2 2 2 c11 c12 c13 1
c c
2 21
2 22
c c
2 23
1 1
c c
2 31
2 32
2 33
c11c21 c12 c22 c13 c23 0 c11c31 c12 c32 c13 c33 0 c31c21 c32 c22 c33 c23 0
17
§1.1 刚体的角位置与角速度描述方法
五 定点转动刚体角速度的欧拉角描述
ωα β γ
x 2 0 0 cos 0 0 cos y2 z 2 sin 0 sin
VE V sin K Re cos Re cos V V cos K N Re Re
2013-7-17
N V K E
22
§1.2 常用参考坐标系
2. 当地地理坐标系
ωin ωie λ
V cos K Re ( in ) xn V sin K n in ( in ) yn e cos Re ( in ) z n V sin K e sin tg Re
sin
2013-7-17
14
四 定点转动刚体角位置的欧拉角描述
第二类欧拉角的线性化
1 n Cb -
1
- 1
2013-7-17
15
§1.1 刚体的角位置与角速度描述方法
五 定点转动刚体角速度的欧拉角描述
ω ψ θ
b Rb Cn Rn
R C R
n n b
b
C C C C C
n b n G G p p t
2013-7-17
t b
8
讨论:
方向余弦矩阵的性质
(1)两个方向余弦矩阵互为转置矩阵 (2)两个方向余弦矩阵互为逆矩阵 (3)方向余弦矩阵是正交矩阵 约束方程
2013-7-17
9
讨论:
方向余弦矩阵的约束方程
6
§1.1 刚体的角位置与角速度描述方法
三 定点转动刚体角位置的方向余弦描述
c11 c b C n 21 c31
c12 c 22 c32
c13 c 23 c33
c11 Cbn c12 c13
c 21 c 22 c 23
c31 c32 c33
第一章
刚体定点转动的力学基础
2013-7-17
1
§1.1 刚体的角位置与角速度描述方法
刚体:如果有某些不为零的力或力系作用在一个 系统的某些质点或所有质点上,并且对于任意时 刻,系统两点之间的距离始终保持,则该系统称 为刚体。
刚体坐标系:固结在刚体上的坐标系。刚体系相 对参考坐标系的位置和运动,可以描述刚体相对 参考坐标系的位置和运动。
2013-7-17 12
四 定点转动刚体角位置的欧拉角描述
第一类欧拉角的线性化
-( ) 0 1 n C b ( ) 1 - 0 1
2013-7-17
13
四 定点转动刚体角位置的欧拉角描述
第二类欧拉角(转动顺序为:X-Y-Z)
2013-7-17
3
§1.1 刚体的角位置与角速度描述方法
一 质点的位置向量及其表示方法
广义坐标 列向量表示 方向余弦
一个空间自由质点相对参考系的位置,可以用三个独立参 数来表示,也可以用多于三个的不完全独立的参数来表示,后 者必须满足约束条件。 2013-7
2013-7-17 18
§1.2 常用参考坐标系
一 惯性坐标系
1.日心惯性坐标系
日心坐标系的原点取在太阳的中心,三根轴指向确定 的恒星。
2.地心惯性坐标系
地心坐标系的原点设在地球中心处,x和y轴位于地球赤 道平面并分别指向确定的恒星,z轴与地球自转轴(地 球极轴)重合,并指向北极星。
2013-7-17 19
二 定点转动刚体角位置的广义坐标表示 三个非共线向 量的广义坐标
自由刚体六个 参数独立 定点刚体三个 参数独立
2013-7-17 5
§1.1 刚体的角位置与角速度描述方法
三 定点转动刚体角位置的方向余弦描述
采用三个正交向量作为刚体坐标系,其方向余弦表示为:
xn
yn
zn
xb
c11 cos( xb , xn ) c12 cos( xb , yn ) c13 cos( xb , zn )
刚体运动自由度:三个平动自由度和三个转动自 由度(即六自由度)。
2013-7-17 2
§1.1 刚体的角位置与角速度描述方法
自由刚体位置和运动的描述:用刚体上三个非共 线的点的位置和运动来描述。
定轴转动刚体:刚体上的两点相对于参考坐标系 固定,失去平动的自由,只能绕该轴转动。 定点转动刚体:刚体上的一点相对于参考坐标系 固定,失去平动的自由,只能绕该点转动。
四 定点转动刚体角位置的欧拉角描述 第一类欧拉角 (转动顺序为:Z-X-Z)
0 0 cos -sin 0 cos -sin 0 1 Cbn sin cos 0 0 cos -sin sin cos 0 0 0 1 0 sin cos 0 0 1 cos -sin cos sin sin cos -sin 0 sin cos cos -cos sin sin cos 0 0 sin cos 0 0 1 cos cos sin cos sin cos sin sin cos cos sin sin sin cos cos cos sin -sin sin cos cos cos -cos sin sin sin sin cos cos
2013-7-17
16
为了表示旋转质量陀螺仪动力学方程的方便,求出 刚体转动角速度在中间坐标系中的投影:
x 2 x 2 x 2 x 2 y2 y2 y2 y2 z 2 z 2 z 2 z 2
2013-7-17 21
§1.2 常用参考坐标系
2. 当地地理坐标系
原点设在沿地球表面运动的物体上(通常选质心),三 根轴和地固地理坐标系的指向相同,不与地球固结。 除随地球自转以外,还随运动物体相对地球运动,但不 参与物体的俯仰、倾斜等运动。是随运动物体在地球表面运 动的地理坐标系,故也称之为动地理坐标系。
§1.2 常用参考坐标系
二 地球坐标系及其旋转角速度
坐标系原点设在地球中心,它的三根轴与地球相固结。
(ie ) xe 0 e ωie (ie ) ye 0 (ie ) ze ie