第四章《一次函数》全章教案(公开课)

合集下载

【北师大版】八年级数学上册第4章《一次函数》全章教学案

【北师大版】八年级数学上册第4章《一次函数》全章教学案

第四章一次函数1.初步理解函数的概念,在实际背景中感受自变量取值范围的意义;体会一次函数和正比例函数的意义,能根据所给信息确定一次函数表达式.2.能画一次函数的图象,理解当k>0和k<0时图象的变化情况,并利用一次函数图象解决简单的实际问题.3.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程中,体会数形结合的思想方法与一次函数y=kx+b中k与b的意义.经历利用一次函数及其图象解决实际问题的过程,发展应用意识;经历函数图象信息的识别与应用过程,发展几何直观.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展符号意识;经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作交流的意识和能力.一、《标准》要求1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.3.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法解决简单的实际问题,增强应用意识,提高实践能力.4.在运用数学表述解决问题过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值.5.探索简单实例中的数量关系和变化规律,了解常量、变量的意义.6.结合实例,了解函数的概念和三种表示法,能举出函数的实例.7.能结合图象对简单问题中的函数关系进行分析.8.能确定简单实际问题中函数自变量的取值范围,并会求函数值.9.能用适当的函数表示法刻画简单实际问题中变量之间的关系.10.结合对函数关系的分析,能对变量的变化情况进行初步讨论.11.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式.12.能利用待定系数法确定一次函数的表达式.13.能画出一次函数的图象,根据一次函数的图象和表达式y=kx+b(k≠0)探索并理解k>0和k<0时,图象的变化情况.14.能用一次函数解决简单实际问题.二、教材分析函数是数学中重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型.本章是学习函数的入门,也是进一步学习的基础.教材通过具体的实例引入一次函数的概念,并通过练习巩固对一次函数意义的认识;通过让学生动手操作,让学生认识到一次函数的图象是一条直线,从而得出两点法作一次函数图象的方法;通过具体的取值结合函数的图象,让学生逐步得出一次函数的性质,体会一次函数在实际生活中的应用.教材注重让学生参与知识的形成过程,自始至终都采用让学生动手尝试、交流、归纳的方式,鼓励学生通过观察、猜想、验证,主动获取知识.【重点】1.初步理解函数的概念.2.画一次函数的图象.3.通过一次函数图象解决生活中的简单问题.【难点】1.一次函数图象的特点.2.一次函数y=kx+b中k与b的实际意义.1.加强与已有知识的联系.在代数式、方程、不等式等内容的学习、探索中都已经渗透了转化的思想,要注意引导学生在原有知识基础上理解变量和函数的概念.2.创设丰富的现实情境,重视直观感知的作用.3.注重学生对必要的数学语言和符号的理解与准确应用,运用数学语言和符号去理解、描述现实世界中问题的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.1函数了解函数产生的背景和函数的概念,能判断两个变量间的关系是否属于函数关系.通过对函数概念的探索,初步培养学生利用函数的观点认识现实世界的意识和能力.1.经历函数概念的抽象概括过程,体会函数的模型思想.2.让学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学知识的理解和有效的学习模式.【重点】1.掌握函数的概念.2.会判断两个变量之间的关系是否属于函数关系.3.能把实际问题抽象概括为函数问题.【难点】1.理解函数的概念.2.能把实际问题抽象概括为函数问题.【教师准备】教材图4 - 1投影图片.【学生准备】预习教材75~76页内容.导入一:长春市某天的气温随时间变化的曲线如图所示.这条曲线反映了气温与时间之间怎样的关系?从这条曲线中又能获得哪些信息呢?导入二:我们生活在一个变化的世界中,时间、温度,还有你的身高、体重等都在悄悄地发生变化.从数学的角度研究变化的量,讨论它们之间的关系,将有助于我们更好地了解自己、认识世界和预测未来.观察下图,你能大致地描述男孩和女孩平均身高的变化情况吗?你的身高在平均身高之上还是之下?你能估计自己18岁时的身高吗?在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.一、感知函数出示教材图4 - 1及相关问题,并由学生讨论完成题目.(1)根据上图填表:(2)对于给定的时间t,相应的高度h确定吗?[设计意图]由于我们已初步接触过这方面知识,所以答案较易得出.在这里要注意时间和高度这两个变量之间的关系.二、做一做1.罐头盒等圆柱形的物体常常如下图那样堆放.随着层数的增加,物体的总数是如何变化的?填写下表:【思考】层数n2.一定质量的气体在体积不变时,假若温度降低到-273 ℃,则气体的压强为零.因此,物理学中把-273 ℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.(1)当t分别为-43 ℃,-27 ℃,0℃,18℃时,相应的热力学温度T是多少?(2)给定一个大于-273 ℃的t值,你都能求出相应的T值吗?【思考】在关系式T=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?三、函数的相关概念一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数(function),其中x是自变量.表示函数的方法一般有:列表法、关系式法和图象法.对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.[知识拓展]理解函数概念时应注意:(1)在某一变化过程中有两个变量x与y.(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x>0)中,当x=9时,y 对应的值为3或-3,不唯一,则y不是x的函数.1.(1)汽车在公路上匀速行驶,速度为每小时30千米,则汽车行驶的路程s(千米)与行驶的时间t(时)之间的关系式为.(2)圆的面积S与半径R的关系式为.答案:(1)s=30t (2)S=πR22.一般地,在某个变化过程中,有个变量x,y.如果给定一个x值,相应地就了一个y 值,那么我们称y是x的函数.其中是自变量,是因变量.答案:两确定x y3.对于两个变量之间的函数关系,可以采用不同的表达方式:,,.答案:列表法关系式法图象法4.圆的周长公式C=2πR中,有个变量,是.答案:两R,C5.某30层的大厦底层高4米,以上每层高3米,从底层数起,则前n层的高度h(米)与n的函数关系式为.答案:h=3n+11函数1.感知函数.2.做一做.3.函数的相关概念.一、教材作业【必做题】教材第77页习题4.1第1,2题.【选做题】教材第78页习题4.1第3题.二、课后作业【基础巩固】1.下列变量间的关系不是函数关系的是()A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径2.下列是关于变量x和y的四个关系式:①y=x;②y2=x;③2x2=y;④y2=2x.其中y是x的函数的有()A.1个B.2个C.3个D.4个3.弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是()A.没挂物体时,弹簧的长度为10 cmB.弹簧的长度随所挂物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C.在弹簧的弹性限度内,如果物体的质量为m kg,那么弹簧的长度y cm可以表示为y=2.5m+10D.当物体的质量为4 kg时,弹簧的长度为20 cm4.下列各题中,哪些是函数关系?哪些不是函数关系?(1)匀速运动所走的路程和速度;(2)在平静的湖面上投入一粒石子,泛起的波纹的周长与半径;(3)x+3与x;(4)正方形的面积和梯形的面积;(5)水管中水流的速度和水管的长度.【能力提升】5.如图(1)所示,在长方形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止.设点E运动的路程为x,ΔBCE的面积为y,如果y关于x的函数图象如图(2)所示,则当x=7时,点E应运动到()A.点C处B.点D处C.点B处D.点A处6.如下图所示的是桂林冬季某一天的气温随时间的变化图象,请根据图填空:时气温最低,最低气温为℃,当天最高气温为℃,这一天的温差为℃.(所有的结果都取整数)【拓展探究】7.如图所示,正方形ABCD的边长为1,E是CD的中点,P为正方形ABCD边上一个动点,动点P从点A出发,沿A→B→C→E运动.若点P经过的路程为x,ΔAPE的面积为y,则当y=时,求x的值.【答案与解析】1.C(解析:A.长=;B.面积=;C.高不能确定,共有三个变量;D.周长=2π·半径.故选C.)2.B(解析:①③是y关于x的函数.)3.B(解析:因为表中的数据主要涉及弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量,弹簧的长度是因变量,故选项B错误,符合题意.故选B.)4.解:(1)匀速运动所走的路程和速度符合s=vt,是函数关系. (2)在平静的湖面上投入一粒石子,泛起的波纹的周长L与半径r符合L=2πr,是函数关系. (3)x+3与x,设y=x+3,即可得出是函数关系. (4)正方形的面积和梯形的面积没有关系,所以不是函数关系. (5)水管中水流的速度和水管的长度没有关系,所以不是函数关系.所以(1)(2)(3)是函数关系,(4)(5)不是.5.B(解析:当E在AB上运动时,ΔBCE的面积不断增大,当E在AD上运动时,面积不变,当E在DC上运动时,ΔBCE的面积不断减小,所以当x=7时,点E应运动到点D处.故选B.)6.4-210127.解:①当点P在AB上运动时,如图(1)所示,y=x(0≤x<1).当y=时,x=.②当点P在BC上运动时,如图(2)所示,y=1-×1×(x-1)-(2-x)-×1,整理得y=-x(1≤x<2).当y=时,-x,解得x=.③当点P在CE上运动时,如图(3)所示,EP=-x,y=×1×,即y=-x(2≤x≤2.5).当y=时,-x,解得x=.因为不在2≤x≤2.5内,所以此情况不符合要求.所以当y=时,x的值为或.本课时是函数学习的起始课,因此理解函数的基本思想和表达方式是本课时的重点.通过生活实例中对变量的提取,帮助学生比较深刻地领悟了函数的意义.教材安排的实际问题,旨在让学生通过直观感知,领悟相关概念,这些问题不宜单纯作为教师讲解的例题,要注意引导学生观察其中数量之间的相互关系、鼓励学生发表意见,可以根据学生交流的情况,鼓励学生举出自己熟悉的实例,穿插在几个问题的讨论之中.本课时的学习需注意后续相关内容的渗透,例如:观察函数图象,感知函数的单调性;通过求函数值,渗透初步的对应思想等.教师在组织教学中应注意做适当的铺垫.随堂练习(教材第77页)解:(1)问题中有时间和温度两个变量,且温度是时间的函数,自变量的取值范围是大于等于0,小于等于24.(2)问题中有汽车的速度v(km/h)和汽车紧急刹车后滑行的路程s(m)两个变量,且s是v的函数,v>0. (3)问题中有信件质量m(g)与邮资y(元)两个变量,且y是m的函数,0<m≤100.习题4.1(教材第77页)1.解:(1)反映了物体与抛射点之间的水平距离s与物体的高度h之间的关系. (2)依次填2,2.5,2.65,2.5,2,1.2,0. (3)确定. (4)可以.2.解:(1)当x=3时,y=9. (2)依题意得y=3x,x的取值范围是x>0,且x是整数.3.解:买单价是0.4元的铅笔,总金额y(元)与铅笔数x(支)之间的关系,其函数的关系式为y=0.4x,自变量的取值范围是非负整数.(答案不唯一)4.解:(1)能. (2)能. (3)能.1.关于确定函数关系式的问题,需要分析实际问题中的等量关系,其具体方法和列方程解应用题类似.2.关于函数自变量的取值范围的讨论,主要包含两个方面:一是自变量取值使函数关系式有意义;二是自变量取值使实际问题有意义,这需要对实际问题作具体分析,具有一定难度.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系式中正确的是()A.y=4n-4B.y=n2C.y=4n+4D.y=4n〔解析〕由图可知n=1时,圆点有4个,即y=4;n=2时,圆点有8个,即y=8,从而可知y=4n.故选D.2一次函数与正比例函数理解一次函数和正比例函数的概念,以及两者之间的关系,利用一次函数和正比例函数解决实际问题.能够根据所给条件写出简单的一次函数表达式,并利用它解决实际问题.1.通过函数与变量之间的联系,一次函数与一次方程的联系,提高学生的数学思维能力.2.经历利用一次函数解决实际问题的过程,发展学生的数学应用能力.【重点】1.一次函数、正比例函数的概念.2.一次函数、正比例函数的关系.3.会根据已知信息写出一次函数的表达式.【难点】一次函数知识的运用.【教师准备】引例和例题投影图片.【学生准备】复习函数的定义、函数值等内容.导入一:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如弹簧的长度(在弹性限度内)与所挂物体的质量,输液时间与相应时间内水滴数目……了解这些关系,可以帮助我们更好地认识世界.函数是刻画变量之间关系的常用模型,其中最为简单的是一次函数,那么什么是一次函数?用一次函数可以解决哪些问题呢?你想了解这些吗?一起进入这节课的学习吧!导入二:汽车的平均速度为95 km/h,A地直达北京的高速公路全程为570 km,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己与北京的距离.小明能得到一个什么样的关系式呢?他是怎样想的?猜猜看.某弹簧的自然长度为3 cm.在弹性限度内,所挂物体的质量x每增加1 kg,弹簧长度y增加0.5 cm.(1)计算所挂物体的质量分别为1 kg,2 kg,3 kg,4 kg,5 kg时弹簧的长度,并填入下表:(2)你能写出y与x【分析】当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体为x千克时,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x.二、做一做某辆汽车油箱中原有汽油60 L,汽车每行驶50 km耗油6 L.(1)完成下表:(2)你能写出耗油量y(L)(3)你能写出油箱剩余油量z(L)与汽车行驶路程x(km)之间的关系式吗?【答案与提示】(1)如下表所示:(2)y=6·x.(3)z=60-x.【归纳】若两个变量x,y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.例如y=2x+1, y=x-1等都是一次函数.特别地,当b=0时,称y是x的正比例函数.例如,y=2x,y=-3x等都是正比例函数.正比例函数是一次函数的特例,一次函数包含正比例函数.正比例函数与一次函数的关系如图所示.[知识拓展]正比例函数也是一次函数,不过是特殊的一次函数,就像是等边三角形与等腰三角形的关系一样.三、例题讲解写出下列各题中y与x之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?(1)汽车以60 km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系;(2)圆的面积y(cm2)与它的半径x(cm)之间的关系;(3)某水池有水15 m3,现打开进水管进水,进水速度为5 m3/h,x h后这个水池内有水y m3.(由学生交流讨论完成)解:(1)由路程=速度×时间,得y=60x,y是x的一次函数,也是x的正比例函数.(2)由圆的面积公式,得y=πx2,y不是x的正比例函数,也不是x的一次函数.(3)这个水池每小时增加5 m3水,x h增加5x m3水,因而y=15+5x,y是x的一次函数,但不是x的正比例函数.【思考】两个变量之间存在函数关系,它们之间一定是一次函数或正比例函数关系吗?我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入不超过3500元的部分不收税;月收入超过3500元但不超过5000元的部分征收3%的所得税……如某人月收入3860元,他应缴纳个人工资、薪金所得税为(3860-3500)×3%=10.8(元).(1)当月收入超过3500元而又不超过5000元时,写出应缴纳个人工资、薪金所得税y(元)与月收入x(元)之间的关系式;(2)某人月收入为4160元,他应缴纳个人工资、薪金所得税多少元?(3)如果某人本月缴纳个人工资、薪金所得税19.2元,那么此人本月工资、薪金收入是多少元?〔解析〕一次函数y=kx+b(k,b为常数,k≠0)中,自变量的取值范围是全体实数,但是在实际问题中,要根据具体情况来确定该一次函数的自变量的取值范围.本例题的关键是确定问题当中的x的取值范围.解:(1)当月收入超过3500元而不超过5000元时,y=(x-3500)×3%,即y=0.03x-105.(2)当x=4160时,y=0.03×4160-105=19.8(元)(3)因为(5000-3500)×3%=45(元),19.2<45,所以此人本月工资、薪金收入不超过5000元.设此人本月工资、薪金收入是x元,则:19.2=0.03x-105,x=4140.即此人本月工资、薪金收入是4140元.1.一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重物1 kg就伸长0.5 cm,则在弹性限度内,挂重物后的弹簧长度y(cm)与所挂重物x(kg)之间的函数关系式是.解析:弹簧伸长后的长度等于原长加上挂重物后伸长的长度,所以y=0.5x+12.由于这是实际问题,自变量的取值要有实际意义,所以0≤x≤15.故填y=0.5x+12(0≤x≤15).2.y=kx+b是一次函数,则k为()A.一切实数B.正实数C.负实数D.非零实数解析:y=kx+b是一次函数,也就是说kx+b是关于x的一次式,所以k是不等于0的实数.故选D.3.下列函数中,y是x的一次函数的是 ()A.y=-3x+5B.y=-3x2C.y=D.y=2解析:形如y=kx+b(k,b为常数,k≠0)的函数是一次函数.故选A.4.下列说法不正确的是()A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数解析:正比例函数是特殊的一次函数,不是正比例函数也可能是一次函数,如y=2x-3.故选D.5.某面包厂现年产值是15万元,计划从今年开始每年增加产值2万元.(1)写出年产值y(万元)与年数x之间的函数表达式;(2)求5年后的年产值.解析:(1)年产值等于现年产值加上每年增加的年产值乘年数.(2)将x=5代入(1)中求得的表达式即可得解.解:(1)y=2x+15.(2)当x=5时,y=2×5+15=25,即5年后的年产值为25万元.2一次函数与正比例函数1.出示教材引例及问题.2.做一做.3.例题讲解.例1例2一、教材作业【必做题】教材第82页习题4.2第1,2题.【选做题】教材第82页习题4.2第5题.二、课后作业【基础巩固】1.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的取值范围为()A.m>-B.m> 5C.m=-D.m=52.下列函数:①y=4x+3;②y=x;③y=x4;④y=x2;⑤y=1-x中,一次函数有 ()A.1个B.2个C.3个D.4个3.在函数y=x, y=x+3,y=,y=2x2-3, y=2(x-3)中,是关于x的正比例函数.【能力提升】4.容积为800 L的水池内已蓄水200 L,若每分钟注入的水量是15 L,设池内的水量为Q(L),注水时间为t(min).(1)请写出Q与t的函数关系式;(2)注水多长时间可以把水池注满?(3)当注水时间为0. 2 h时,池中水量是多少?5.某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元.(1)若一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3500辆自行车中,变速车的辆次不小于总辆次的25%,但不大于40%,试求该保管站这个星期日保管费收入总数的范围.【拓展探究】6.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.(1)若某三口之家欲购买120 m2的商品房,求其应缴纳的房款;(2)设某三口之家购买商品房的人均面积为x m2,应缴纳房款为y万元,请写出y关于x的函数表达式.【答案与解析】1.C(解析:∵函数y=(m-5)x+(4m+1)x2中的y与x成正比例,∴即∴m=-.故选C.)2.C (解析:①y=4x+3是一次函数;②y=x是一次函数;③y=x4的自变量的次数不为1,故不是一次函数;④y=x2的自变量的次数不为1,故不是一次函数;⑤y=1-x是一次函数.故选C.)3.y=x(解析:只有y=x符合y=kx(k≠0)的形式.)4.解:(1)Q=200+15t,0≤t≤40. (2)注水40 min可以把水池注满. (3)当注水0.2 h,即12 min时,池中水量为380 L.5.解:(1)y与x的关系式是y=0.3x+0.5×(3500-x),即y=-0.2x+1750(0≤x≤3500,且x为整数). (2)因为变速车停放的辆次不小于3500的25%,但不大于3500的40%,所以一般自行车停放的辆次在3500×60%与3500×75%之间.当x=3500×60%=2100时,y=-0.2×2100+1750=1330;当x=3500×75%=2625时,y=-0.2×2625+1750=1225.所以该保管站这个星期日保管费收入总数在1225元至1330元之间.6.解析:(1)根据房款=房屋单价×购房面积就可以表示出应缴房款.(2)分别求出当0≤x≤30,30<x≤n和x>n时y与x之间的表达式即可.解:(1)由题意,得应缴纳房款为0.3×90+0.5×30=42(万元). (2)由题意得:①0≤x≤30时,y=0.3×3x=0.9x;②30<x≤n时,y=0.3×90+0.5×3×(x-30)=1.5x-18;③x>n时,y=0.3×90+0.5×3(n-30)+0.7×3×(x-n)=2.1x-18-0.6n.教学时从学生熟悉的实际问题入手,旨在让学生通过直观感知领悟相关概念,通过学生的合作交流得到一次函数和正比例函数的定义,引导学生把新学习的函数知识与实际问题联系起来.对正比例函数和一次函数之间的区别和联系没有做重点强调,这对于学生以后画函数图象和分析图象、性质会带来一定的困难.在教学过程中要适当增加习题,设计不同层次的习题,让不同层次的学生得到不同程度的练习,以提高学生的解题能力和对一次函数与正比例函数的理解和掌握.随堂练习(教材第80页)1.解:依题意得y=2.2x,所以y是x的一次函数,y也是x的正比例函数.2.解:(1)y=80x+100,y是x的一次函数. (2)当x=0.5时,y=140.习题4.2(教材第82页)1.解:y=-3x.2.解:(1)y=3x,y是x的一次函数, 也是x的正比例函数. (2)y=(10-2x)·x=-x2+5x,y不是x的一次函数,也不是x的正比例函数.3.解:(1)y=12+0.2x. (2)48元. (3)440 min.4.解:(1)y=0.25x. (2)45元. (3)400 min.5.解:y A=0.2x+12,y B=0.25x.(1)当x=300时,y A=0.2×300+12=72,y B=0.25×300=75.因为y A<y B,所以选择A类收费方式. (2)由题意得y A=y B,所以0.2x+12=0.25x,解得x=240.所以每月通话240 min时,按A,B两类收费标准缴费,所缴话费相等.要注意一次函数与正比例函数之间的关系,解决“根据所给条件写出简单的一次函数表达式”这类问题的基本思路为:先从实际问题中获取各种有用的信息,然后认真分析,探究这些有关的信息,在此基础上构建出数学模型,并解决这个数学问题,从而进一步解答问题.如图所示,函数、一次函数和正比例函数之间的包含关系是()〔解析〕正比例函数是一次函数的特殊形式,而它们又都是函数.故选A.3一次函数的图象1.理解函数图象的概念,经历作图象的过程,初步了解作函数图象的一般步骤.理解一次函数的代数表达式与图象之间的对应关系,并能熟练作出一次函数的图象.2.了解正比例函数y=kx的图象的特点,会作正比例函数图象,理解一次函数及其图象的有关性质;进一步培养学生数形结合的意识和能力.1.会作一次函数的图象,明确一次函数的图象是一条直线.2.通过观察、思考、交流等过程,得出正比例函数与一次函数图象的性质.经历作图象的过程,归纳总结作函数图象的一般步骤,培养学生的总结概括能力,让学生全身心地投入到数学活动中,能积极与同伴合作交流并能进行探索活动,发展实践能力与创新精神.【重点】1.能熟练地作出一次函数的图象,归纳作函数图象的一般步骤,理解一次函数的代数表达式与图象之间的对应关系.2.正比例函数与一次函数的图象特点.【难点】1.理解一次函数的表达式与图象之间的对应关系.2.正比例函数、一次函数图象的特点的探索.第课时1.通过具体操作,感受正比例函数的图象是一条直线.2.学会选择特殊的点,正确地画出正比例函数的图象.3.理解正比例函数图象的性质.。

北师大版八年级数学上册第四章一次函数第四节一次函数的应用教学设计

北师大版八年级数学上册第四章一次函数第四节一次函数的应用教学设计
3.设计一道关于一次函数应用的题目,要求包含至少两个变量,并包含优化问题(如最大值或最小值)。题目需简洁明了,解题步骤要详细。
4.写一篇学习心得,总结一次函数在实际问题中的应用,以及在本节课中学到的解题策略和技巧。要求不少于300字,重点突出自己的收获和感悟。
5.预习下一节课的内容,提前思考如何将一次函数的知识应用到更广泛的实际问题中。
四、教学内容与过程
(一)导入新课,500字
在导入新课的环节,我将利用学生已有的知识经验,通过生活中的实例,引发学生的思考,激发他们的学习兴趣。
“同学们,我们在前面的学习中已经了解了一次函数的概念和性质。那么,你们知道一次函数在实际生活中有哪些应用吗?”通过这个问题,让学生回顾一次函数的知识,并思考其与现实生活的联系。
5.总结反思,提升认识
课后,教师应引导学生对所学知识进行总结反思,提炼关键点,形成知识体系。同时,教师也要对课堂教学进行反思,了解学生的学习情况,不断调整教学策略,提高教学效果。
6.关注个体差异,因材施教
在教学过程中,教师应关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导。对于学习困难的学生,教师要有耐心,帮助他们克服困难,增强自信心;对于优秀生,则要适当提高要求,激发他们的潜能。
3.根据一次函数的性质,我们可以求出使总费用最低的小车数量。
(三)学生小组讨论,500字
在学生小组讨论环节,我将把学生分成若干小组,每组4-6人。针对以下问题进行讨论:
1.你还能想到生活中哪些问题可以用一次函数来解决?
2.在解决实际问题时,如何正确列出一次函数表达式?
3.如何利用一次函数的性质,找到实际问题的最优解?
接着,我展示一个实例:“假设我们班要组织一次郊游活动,需要租车。租车公司给出了如下收费标准:每辆小车租金100元,每辆大车租金200元。我们班共有50人,请同学们思考,如何选择车辆才能使总费用最低?”

新版北师大版八年级数学上册第四章一次函数全章课件

新版北师大版八年级数学上册第四章一次函数全章课件
也是x的正比例函数;
(2)由圆的面积公式,得y=πx2,y不是x的正比例函数, 也不是x的一次函数;
(3)这个水池每时增加5 m3水,x h增加5x m3水,因 而y=15+5x,y是x的一次函数,但不是x的正比例函数.
二、新课讲解
例2 我国自2011年9月1日起,个人工资、薪金所得税征 收办法规定:月收入不超过3500元的部分不收税;月收 入超过3500元但不超过5000元的部分征收3%的所得 税……如某人月收入3860元,他应缴纳个人工资、薪金 所得税为(3860-3500)×3%=10.8(元). (1)当月收入超过3500元而又不超过5000元时,写出 应缴纳个人工资、薪金所得税y(元)与月收入x(元)之 间的关系式; (2)某人月收入为4160元,他应缴纳个人工资、薪金所 得税多少元? (3)如果某人本月缴纳个人工资、薪金所得税19.2元, 那么此人本月工资、薪金收入是多少元?
吗?
当t>-273时,t+273>0,即T>0,满足T≧0. 故给定一个大于-273℃的t值,能求出相应的T值.
二、新课讲解
在上面各例中,都有两个变量,给定其中某一个变量 的值,相应地就确定了另一个变量的值.
一般地,如果在一个变化过程中有两个变量x和y,并 且对于变量x的每一个值,变量y都有唯一的值与它对应, 那么我们称y是x的函数,其中x是自变量.
温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有 如下数量关系:T=t+273,T≧0.
(1)当t分别为-43℃,-27℃,0℃,18℃时,相应的热
力学温度T是多少? 根据T=t+273,当t=-43℃时,T=230K;当t=-27℃
时,T=246K;当t=0℃时,T=273K;当t=18℃时, T=291K. (2)给定一个大于-273℃的t值,你都能求出相应的T值

北师大版八年级数学上册第四章一次函数4.4一次函数的应用(教案)

北师大版八年级数学上册第四章一次函数4.4一次函数的应用(教案)
五、教学反思
今天在教授一次函数的应用这一章节时,我发现学生们对于一次函数的实际意义和如何建立数学模型感到很有兴趣。他们对于将实际问题转化为数学表达式的过程感到好奇,这也让我意识到,将数学知识与现实生活紧密结合起来,能够有效提升学生的学习积极性。
在讲授过程中,我注意到有些学生在理解斜率的物理意义时遇到了困难。我通过举例和图示来帮助他们理解,但感觉还需要在今后的教学中继续加强这一部分的讲解和练习。可能通过更多的实际案例,让学生自己探索和发现斜率在不同情境下的含义,会更加有助于他们的理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在总结回顾环节,我询问了学生是否有疑问,很高兴的是,他们能够提出一些深入的问题,这表明他们真正在思考和学习。但我也意识到,可能还有部分学生因为害羞或其他原因没有提问。我需要寻找更多途径,如课后辅导、小组互助等,来确保每一个学生都能得到帮助,解决他们的困惑。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(教案)
一、教学内容
本节课选自北师大版八年级数学上册第四章一次函数的4.4节,主要内容包括:
1.利用一次函数解决实际问题,如斜率与实际意义的联系;
2.一次函数图像在坐标平面上的应用,如何从图像中获取信息;
3.通过一次函数的例子,让学生理解函数与方程的关系;
举例:在讲解斜率的实际意义时,通过具体例子(如物体的匀速运动)来说明斜率与速度的关系,帮助学生理解斜率在现实中的具体应用。在绘制图像时,指导学生通过选取点、画直线等步骤,掌握绘制一次函数图像的技巧。对于变量关系的识别,可以通过案例教学,让学生在实际问题中练习区分变量和常量。在参数估计方面,教授学生使用实际数据点和函数表达式来计算k和b的值,并进行验证。

BS北师版 初二八年级数学 上册第一学期秋(教学设计 教案)第四章 一次函数 (全章 分课时 含教学反思)

BS北师版 初二八年级数学 上册第一学期秋(教学设计 教案)第四章 一次函数 (全章 分课时 含教学反思)

第四章 一次函数 4.1 函 数1.掌握函数的概念以及表示方法;(重点)2.会求函数的值,并确定自变量的取值范围.(难点)一、情境导入在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?二、合作探究探究点一:函数的有关概念 【类型一】函数的识别下列关系式中哪些是函数,哪些不是? (1)y =x ;(2)y =x 2+z ;(3)y 2=x ;(4)y =±x.解析:要判断一个关系式是不是函数,首先看这个变化过程中是否只有两个变量,其次看每一个x 的值是否对应唯一确定的y 值.解:(1)此关系式只有两个变量,且每一个x 值对应唯一的一个y 值,故它是函数. (2)此关系式中有三个变量,因此y 不是x 的函数.(3)此关系式中虽然只有两个变量,但对于每一个确定的x 值(x>0)对应的都有2个y 值,如当x =4时,y =±2,故它不是函数.(4)对于每个确定的x 值(x>0)对应的都有2个y 值,如当x =9时,y =±3,故它不是函数.方法总结:由函数的定义可知在某个变化过程中,有两个变量x 和y ,对于每一个确定的x 值,y 值都有且只有一个值与之对应,当x 值取不同的值时,y 的值可以相等也可以不相等,但如果一个x 的值对应着两个不同的y 值,那么y 一定不是x 的函数.根据这一点,我们可以判定一个关系式是否表示函数.【类型二】 自变量的取值范围函数y=x+1的自变量x的取值范围是( )A.x≠1 B.x≥-1C.x>-1 D.一切实数解析:要使y=x+1有意义,则必须满足x+1≥0,∴x≥-1.故选B.方法总结:求自变量的取值范围应从两个方面考虑:一是必须使含自变量的代数式有意义,二是满足实际问题.探究点二:函数的关系式及函数值【类型一】函数的三种表示方法近年来,我国西南部分省市遭遇了严重干旱.某水库的蓄水量随着时间的增加而减小,干旱持续时间t(天)与蓄水量V(万立方米)的变化情况如图所示,根据图象回答问题.(1)这个图象反映了哪两个变量之间的关系?(2)根据图象填表:(3)当t取0至60天之间的任一值时,对应几个V值?(4)V可以看成t的函数吗?如果是,试写出用自变量表示函数的式子.解析:(1)通过读图可知,横坐标表示干旱持续时间,纵坐标表示蓄水量,因此它表示的是干旱持续时间与水库蓄水量之间的关系;(2)根据图象信息确定每个特殊点的坐标即可;(3)观察图象可得;(4)可根据函数的定义来判断.解:(1)图象反映了干旱持续时间与水库蓄水量之间的关系;(3)当t取0至60天之间的任一值时,对应着一个V值;(4)V是t的函数.根据图象可知,该水库初始蓄水量为1200万立方米,干旱每持续10天,蓄水量减少200万立方米,由此写出的式子为:V=1200-20010t=-20t+1200(0≤t≤60).方法总结:三种函数表示方法之间有互补性,是可以相互转化的.【类型二】求函数值求当x=-4时的函数值.(1)y=x+24;(2)y=12x+1.解析:利用已知x 的值,代入关系式求出即可. 解:(1)代入x =-4,得y =-4+24=-12;(2)代入x =-4,得y =1-4×2+1=-17.方法总结:利用函数值的定义,正确代入自变量的取值求解是解题的关键.探究点三:函数的图象洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()解析:∵洗衣机工作前洗衣机内无水,∴A ,B 两选项不正确,淘汰;又∵洗衣机最后排完水,∴D 选项不正确,淘汰,所以选项C 正确,故选C.方法总结:本题考查了对函数图象的理解能力,看函数图象要理解两个变量的变化情况.三、板书设计函数⎩⎪⎨⎪⎧定义:自变量、因变量、常量函数的关系式⎩⎪⎨⎪⎧三种表示方法函数值函数的图象在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣,并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动.在活动中归纳、概括出函数的概念,并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解.4.2 一次函数与正比例函数1.掌握一次函数的概念,能根据条件写出一次函数的关系式;(重点) 2.掌握正比例函数的概念.(重点)一、情境导入生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min ;旋转两圈,表示时间过了2min ……那么,秒针走过的圈数与经过的时间之间的关系如何表示呢?二、合作探究探究点一:一次函数与正比例函数【类型一】 一次函数与正比例函数的识别下列函数关系式中,哪些是一次函数,哪些是正比例函数?(1)y =-x -4; (2)y =5x 2-6;(3)y =2πx; (4)y =-x2;(5)y =1x; (6)y =8x 2+x(1-8x).解析:首先看每个函数的表达式能否变形转化为y =kx +b(k≠0,k 、b 是常数)的形式,如果x 的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b =0,那么它是正比例函数.解:(1)是一次函数,不是正比例函数; (2)不是一次函数,也不是正比例函数; (3)是一次函数,也是正比例函数; (4)是一次函数,也是正比例函数; (5)不是一次函数,也不是正比例函数; (6)是一次函数,也是正比例函数.方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零; 判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.【类型二】 根据一次函数与正比例函数的定义求字母的值已知函数y=(m-5)xm2-24+m+1.(1)若它是一次函数,求m的值;(2)若它是正比例函数,求m的值.解析:(1)要使函数是一次函数,根据一次函数的定义x的指数m2-24=1,且一次项系数m-5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m+1=0这个条件.解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0,所以m =±5且m≠5,所以m=-5.所以当m=-5时,函数y=(m-5)xm2-24+m+1是一次函数.(2)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0且m+1=0.所以m=±5且m≠5且m=-1,则这样的m不存在,所以函数y=(m-5)xm2-24+m+1不可能为正比例函数.方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b=0时,一次函数为正比例函数.探究点二:一次函数关系式的确定某公司以每吨200元的价格购进某种矿石原料300吨,用以生产甲、乙两种产品,生产1煤的价格为400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.三、板书设计一次函数⎩⎪⎨⎪⎧一次函数的概念正比例函数的概念函数关系式的确定经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到函数关系式这一过程,提升学生的数学应用能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.使学生在探索过程中体验成功的喜悦,树立学习的自信心.4.3 一次函数的图象 第1课时 正比例函数的图象和性质1.理解函数图象的概念,掌握作函数图象的一般步骤;(重点)2.掌握正比例函数的图象与性质,并能灵活运用解答有关问题.(难点)一、情境导入 一天,小明以80米/分的速度去学校,请问小明离家的距离s(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? 图中的图象能表示上面问题中的s 与t 的关系吗?二、合作探究探究点一:正比例函数的图象【类型一】正比例函数的图象的画法画出函数y =-2x 的图象.解析:当x =0时,y =0;当x =1时,y =-2.经过原点O(0,0)和点A(1,-2)作直线,则这条直线就是函数y =-2x 的图象.解:如图:方法总结:作函数图象的一般步骤:列表,描点,连线,正比例函数的图象是经过原点的直线,只需再另外找一点就可作出图象.【类型二】正比例函数的图象已知正比例函数y =kx(k≠0),当x =-1时,y =-2,则它的图象大致是( )解析:将x =-1,y =-2代入正比例函数y =kx(k≠0)中,求出k 的值为2,即可根据正比例函数的性质判断出函数的大致图象,故选C.方法总结:本题考查了正比例函数的图象,知道正比例函数的图象是过原点的直线,且当k>0时,图象过一、三象限;当k<0时,图象过二、四象限.探究点三:正比例函数的性质已知正比例函数y =-kx 的图象经过一、三象限,P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)三点在函数y=(k -2)x 的图象上,且x 1>x 3>x 2,则y 1,y 2,y 3的大小关系为( ) A .y 1>y 3>y 2 B .y 1>y 2>y 3 C .y 1<y 3<y 2 D .y 3>y 2>y 1解析:由y =-kx 的图象经过一、三象限,可知-k>0即k<0,∴k -2<0.由正比例函数的性质可知,y =(k -2)x 的函数值y 随x 的增大而减小,则由x 1>x 3>x 2得y 1<y 3<y 2.故选C.方法总结:正比例函数y =kx(k≠0)的函数值y 随x 的变化情况由k 的符号决定.k>0时,y 随x 的增大而增大;k<0时,y 随x 的增大而减小.三、板书设计1.函数与图象之间是一一对应的关系;2.作一个函数的图象的一般步骤:列表,描点,连线;3.正比例函数的图象的性质:正比例函数的图象是一条经过原点的直线.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的表达式作函数的图象,培养学生数形结合的意识和能力.理解一次函数的表达式与图象之间的一一对应关系.第2课时一次函数的图象和性质1.了解并掌握一次函数的图象与性质;(重点)2.能灵活运用一次函数的图象与性质解答有关问题.(难点)一、情境导入在同一直角坐标系内作出下列一次函数的图象:y=x+2;y=x;y=x-2.观察图象你能得出什么结论?二、合作探究探究点一:一次函数的图象作出一次函数y=12x+1的图象,并根据图象回答下列问题:(1)当x=3时,y=________;当y=-32时,x=________;(2)图象与x轴的交点坐标是________,与y轴的交点坐标是________;(3)当y>0时,x________.解析:作y=12x+1的图象,取(0,1),(-2,0)两点,已知x代入关系式求y,已知y 代入关系式求x.列表如下:描点、连线,y=12x+1的图象如下图:(1)当x=3时,y=2.5;当y=-32时,x=-5.(2)图象与x轴的交点坐标是(-2,0),与y轴的交点坐标是(0,1).(3)当y>0时,x>-2.方法总结:一次函数的图象y=kx+b是与坐标轴相交的直线,只需描出点(0,b),(-bk,0)就可以作出图象.探究点二:一次函数的性质【类型一】一次函数图象的性质已知一次函数y =(2+m)x +(n -4). (1)m 为何值时,y 随x 的增大而减小?(2)m 、n 为何值时,函数图象与y 轴的交点在x 轴的下方? (3)m 、n 为何值时,函数图象过原点?解析:(1)因为k<0时,y 随x 的增大而减小,故2+m<0;(2)要使直线与y 轴的交点在x 轴的下方,必有2+m≠0,同时n -4<0;(3)直线过原点是正比例函数的特征,即2+m≠0且n -4=0.解:(1)依题意,得2+m<0,即m<-2.故当m<-2时,y 随x 的增大而减小.(2)依题意,得⎩⎪⎨⎪⎧2+m≠0,n -4<0.解得n<4且m≠-2.故当m≠-2且n<4时,函数图象与y 轴的交点在x 轴的下方.(3)依题意,得⎩⎪⎨⎪⎧2+m≠0,n -4=0.解得n =4且m≠-2.故当m≠-2且n =4时,函数图象过原点.方法总结:一次函数y =kx +b(k ≠0)中,k 的符号决定直线上升或下降,b 的符号决定直线与y 轴的交点位置,在考虑b 的值时,同时要考虑k≠0这一隐含条件,在利用一次函数的性质解决问题时,常常结合方程和不等式求解.【类型二】一次函数y =kx +b 中k 、b 符号的确定两个一次函数y 1=ax +b 与y 2=bx +a ,它们在同一坐标系中的图象可能是( )解析:解此类题应根据k ,b 的符号从而确定y =kx +b 图象的位置或根据图象确定k ,b 的符号.A 选项中,由y 1的图象知a>0,b<0,则y 2的图象应过一、二、四象限,故A 错,C 选项对;B 选项中,由y 1的图象知a>0,b>0,则y 2的图象应过一、二、三象限,故B 错;D 选项中,由y 1的图象知,a<0,b>0,则y 2的图象应过一、三、四象限,故D 错.故选C.方法总结:解此类题目时要注意前后两个函数中同一字母的取值与符号都相同.探究点三:一次函数的平移(1)将直线y =2x 向上平移2个单位后所得图象对应的函数表达式为( ) A .y =2x -1 B .y =2x -2 C .y =2x +1 D .y =2x +2(2)将正比例函数y =-6x 的图象向上平移,则平移后所得图象对应的函数表达式可能是________(写出一个即可).解析:(1)y =2x 的图象向上平移2个单位后所得图象对应的函数表达式为y =2(x +1),即y =2x +2.故选B ;(2)y =-6x 的图象向上平移可得到y =-6x +b(b>0).方法总结:一次函数y =kx +b 的图象可以看作由直线y =kx 沿y 轴平移|b|个单位长度得到的(当b >0,向上平移;当b <0,向下平移).三、板书设计一次函数的图象与性质⎩⎪⎨⎪⎧一次函数的图象一次函数的性质一次函数的平移经历对一次函数图象变化规律的探究过程,学会解决一次函数问题的一些基本方法和策略,在结合图象探究一次函数性质的过程中,增强学生数形结合的意识,渗透分类讨论的思想,通过对一次函数图象及性质的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.第2课时 单个一次函数图象的应用1.掌握单个一次函数图象的应用;(重点)2.了解一次函数与一元一次方程的关系.(难点)一、情境导入如图是某地气温t(℃)随高度h(km)的增加而降低的函数图象. (1)求一次函数的表达式;(2)该地地面气温是多少℃,当高度超过多少时气温就会低于0℃?二、合作探究探究点一:一次函数图象的应用 【类型一】利用图象获取信息由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( )A .干旱开始后,蓄水量每天减少20万米3B .干旱开始后,蓄水量每天增加20万米3C .干旱开始时,蓄水量为200万米3D .干旱第50天时,蓄水量为1200万米3解析:从图象上观察:当t =0时,V =1200;当t =50时,V =200.所以从干旱开始到第50天,蓄水量减少了1200-200=1000(万米3),则每天减少1000÷50=20(万米3).故选A.方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用⎩⎪⎨⎪⎧单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.第3课时两个一次函数图象的应用1.掌握两个一次函数图象的应用;(重点) 2.能利用函数图象解决实际问题.(难点)一、情境导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)分别求出甲、乙两根蜡烛燃烧时,y 与x 的函数关系式;(2)燃烧多长时间时,甲、乙两根蜡烛的高度相同?(不考虑都燃尽时的情况)(3)在哪个时间段内,甲蜡烛比乙蜡烛高?在哪个时间段内,甲蜡烛比乙蜡烛矮? 你会解答上面的问题吗?学完本节知识,相信你一定能很快得出答案.二、合作探究探究点:两个一次函数的应用【类型一】利用两个一次函数解决实际生活中的问题自来水公司有甲、乙两个蓄水池,现将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y 与注水时间x 之间的函数表达式; (2)求注入多长时间后甲、乙两个蓄水池的深度相同;(3)3小时后,若将乙蓄水池中的水按原速全部注入甲蓄水池,又需多长时间?解析:(1)根据图象确定点的坐标,再运用待定系数法确定函数表达式;(2)根据甲、乙两个蓄水池水的深度相同,可以得到一个一元一次方程,解此方程可得注水时间;(3)由图可知乙蓄水池的水深为4米,乙蓄水池水上升的速度为1米/小时,由此求得答案即可.解:(1)设它们的函数关系式为y =kx +b ,根据甲的函数图象可知,当x =0,y =2;当x =3时,y =0,将它们分别代入所设函数关系式y =kx +b 中得k =-23,b =2,所以甲蓄水池中水的深度y 与注水时间x 之间的函数关系式为y =-23x +2.同理可得乙蓄水池中水的深度y 与注水时间x 之间的函数关系式为y =x +1;(2)由题意得-23x +2=x +1,解得x =35.故当注水35小时后,甲、乙两个蓄水池水的深度相同;(3)4÷(3÷3)=4小时.所以若将乙蓄水池中的水按原速全部注入甲蓄水池,又需要4小时.方法总结:本题首先根据图象确定一次函数的表达式.然后结合方程思想解题.【类型二】利用两个一次函数解决几何问题已知一次函数y =32x +a 和y =-12x +b 的图象都经过点A(-4,0),且与y 轴分别交于B 、C 两点,求△ABC 的面积.解析:充分利用数形结合的方法,求出点B ,C 的坐标,求得BC 的长,进而求出面积.解:∵y=23x +a 与y =-12x +b 的图象都过点A(-4,0),∴32×(-4)+a =0,-12×(-4)+b =0.∴a=6,b =-2.∴两个一次函数分别是y =32x +6和y =-12x -2.y =32x +6与y轴交于点B ,则y =32×0+6=6,∴B(0,6);y =-12x -2与y 轴交于点C ,则y =-2,∴C(0,-2).如图所示,S △ABC =12BC ·AO =12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x 轴、y 轴交点的坐标.三、板书设计两个一次函数的应用⎩⎪⎨⎪⎧实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.第四章一次函数一中考要求:1.经历函数、一次函数等概念的抽象概括过程,体会函数及变量思想,进一步发展抽象思维能力;经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作意识和能力.2.经历利用一次函数及其图象解决实际问题的过程,发展数学应用能力;经历函数图象信息的识别与应用过程,发展形象思维能力.3.初步理解一次函数的概念;理解一次函数及其图象的有关性质;初步体会方程和函数的关系.4.能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.★★★考点突破★★★一、知识点:1.一次函数意义(正比例函数意义);2.一次函数图象;3.一次函数性质;4.一次函数应用:待定系数法,两直线的位置关系.二、中考课标要求三、中考知识梳理1.正比例函数与一次函数的关系正比例函数是当y=kx+b中b=0时特殊的一次函数.2.待定系数法确定正比例函数、一次函数的解析式通常已知一点便可用待定系数法确定出正比例函数的解析式, 已知两点便可确定一次函数解析式.3.一次函数的图象正比例函数y=kx(k≠0)是过(0,0),(1,k)两点的一条直线;一次函数y=kx+b(k≠0)是过(0,b),(bk,0)两点的一条直线.4.直线y=kx+b(k≠0)的位置与k、b符号的关系当k>0是直线y=kx+b过第一、三象限,当k<0时直线过第二、四象限;b 决定直线与y轴交点的位置,b>0直线交y轴于正半轴,b<0直线交y轴于负半轴.5.直线L1与L2的位置关系由k、b来确定当直线L1∥L2时k相同b不同;当直线L1与L2重合时k、b都相同;当直线L1与L2相交于y 轴同一点时,k不同b相同.6.一次函数经常与一次方程、一次不等式相联系四、中考题型例析1.一次函数的图象例1 (2003·福州)如果直线y=ax+b经过第一、二、三象限,那么ab____0( 填“>”、“<”、“=”).分析:已知直线y=ax+b经过第一、二、三象限,可先画出草图,由图可知a>0, b>0或根据直线y=kx+b中当k>0直线过第一、三象限,b>0时交y轴于正半轴来判断.解:由题意可画出草图,由图可知a>0,b>0,∴ab>0,故答案为>.答案:>.点评:解决此题的关键是明确一次函数y=kx+b中k、b 的符号与直线的位置之间的关系,并学会应用数形结合的数学思想方法.例2 (2003·青州)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、 n是常数且mn≠0)图象是( )O x yAO xyBO xyCOxyD解析:对于两不同函数图象共存同一坐标系问题,常假设某一图象正确而后根据字母系数所表示的实际意义来判定另一图象是否正确来解决问题.例如, 假设选项B中的直线y=mx+n正确则m<0,n>0,mn<0则正比例函数y=mnx则应过第二、四象限,而实际图象则过第一、三象限,∴选项B错误.同理可得A正确.答案:A.。

一次函数全章ppt课件

一次函数全章ppt课件
一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值, 变量y都有唯一的值与它对应,那么我们称y是x的函数(function),其中x是自变 量.
2.函数的表示法:三种方法 ①图象法 ②列表法 ③关系式法
完整版ppt课件
22
2 一次函数与正比例函数
完整版ppt课件
23
1.理解一次函数和正比例函数的概念,以及它们之间的关系. 2.能根据所给条件,写出简单的一次函数、正比例函数表达式.
汽车速度v s v2
300
25
100
12
3
3
滑行距离s
完整版ppt课件
9
(2)给定一个v值,你能求出相应的s值吗?

(3)其中对于给定的每一个速度v,滑行距离s对应有几个值?
只有一个值
完整版ppt课件
10
议一议
上面的问题中,有什么共同特点?
【解析】都有两个变量:①时间 t 、相应的高度 h ; ②层数n、物体总数y;③汽车速度v、滑行距离s. 如果给定其中一个变量(自变量)的值,就能确定另一个变量(因变量)的 值.
完整版ppt课件
30
【例题】
【例1】写出下列各题中y与x之间的关系式,并判断y是否为x的一次函 数?是否为正比例函数? (1)汽车以60km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间 的关系. (2)圆的面积y (cm2)与它的半径x (cm)之间的关系. (3)一棵树现在高50 cm,每个月长高2 cm,x月后这棵 树的高度为y cm.
完整版ppt课件
15
【跟踪训练】
下面各题中分别有几个变量?你能将其中某个变量看成是另一个变量的函 数吗?
(1)每一个同学购一本代数书,书的单价为2元, 则x个同学共付y元.

第四章一次函数(教案)

第四章一次函数(教案)
-一次函数图像的绘制。学生可能对如何准确绘制直线图像感到困惑,特别是在坐标纸上操作时。
-从实际问题中抽象出一次函数模型。学生可能难以把握如何将描述问题的文字转化为数学表达式。
-数形结合的思维方式。对于如何通过图像来直观理解抽象的解析式,以及如何通过解析式来推理图像特征,学生可能感到挑战。
举例:在分析一次函数图像的平移时,难点在于理解斜率k不变,截距b变化时图像如何沿y轴移动;截距b不变,斜率k变化时图像如何旋转。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,例如“一次函数如何帮助我们解决交通流量问题?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
-掌握图像的平移、斜率与截距的变化规律
3.一次函数的应用
-利用一次函数解决实际问题,如距离、速度等
-一次函数在实际情境中的图像分析,如气温变化、消费问题等
4.一次函数与其他数学知识的综合运用
-与不等式的结合:求解一次不等式,分析解集
-与坐标系、几何知识的结合:分析图像与坐标轴的交点、两点间的距离等
5.综合练习与拓展
今天的学习,我们了解了第四章一次函数的基本概念、重要性数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学过程中,我发现学生们对一次函数的概念和图像性质表现出较大的兴趣,但同时也暴露出一些理解上的难点。首先,斜率k和截距b的概念对于学生来说是一个挑战,他们需要时间来消化这两个参数对一次函数图像的具体影响。在讲授这一部分时,我应该更加注意用生活中的实例来解释这两个概念,以便学生能够更加直观地理解。

北师大版八年级数学上册第四章《一次函数》教案

北师大版八年级数学上册第四章《一次函数》教案

第四章一次函数1 函数1.认识变量、常量,并学会用含一个变量的代数式表示另一个变量.逐步感知变量之间的关系.2.了解函数的三种表达方式.3.经历观察、分析、思考等数学活动,发展合情推理,有条理、清晰地阐述自己的观点.4.让学生积极参与数学活动,对数学产生好奇心和求知欲,形成实事求是的态度以及独立思考的习惯.【教学重点】认识变量、常量,用式子表示变量间的关系.【教学难点】用含有一个变量的式子表示另一个变量.一、创设情境,导入新课教材第75页内容.【教学说明】用学习身边熟悉的娱乐活动引入,提出问题引发思考,激发了学生强烈的求知欲望.二、思考探究,获取新知函数的概念.做一做并思考:教材第76页“做一做”.【教学说明】学生通过观察、思考、探究的形式,体会当一个变量变化,另一个量也随之发生变化的过程,为下面理解函数的概念做了充分准备.【归纳结论】在上面的案例中,都有两个变量,给定其中某一个变量的值,相应地就确定了另一个变量的值.一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.函数的表示方法一般有:列表法、关系式法和图象法.讨论:上述问题中,自变量能取哪些值?【教学说明】不同的学生可能答案不一样.但是这是一个实际问题,自变量要符合本题的实际意义,不能认为是任意实数.【归纳结论】对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值.三、运用新知,深化理解1.现将500本笔记本捐助给贫困学生,每人5本,写出余下的笔记本数y(本)和学生数x(名)之间的关系式为,自变量x的取值范围是.2.某型号的汽车在路面上的制动距离s=v2/256,其中变量是()A.s,vB.s,v2C.sD.v3.写出下列问题中满足的关系式,并指出各个关系式中哪些是常量,哪些是变量?(1)用总长为6m的篱笆围成长方形场地,求长方形的面积S与另一边长x 之间的关系式;(2)用总长为l的篱笆围成长方形场地,长方形的面积为60m2,求l与x之间的关系式.【教学说明】让学生独立做,加强对函数及有关概念的理解,教师通过学生反馈的信息了解他们掌握知识的情况,及时处理学生中的疑难问题并加强训练.【答案】1.y=500-5x,0≤x≤100且x为整数;2.A3.(1)S=x(3-x)=3x-x2,其中3是常量,x、S是变量;(2)l=2(60/x+x),其中60、2是常量,l、x是变量.四、师生互动,课堂小结1.师生共同回顾函数、变量、常量、函数值等概念.2.通过本节课的学习,谈谈你有什么收获?还有哪些不足?请与同学交流.【教学说明】教师引导学生回顾本课有关知识点,学生大胆发言,对知识进行归纳整理,有助于消化理解.1.布置作业:习题4.1第1、2题.2.完成练习册中本课时相应练习.函数是学生接触的最新鲜的事物,不容易理解.在教学的过程中,要通过案例不断让学生去体会函数的意义,便于今后的实际运用.2 一次函数与正比例函数1.掌握一次函数与正比例函数的一般形式并学会判断.2.知道一次函数与正比例函数之间的关系,能利用一次函数和正比例函数解决实际问题.3.通过实例让学生经历思考,分析问题中量与量之间的关系,提高学生的归纳概括能力和辨别能力.4.利用学生独立思考、合作探究的学习形式培养学生科学的思维方法和良好的学习习惯.【教学重点】一次函数与正比例函数的概念【教学难点】利用一次函数与正比例函数的关系式解决实际问题.一、创设情境,导入新课教材第79页“做一做”上方的内容.【教学说明】从跟物理学有关的问题入手,体现了各学科之间是相互联系相互渗透的.同时也让学生认识到数学与现实生活是密不可分的,人们的需要产生了数学,调动他们学习数学的积极性.二、思考探索,获取新知1.一次函数和正比例函数的概念.做一做并思考:教材第79页“做一做”.【教学说明】由这些简单的实例让学生分析问题中各个量之间的关系,从现实生活中抽象出数学模型,找到建立数学关系的方法,也为导出一次函数与正比例函数的概念做好铺垫.你能利用我们刚学的知识解决下面的问题吗?请看:教材第79~80页例1【教学说明】通过对具体实例的分析,既消化了学生对一次函数和正比例函数的理解,又能为今后运用他们解决稍复杂的实际问题打下基础,同时也加强了它们之间的联系和区别.2.一次函数的实际应用.教材第80页例2.【教学说明】教师可以引导学生完成,让学生学习已知自变量的值求对应的函数值和已知函数值求自变量的值的方法.体现了一次函数与一元一次方程的密切联系,为后面的学习奠定了基础.三、运用新知,深化理解1.下列函数中,是一次函数但不是正比例函数的是()2.函数y=(2m-1)x n+3+(m-5)是一次函数的条件是()A.m≠12且n≠-3B.n=-2C.m≠12且n=-2D.m≠12且m≠5,n=-23.若每上6个台阶就升高1m,则上升高度h(m)与上的台阶数m之间的函数关系式为.h是m的函数.4.滑车以每分1.5米的速度匀速从轨道的一端滑向另一端,已知轨道的长为50米.(1)求滑车滑行轨道剩下的路程S(米)和滑行时间t(分)之间的关系式.(2)如果滑行时间为12分钟,求剩下的路程.(3)若剩下的路程为20米,那么它滑行的时间为多少分钟?【教学说明】让学生独立完成,加深对一次函数和正比例函数的理解,同时也对所学的知识也是个检验,教师及时纠正并有针对性地加强训练.【答案】1.C. 2.C. 3.h=m/6(m),一次(或正比例).4.解:(1)S=50-1.5t;(2)32(米);(3)20(分).四、师生互动,课堂小结1.师生共同回顾一次函数与正比例函数的一般形式.2.本节课学了哪些内容?你认为最重要的是什么?还有什么疑问?请与大家交流.【教学说明】让学生参与小结并允许学生发表各自的见解,增加了学生的积极性和主动性,培养他们对所学知识的回顾思考的习惯;同时也强调了本节课的重点,巩固了学习内容.1.布置作业:习题4.2第1、2、3题2.完成练习册中本课时相应练习..通过学生反馈的情况来看,绝大部分学生掌握得较好,但对于正比例函数是特殊的一次函数这种情况容易忽略.同时还有极少部分同学运用一次函数的一般形式解决实际问题不是相当熟练.在今后的教学中要花一定的时间不断完善提高.3 一次函数的图象第1课时正比例函数的图象和性质1.会利用描点法或两点法画出正比例函数的图象.2.掌握正比例函数的性质.3.通过对应描点来研究正比例函数的图象,经历知识的归纳、探究过程和利用正比例函数的图象归纳函数性质,体验数形结合的方法.4.通过画函数的图象,并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美.【教学重点】正比例函数的图象和性质.【教学难点】由正比例函数的图象归纳得出正比例函数的性质及对性质的理解.一、创设情境,导入新课把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象(graph).前面第1节就是摩天轮上一点的高度h(m)与旋转时间t(min)之间函数关系的图象.正比例函数y=kx的图象是怎样的呢?它具有哪些性质呢?下面,我们一起去研究吧!【教学说明】给出函数图象的定义,学生一目了然,结合实例便于学生理解它的含义,为下面学习画函数图象指明了方向.二、思考探究,获取新知1.正比例函数图象的画法:思考:(1)你准备来用什么方法画出正比例函数y=2x的图象?(2)画出函数图象的一般步骤有哪些?【教学说明】让学生经历列表、描点、连线等画函数图象的具体过程,既可以加深对图象意义的认识,了解图像上点的横、纵坐标与自变量值、函数值之间的对应关系,又为学习如何画函数图象及对用描点法画函数图象的一般步骤进行归纳做了准备.【归纳结论】画函数图象的一般步骤:列表、描点、连线.做一做:(1)画出正比例函数y=-3x的图象.(2)在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证他们是否都满足关系式y=-3x.讨论:①满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x 的图象上吗?②正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?③正比例函数y=kx的图象有何特点?你是怎样理解的?【教学说明】加强学生用描点法画正比例函数图象的方法,体会函数图象上的点都满足函数关系式,并通过观察得出正比例函数图象的特点.【归纳结论】正比例函数y=kx的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只需要再确定一个点,过这点和原点画直线就可以了.2.正比例函数图象的性质做一做:在同一直角坐标系内画出正比例函数y=x,y=3x,y=-12x和y=-4x的图象.思考:上述四个函数中,随着x值的增大,y的值分别如何变化?【教学说明】利用正比例函数的图象学生很直观地归纳出正比例函数的增减性.注意不要受算术中正比例概念的影响,片面地认为正比例函数总是随着自变量的增加而增加,它的增或减是由k的正或负决定的.【归纳结论】在正比例函数y=kx中,当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.讨论:(1)正比例函数y=x和y=3x中,随着x值的增大,y的值都增加了,其中哪一个增加得更快?你能解释其中的道理吗?(2)类似地,正比例函数y=-12x 和y=-4x 中,随着x 值的增大,y 的值都减小了,其中哪一个减小得更快?你是如何判断的?【教学说明】通过图象让学生进一步体会正比例函数增减的快慢是由|k |决定的,加深了对正比例函数图象性质的理解.三、运用新知,深化理解1.若函数y=232()m m x -- 是正比例函数,则m= .2.若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是 .3.已知点P (1,m )在正比例函数y=4x 的图象上,那么点P 的坐标是( ).A.(1,4)B.(-1,-4)C (1,-4)D.(-1,4)4.已知正比例函数y=kx (k ≠0)的图象经过第二、四象限,则( )A.y 随x 的增大而增大B.y 随x 的增大而减小C.当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.D.无论x 如何变化,y 不变.5.小刚以2千米/时的速度匀速从甲地行走到乙地,甲乙两地的距离为12千米.(1)求小刚行走的路程s (千米)与时间t (小时)之间的关系式以及自变量t 的取值范围.(2)画出图象.(3)根据图象说明当t 增大时,s 增大还是减小?【教学说明】教师让学生自主完成,加强对正比例函数图象和性质的理解和反馈学生对知识的掌握情况,便于及时矫正强化.【答案】1.-2;2.m >12;3.A ;4.B5.解:(1)s与t的关系式为s=2t,自变量t的取值范围是0≤t≤6.(2)是以O(0,0)和(6,12)为端点的一条线段.(3)由图象可知当t增大时,s也增大.四、师生互动,课堂小结1.师生共同回顾正比例函数图象的画法以及它的性质.2.本节课你掌握了哪些知识?还有哪些疑问?请与大家交流.【教学说明】引导学生回顾本课所学知识,对知识进行归纳整理,找出不足便于教师及时调整,做到当堂消化.1.教材习题4.3第1、2、3、4题.2.完成练习册中本课时相应练习..本节课通过实际操作了解正比例函数图象的画法及利用图象说明其性质,并掌握图象特征与关系式的联系规律,经过思考讨论知道了正比例函数不同表现形式的转化方法和图象的简单画法,为后面学习一次函数奠定了基础.第2课时一次函数的图象和性质1.理解直线y=kx+b与直线y=kx之间的位置关系.2.会利用两个合适的点画出一次函数的图象.3.掌握一次函数的性质.4.通过一次函数图象和性质的研究,体会数形结合法在问题解决中的作用,并能运用性质、图象及数形结合法解决相关函数问题.5.在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.【教学重点】一次函数的图象和性质.【教学难点】由一次函数的图象归纳得出一次函数的性质及对性质的理解.一、创设情境,导入新课我们知道正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?它们之间有什么位置关系?下面一起研究一次函数y=kx+b的图象.【教学说明】利用所学知识“最近发展区”——正比例函数的图象及性质,为类比、探究一次函数的图象及其性质作好铺垫.二、思考探究,获取新知1.一次函数的图象.(1)你能用描点法画出一次函数y=-2x+1的图象吗?(2)通过上面画一次函数的图象想一想一次函数y=kx+b的图象有什么特点,对此你是怎样理解的?【教学说明】在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出一次函数的图象,可以说是得心应手,减轻了学生心理上的压力.【归纳结论】一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.2.一次函数的性质.做一做:在同一直角坐标系内分别画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.讨论:(1)上述四个函数中,随着x值的增大,y的值分别如何变化?相应图象上点的变化趋势如何?(2)直线y=-x与y=-x+3的位置关系如何?你能通过适当的移动将直线y=-x 变为直线y=-x+3吗?一般地,直线y=kx+b与y=kx又有怎样的位置关系呢?(3)直线y=2x+3与直线y=-x+3有什么共同点?一般地,你能从函数y=kx+b 的图象上直接看出b的数值吗?【教学说明】进一步巩固一次函数图象的画法,并为探究一次函数的性质做准备.让学生利用图象观察体验y=kx与y=kx+b两者之间的位置关系,从而得出函数y=kx+b的图象实际上是对直线y=kx上的所有点进行平移的结果,同时还让学生明白b的值就是图象与y轴交点的纵坐标.【归纳结论】一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.三、运用新知,深化理解1.已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x值的增大而增大,则m的值为.2.一次函数y=3x-4的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限3.下列一次函数中,y随x值的增大而减小的是().A.y=2x-1B.y=3-4xx+2D.y=(5-2)x4.一次函数y=(3a-1)x+5图象上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2,则a的取值范围是().A.a>0B.a<0C.a>1 3D.a<1 35.如图,将直线OA向上平移2个单位,得到一个一次函数的图象,求这个一次函数的表达式.【教学说明】让学生独立完成,加强对所学知识的理解,及时反馈教学效果,查漏补缺.对有困难的学生给予鼓励和帮助,并进行强化.【答案】1.2 2.B 3.B 4.D5.解:设直线OA的关系式为y=kx,把(-2,4)代入得k=-2,所以y=-2x,将直线OA向上平移2个单位之后一次函数的表达式为:y=-2x+2.四、师生互动,课堂小结1.师生共同回顾一次函数图象的性质和它与正比例函数图象之间的关系.2.本节课你掌握了哪些知识?觉得哪些是大家需要注意的?与同学们分享.【教学说明】教师引导学生回顾本课知识点,加强理解各知识点之间的联系,不断进行归纳总结.让学生大胆交流,力求让每一个人在数学上得到一定的发展.1.布置作业:习题4.4第1、2、3、4题.2.完成练习册中本课时相应练习..本节课学习了用两点法画一次函数图象,进而利用数形结合的探究讨论的方法寻求出一次函数图象的特征与关系式的相互联系,使我们对一次函数知识的理解与掌握更透彻,也体会到数学思想在数学研究中的重要性.4 一次函数的应用第1课时确定一次函数的表达式1.了解两个条件确定一次函数,一个条件确定正比例函数.2.能由两个条件求出一次函数的表达式,并解决有关实际问题.3.经历用两个已知条件确定一次函数表达式的应用过程,提高学生研究数学问题的技能,体验数形结合,逐步学习利用这一思想分析解决问题.4.具体感知数形结合的思想在一次函数中的应用价值.【教学重点】根据所给信息确定一次函数的表达式.【教学难点】灵活运用一次函数的有关知识解决相关问题.一、创设情境,导入新课我们前面学习了有关一次函数的一些知识,掌握了其关系式的特点及图象特征,并学会了已知关系式画出其图象的方法以及分析图象特征与关系式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征或实际问题,能否确实关系式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?【教学说明】利用一次函数图象的特征和关系式的相互转化,加强学生对知识的理解.通过提问,引发同学分析思考、寻求解决问题的办法,激起学生探求知识的欲望.二、思考探究,获取新知确定一次函数的表达式.教材第89页“想一想”上面的内容.思考:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?【教学说明】通过思考分析解决由图象到关系式转化的方法过程,总结归纳一次函数关系式与图象之间的转化规律,增强数形结合的思想在函数中重要性的理解.采用上面类似的方法,你能解决日常生活中的实际问题吗?请看例题:例见教材第89页例1【教学说明】一次函数的应用实质就是确定一次函数的关系式,这就需要充分挖掘题中所给的已知条件,分析量与量之间的关系,从而找到求关系式的方法.然后利用关系式解决有关问题.三、运用新知,深化理解1.一个正比例函数的图象经过点A(3,-2),B(a,3),则a= .2.如图,直线l是一次函数y=kx+b的图象.填空:(1)当x=30时,y= .(2)当y=30时,x= .第2题图第3题图3.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为().A.y=-x+2B.y=x+2C.y=x-2D.y=-x-24.如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.【教学说明】教师让学生独立完成,加深对所学知识的理解和检查学生对一次函数的实际应用的掌握程度,并有针对性地加强辅导.【答案】1. -92;2. 22,42;3.B;4.解:由图象可知b=2,图象又过点(2,-2),则有2k+b=-2,所以b=2,k=-2,这个一次函数的解析为y=-2x+2,当y=0时,解得x=1,l与两坐标轴所围成的三角形的面积为y=12×1×2=1.四、师生互动,课堂小结通过本节课的学习,你已经掌握了哪些知识?还有什么疑难问题需要解决的?与同学交流.【教学说明】学生利用互相交流的方式对知识进行搜集,归纳整理,互相补充,教师及时给予点评.特别是对于解题方法技巧上可以做适当强调,帮助他们加深印象.1.布置作业:习题4.5第1、2、4题.2.完成练习册中本课时相应练习..本节课利用图象或实际背景求一次函数关系式和利用关系式解决相关的实际问题,让学生从中体会求解关系式的方式方法.与此同时,在教学中要把图象和关系式有机结合起来,讨论它们之间的相互转化很有必要,培养学生全面认识事物的观点.第2课时一个一次函数的应用1.能利用一次函数解决简单的实际问题.2.了解一次函数与一元一次方程之间的关系.3.通过生活的实例结合一次函数的图象解决问题,继续体会数形结合的思想所起的重要作用.4.让学生深刻体会到数学知识来源于实际生产、生活的需求,反之,又服务于生产、生活的实际.【教学重点】利用一次函数解决简单的实际问题.【教学难点】根据一次函数图象去分析解决问题.一、创设情境,导入新课教材第91页例2上面的内容【教学说明】从生活中的实际问题出发,采用提问引发思考的方式引入,激发学生探求知识的兴趣.二、思考探究,获取新知简单的一次函数的实际应用教师引导学生完成教材第91页例2.【教学说明】让学生体会利用一次函数的图象解决实际问题的方法.如果从图象上不能很明显得出结论,还需要求出一次函数的表达式在进行求解.做一做:教材第92页“做一做”.【教学说明】巩固加深根据一次函数图象求直线表达式,同时体会当函数值为零时自变量的取值,为下面学习一元一次方程与一次函数的关系打下了基础.讨论:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?【教学说明】充分体会一元一次方程与一次函数之间的转化关系,帮助学生从数形结合的角度进一步认识一次函数与一元一次方程的密切联系.【归纳结论】一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、运用新知,深化理解1.直线y=3x+6与x轴的交点的横坐标x的值是方程2x+a=0的解,则a的值是.2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所有的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是().A.12分钟B.15分钟C.25分钟D.27分钟3.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利润50元.若设生产N型号的时装套数x,用这批布料生产这两种型号的时装所获得总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?【教学说明】让学生独立完成,加深对新学知识的理解和检验学生掌握情况,便于教师查漏补缺,及时解决学生的疑难问题.【答案】1.4;2.B;3.解:(1)y=5x+3600(40≤x≤44);(2)当生产N型号的时装44套时,所获利润最大,最大利润是3820元.四、师生互动,课堂小结通过本节课的学习,你会利用一次函数图象解决有关问题吗?你有哪些收获?请与大家共同分享.【教学说明】教师引导学生回顾所学知识点,对知识不断归纳整理,特别有时需要利用图象求出关系式再去解决问题更准确.1.布置作业:习题4.6中的第1、2题.2.完成练习册中本课时相应练习..本节课从实际生活背景出发,利用一次函数及图象解决问题,让学生体会一次函数的应用价值和一次函数与一元一次方程的密切关系,体验应用知识的成就感和学习教学更加热爱生活.。

北师大版八年级数学上册第四章一次函数1.1函数(教案)

北师大版八年级数学上册第四章一次函数1.1函数(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数量关系随着另一个数量的变化而变化的情况?”(如:购物时,商品的总价随着购买数量的增加而增加。)这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
三、教学难点与重点
1.教学重点
-函数的定义:使学生掌握函数的基本概念,理解函数是一种特殊的多对一关系,能够正确表示函数关系;
-一次函数的一般形式:y=kx+b(k≠0,k、b为常数),让学生熟练记忆并能够运用一次函数的一般形式解决相关问题;
-一次函数图像的绘制:掌握一次函数图像的绘制方法,了解图像与函数性质之间的关系;
-一次函数的性质:理解并掌握一次函数的单调性、奇偶性等性质,并能运用这些性质解决实际问题。
举例解释:
(1)函数定义:通过实例让学生理解,例如,一个班级的学生和他们的身高构成一个函数关系,每个学生的身高是唯一的,对应于他的姓名;
(2)一次函数一般形式:通过实际例子(如购买物品,价格和数量之间的关系)让学生理解k和b的物理意义;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(3)一次函数性质的应用:通过具体问题,如一次函数在某个区间上的取值范围,让学生学会如何将性质应用于求解实际问题,理解单调性在求解过程中的关键作用。

2024-2025学年北师版中学数学八年级上册第四章一次函数4.4一次函数的应用(第1课时)教案

2024-2025学年北师版中学数学八年级上册第四章一次函数4.4一次函数的应用(第1课时)教案

第四章一次函数4一次函数的应用第1课时确定一次函数表达式教学目标教学反思1.了解确定一次函数的条件,能用待定系数法求出一些简单的一次函数的表达式;2.能通过函数图象获取信息,解决简单的实际问题;3.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.教学重难点重点:1.了解确定一次函数的条件;2.能用待定系数法求出一些简单的一次函数的表达式.难点:能利用一次函数解决简单的实际问题.教学过程导入新课知识回顾1.什么是一次函数?什么是正比例函数?2.一次函数的图象是什么?正比例函数的图象呢?3.表示函数的方法有哪些?4.画出y=-2x-4的图象,根据图象回答下列问题:(1)y的值随x值的增大而__________;(2)图象与x轴的交点坐标是________,与y轴的交点坐标是_________;(3)判断下列各点是否在函数y=-2x-4的图象上.A(1,-6);B(-3,1)学生思考,给出答案.1.若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.当b=0时,即y=kx,称y是x的正比例函数.2.一次函数的图象是一条直线;正比例函数的图象是过原点的一条直线.3.列表法、图象法和关系式法.4.(1)减小;(2)(-2,0),(0,-4);(3)A.探究新知假定甲、乙二人在一项赛跑中路程与时间的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.想一想:1.确定正比例函数的表达式需要几个条件?(1个)2.确定一次函数的表达式呢?(2个)例1某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如图所示.(1)写出v与t之间的关系式.(2)下滑3秒时物体的速度是多少?【解】(1)设函数表达式为v=kt (k为常数且k≠0).∵(2,5)在图象上,把点(2,5)的坐标代入,得5=2k,∴ k=2.5,∴v=2.5 t.(2)当t=3s时,v=2.5×3=7.5(m/s).所以下滑3s时物体的速度是7.5 m/s.例2在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数,一根弹簧不挂物体时长14.5 cm;当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b(k≠0),由题意,得14.5=b, 16=3k+b,解得b=14.5 ,k=0.5.所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即当所挂物体的质量为4 kg时,弹簧长度为16.5 cm.教师总结:教学反思求一次函数表达式的步骤 :1.设——设一次函数表达式为y =kx +b (k ≠0);2.代——将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解——解方程组求出k ,b 值;4.定——把求出的k ,b 值代回到表达式中即可.像这种求函数表达式的方法叫做待定系数法.课堂练习 1.若一次函数y =2x +b 的图象经过A (-1,1),则=b ,该函数图象经过点B (1, )和点C ( ,0).2.如图,直线l 是一次函数y =kx +b 的图象,填空:(1)=b ,=k ,所以函数关系式为___________;(2)当x =30时,=y ;(3)当y =30时,=x .3.如图,直线l 是一次函数y =kx +b 的图象,求它的表达式.4.已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的表达式.5.某市出租车计费方法如图所示,x (km )表示行驶里程,y (元)表示车费,请根据图象回答下列问题:(1)求出租车的起步价是多少元,并求当x >3时,y 关于x 的函数表达式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.参考答案1.3,5,-1.5教学反思2.(1)2,23-,y =23x -+2 (2)-18 (3)-423.解:y =-3x4.解:设一次函数的表达式为y =kx +b (k ≠0), ∵一次函数y =kx +b 的图象过点(0,2),∴ b =2.∵一次函数的图象与x 轴的交点是2,0k ⎛⎫- ⎪⎝⎭,∴ 12222k⨯-⨯=,解得k =1或-1.∴ 一次函数的表达式为y =x +2或y =-x +2. 5.解:(1)8,y =2x +2;(2)令y =32,则2x +2=32,x =15,∴ 这位乘客乘车的里程为15 km.课堂小结(学生总结,老师点评)用待定系数法确定一次函数表达式的步骤布置作业习题4.5 必做题:第2题 选做题:3,4题任选一题板书设计第四章 一次函数4 一次函数的应用第1课时 确定一次函数表达式用待定系数法确定一次函数表达式的步骤: 1.设—— 设一次函数表达式为y =kx +b (k ≠0);2.代—— 将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解—— 解方程组求出k ,b 值;4.定—— 把求出的k ,b 值代回到表达式中即可.。

北师大版八年级上册第四章一次函数第一节函数第二课时函数自变量的取值范围及函数值教案

北师大版八年级上册第四章一次函数第一节函数第二课时函数自变量的取值范围及函数值教案

第四章一次函数第一节函数第二课时函数自变量的取值范围及函数值教案一、教学目标1. 理解函数自变量的取值范围及函数值的概念。

2. 掌握确定函数自变量的取值范围及求取函数值的方法。

3. 能够在实际问题中,分析并选择合适的函数模型,确定其自变量的取值范围并求取函数值。

二、教学重点和难点1. 教学重点:函数自变量的取值范围及函数值的求取方法。

2. 教学难点:在实际问题中,选择合适的函数模型,确定其自变量的取值范围并求取函数值。

三、教学过程1. 引入新知识:回顾函数的概念,举例说明函数自变量的取值范围及函数值的含义。

2. 函数自变量的取值范围:* 讲解自变量的取值范围的概念及其重要性。

* 分析不同类型函数的自变量取值范围,如常见的一次函数、二次函数、三角函数等。

* 讲解自变量取值范围的确定方法,如定义域、实际意义等。

3. 函数值的求取:* 讲解函数值的求取方法,如代入法、解析法等。

* 分析不同类型函数的函数值求取方法,如一次函数、二次函数、三角函数等。

* 讲解如何根据实际问题的需求,选择合适的函数模型并求取相应的函数值。

4. 巩固练习:让学生做相关练习题目,以巩固自变量的取值范围及函数值的求取方法。

5. 课堂互动:鼓励学生提出疑问,组织小组讨论,促进他们对函数自变量的取值范围及函数值的理解。

四、教学方法和手段1. 讲解法:通过讲解函数自变量的取值范围及函数值的求取方法,使学生理解和掌握相关知识。

2. 实例分析法:通过分析具体问题的函数模型,帮助学生理解如何在实际问题中确定自变量的取值范围并求取函数值。

3. 小组讨论法:组织学生进行小组讨论,促进相互交流和学习,加深学生对知识的理解和应用。

4. 图像法:利用函数图像,帮助学生理解自变量的取值范围及函数值的含义。

五、课堂练习、作业与评价方式1. 基础练习:选择一些基本的函数题目,让学生练习自变量的取值范围及函数值的求取方法。

2. 提高练习:给出一些较为复杂的函数题目,让学生在课堂上进行小组讨论并解决。

北师大版初中数学八年级上册《第四章一次函数回顾与思考》公开课教案_0

北师大版初中数学八年级上册《第四章一次函数回顾与思考》公开课教案_0

一次函数的复习》教学设计教材分析】本课的内容是北师大版八年级上册第 6 章复习课,是对本章关于一次函数重点内容的复习。

通过本课的学习使学生巩固一次函数的图像与性质,并对一次函数进行拓展,本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。

【学情分析】本节课主要是复习巩固一次函数的图像与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图像与性质的基础上进行的。

在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路。

【教学目标】1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图像,并能结合图像进一步研究相关的性质;3、巩固一次函数的性质,并会应用。

4、通过习题,使学生进一步体会“数形结合”、“方程思想”、“分类思想”以及“待定系数法”。

教学重点难点教学重点:复习巩固一次函数的图像和性质,并能简单应用。

教学难点:在理解的基础上结合数学思想分析、解决问题。

【教法学法】教学方法1、自主学习体验法2、直观教学法——利用多媒体现代教学手段。

学法指导1、自主探究。

培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、合作交流。

在独立思考的基础上,进行小组合作,培养学生合作意识。

【教学过程】一、知识回顾先独立填空,在四人小组交流纠错、讲解、补充。

1、一次函数与正比例函数的概念一函数y= _________ (k、b 为常数k ________ )叫做一次函数。

当b ______ 时,函数 y ________ (k ___ )叫做正比例函数。

★理解一次函数概念应注意下面两点:⑴ 解析式中自变量x 的次数是 次,⑵比例系数K __________ 。

2、一次函数的图像和性质正比例函数y=kx (k 丰0的性质:⑴当k>0时,图像过 ____________ 象限;y 随x 的增大而_⑵当k<0时,图像过 ___________ 象限;y 随x 的增大而 —一次函数y=kx+b(k 丰C 的性质:2、函数 y=(2m-1)x (m+1)+3 是一次函数,m=3、将直线y=3x 向下平移5个单位,得到直线的解析式是4、写出一个图像经过一二四象限的一次函数解析式 5、已知一个正比例函数的图像经过点(-2, 4),则这个正比例函数的表达式是 ⑴k 决定 ;b 决定y=kx+b(k 工的草图确定图中 k 、b 的符号:二、基础练习本部分是本节课的重点内容,所以采取先独立完成, 再小组交流,展示与点评1•有下列函数:①y=3x-5 ② y=2x ③ y=x+4y=-4x+3 其中过原点的直线是 函数y 随x 的增大而增大的是函数y 随x 的增大而减小的是 图像过第一、二、三象限的是,且y 随x 的增大而(2)根据一次函数6、已知直线:y = 3x + 2则它与y 坐标轴的交点坐标为 设计意图:本课内容重点就在这部分,所以必须要让学生研究明白,不能得过且过。

第四章一次函数-一次函数与等腰三角形(教案)

第四章一次函数-一次函数与等腰三角形(教案)
举例:在解决等腰三角形实际问题时,指导学生进行合理的数学建模,将问题转化为一次函数问题,并运用所学知识进行计算。
(3)培养学生的空间想象力和几何直观。
举例:在教学过程中,通过画图、举例子等方式,帮助学生建立空间观念,提高对等腰三角形和一次函数图像的理解。
(4)指导学生掌握合作交流、自主探究的学习方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数与等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.在实践活动和小组讨论中,关注学生的个体差异,给予他们更多的指导和鼓励,使每个学生都能参与到课堂讨论中来。
3.课后及时进行教学反思,调整教学策略,以提高教学效果。
五、教学反思
在今天的教学过程中,我发现学生们对一次函数与等腰三角形的联系表现出浓厚的兴趣。在导入新课环节,通过提问方式引起学生的好奇心,他们能够积极参与课堂讨论,这是一个很好的开始。
在讲授新课内容时,我尽量用简单明了的语言解释一次函数与等腰三角形的内在联系,让学生们能够更好地理解这两个概念。同时,通过案例分析,让学生们看到一次函数在解决实际问题时的重要作用。在此过程中,我发现有些学生对一次函数图像的对称性质掌握不够牢固,需要我在课堂上进一步强调和解释。
举例:讲解一次函数y=kx+b(k≠0)的图像在坐标系中的对称性,引导学生发现等腰三角形的轴对称性质。
(2)运用一次函数解决与等腰三角形相关的实际问题,如求解等腰三角形的面积、周长等。

北师大版八年级数学上册:第四章《一次函数》教案

北师大版八年级数学上册:第四章《一次函数》教案

第四章 一次函数1 函 数1.了解函数产生的背景和函数的概念,能判断两个变量间的关系是否属于函数关系.2.通过对函数概念的探索,初步培养学生利用函数的观点认识现实世界的意识和能力.3.让学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学知识的理解和有效的学习模式.重点掌握函数的概念,会判断两个变量之间的关系是否属于函数关系.难点能把实际问题抽象概括为函数问题.一、情境导入课件出示教材第75页图4-1及相关问题,并由学生讨论完成题目.师:在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.(板书课题)二、探究新知函数的相关概念.(1)课件出示教材第76页“做一做”第1题.师:层数n和物体总数y之间是什么关系?引导学生得出:只要给定层数,就能求出物体总数.(2)课件出示教材第76页“做一做”第2题.师:在关系式T=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.表示函数的方法一般有:列表法、关系式法和图象法.对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.理解函数概念时应注意:(1)在某一变化过程中有两个变量x与y.(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x>0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.师:上述问题中,自变量能取哪些值?指出要根据实际问题确定自变量的取值范围.三、练习巩固教材第77页“随堂练习”.四、小结函数的概念包含以下三方面:(1)两个变量;(2)两个变量之间唯一确定的对应关系;(3)当一个变量取一个确定的值时,另一个变量有唯一的值与它对应.五、课外作业教材第77~78页习题4.1第1~4题.本节课是函数学习的起始课,因此理解函数的基本思想和表达方式是本节课的重点.通过生活实例中对变量的提取,帮助学生比较深刻地领悟了函数的意义.教材安排的实际问题,旨在让学生通过直观感知,领悟相关概念,这些问题不宜单纯作为教师讲解的例题,要注意引导学生观察其中数量之间的相互关系、鼓励学生发表意见,可以根据学生交流的情况,鼓励学生举出自己熟悉的实例,穿插在几个问题的讨论之中.2 一次函数与正比例函数1.理解一次函数和正比例函数的概念,以及两者之间的关系.2.能够根据所给条件写出简单的一次函数表达式,并利用它解决实际问题.3.经历利用一次函数解决实际问题的过程,发展学生的数学应用能力.重点一次函数、正比例函数的概念.会根据已知信息写出一次函数的表达式.难点一次函数知识的运用.一、情境导入师:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如弹簧的长度(在弹性限度内)与所挂物体的质量,输液时间与相应时间内水滴数目……了解这些关系,可以帮助我们更好地认识世界.函数是刻画变量之间关系的常用模型,其中最为简单的是一次函数,那么什么是一次函数?用一次函数可以解决哪些问题呢?你想了解这些吗?一起进入这节课的学习吧!二、探究新知一次函数的相关概念.(1)课件出示教材第79页“做一做”上面的题目.分析:当不挂物体时,弹簧长度为3 cm,当挂1 kg物体时,增加0.5 cm,总长度为3.5 cm,增加1 kg物体,即所挂物体为2 kg时,弹簧又增加0.5 cm,总共增加1 cm,由此可见,所挂物体为x kg时,弹簧就伸长0.5x cm,则弹簧总长为原长加伸长的长度,即y=3+0.5x.(2)课件出示教材第79页“做一做”.解:①如下表所示:汽车行驶050100150200300路程x/km耗油量y/L0612182436②y=6·x.③z=60-x.若两个变量x,y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.例如y=2x+1, y=x-1等都是一次函数.特别地,当b=0时,称y是x的正比例函数.例如,y=2x,y=-3x等都是正比例函数.正比例函数是一次函数的特例,一次函数包含正比例函数.正比例函数与一次函数的关系如图所示.三、举例分析1.课件出示教材第79页例1.由学生交流讨论完成.师:两个变量之间存在函数关系,它们之间一定是一次函数或正比例函数关系吗?2.课件出示教材第80页例2.此题对于现阶段的学生有一定难度,由教师讲解.分析:一次函数y =kx +b(k ,b 为常数,k ≠0)中,自变量的取值范围是全体实数,但是在实际问题中,要根据具体情况来确定该一次函数的自变量的取值范围.本例题的关键是确定问题当中的x 的取值范围.四、练习巩固教材第80~81页“随堂练习”第1~2题.五、小结正比例函数――→定义形如y =kx (k ≠0)的函数一次函数――→定义 形如y =kx +b (k ,b 是常数,k ≠0)的函数六、课外作业教材第82页习题4.2第1~4题.教学时从学生熟悉的实际问题入手,旨在让学生直观感知领悟相关概念,通过学生的合作交流得到一次函数和正比例函数的定义,引导学生把新学习的函数知识与实际问题联系起来.在教学过程中要适当增加习题,设计不同层次的习题,让不同层次的学生得到不同程度的练习,以提高学生的解题能力和对一次函数与正比例函数的理解和掌握.3 一次函数的图象1.理解函数图象的概念,经历作图过程,初步了解作函数图象的一般步骤.理解一次函数的关系式与图象之间的对应关系,并熟练作出一次函数的图象.2.了解正比例函数y=kx的图象的特点,会作正比例函数图象,理解一次函数及其图象的有关性质;进一步培养学生数形结合的意识和能力.重点能熟练地作出一次函数的图象,归纳作函数图象的一般步骤.难点理解一次函数的关系式与图象之间的对应系.一、情境导入课件出示题目:已知A,B两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,你知道A,B两人所跑的路程s(m)与时间t(s)之间属于哪种函数关系吗?师:通过这节课的学习,同学们一定会有所了解. (板书课题)二、探究新知把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.一次函数y=kx+b的图象是怎样的呢?我们先研究较为简单的正比例函数的图象.1.正比例函数的图象.某地1千瓦时电费为0.8元,表示电费y(元)与所用电量x(千瓦时)之间的函数关系式是________,你能画出这个函数的图象吗?解:(1)确定自变量的取值范围.根据题意可知y=0.8x,这是个实际问题,自变量的取值要使实际问题有意义,所以x≥0.(2)列表.取自变量x的一些值,算出相应的函数值,列成表格如下:师:x012345…y00.8 1.6 2.4 3.24…(3)描点.建立平面直角坐标系,以x的取值为横坐标,相应的函数值为纵坐标,描出点O,A,B,C,D,E,…,如图所示.(4)连线.观察描出的这几个点,它们的位置关系是怎样的?学生观察这些点会得出这些点在一条直线上,由于自变量的取值范围是x≥0,因此我们猜想这个函数的图象是以原点为端点的一条射线,数学上已经证明这个猜想是正确的,于是这个函数的图象如下图所示.注意:因为两点可以确定一条直线,因此,画正比例函数的图象时只需过原点(0,0)和点(1,k)画一条直线即可.2.正比例函数的性质.学生画出图象后,引导学生分析:正比例函数y=kx(k≠0)的图象是一条经过原点(0,0)的直线,我们称它为直线y=kx.当k>0时,经过第一、三象限,从左往右升,即y 的值随x值增大而增大;当k<0时,经过第二、四象限,即y的值随x值的增大而减小.课件出示教材第85页“随堂练习”.学生独立完成,让学生根据图象说说这两个正比例函数的性质.3.一次函数的图象.正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?下面我们研究一次函数y=kx+b的图象.(1)课件出示教材第86页例2.师:①直线y=-2x和直线y=-2x+1是什么位置关系?②一次函数y=kx+b的图象有什么特点?你是怎样理解的?③根据上面的函数图象,怎样比较简单地画出一次函数y=-2x+3的图象?一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.(2)课件出示教材第86页“做一做”.注意:画图象时让学生表示出所画函数的关系式,以便于区分.(3)课件出示教材第87页“议一议”.解:①函数y=2x+3和y=5x-2都是y随x的增大而增大,相应图象上点的位置逐渐升高.函数y=-x和y=-x+3都是y随x的增大而减小,相应图象上点的位置逐渐降低.②直线y=-x与直线y=-x+3互相平行,将直线y=-x向上平移3个单位长度就变为直线y=-x+3了.当k≠0,b≠0或k=0,b≠0时,直线y=kx+b与y=kx平行;当k≠0,b=0或k=0,b=0时,直线y=kx+b与y=kx重合.③直线y=2x+3和直线y=-x+3与y轴相交于同一点(0,3).直线y=kx+b与y轴交点的纵坐标就是b的值,一般能从函数y=kx+b的图象上直接看出b的数值.总结:一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.拓展:(1)直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)的位置关系:①直线y=kx+b平行于直线y=kx;②当b>0时,把直线y=kx向上平移b个单位长度,可得直线y=kx+b;③当b<0时,把直线y=kx向下平移|b|个单位长度,可得直线y=kx+b.(2)一次函数y1=k1x+b1与y2=k2x+b2中:若k1=-k2,b1=b2,则两直线关于y轴对称;若k1=-k2,b1=-b2,则两直线关于x轴对称;若k1=k2,b1≠b2,则两直线平行.三、练习巩固教材第87页“随堂练习”第1~3题.四、小结1.正比例函数y=kx(k≠0)的图象是经过原点的一条直线.通常画正比例函数y=kx(k≠0)的图象时,只取一点(1,k),然后过原点和这一点画直线即可.2.正比例函数y=kx(k≠0)的性质.k的取值k<0k>0图象图象特征过点(0,0)和(1,k)的直线变化规律y随x的增大而减小y随x的增大而增大3.一次函数y=kx+b的图象经过点(0,b),当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.五、课外作业1.教材第85页习题4.3第1~4题.2.教材第87~88页习题4.4第1~5题.本节课利用数形结合的思想引入新课,通过学生的自主探索与合作交流得到正比例函数的图象和性质,使学生易于接受新知识.通过例题的讲解,加深了学生对正比例函数的图象和性质的理解,提高了学生应用正比例函数的图象和性质解题的能力.一次函数的图象和性质是在正比例函数的基础上进行学习的,研究一次函数的图象和性质,除了借助图象本身去分析外,还应该注重引导学生思考k值对函数的图象和性质的影响,只有深刻领会k值的影响,才能从更深层次理解一次函数的图象及性质.4 一次函数的应用第1课时 一次函数的表达式1.了解两个条件确定一个一次函数,一个条件确定一个正比例函数.2.能由两个条件求出一次函数的表达式,由一个条件求出正比例函数的表达式,并解决有关实际问题.重点根据所给信息确定一次函数的表达式.难点用一次函数的关系式解决有关实际问题.一、情境导入课件出示:小红同学受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作.师:你能根据以上信息求出放入小球后量筒中水面的高度与小球个数之间的关系吗?学了本节内容后,你就能轻松解决了.二、探究新知1.一次函数的表达式.课件出示题目:某物体沿一个斜坡下滑,它的速度v (m/s)与其下滑时间t (s)的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3 s时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设出函数关系式,再把已知的坐标代入关系式,求出待定系数即可.2.确定表达式所需的条件.课件出示教材第89页“想一想”.学生讨论得出:确定一次函数的表达式需要两个条件,确定正比例函数的表达式只需要一个条件.说明:①一次函数的表达式y=kx+b有两个常数k,b,要求出k和b的值需要两个条件,而正比例函数中b=0,只需求k,所以只需一个条件.②因为一次函数的图象是一条直线,两点确定一条直线.所以需要两个条件,而正比例函数的图象是经过原点的一条直线.所以只需要一点就可以确定这条直线.三、举例分析课件出示教材第89页例1.分析:因为一次函数的图象是一条直线,两点确定一条直线,所以需要两个条件,而正比例函数的图象是经过原点的一条直线,所以只需要确定另外一点坐标就可以确定这条直线的关系式.拓展:利用待定系数法确定一次函数的关系式,其步骤为:一设:根据题意,先设出函数关系式为y =kx +b(k ≠0);二代:确定两对对应值或图象上两个点的坐标,分别代入函数关系式,得到关于k ,b 的两个方程;三解:求出k ,b 的值(暂时可以通过等量代换的方式去求两个未知数);四定:最后确定函数关系式.四、练习巩固1.教材第89~90页“随堂练习”1~3题.2.补充练习:(1)一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧后剩下的长度y cm 与燃烧时间x h 的函数关系用图象表示为下图中的( )(2)一次函数y =kx +b 的图象如图所示,那么k ,b 的值分别是( )A .k =-1,b =1B .k =-2,b =1C .k =1,b =1D .k =2 ,b =1(3)一个正比例函数的图象经过点(2,-3),则其表达式是( )A .y =-xB .y =-x32C .y =2x D .y =-3x(4)已知直线l 经过点(0,3)和点(3,0),求直线l 的函数表达式.五、小结确定一次函数表达式的方法:由问题的实际意义直接确定出函数表达式的一般形式:若为正比例函数,则设其表达式为y =kx(k ≠0),代入一个除原点以外的点的坐标,求出k 的值,即可确定函数表达式;若为一般的一次函数,则设其表达式为y =kx +b(k ≠0),代入两个点的坐标,求出k ,b 的值,从而确定一次函数的表达式.六、课外作业教材第90页习题4.5 第1~4题.确定函数表达式看似简单,但学生在刚刚接触到这个问题的时候往往无从下手.本节课正是基于这点认识,借助引例,首先从方法上指导学生确定函数表达式,即从判断类型、确定k值(或k和b的值)两个方面确定函数表达式.由于学生此时尚没有学到二元一次方程组,对于确定一次函数表达式存在一定的困难,教师可以建议学生用“代换”的方式,转化为一元一次方程,以此求出一次函数表达式当中的两个未知数,进而确定一次函数的表达式.第2课时 单一一次函数图象的应用1.能通过单一一次函数图象获取信息,进一步训练学生的识图能力.2.能利用单一一次函数图象解决简单的实际问题,进一步发展学生的数学应用能力.重点单一一次函数图象的应用.难点从函数图象中正确读取信息.一、复习导入师:在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用.二、探究新知1.单一一次函数图象的应用.(1)课件出示教材第91页图4-7和题目.分析:①原蓄水量就是图象与纵轴交点的纵坐标.②求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值.当t=10时,V约为1 000万m3.同理可知当t为23时,V约为750万m3.③当蓄水量小于400万m3时,即V小于400万m3,所对应的t值约为40天.④水库干涸也就是V为0,函数图象与横轴交点的横坐标即为所求.当V为0时,所对应的t的值约为60天.(2)课件出示教材第91页例2.分析:①函数图象与x轴交点的横坐标即为摩托车行驶的最长路程,与y轴交点的纵坐标即为最多储油量.②x从0增加到100时,y从10开始减少,减少的数量即为行驶100 km消耗的油量.③当y<1时,摩托车将自动报警.2.一次函数与一元一次方程.(1)课件出示教材第92页“做一做”.学生独立完成.(2)课件出示教材第92页“议一议”.可以从“数”和“形”的方面引导学生讨论.生:函数y=0.5x+1与x轴交点的横坐标即为方程0.5x+1=0的解.总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、练习巩固教材第92页习题4.6第1题.四、小结一次函数图象的应用:(1)准确读图,找到图象与x轴、y轴的交点,根据这些关键点解题.(2)在实际问题中,注意自变量的取值范围,在画图和读图时也要注意.五、课外作业教材第93页习题4.6第2~3题.函数和我们的生活密切相关,函数图象可以直观地反映一些规律,对函数图象的理解,其关键是弄清函数图象上的点的意义,即横坐标与纵坐标的意义,渗透数形结合的数学思想.本节课采取学生通过小组合作交流获取信息,应用所学的知识解决有关一次函数的问题的方式进行.教学时还可以根据学生的实际情况,结合函数图象提出相应的实际问题.第3课时 两个一次函数图象在同一坐标系中的应用1.通过观察函数图象,能够从两个一次函数图象中获取信息,理解函数图象交点的实际意义.2.通过函数图象,解决实际问题.重点利用图象解决实际问题.难点从函数图象中提炼出有用的信息.一、情境导入课件出示题目:学校每月的复印任务原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图所示.根据图象回答:(1)乙复印社每月的承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1 200页左右,那么应选择哪个复印社?师:我们能不能运用一次函数解决一些比较复杂的问题呢?二、探究新知两个一次函数图象在同一坐标系中的应用.(1)课件出示教材第93页图4-10和题目.师:横轴和纵轴分别表示的实际意义是什么?生:横轴表示销售量,纵轴表示销售收入和销售成本.师:l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y=k2x+b2中,k2和b2的实际意义各是什么?学生小组讨论,根据图象加以说明:l1对应的函数关系式是y=1 000x,1 000表示每销售1 t,销售收入是1 000元,这里的“b=0”,说明该产品没销售时无收入;l2对应的函数关系式是y=500x+2 000,这里500表示的是销售量每增加1 t,销售成本增加500元,没销售时成本是2 000元.(2)课件出示教材第94页例3.独立尝试,并在小组内交流自己的结论.师:对学生的结果进行全班讲评,并让学生思考:通过刚才的观察,你有哪些认识?各抒己见,互相补充.师:观察图象解答问题时要明确坐标轴所表示的含义,要注意两直线的交点的意义,在横轴上的一定取值范围内,位于上方图象的函数值要比位于下方图象的函数值大.分析:本例题主要通过对函数图象的分析解决问题,首先要准确判断l1和l2哪个代表A,哪个代表B.从A和B的速度角度看,l1较陡,l2较平,这说明l1的速度快.如果l1和l2有交点,交点的坐标就能反映出追赶上的时间和距离海岸的距离.根据图中的坐标,可以求出两条直线的表达式,通过表达式就能正确解决问题.三、练习巩固1.如图所示,OA,BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象快者的速度比慢者的速度每秒快( )A.2.5 m B.2 m C.1.5 m D.1 m2.小明骑自行车从A地去B地,一段时间后小刚骑摩托车也从A地出发追赶小明,两人走的路程s(km)与小明骑行时间t(h)的关系如图所示.(1)________表示小明行驶的路程与时间的关系(填“l1”或“l2”);(2)小刚比小明晚出发________小时;(3)v小刚=________,v小明=________;(4)小刚出发________小时后追上小明.五、小结利用函数图象解决问题注意三个点:与x轴交点、与y轴交点、两直线的交点.六、课外作业教材第95~96页习题4.7第1~3题.本节课的教学重点是借助一个坐标系中两个函数图象去分析问题,难点是只根据函数图象而不是通过计算去解决问题.学生习惯于通过计算去解决问题,通过函数图象去解决问题的机会比较少.本节课正是基于上述原因,在教学的过程中围绕教材中设立的问题,给学生扩充了问题或者提示,较好地解决了学习过程中的难点问题.。

一次函数全章教案新人教版

一次函数全章教案新人教版

一次函数全章教案-新人教版第一章:一次函数的定义与性质1.1 一次函数的定义引入:通过日常生活实例,如购物时计算总价,引出一次函数的概念。

讲解:一次函数是指函数表达式为y=kx+b(k、b为常数,k≠0,x 为自变量)的函数。

例题:解析生活中的实例,求出一次函数的表达式。

1.2 一次函数的性质讲解:一次函数的图像是一条直线,且斜率为k,截距为b。

性质1:当k>0时,函数图像从左下到右上递增;当k<0时,函数图像从左上到右下递增。

性质2:当b>0时,函数图像在y轴上方与y轴相交;当b<0时,函数图像在y轴下方与y轴相交。

例题:根据函数的性质,判断函数图像的走势及与y轴的交点位置。

第二章:一次函数的图像与解析式2.1 一次函数图像的画法讲解:通过直角坐标系,讲解如何画出一次函数的图像。

方法:先确定两个点,连接这两个点,即为一次函数的图像。

例题:给定一次函数,求出其图像上的两个点,并画出图像。

2.2 一次函数解析式的求法讲解:通过图像,反求出一次函数的解析式。

方法:已知图像上的两个点,求出斜率k和截距b。

例题:已知一次函数图像上的两个点,求出其解析式。

第三章:一次函数的应用3.1 线性方程的应用讲解:通过实际问题,引入线性方程的解法。

方法:将实际问题转化为线性方程,求解得到答案。

例题:已知某商品的原价和折扣后价格,求折扣率。

3.2 线性方程组的应用讲解:当实际问题中有两个未知数时,可转化为线性方程组求解。

方法:利用消元法或代入法,求解线性方程组。

例题:已知某商品的原价、折扣率及折后价格,求原价和折扣率。

第四章:一次函数的图象与几何变换4.1 一次函数图象的平移讲解:讲解一次函数图象如何进行平移变换。

方法:上下平移不变斜率,左右平移改变截距。

例题:给出一次函数,进行上下或左右平移,求新函数的解析式。

4.2 一次函数图象的缩放讲解:讲解一次函数图象如何进行缩放变换。

方法:横坐标缩放改变斜率,纵坐标缩放改变截距。

《第四章一次函数》word版 公开课一等奖教案 (1)

《第四章一次函数》word版 公开课一等奖教案 (1)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。

这些资料因为用的比较少,所以在全网范围内,都不易被找到。

您看到的资料,制作于2021年,是根据最新版课本编辑而成。

我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。

本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。

本作品为珍贵资源,如果您现在不用,请您收藏一下吧。

因为下次再搜索到我的机会不多哦!一次函数教学目标:知识与技能了解一次函数的概念,掌握一次函数的图象和性质,能正确画出一次函数的图象,并能根据图象探索函数的性质.过程与方法经历函数、一次函数等概念的抽象过程,体会函数的模型思想,进一步发展符号意识情感、态度与价值观在画一次函数的图象、探索一次函数图象的变化情况,体会数形结合的思想方法与一次函数y=kx+b 中k与b的实际意义。

教学重点:,掌握一次函数的图象和性质教学难点:能正确画出一次函数的图象,并能根据图象探索函数的性质教学方法:归纳总结,数形结合教学过程:一、回顾与小结1、变量:数值发生变化的量.常量:数值始终不变的量.2、函数定义:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.3、函数的图象:对于一个函数,如果把自变量与函数的每对对应值分别作为点的横坐标和纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

4、描点法画图象的步骤:列表、描点、连线。

5、函数的三种表示方法:1)解析法,2)列表法,3)图象法.6、自变量的取值范围(1)分母不为0,(2)开偶次方的被开方数大于等于0,(3)使实际问题有意义。

7、练一练1、求下列函数中自变量x的取值范围(1)y= x(x+3);(2)y=1 2 x二、一次函数的概念1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章一次函数1函数1.了解函数产生的背景和函数的概念,能判断两个变量间的关系是否属于函数关系.2.通过对函数概念的探索,初步培养学生利用函数的观点认识现实世界的意识和能力.3.让学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学知识的理解和有效的学习模式.重点掌握函数的概念,会判断两个变量之间的关系是否属于函数关系.难点能把实际问题抽象概括为函数问题.一、情境导入课件出示教材第75页图4-1及相关问题,并由学生讨论完成题目.师:在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.(板书课题)二、探究新知函数的相关概念.(1)课件出示教材第76页“做一做”第1题.师:层数n和物体总数y之间是什么关系?引导学生得出:只要给定层数,就能求出物体总数.(2)课件出示教材第76页“做一做”第2题.师:在关系式T=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.表示函数的方法一般有:列表法、关系式法和图象法.对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.理解函数概念时应注意:(1)在某一变化过程中有两个变量x与y.(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x>0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.师:上述问题中,自变量能取哪些值?指出要根据实际问题确定自变量的取值范围.三、练习巩固教材第77页“随堂练习”.四、小结函数的概念包含以下三方面:(1)两个变量;(2)两个变量之间唯一确定的对应关系;(3)当一个变量取一个确定的值时,另一个变量有唯一的值与它对应.五、课外作业教材第77~78页习题4.1第1~4题.本节课是函数学习的起始课,因此理解函数的基本思想和表达方式是本节课的重点.通过生活实例中对变量的提取,帮助学生比较深刻地领悟了函数的意义.教材安排的实际问题,旨在让学生通过直观感知,领悟相关概念,这些问题不宜单纯作为教师讲解的例题,要注意引导学生观察其中数量之间的相互关系、鼓励学生发表意见,可以根据学生交流的情况,鼓励学生举出自己熟悉的实例,穿插在几个问题的讨论之中.2一次函数与正比例函数1.理解一次函数和正比例函数的概念,以及两者之间的关系.2.能够根据所给条件写出简单的一次函数表达式,并利用它解决实际问题.3.经历利用一次函数解决实际问题的过程,发展学生的数学应用能力.重点一次函数、正比例函数的概念.会根据已知信息写出一次函数的表达式.难点一次函数知识的运用.一、情境导入师:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如弹簧的长度(在弹性限度内)与所挂物体的质量,输液时间与相应时间内水滴数目……了解这些关系,可以帮助我们更好地认识世界.函数是刻画变量之间关系的常用模型,其中最为简单的是一次函数,那么什么是一次函数?用一次函数可以解决哪些问题呢?你想了解这些吗?一起进入这节课的学习吧!二、探究新知一次函数的相关概念.(1)课件出示教材第79页“做一做”上面的题目.分析:当不挂物体时,弹簧长度为3 cm,当挂1 kg物体时,增加0.5 cm,总长度为3.5 cm,增加1 kg物体,即所挂物体为2 kg时,弹簧又增加0.5 cm,总共增加1 cm,由此可见,所挂物体为x kg时,弹簧就伸长0.5x cm,则弹簧总长为原长加伸长的长度,即y=3+0.5x.(2)课件出示教材第79页“做一做”.解:①如下表所示:汽车行驶0 50 100 150 200 300路程x/km耗油量y/L0 6 12 18 24 36②y=6·x.③z=60-x.若两个变量x,y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y 是x的一次函数.例如y=2x+1, y=x-1等都是一次函数.特别地,当b=0时,称y是x的正比例函数.例如,y=2x,y=-3x等都是正比例函数.正比例函数是一次函数的特例,一次函数包含正比例函数.正比例函数与一次函数的关系如图所示.三、举例分析1.课件出示教材第79页例1.由学生交流讨论完成.师:两个变量之间存在函数关系,它们之间一定是一次函数或正比例函数关系吗?2.课件出示教材第80页例2.此题对于现阶段的学生有一定难度,由教师讲解.分析:一次函数y =kx +b (k ,b 为常数,k ≠0)中,自变量的取值范围是全体实数,但是在实际问题中,要根据具体情况来确定该一次函数的自变量的取值范围.本例题的关键是确定问题当中的x 的取值范围.四、练习巩固教材第80~81页“随堂练习”第1~2题.五、小结 正比例函数――→定义形如y =kx (k ≠0)的函数一次函数――→定义形如y =kx +b (k ,b 是常数,k≠0)的函数六、课外作业 教材第82页习题4.2第1~4题.教学时从学生熟悉的实际问题入手,旨在让学生直观感知领悟相关概念,通过学生的合作交流得到一次函数和正比例函数的定义,引导学生把新学习的函数知识与实际问题联系起来.在教学过程中要适当增加习题,设计不同层次的习题,让不同层次的学生得到不同程度的练习,以提高学生的解题能力和对一次函数与正比例函数的理解和掌握.3一次函数的图象1.理解函数图象的概念,经历作图过程,初步了解作函数图象的一般步骤.理解一次函数的关系式与图象之间的对应关系,并熟练作出一次函数的图象.2.了解正比例函数y=kx的图象的特点,会作正比例函数图象,理解一次函数及其图象的有关性质;进一步培养学生数形结合的意识和能力.重点能熟练地作出一次函数的图象,归纳作函数图象的一般步骤.难点理解一次函数的关系式与图象之间的对应系.一、情境导入课件出示题目:已知A,B两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,你知道A,B两人所跑的路程s(m)与时间t(s)之间属于哪种函数关系吗?师:通过这节课的学习,同学们一定会有所了解. (板书课题)二、探究新知把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.一次函数y=kx+b的图象是怎样的呢?我们先研究较为简单的正比例函数的图象.1.正比例函数的图象.某地1千瓦时电费为0.8元,表示电费y(元)与所用电量x(千瓦时)之间的函数关系式是________,你能画出这个函数的图象吗?解:(1)确定自变量的取值范围.根据题意可知y=0.8x,这是个实际问题,自变量的取值要使实际问题有意义,所以x≥0.(2)列表.取自变量x的一些值,算出相应的函数值,列成表格如下:师:x0 1 2 3 4 5 …y0 0.8 1.6 2.4 3.2 4 …(3)描点.建立平面直角坐标系,以x的取值为横坐标,相应的函数值为纵坐标,描出点O,A,B,C,D,E,…,如图所示.(4)连线.观察描出的这几个点,它们的位置关系是怎样的?学生观察这些点会得出这些点在一条直线上,由于自变量的取值范围是x≥0,因此我们猜想这个函数的图象是以原点为端点的一条射线,数学上已经证明这个猜想是正确的,于是这个函数的图象如下图所示.注意:因为两点可以确定一条直线,因此,画正比例函数的图象时只需过原点(0,0)和点(1,k)画一条直线即可.2.正比例函数的性质.学生画出图象后,引导学生分析:正比例函数y=kx(k≠0)的图象是一条经过原点(0,0)的直线,我们称它为直线y=kx.当k>0时,经过第一、三象限,从左往右升,即y的值随x 值增大而增大;当k<0时,经过第二、四象限,即y的值随x值的增大而减小.课件出示教材第85页“随堂练习”.学生独立完成,让学生根据图象说说这两个正比例函数的性质.3.一次函数的图象.正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?下面我们研究一次函数y=kx+b的图象.(1)课件出示教材第86页例2.师:①直线y=-2x和直线y=-2x+1是什么位置关系?②一次函数y=kx+b的图象有什么特点?你是怎样理解的?③根据上面的函数图象,怎样比较简单地画出一次函数y=-2x+3的图象?一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.(2)课件出示教材第86页“做一做”.注意:画图象时让学生表示出所画函数的关系式,以便于区分.(3)课件出示教材第87页“议一议”.解:①函数y=2x+3和y=5x-2都是y随x的增大而增大,相应图象上点的位置逐渐升高.函数y=-x和y=-x+3都是y随x的增大而减小,相应图象上点的位置逐渐降低.②直线y=-x与直线y=-x+3互相平行,将直线y=-x向上平移3个单位长度就变为直线y=-x+3了.当k≠0,b≠0或k=0,b≠0时,直线y=kx+b与y=kx平行;当k≠0,b=0或k=0,b=0时,直线y=kx+b与y=kx重合.③直线y=2x+3和直线y=-x+3与y轴相交于同一点(0,3).直线y=kx+b与y轴交点的纵坐标就是b的值,一般能从函数y=kx+b的图象上直接看出b的数值.总结:一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.拓展:(1)直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)的位置关系:①直线y=kx+b平行于直线y=kx;②当b>0时,把直线y=kx向上平移b个单位长度,可得直线y=kx+b;③当b<0时,把直线y=kx向下平移|b|个单位长度,可得直线y=kx+b.(2)一次函数y1=k1x+b1与y2=k2x+b2中:若k1=-k2,b1=b2,则两直线关于y轴对称;若k1=-k2,b1=-b2,则两直线关于x轴对称;若k1=k2,b1≠b2,则两直线平行.三、练习巩固教材第87页“随堂练习”第1~3题.四、小结1.正比例函数y=kx(k≠0)的图象是经过原点的一条直线.通常画正比例函数y=kx(k≠0)的图象时,只取一点(1,k),然后过原点和这一点画直线即可.2.正比例函数y=kx(k≠0)的性质.k的取值k<0 k>0图象图象特征过点(0,0)和(1,k)的直线变化规律y随x的增大而减小y随x的增大而增大3.一次函数y=kx+b的图象经过点(0,b),当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.五、课外作业1.教材第85页习题4.3第1~4题.2.教材第87~88页习题4.4第1~5题.本节课利用数形结合的思想引入新课,通过学生的自主探索与合作交流得到正比例函数的图象和性质,使学生易于接受新知识.通过例题的讲解,加深了学生对正比例函数的图象和性质的理解,提高了学生应用正比例函数的图象和性质解题的能力.一次函数的图象和性质是在正比例函数的基础上进行学习的,研究一次函数的图象和性质,除了借助图象本身去分析外,还应该注重引导学生思考k值对函数的图象和性质的影响,只有深刻领会k值的影响,才能从更深层次理解一次函数的图象及性质.4一次函数的应用第1课时一次函数的表达式1.了解两个条件确定一个一次函数,一个条件确定一个正比例函数.2.能由两个条件求出一次函数的表达式,由一个条件求出正比例函数的表达式,并解决有关实际问题.重点根据所给信息确定一次函数的表达式.难点用一次函数的关系式解决有关实际问题.一、情境导入课件出示:小红同学受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作.师:你能根据以上信息求出放入小球后量筒中水面的高度与小球个数之间的关系吗?学了本节内容后,你就能轻松解决了.二、探究新知1.一次函数的表达式.课件出示题目:某物体沿一个斜坡下滑,它的速度v (m/s)与其下滑时间t (s)的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3 s时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设出函数关系式,再把已知的坐标代入关系式,求出待定系数即可.2.确定表达式所需的条件.课件出示教材第89页“想一想”.学生讨论得出:确定一次函数的表达式需要两个条件,确定正比例函数的表达式只需要一个条件.说明:①一次函数的表达式y=kx+b有两个常数k,b,要求出k和b的值需要两个条件,而正比例函数中b=0,只需求k,所以只需一个条件.②因为一次函数的图象是一条直线,两点确定一条直线.所以需要两个条件,而正比例函数的图象是经过原点的一条直线.所以只需要一点就可以确定这条直线.三、举例分析课件出示教材第89页例1.分析:因为一次函数的图象是一条直线,两点确定一条直线,所以需要两个条件,而正比例函数的图象是经过原点的一条直线,所以只需要确定另外一点坐标就可以确定这条直线的关系式.拓展:利用待定系数法确定一次函数的关系式,其步骤为:一设:根据题意,先设出函数关系式为y=kx+b(k≠0);二代:确定两对对应值或图象上两个点的坐标,分别代入函数关系式,得到关于k,b的两个方程;三解:求出k,b的值(暂时可以通过等量代换的方式去求两个未知数);四定:最后确定函数关系式.四、练习巩固1.教材第89~90页“随堂练习”1~3题.2.补充练习:(1)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧后剩下的长度y cm与燃烧时间x h 的函数关系用图象表示为下图中的()(2)一次函数y =kx +b 的图象如图所示,那么k ,b 的值分别是( )A .k =-1,b =1B .k =-2,b =1C .k =1,b =1D .k =2 ,b =1(3)一个正比例函数的图象经过点(2,-3),则其表达式是( )A .y =-xB .y =-32x C .y =2x D .y =-3x(4)已知直线l 经过点(0,3)和点(3,0),求直线l 的函数表达式.五、小结确定一次函数表达式的方法:由问题的实际意义直接确定出函数表达式的一般形式:若为正比例函数,则设其表达式为y =kx (k ≠0),代入一个除原点以外的点的坐标,求出k 的值,即可确定函数表达式;若为一般的一次函数,则设其表达式为y =kx +b (k ≠0),代入两个点的坐标,求出k ,b 的值,从而确定一次函数的表达式.六、课外作业教材第90页习题4.5 第1~4题.确定函数表达式看似简单,但学生在刚刚接触到这个问题的时候往往无从下手.本节课正是基于这点认识,借助引例,首先从方法上指导学生确定函数表达式,即从判断类型、确定k 值(或k 和b 的值)两个方面确定函数表达式.由于学生此时尚没有学到二元一次方程组,对于确定一次函数表达式存在一定的困难,教师可以建议学生用“代换”的方式,转化为一元一次方程,以此求出一次函数表达式当中的两个未知数,进而确定一次函数的表达式.第2课时单一一次函数图象的应用1.能通过单一一次函数图象获取信息,进一步训练学生的识图能力.2.能利用单一一次函数图象解决简单的实际问题,进一步发展学生的数学应用能力.重点单一一次函数图象的应用.难点从函数图象中正确读取信息.一、复习导入师:在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用.二、探究新知1.单一一次函数图象的应用.(1)课件出示教材第91页图4-7和题目.分析:①原蓄水量就是图象与纵轴交点的纵坐标.②求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值.当t=10时,V约为1 000万m3.同理可知当t为23时,V约为750万m3.③当蓄水量小于400万m3时,即V小于400万m3,所对应的t值约为40天.④水库干涸也就是V为0,函数图象与横轴交点的横坐标即为所求.当V为0时,所对应的t的值约为60天.(2)课件出示教材第91页例2.分析:①函数图象与x轴交点的横坐标即为摩托车行驶的最长路程,与y轴交点的纵坐标即为最多储油量.②x从0增加到100时,y从10开始减少,减少的数量即为行驶100 km 消耗的油量.③当y<1时,摩托车将自动报警.2.一次函数与一元一次方程.(1)课件出示教材第92页“做一做”.学生独立完成.(2)课件出示教材第92页“议一议”.可以从“数”和“形”的方面引导学生讨论.生:函数y=0.5x+1与x轴交点的横坐标即为方程0.5x+1=0的解.总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx +b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b =0的解.三、练习巩固教材第92页习题4.6第1题.四、小结一次函数图象的应用:(1)准确读图,找到图象与x轴、y轴的交点,根据这些关键点解题.(2)在实际问题中,注意自变量的取值范围,在画图和读图时也要注意.五、课外作业教材第93页习题4.6第2~3题.函数和我们的生活密切相关,函数图象可以直观地反映一些规律,对函数图象的理解,其关键是弄清函数图象上的点的意义,即横坐标与纵坐标的意义,渗透数形结合的数学思想.本节课采取学生通过小组合作交流获取信息,应用所学的知识解决有关一次函数的问题的方式进行.教学时还可以根据学生的实际情况,结合函数图象提出相应的实际问题.第3课时两个一次函数图象在同一坐标系中的应用1.通过观察函数图象,能够从两个一次函数图象中获取信息,理解函数图象交点的实际意义.2.通过函数图象,解决实际问题.重点利用图象解决实际问题.难点从函数图象中提炼出有用的信息.一、情境导入课件出示题目:学校每月的复印任务原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图所示.根据图象回答:(1)乙复印社每月的承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1 200页左右,那么应选择哪个复印社?师:我们能不能运用一次函数解决一些比较复杂的问题呢?二、探究新知两个一次函数图象在同一坐标系中的应用.(1)课件出示教材第93页图4-10和题目.师:横轴和纵轴分别表示的实际意义是什么?生:横轴表示销售量,纵轴表示销售收入和销售成本.师:l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y=k2x+b2中,k2和b2的实际意义各是什么?学生小组讨论,根据图象加以说明:l1对应的函数关系式是y=1 000x,1 000表示每销售1 t,销售收入是1 000元,这里的“b=0”,说明该产品没销售时无收入;l2对应的函数关系式是y=500x+2 000,这里500表示的是销售量每增加1 t,销售成本增加500元,没销售时成本是2 000元.(2)课件出示教材第94页例3.独立尝试,并在小组内交流自己的结论.师:对学生的结果进行全班讲评,并让学生思考:通过刚才的观察,你有哪些认识?各抒己见,互相补充.师:观察图象解答问题时要明确坐标轴所表示的含义,要注意两直线的交点的意义,在横轴上的一定取值范围内,位于上方图象的函数值要比位于下方图象的函数值大.分析:本例题主要通过对函数图象的分析解决问题,首先要准确判断l1和l2哪个代表A,哪个代表B.从A和B的速度角度看,l1较陡,l2较平,这说明l1的速度快.如果l1和l2有交点,交点的坐标就能反映出追赶上的时间和距离海岸的距离.根据图中的坐标,可以求出两条直线的表达式,通过表达式就能正确解决问题.三、练习巩固1.如图所示,OA,BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象快者的速度比慢者的速度每秒快()A.2.5 m B.2 m C.1.5 m D.1 m2.小明骑自行车从A地去B地,一段时间后小刚骑摩托车也从A地出发追赶小明,两人走的路程s(km)与小明骑行时间t(h)的关系如图所示.(1)________表示小明行驶的路程与时间的关系(填“l1”或“l2”);(2)小刚比小明晚出发________小时;(3)v小刚=________,v小明=________;(4)小刚出发________小时后追上小明.五、小结利用函数图象解决问题注意三个点:与x轴交点、与y轴交点、两直线的交点.六、课外作业教材第95~96页习题4.7第1~3题.本节课的教学重点是借助一个坐标系中两个函数图象去分析问题,难点是只根据函数图象而不是通过计算去解决问题.学生习惯于通过计算去解决问题,通过函数图象去解决问题的机会比较少.本节课正是基于上述原因,在教学的过程中围绕教材中设立的问题,给学生扩充了问题或者提示,较好地解决了学习过程中的难点问题.。

相关文档
最新文档