数学建模试卷参考答案
数学建模竞赛参考答案
数学建模竞赛参考答案数学建模竞赛参考答案数学建模竞赛是一项旨在培养学生综合运用数学知识和解决实际问题能力的竞赛活动。
参赛者需要通过分析问题、建立数学模型、求解问题等环节,最终给出合理的答案和解决方案。
在这篇文章中,我们将为大家提供一些数学建模竞赛的参考答案,希望能够给参赛者们提供一些启示和帮助。
第一题:某公司的销售额预测问题描述:某公司希望通过过去几年的销售数据,预测未来一年的销售额。
请根据给定的销售数据,建立合适的数学模型,并给出未来一年的销售额预测值。
解答思路:根据问题描述,我们可以将销售额看作是时间的函数,即销售额随时间变化。
可以使用回归分析的方法来建立数学模型。
首先,我们将销售额作为因变量,时间作为自变量,通过拟合曲线来预测未来一年的销售额。
我们可以选择多项式回归模型来拟合曲线。
通过将时间作为自变量,销售额作为因变量,进行多项式回归分析,可以得到一个多项式函数,该函数可以描述销售额随时间变化的趋势。
然后,我们可以使用该多项式函数来预测未来一年的销售额。
将未来一年的时间代入多项式函数中,即可得到未来一年的销售额预测值。
第二题:城市交通流量优化问题描述:某城市的交通流量问题日益突出,如何优化交通流量成为了当地政府亟待解决的难题。
请根据给定的交通数据和道路拓扑结构,建立合适的数学模型,并给出交通流量优化的方案。
解答思路:根据问题描述,我们可以将城市的交通流量看作是网络中的流量分配问题。
可以使用网络流模型来建立数学模型。
首先,我们需要将城市的道路网络抽象成一个有向图,节点表示交叉口,边表示道路,边上的权值表示道路的容量。
然后,我们可以使用最小费用最大流算法来求解交通流量优化的方案。
该算法可以通过调整道路上的流量分配,使得整个网络中的流量达到最大,同时满足道路容量的限制。
通过计算最小费用最大流,可以得到交通流量优化的方案。
最后,我们可以根据最小费用最大流算法的结果,对交通流量进行合理调控。
例如,可以调整信号灯的时长,优化交通信号控制系统,减少交通拥堵现象,提高交通效率。
数学建模试卷及参考答案
数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
数学建模试卷及参考答案
数学建模试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为,到达目的时刻为,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t)是一天内时刻变量,则f(t)(t)在[]是连续函数。
作辅助函数F(t)(t)(t),它也是连续的,则由f(a)=0(b)>0和g(a)>0(b)=0,可知F (a )<0, F(b)>0, 由介值定理知存在t0属于()使F(t0)=0, 即f(t0)(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分) 解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
()}{2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x (3分)记第k 次渡船上的商人数为k u 随从数为k v 将二维向量k d =(k u ,k v )定义为决策。
《数学建模》考试试卷与参考答案
《数学建模》试卷 第 1 页 共 4 页《数学建模》试题一、填空题(每题5分,满分20分):1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 .2. 设年利率为0.05,则10年后20万元的现值按照复利计算应为 .3. 所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 .4. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 .二、分析判断题(每题10分,满分20分):1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。
2. 某公司经营的一种产品拥有四个客户,由公司所辖三个工厂生产,每月产量分别为3000,5000和4000件.公司已承诺下月出售4000件给客户1,出售3000件给客户2以及至少1000件给客户3,另外客户3和4都想尽可能多购剩下的件数.已知各厂运销一件产品给客户可得到的净利润如表1所示,问该公司应如何拟订运销方案,才能在履行诺言的前提下获利最多?表1单位:元/件上述问题可否转化为运输模型?若可以则转化之(只需写出其产销平衡运价表即可),否则说明理由。
三、计算题(每题20分,满分40分):1. 有一批货物要从厂家A 运往三个销售地B 、C 、D ,中间可经过9个转运站.,,,,,,,,321321321G G G F F F E E E 从A 到321,,E E E 的运价依次为3、8、7;从1E 到21,F F 的运价为4、3;从2E 到321,,F F F 的运价为2、8、4;从3E 到32,F F 的运价为7、6;从1F 到21,G G 的运价为10、12;从2F 到321,,G G G 的运价为13、5、7;从3F 到32,G G 的运价为6、8;从密线封层次报读学校专业姓名317《数学建模》试卷 第 2 页 共 4 页1G 到C B ,的运价为9、10;从2G 到D C B ,,的运价为5、10、15;从3G 到D C ,的运价为8、7。
数学建模试题(带答案)
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
高中数学建模试题及答案
高中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 数学建模的一般步骤不包括以下哪一项?A. 问题提出B. 模型假设C. 模型求解D. 数据收集答案:D2. 在数学建模中,模型的验证通常不包括以下哪一项?A. 模型的逻辑性检验B. 模型的适用性检验C. 模型的稳定性检验D. 模型的美观性检验答案:D3. 以下哪一项不是数学建模中常用的方法?A. 微分方程B. 线性规划C. 概率论D. 文学创作答案:D4. 在数学建模中,以下哪一项不是模型的要素?A. 模型的假设B. 模型的变量C. 模型的参数D. 模型的结论答案:D5. 数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 静态模型D. 动态模型答案:C6. 在数学建模中,以下哪一项不是模型的构建过程?A. 模型的假设B. 模型的建立C. 模型的求解D. 模型的发表答案:D7. 数学建模中,以下哪一项不是模型的分析方法?A. 数值分析B. 符号计算C. 图形分析D. 文字描述答案:D8. 在数学建模中,以下哪一项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 统计分析答案:D9. 数学建模中,以下哪一项不是模型的应用领域?A. 工程技术B. 经济管理C. 生物医学D. 音乐艺术答案:D10. 在数学建模中,以下哪一项不是模型的评估标准?A. 模型的准确性B. 模型的简洁性C. 模型的可解释性D. 模型的复杂性答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:问题提出、模型假设、模型建立、模型求解、模型分析、模型验证和______。
答案:模型报告2. 在数学建模中,模型的假设应该满足______、______和______。
答案:科学性、合理性、可行性3. 数学建模中,模型的求解方法包括解析方法和______。
答案:数值方法4. 数学建模中,模型的分析方法包括______、______和______。
《数学建模》习题及参考答案 第一章 建立数学模型
第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学模型试题及答案解析
数学模型试题及答案解析一、单项选择题(每题3分,共30分)1. 以下哪个不是数学模型的特征?A. 抽象性B. 精确性C. 可验证性D. 复杂性答案:D2. 数学模型的建立通常不包括以下哪个步骤?A. 定义问题B. 收集数据C. 建立假设D. 验证结果答案:D3. 在数学建模中,以下哪个不是模型分析的方法?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:D4. 数学模型的验证不包括以下哪项?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:D5. 在数学建模中,以下哪个不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D6. 以下哪个是数学模型的典型应用领域?A. 经济学B. 物理学C. 生物学D. 所有以上答案:D7. 数学模型的建立过程中,以下哪个步骤是不必要的?A. 问题定义B. 假设建立C. 模型求解D. 模型展示答案:D8. 数学模型的分析中,以下哪个不是常用的工具?A. 微分方程B. 线性代数C. 概率论D. 量子力学答案:D9. 在数学建模中,以下哪个不是模型的评估标准?A. 准确性B. 可解释性C. 简洁性D. 复杂性答案:D10. 数学模型的建立过程中,以下哪个步骤是至关重要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:A二、多项选择题(每题5分,共20分)11. 数学模型的建立过程中,以下哪些步骤是必要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:ABCD12. 数学模型的类型包括以下哪些?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:ABCD13. 数学模型的分析方法包括以下哪些?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:ABCD14. 数学模型的验证包括以下哪些?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:ABC三、填空题(每题4分,共20分)15. 数学模型的建立通常包括定义问题、______、建立假设和模型求解四个步骤。
数学建模试题(带答案)大全
(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0
bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2
最新数学模型(数学建模)期末试卷及答案详解()
数学建模(数学模型)期末考试卷专业 级《数学模型与数学软件》考核命题卷(含答题卷)(编号1)闭卷)一、综合题(15分)为了研究同类车的刹车距离d (司机想刹车到车停下来所行驶的距离)与刹车时的车速v 之间存在什么样的函数关系,通过多组同条件实验测得一组数据如下表:(车速与距离都是多次实验的平均车速和平均距离)车速 (km/h) 29.3 44.0 58.7 62.2 73.3 88.0 102.7 110.2 117.3 刹车距离(m ) 39.0 76.6 126.2 135.8 187.8 261.4 347.1 388.9444.8 1.(6分)请简述数学建模一般步骤的基本方法。
2.(2分)为了研究刹车距离与车速的关系,需要做哪些资料数据的搜集?3.(7分)请给出合理的假设,建立合适的模型,来研究)(v fd 。
(注:模型不需要求解)二、综合题(16分)在研究存储模型中,设某产品日需求量为常数r ,每次生产为瞬间完成,每次生产的准备费为1c ,并与生产量无关, 每单位时间每件产品贮存费为2c 。
现需要制定最优的生产计划(即最佳的生产周期T 和每周期生产量Q 的确定)。
1.(6分)请简述数学建模的基本方法。
2.(10分)请在合适的假设下,建立不允许缺货的最优生产计划模型。
三、综合题(18分)研究奶制品深加工问题中,有80桶牛奶,共680小时的可利用工作时间,至多能加工80公斤A1产品,其他对于下列关系:1.(12化。
(注:不要求求解结果) 2.(6分)以此题为例,简述线性规划三个特征。
四、综合题(16分)研究治愈即免疫的传染病模型,设每个病人每天有效接触为a ,日治愈率为b ,初始状态下病人数和健康人数占总人数的比值分别为00,s i1(6分)做合适的假设,并建立传染病的SIR 模型;2(10分)写出利用ODE45函数求解此模型的MATLAB 程序代码。
获利44元/千克获利32元/千克五、综合题(20分)研究层次分析法模型,如下图:目标层准则层方案层如果现在已经得到五个准则的成对比较矩阵为:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1135/13/11125/13/13/12/117/14/1557123342/11A 1.(8分)阐述层次分析法的基本步骤;2.(8分)使用和法演算A 矩阵的最大特征值,并求这五个准则对目标层的权向量; 3.(4分)求A 矩阵的一致性指标CI 和CR ,已知12.1)5(=RI 。
数学建模期末试卷A及答案
1.〔10分〕表达数学建模根本步骤,并简要说明每一步根本要求。
(1)模型打算:首先要理解问题实际背景,明确题目要求,搜集各种必要信息。
(2)模型假设:为了利用数学方法,通常要对问题做出必要、合理假设,使问题主要特征凸现出来,忽视问题次要方面。
(3)模型构成:依据所做假设以及事物之间联络,构造各种量之间关系,把问题化为数学问题,留意要尽量采纳简洁数学工具。
4)模型求解:利用数学方法来求解上一步所得到数学问题,此时往往还要作出进一步简化或假设。
(5)模型分析:对所得到解答进展分析,特殊要留意当数据改变时所得结果是否稳定。
(6)模型检验:分析所得结果实际意义,与实际状况进展比较,看是否符合实际,假如不够志向,应当修改、补充假设,或重新建模,不断完善。
(7)模型应用:所建立模型必需在实际应用中才能产生效益,在应用中不断改进和完善。
2.〔10分〕试建立不允许缺货消费销售存贮模型。
设消费速率为常数k ,销售速率为常数r ,k r <。
在每个消费周期T 内,开始一段时间〔00T t ≤≤〕 边消费边销售,后一段时间〔T t T ≤≤0〕只销售不 消费,存贮量)(t q 改变如下图。
设每次消费开工费为1c ,每件产品单位时间存贮费为2c ,以总费用最小为准那么确定最优周期T ,并探讨k r <<和k r ≈状况。
单位时间总费用k T r k r c T c T c 2)()(21-+=,使)(T c 到达最小最优周期)(2T 21*r k r c k c -=。
当k r <<时,r c c 21*2T =,相当于不考虑消费状况;当k r ≈时,∞→*T ,因为产量被售量抵消,无法形成贮存量。
3.〔10分〕设)(t x 表示时刻t 人口,试说明阻滞增长〔Logistic 〕模型⎪⎩⎪⎨⎧=-=0)0()1(x x x x x r dtdxm中涉及全部变量、参数,并用完可能简洁语言表述清晰该模型建模思想。
(完整版)数学建模期末试卷A及答案
用。
且阻滞作用随人口数量增加而变大,从而人口增长率 r(x) 是人口数量 x(t) 的的减函数。
假设 r(x) 为 x(t) 的线性函数:
The shortest way to do many things is
r(x) r sx (r 0, s 0)
,
其中, r 称为人口的固有增长率,表示人口很少时(理论上是 x 0 )的增长率。
在每个生产周期T 内,开始一段时间( 0 t T0 ) 边生产边销售,后一段时间(T0 t T )只销售不 生产,存贮量 q(t) 的变化如图所示。设每次生产开工
费为 c1 ,每件产品单位时间的存贮费为 c2 ,以总费用最小为准则确定最优周 期T ,并讨论 r k 和 r k 的情况。
c(T )
某家具厂生产桌子和椅子两种家具,桌子售价 50 元/个,椅子销售价格 30 元/个,生 产桌子和椅子要求需要木工和油漆工两种工种。生产一个桌子需要木工 4 小时,油漆工 2 小时。生产一个椅子需要木工 3 小时,油漆工 1 小时。该厂每个月可用木工工时为 120 小 时,油漆工工时为 50 小时。问该厂如何组织生产才能使每月的销售收入最大?(建立模型 不计算)(10’)
s r 当 x xm 时人口不再增长,即增长率 r(xm ) 0 ,代入有 xm ,从而有
根据 Malthus 人口模型,有
r(x)
r1
x xm
,
dx r(1 x )x
dt
xm
x(0) x0
4.(25 分)已知 8 个城市 v0,v1,…,v7 之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间.
(1)设你处在城市 v0,那么从 v0 到其他各城市,应选择什么路径使所需 的时间最短? (1) v0 到其它各点的最短路如下图:
(完整版)数学建模试卷(附答案)
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
《数学建模与数学探究》试卷及答案_高中数学选择性必修第二册_苏教版_2024-2025学年
《数学建模与数学探究》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、数学建模的一般步骤是以下哪一个顺序?A、模型假设、模型准备、模型求解、模型应用B、模型准备、模型假设、模型求解、模型应用C、模型准备、模型求解、模型假设、模型应用D、模型求解、模型假设、模型准备、模型应用2、下列函数中属于偶函数的是:A.(f(x)=x2+1)B.(f(x)=x3+2))C.(f(x)=1xD.(f(x)=√x2)3、在解决实际问题时,以下哪个选项不属于数学建模的基本步骤?A、建立数学模型B、求解数学模型C、分析结果并验证模型的有效性D、收集数据,进行实验研究4、在建立数学模型时,如果模型的结果与实际情况存在较大的偏差,首先应该()A、直接放弃该模型B、检查数据的准确性和完整性C、重新设定模型参数D、改变模型的数学方法5、已知某地区某种疾病的发病率是0.001,该疾病检测的准确率为99%,即若一个人患病,则检测呈阳性的概率为99%;若未患病,检测结果呈阴性的概率也是99%。
现有一人检测结果为阳性,求此人确实患有该病的概率是多少?A. 99%B. 50%C. 9.9%D. 0.99%6、某学校为了加强学生的环保意识,计划在每个教室种植5株不同种类的植物。
如果学校共有32个教室,且学校已经有200株植物备用,那么还需要从市场上采购多少株植物才能满足需求?A. 30株B. 40株C. 50株D. 60株7、假设一个电子工厂生产一种新型手机,已知每生产一部手机的直接成本为300元,固定成本(包括管理费用、折旧等)为每月5000元。
如果每月生产制品500部,那么每部手机的利润是多少元?A. 200元B. 250元C. 300元D. 350元8、已知某商品的成本函数为(C(x)=0.05x2+3x+200),其中(x)代表生产数量(单位:件)。
如果每件商品的售价为(P=100−0.1x)元,那么为了获得最大利润,应该生产多少件商品?A. 100B. 150C. 200D. 250二、多选题(本大题有3小题,每小题6分,共18分)1、以下哪些是数学建模的基本步骤?A、提出问题B、建立模型C、分析模型D、求解模型E、检验与改进2、在数学建模过程中,选择合适的参数至关重要。
《数学模型》试题及参考答案
A卷2009-2010学年第2学期《数学建模》试卷专业班级姓名分组号与学号开课系室数学与计算科学学院考试日期 2010 年7月题号一二三四五六七八总分得分阅卷人数学建模试卷(1007A)一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。
(2)建立数学模型的一般方法是什么?在建模中如何应用这些方法,结合实例加以说明。
二(10分)、(1).简述数学建模的一般步骤,分析每个步骤的主要内容和注意事项。
(2)简述数学模型的表现形态,并举例说明。
第一页三(10分)、(1)简述合理分配席位的Q-值方法,包括方法的具体实施过程,简述分配席位的理想化原则。
(2)建立录像机记数器读数与录像带转过时间之间的关系模型,包括模型假设与模型建立全过程。
四(15分)(1)建立不允许缺货情况下的存储模型,确定订货周期和订货量(包括问题叙述,模型假设和求解过程).(2)建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,k r.在每个生产周期T内,开始的一段时间(0 t T0)一边生产一边销售,后来的一段时间(T0t T)只销售不生产.设每次生产开工费为c1,单位时间每件产品贮存费为c2,(a)求出存储量q(t) 的表示式并画出示意图。
(2)以总费用最小为准则确定最优周期T,讨论kr的情况.第二页五(15分)、(1)建立传染病传播的SIS模型并求解(简述假设条件和求解过程),(2)建立SIR模型,并用相平面方法求解,在相平面上画出相轨线并进行分析。
六(15分)(1)建立一般的战争模型,分析各项所表示的含义。
(2)在假设x0y0,b 9a条件下对正规战争模型(忽略增援和非战斗减员)进行建模求解,确定战争结局和结束时间。
第三页七(15分)设渔场鱼量的自然增长服从模型x rxln N,又单位时间捕捞量为xh Ex.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量hm及获得最大产量的捕捞强度E m 和渔场鱼量水平x0.八(10分)假设商品价格y k和供应量x k满足差分方程y k1 y0(xk1x k x0), 02xk1 x0(y k y0) 0求差分方程的平衡点,推导稳定条件第四页A卷2009-2010学年第2学期《数学模型》试题参考答案与评分标准专业班级开课系室数学与计算科学学院考试日期2010年7月数学建模试卷(1007A)参考答案与评分标准一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。
小学数学建模一年级试卷
一、阅读理解题(共10分)1. 小明有5个苹果,小华有3个苹果。
他们两个一共有多少个苹果?(答案:8个)2. 小红有10个铅笔,小丽有15个铅笔。
小丽比小红多几个铅笔?(答案:5个)3. 小明每天走30步,小华每天走50步。
小明比小华每天少走多少步?(答案:20步)4. 小狗有4条腿,小猫有4条腿。
小兔有两条腿。
三个小动物一共有多少条腿?(答案:12条)5. 小明有5个气球,小华有3个气球。
他们两个一共有多少个气球?(答案:8个)二、解决问题题(共20分)1. 小明和小华一起买了一些苹果,一共买了15个。
小明买了7个苹果,小华买了多少个苹果?(答案:8个)2. 小红有10个铅笔,小丽比小红多5个铅笔。
小丽有多少个铅笔?(答案:15个)3. 小明每天走30步,小华每天走50步。
他们两个一共走了多少步?(答案:80步)4. 小狗有4条腿,小猫有4条腿,小兔有2条腿。
他们三个一共有多少条腿?(答案:10条)5. 小明有5个气球,小华比小明多3个气球。
小华有多少个气球?(答案:8个)三、应用题(共30分)1. 小红和小丽一共有15个糖果。
小红给了小丽5个糖果,现在小红和小丽各有多少个糖果?(答案:小红10个,小丽5个)2. 小明有30个铅笔,小华有40个铅笔。
他们两个一共有多少个铅笔?(答案:70个)3. 小狗有4条腿,小猫有4条腿,小兔有2条腿。
他们三个一共有多少条腿?(答案:10条)4. 小明有5个气球,小华比小明多3个气球。
小华有多少个气球?(答案:8个)5. 小红有10个铅笔,小丽比小红多5个铅笔。
小丽有多少个铅笔?(答案:15个)四、数学建模题(共20分)1. 小明有5个苹果,小华有3个苹果。
他们两个一共有多少个苹果?请用图形表示出来。
(答案:画两个苹果堆叠的图形)2. 小红有10个铅笔,小丽比小红多5个铅笔。
小丽有多少个铅笔?请用数字和文字表示出来。
(答案:10 + 5 = 15,小丽有15个铅笔)3. 小明每天走30步,小华每天走50步。
合肥师范学院数学专业大三数学建模试卷及答案
第 1 页 共2页 第 1 页 共2页《数学建模》课程试卷适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 怎样解决下面的实际问题,包括需要哪些数据资料、观察、试验以及建立什么样的数学模型(10分) (1)估计一个人体内血液的总量 (2)估计一批日光灯管的寿命二.对于技术革新的推广,在下列几种情况下分别建立模型(10分)1.推广工作通过已经采用新技术的人进行,推广速度与已采用新技术的人数成正比,推广是无限的。
2.总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低。
3.在(2)的前提下考虑广告等媒介的传播作用三.报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回,设报纸每份的购进价 为b ,零售价为a ,退回价为c,应该自然地假设为a>b>c,这就是说,报童售出一份报纸赚a-b ,退回一份赔b-c 。
报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。
请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入(10分)四.试建立正规战争模型,并进一步分析双方战平、甲方或乙方获胜得条件(10分))(),(t y t x 甲乙兵力)(),(t v t u 甲乙增援率a,b 乙甲射伤率 u cx ay dt dx +--= v dy bx dtdy +--= 不考虑非战斗减员和增援ay dt dx -=,bx dtdy-= 相轨线aybx dx dy =,k bx ay =-22,k bx ay =-2020 双方战平k=0甲方获胜得条件k<0 乙方获胜得条件K>0第 2 页 共2页 第 2 页 共2页60分)一家保姆服务公司专门向顾主提供保姆服务。
根据估计,下一年的需求是:6000人日,夏季7500人日,秋季5500人日,冬季9000人日。
公司新招5天的培训才能上岗,每个保姆每季工作65天,保姆从该公每人每月工资800元,春季开始时公司拥有12015%的保姆自动离职,(1)如果公司不允许2)如果公司在每个季度结束后请你为公司制定下一年的招聘计划(程序计算结果可自由确定)第 3 页 共2页 第 3 页 共2页《数学建模》课程试卷 答案适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分二. 怎样解决下面的实际问题,包括需要哪些数据资料、观察、试验以及建立什么样的数学模型(10分) (1)估计一个人体内血液的总量 (2)估计一批日光灯管的寿命(1)注射一定量的葡萄糖,采取一定容积的血样,测量注射前后葡糖糖含量的变化,即可估计人体的血液总量 (5)(2)从一批灯管中取一定容量的样本,测的取平均寿命,可作为该批灯管寿命的平均值,为衡量估计的精度,需要从样本寿命确定该批灯管寿命的概率分布,即可得估计值的置信区间。
最新数学建模(数学模型)期末考试题(试卷)及答案详解(附答案)
数学建模(数学模型)期末考试卷及答案详解第一部分 基本理论和应用1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率.2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测, 得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大?4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效?6. (15分)设),(~2σμN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值,2nS 为样本二阶中心矩,2S 为样本方差,问下列统计量:(1)22σnnS ,(2)1/--n S X n μ,(3)212)(σμ∑=-ni iX各服从什么分布?7. (10分)一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布.8. (10分)设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算.9. (10分)某商品的每包重量2~(200,)X N σ.若要求{195205}0.98P X <<≥,则需要把σ控制在什么范围内.10. (15分)设系统L 由两个相互独立的子系统12,L L 联接而成,联接的方式分别为串联,并联和备用(当系统1L 损坏时,系统2L 开始工作),如图7.1所示.1L 和2L 的寿命为X 和Y ,分别有密度(0,)()()x X p x e I x αα-+∞=和(0,)()()y Y p y e I y ββ-+∞=,其中0,0αβ>>且αβ≠.请就这三种联接方式分别写出系统L 的寿命Z 的密度.答案第一部分 基本理论和应用 1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率. 解:设同时开着的灯数为X ,(10000,0.7)Xb ……………2分(0,1)N (近似) ……………3分 {69007100}210.971P X ≤≤=Φ-= …………5分 2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测,得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间. 解: T =(1)X t n - 0.005{(1)}0.99P T t n <-= ………4分0.0050.005{(1)(1)}0.99P X n X X n -<<+-= ………………4分 所求为(1485.61,1514.39) …………2分3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大? 解:(0,1)X N ………………3分{1.4 5.4}21P X P <<=<=Φ- ……………4分解210.95Φ-≥ 得34.6n ≥ n 至少取35 ……………3分4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.解: 1101()(2E X dx θθθθ++==+⎰+1)x ……………3分 解12X θθ+=+,得θ的矩估计量为211X X -- ……………2分 1()1()ni i L x θθθ=+∏n=() 1ln ln 1ln nii L n x θθ==+∑()+ ……………2分令1ln ln 01ni i d L nx d θθ==+=+∑ 得θ的极大似然估计量为11ln nii nX=--∑ …………3分5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效? 解:(1)2EX θ=,令2X θ=,得θ的矩估计量1ˆ2X θ=; ……………5分 似然函数为:()12121,0,,,(,,,;)0n n n x x x L x x x θθθ⎧<<⎪=⎨⎪⎩,其它其为θ的单调递减函数,因此θ的极大似然估计为{}212()ˆmax ,,,n n X X X X θ==。
数学建模答案(完整版)
数学建模答案(完整版)1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。
在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3 然后保存即可2 编写函数M 文件SQRT.M;函数()f x = x=567.889与0.0368处的近似值(保留有效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2x1=567.889;x2=0.368; s1=sqrt(x1);s2=sqrt(x2); zhi1=vpa(s1,4) zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算()f x =的值,其中a=2.3,b=4.89.>> syms a b>> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans =2.08644用matlab 计算函数()f x =在x=3π处的值. >> syms x>> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans =12.09625用matlab 计算函数()arctan f x x =在x=1.23处的值. >> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans =1.78376 用matlab 计算函数()()f x f x ==在x=-2.1处的值. >> syms x>> x=-2.1;>> 2-3^x*log(abs(x)) ans =1.92617 用蓝色.点连线.叉号绘制函数[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x); >> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数ln 10y x =+在[20,15]--上步长为0.2的图像. >> syms x y>> x=-20:0.2:-15;y=log(abs(x+10)); >> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线虚线绘制函数sin()22x y π=-在[-10,10]上步长为0.2的图像. >> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2); >> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数sin(2)3y x π=+在[0,4]π上步长为0.2的图像.sin(2)sin()[0,4]322x y x y πππ=+=- >> syms x y>> x=0:0.2:4*pi;y=sin(2*x+pi/3); >> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与y =.>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x)); >> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数234,,y x y x y x ===这三条曲线的图标,并要求用两种方法加各种标注.234,,y x y x y x === >> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线2sin x t y t z t ?=?=??=?的3维图像>> syms x y t z >> t=0:1/50:2*pi; >> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面(1cos )cos (1cos )sin sin x u v y u v z u =+??=+??=?在(0,2)(0,2)ππ?上的3维图像>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u); >> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y>> y=sin(2^0.5*x)/sqrt(1-cos(x)); >> limit(y,x,0,'right') ans = 216 求极限1201lim()3x x +→ >> syms y x>> y=(1/3)^(1/(2*x)); >> limit(y,x,0,'right') ans = 0 17求极限limx>> syms x y>> y=(x*cos(x))/sqrt(1+x^3); >> limit(y,x,+inf) ans = 0 18 求极限21lim ()1xx x x →+∞+- >> syms x y>> y=((x+1)/(x-1))^(2*x); >> limit(y,x,+inf) ans =exp(4)19 求极限01cos 2limsin x xx x→->> syms x y>> y=(1-cos(2*x))/(x*sin(x)); >> limit(y,x,0) ans = 220 求极限 0x →>> syms x y>> y=(sqrt(1+x)-sqrt(1-x))/x; >> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y>> y=(x^2+2*x+1)/(x^2-x+2); >> limit(y,x,+inf) ans = 1 22 求函数y=5(21)arctan x x -+的导数 >> syms x y>> y=(2*x-1)^5+atan(x); >> diff(y) ans =10*(2*x - 1)^4 + 1/(x^2 + 1) 23 求函数y=2tan 1x xy x=+的导数 >> syms y x>> y=(x*tan(x))/(1+x^2); >> diff(y) ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数3tan x y e x -=的导数>> syms y x>> y=exp^(-3*x)*tan(x) >> y=exp(-3*x)*tan(x) y =exp(-3*x)*tan(x)>> diff(y) ans =exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x) 25 求函数y=2 2ln sin2xx π+在x=1的导数>> syms x y>> y=(1-x)/(1+x); >> diff(y,x,2) ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3>> syms x y>> y=2*log(x)+sin(pi*x/2)^2; >> dxdy=diff(y)dxdy =2/x + pi*cos((pi*x)/2)*sin((pi*x)/2) zhi=subs(dxdy,1)zhi =226 求函数y=01cos 2lim sin x x x x →-11xx-+的二阶导数>> syms x y>> y=(1-x)/(1+x); >> diff(y,x,2) ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y>> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2; >> diff(y) ans =(((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间(,-∞+∞)内求函数43()341f x x x =-+的最值. >> f='-3*x^4+4*x^3-1'; >> [x,y]=fminbnd(f,-inf,inf) x =NaN y =NaN>> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf) x =NaN y =NaN29在区间(-1,5)内求函数发()(f x x =-.>> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5) x =0.3750 y =-0.3470 >>>> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5) x =4.9999 y =-10.505930 求不定积分(ln 32sin )x x dx -?(ln 32sin )x x dx -? >> syms x y>> y=log(3*x)-2*sin(x); >> int(y) ans =2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ?>> syms x y>> y=exp(x)*sin(x)^2; >> int(y) ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分>> syms x y>> y=x*atan(x)/(1+x)^0.5; >> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x edx --?>> syms x y>> y=1/exp(x^2)*(2*x-cos(x)); >> int(y) Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x) 34.计算定积分1(32)xex dx -+?>> syms x y>> y=exp(-x)*(3*x+2); >> int(y,0,1) ans =5 - 8*exp(-1)1(32)x e x dx -+?35.计算定积分0limx x→120(1)cos x arc xdx +?>> syms y x>> y=(x^2+1)*acos(x); >> int(y,0,1) ans =11/936.计算定积分1cos ln(1)x x dx+?>> syms x y>> y=(cos(x)*log(x+1)); >> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1) 37计算广义积分2122x x dx +∞++-∞?;>> syms y x>> y=(1/(x^2+2*x+2)); >> int(y,-inf,inf) ans = pi 38.计算广义积分20xdx x e+∞-?;>> syms x y>> y=x^2*exp(-x); >> int(y,0,+inf) ans = 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模试卷参考答案
数学建模试卷参考答案
数学建模试卷是一种常见的考试形式,旨在考察学生在实际问题中运用数学知
识进行建模和解决问题的能力。
在这篇文章中,我将为大家提供一份数学建模
试卷的参考答案,并对其中的一些问题进行详细解析,希望能够帮助读者更好
地理解数学建模的思路和方法。
第一题:某公司的销售额数据如下,请根据给定数据绘制销售额变化折线图,
并分析销售额的趋势。
解析:根据给定数据,我们可以绘制出销售额变化的折线图。
通过观察折线图,我们可以发现销售额在前三个月呈现上升趋势,然后在第四个月达到峰值后开
始下降。
这可能是由于季节性因素或市场竞争加剧导致的。
从整体趋势来看,
销售额呈现出一个先增长后下降的趋势。
第二题:某城市的人口数量在过去十年中呈现如下变化,请根据给定数据绘制
人口数量变化柱状图,并分析人口增长的原因。
解析:根据给定数据,我们可以绘制出人口数量变化的柱状图。
通过观察柱状图,我们可以发现在过去十年中,该城市的人口数量呈现稳步增长的趋势。
人
口增长的原因可能有多种,比如经济发展带来的就业机会增加,吸引了更多的
外来人口;或者是政府实施的人口政策鼓励生育等。
需要进一步的数据和研究
才能得出更准确的结论。
第三题:某地区的温度数据如下,请根据给定数据绘制温度变化曲线图,并分
析温度的季节性变化。
解析:根据给定数据,我们可以绘制出温度变化的曲线图。
通过观察曲线图,
我们可以发现温度呈现出明显的季节性变化。
在春季和夏季,温度逐渐升高,
达到峰值;而在秋季和冬季,温度逐渐下降,达到最低点。
这种季节性变化可
能是由于地球自转轨道和倾斜角度的变化导致的。
第四题:某公司的产品销量数据如下,请根据给定数据绘制产品销量变化饼图,并分析各产品销量的占比。
解析:根据给定数据,我们可以绘制出产品销量变化的饼图。
通过观察饼图,
我们可以发现各产品销量的占比。
比如产品A的销量占总销量的30%,产品B
的销量占总销量的40%,产品C的销量占总销量的20%等。
这些占比可以帮助
公司了解各产品的市场份额,进而制定相应的销售策略。
通过以上的解析和分析,我们可以看到数学建模试卷中的问题都与实际问题密
切相关,并且需要运用数学知识进行分析和解决。
数学建模不仅考察了学生对
数学知识的掌握,更重要的是考察学生在实际问题中应用数学知识的能力。
希
望这份数学建模试卷的参考答案能够帮助大家更好地理解数学建模的思路和方法,并提高解决实际问题的能力。