初二上数的开方单元测试题(附答案)1
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1B.2C.3D.42、估算的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3、下列运算正确的是()A.a+2a=3a 2B.a 6÷a 3=a 2C.D.4、下面的计算中,错误的是()A. B. C.D.5、的立方根是()A.-2B.2C.±2D.6、下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有()A.2个B.3个C.4个D.5个7、下列实数﹣,,,0.1414,,,0.2002000200002中,无理数的个数是()A.2个B.3个C.4个D.5个8、设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根。
其中,所有正确说法的序号是( )A.①④B.②③C.①②④D.①③④9、如图所示,数轴上点A所表示的数为a,则a的值是()A.-2+B. -1C.-1-D.2-10、下列说法正确的是()A.无理数包括正无理数、0、负无理数B.实数就是有理数C.无理数是无限不循环小数D.带根号的数都是无理数11、下列各式中,正确的是A. B. C. D.12、在下列说法中,①的算术平方根是4;②3是9的平方根;③在实数范围内,一个数如果不是有理数,则一定是无理数;④两个无理数之和还是无理数.其中正确个数是()A.4个B.3个C.2个D.1个13、一个自然数的立方根为a,则下一个自然数的立方根是()A. a+1B.C.D. a3+114、王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A. -1B.-+1C.D.-15、估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3到4之间二、填空题(共10题,共计30分)16、以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是________.17、计算:(﹣)﹣2+(﹣2017)0=________.18、实数、在数轴上的位置如下图所示,化简:=________.19、(2019-π)0+(-1)2019=________.20、计算:+(﹣3)0=________21、30×()﹣2+|﹣2|=________.22、已知一个无理数a,满足1<a<2,则这个无理数a可以是________(写出一个即可)。
华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案
华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分) 1.化简 |1−√2|+1的结果是 ( )A.2−√2B.2+√2C.√2D.22.计算:-64 的立方根与16的平方根的和是 ( )A.0B. -8C.0或-8D.8或-83.下列实数中,最小的是 ( )A.3 B √2 C √3 D.04.已知 m =√4+√3,则以下对m 的估算正确的是 ( )A.2<m<3B.3<m<4C.4<m<5D.5<m<65.下列说法正确的是 ( ) A.18的立方根是 ±12 B. -49 的平方根是±7C.11的算术平方根是 √11D.(−1)²的立方根是-16.下列各组数中互为相反数的是 ( )A. -2 与 √(−2)2B. -2 与 √−83C. -2 与 −12 D.2 与|-2|7.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为 ( )A.1B. -1C.2D. -28.下列各数:3.14 π3 √16 2.131 331 333 1…(相邻两个1之3的个数逐次多1) 2321,√−93.其中无理数的个数为 ( )A.2个B.3个C.4个D.5个9.实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是 ( )A.|a|>4B. c-b>0C. ac>0D. a+c>010.已知min(√x,x2,x)表示取三个数中最小的那个数,例如:当x=9时min(√x,x2,x)=min(√9,92,9)=3,则当min(√x,x2,x)=116时,x的值为 ( )A.116B.18C.14D.12二、填空题(每小题3分,共15分)11.计算:(−1)2+√9= .12.已知a、b满足(a−1)2+√b+2=0,则a+b= .13.已知a2=16,√b3=2且 ab<0,则√a+b= .14.我们知道√a≥0,所√aₐ有最小值.当x= 时2+√3x−2有最小值.15.请你观察思考下列计算过程:∴112=121 ∴√121=11;∵1112=12321,∴√12321=111⋯⋯由此猜想:√12345678987654321= .三、解答题(本大题共9个小题,满分75分)16.(6分)计算:(1)|−2|+√−83−√16;(2)6×√19−√273+(√2)2.17.已知(x−7)²=121,(y+1)³=−0.064求代数式√x−2−√x+10y+√245y3的值.18.(6分)求下列各式中的x的值:(1)(x+1)²−1=0;(2)23(x+1)3+94=0.19.(8分)阅读材料:如果xⁿ=a,那么x叫做a的n次方根.例如:因为2⁴=16,(−2)⁴=16,所以2和-2都是16的4次方根,即16的4次方根是2和-2,记作±√164=±2.根据上述材料回答问题:(1)求81 的4次方根和32 的5 次方根;(2)求10°的n次方根.20.(9分)求下列代数式的值.(1)如果a²=4,b的算术平方根为3,求a+b的值;(2)已知x是25的平方根,y是16的算术平方根,且.x<y,求x-y的值.x−y21.(9分)如图是一个无理数筛选器的工作流程图.(1)当x为16时,y= ;(2)是否存在输入有意义的x值后,却始终输不出y值? 如果存在,写出所有满足要求的x值,如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y值√3₃时,判断输入的x值是否唯一,如果不唯一,请出其中的两个.22.(10分)阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此、√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:√4<√7<√9,即2<√7<3∴√7的整数部分为2,小数部分为√7−2.请解答:(1)√57的整数部分是,小数部分是;(2)如果√11的小数部分为a,√7的整数部分为b,求|a−b|+√11的值;(3)已知:9+√5=x+y,其中x是整数,且0<y<1,求x-y的相反数.x−y23.(10分)小丽想用一块面积为400cm²的正方形纸片,沿着边的方向裁出一块面积为300cm²的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗? 若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.24.(11分)如图1,长方形OABC 的边OA 在数轴上,点O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点 A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为( O ′A ′B ′C ′,移动后的长方形(O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2 中阴影部分)的面积记为S.①当S 恰好等于原长方形OABC 面积的一半时,求数轴上点. A ′表示的数;②设点A 的移动距离 AA ′=x.i 当S=4时,求x 的值;ii 点 D 为线段 AA'的中点,点 E 在线段0O ′上,且 OE =12OO ′,当点D 、E 表示的数互为相反数时,求x 的值. 参考答案1. C2. C3. D4. B5. C6. A7. B8. B9. B 10. C11.4 12. -1 13.214 2315.111 1111116.解: (1)|−2|+√−83−√16=2−2−4=−4.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.17.解: :(x −7)²=121,∴x −7=±11, 则x=18 或x= -4 又∵x -2≥0 ∴x≥2 ∴x=18.∵(y+1)³= -0.064 ∴y+1= -0.4 ∴y= -1.4 ∴√x −2 - √x +10y + 245y =√18−2−√18+10×(−1.4)−√245×(−1.4)3=√16−√4+√−3433 =4-2-7 = -5.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.18.解: (1)∵(x +1)²−1=0,∴(x +1)²=1,∴x +1=±1,解得x=0或x=-2.(2)∵23(x +1)3+94=0,∴8(x +1)3+27=0,∴(x +1)3=−278,∴x +1=−32,解得 x =−52.19.解:(1)因为 3⁴=81,(−3)⁴=81,所以3 和-3 都是81的4次方根,即81的4次方根是±3;因为 2⁵=32,所以32的5次方根是2.(2)当n 为奇数时 10" 的n 次方根为10;当n 为偶数时 10" 的n 次方根为±10.20.解:(1)∵a²=4 ∴a=±2 ∵b 的算术平方根为3 ∴b=9 ∴a+b=-2+9=7或a+b=2+9=11.(2)∵x 是25的平方根 ∴x=±5.∵y 是16的算术平方根 ∴y=4.∵x<y ∴x= -521.解:(1 √2(2)存在.当x=0,1时,始终输不出y 值.理由:0,1的算术平方根是0,1,一定是有理数.(3)当x<0时,筛选器无法运行.(4)x 值不唯一 x=3或x=9.(答案不唯一)22.解: (1)7√57−7(2 )∵3<√11<4,∴a =√11−3,∴2<√7<3,∴b =2,∴|a −b|+√11=|√11 - 3−2|+√11=5−√11+√11=5.(3)∵2<√5<3,∴11<9+√5<12,∵9+√5=x +y,其中x 是整数 且0<y<1 ∴x =11,y =9+√5−11=√5−2,∴x −y =11−(√5−2)=13−√5∴x -y 的相反数为 √5−13.23.解:(1)设面积为400 cm² 的正方形纸片的边长为a cm∴a²=400.又∵a>0 ∴a=20.又∵要裁出的长方形面积为300 cm²∴若以原正方形纸片的边长为长方形的长,则长方形的宽为300÷20=15( cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm 则宽为2x cm∴6x²=300,∴x²=50.又∵ x >0,∴x =√50∴长方形纸片的长为 3√50.又∵ √50>√49=7,∴3√50>21>20∴ 小丽不能用这块纸片裁出符合要求的纸片.24.解:(1)4(2)①∵S 等于原长方形OABC 面积的一半 ∴S=6 ∴12-3×AA'=6 解得. AA ′=2.当向左运动时,如图1,( OA ′=OA −AA ′=4−2=2,∴点A'表示的数为2;当向右运动时,如图2,∵ ∴OA ′=OA +AA ′=4+2=6,.∴ 点A'表示的数为6.所以点 A'表示的数.为2 或6.②i 左移时,由题意得O C ⋅OA ′=4,∵OC =3,∴OA ′=43,∴:x =OA −OA ′=4−43= 83;同法可得,右移时, x =83,故当S=4时x =83.ii 如图1,当原长方形OABC 向左移动时,点 D 表示的数为 4−12x,点 E 表示的数为 −12x,由题意可得方程 4−12x +(−12x)=0,解得x=4; 如图2,当原长方形OABC 向右移动时,点D 、E 表示的数都是正数,不符合题意.综上所述,x 的值为4.。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、在这四个数中,最大的数是()A.-3B.0C.4D.2、在实数,3中,最大的实数是()A. B. C.3 D.3、下列运算正确的是()A.(x﹣y)2=x 2﹣y 2B.x 2•x 4=x 6C.D.(2x 2)3=6x 64、已知实数x,y满足,则x﹣y等于()A.3B.-3C.1D.-15、若正数x的平方等于7,则下列对x的估算正确的是()A.1<x<2B.2<x<3C.3<x<4D.4<x<56、下列说法正确的是()A. 是的平方根B. 的平方根是C. 的平方根是D. 是的立方根7、如图所示,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示3﹣的点P落在线段()A.OB上B.AO上C.BC上D.CD上8、实数a,b,c,d在数轴上的对应点的位置如图所示,则正确结论是()A.ac>0B.|b|<|c|C.a>﹣dD.b+d>09、化简的结果是()A.2B.-2C.±2D.10、的值为()A.5B.﹣5C.±5D.2511、用计算器计算某个运算式,若正确的按键顺序是,则此运算式应是()A.4 3B.3 4C.D.12、下列结论中正确的个数为开方开不尽的数是无理数.数轴上的每一个点都表示一个实数;无理数就是带根号的数;负数没有立方根;垂线段最短.A.1个B.2个C.3个D.4个13、已知边长为m的正方形面积为12,则下列关于m的说法中:①m2是有理数;②m的值满足m2﹣12=0;③m满足不等式组;④m是12的算术平方根. 正确有几个()A.1个B.2个C.3个D.4个14、的立方根是()A.2B. 2C.8D.-815、数a在数轴上对应点位置如图,若数b满足b<|a|,则b的值不可能是().A.-2B.0C.1D.2二、填空题(共10题,共计30分)16、对于实数x,我们规定[X)表示大于x的最小整数,如[4)═5,[ )=2,[﹣2.5)=﹣2,现对64进行如下操作:64 [ )=9 [ )=4 [ )=3 [[ )=2,这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是________.17、用“>”或“<”连接:﹣________﹣,﹣3.14________﹣π.18、用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2=________.19、点A、B在数轴上,以AB为边作正方形,且该正方形的面积是16.若点B所对应的数是3,则点A所对应的数是________.20、若一个数的平方根是,则这个数的立方根是________ .21、在-2,2,这三个实数中,最小的是________。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、有理数a、b在数轴上的位置如图所示,则下列各式错误的是()A.b<0<aB.|b|>|a|C.ab<0D.a+b>02、下列说法,正确的是()A.零不存在算术平方根B.一个数的算术平方根一定是正数C.一个数的立方根一定比这个数小D.一个非零数的立方根仍是一个非零数3、(-2)2的算术平方根是()A.2B.±2C.-2D.4、若,则m+n的值是( )A.-1B.0C.1D.25、在算式(﹣)□(﹣)□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号6、设边长为3的正方形的对角线长为a,下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③5<a<6;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④7、实数界于哪两个相邻的整数之间( )A.3和4B.5和6C.7和8D.9和108、王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A. -1B.-+1C.D.-9、一个自然数的算术平方根是x,则下一个自然数的算术平方根是( )A.x+1B.x 2+1C. +1D.10、计算的结果是()A.3B.27C.D.11、在下列式子中,正确是()A. =﹣2B.﹣=﹣0.6C. =﹣13D.=±612、已知α是一元二次方程-x-1=0较大的根,则下面对α的估计正确的是()A.0<α<1B.1<α<1.5C.1.5<α<2D.2<α<313、下面计算中正确的是()A. + =B. - =C. =﹣3D.﹣1 ﹣1=114、在实数0,-,,-2中,最小的是()A.-2B.-C.0D.15、的算术平方根是()A.3B.C.±3D.±二、填空题(共10题,共计30分)16、在数轴上到原点的距离等于2的点所表示的数是________.17、(1)16的算术平方根是________ ;(2)-27的立方根是________ .18、若a是4的平方根,b=﹣42,那么a+b的值为________.19、比较大小:________ (填“>”,“<”,或“=”).20、计算﹣2sin45°的结果是________21、把下列各数填在相应的表示集合的大括号内:﹣|﹣3|,,0,﹣,﹣1.3,,,整数{________}负分数{________}无理数{________}.22、-的倒数是________;9的平方根是________ ;的算术平方根是________ .23、计算的结果是________.24、计算:|﹣2|﹣=________.25、定义运算“”的运算法则为:,则________.三、解答题(共5题,共计25分)26、计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+ .27、把下列各数填入相应的集合中:1,﹣78,,0,0.101001000…,π,﹣3.14,﹣0.333…,0.618非正整数集合:{ …};无理数集合:{ …};正有理数集合:{ …}.28、请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.29、2cos45°﹣(π+1)0++()﹣1.30、化简:|﹣|﹣|3﹣|.参考答案一、单选题(共15题,共计45分)1、D2、D3、A4、A5、D6、C7、B8、A9、D10、D11、A12、C13、B14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
第11章 数的开方 华东师大版数学八年级上册单元测试卷(含答案)
第11章 数的开方时间:60分钟满分:100分一、选择题(每小题3分,共30分) 1.64的立方根是( )A.4B.-4C.-8D.±82.若x2=(-0.7)2,则x=( )A.-0.7B.0.7C.±0.7D.0.493.在下列实数,81100,3.141 592 643,1π,7,711中有理数有( )A.5个B.3个C.4个D.2个4.下列计算正确的是( )A.(-3)2=-3B.36=±6C.39=3D.-3-8=25.观察下表,被开方数a的小数点的位置移动和它的算术平方根a的小数点的位置移动符合一定的规律.若a=180,- 3.24=-1.8,则被开方数a的值为( ) a0.000 0010.000 10.01110010 000 1 000 000a0.0010.010.1110100 1 000A.32.4B.324C.32 400D.-3 2406.若a是最小的正整数,b是最大的负整数,c是平方根等于本身的数,则a,b,c三数之和是( )A.-1B.0C.1D.27.直径为1个单位长度的圆上有一点A,现将点A与数轴上表示3的点重合,并将圆沿数轴无滑动地向左滚动一周,如图.若点A到达数轴上的点B处,则点B表示的数是( )A.2π-3B.π-3C.3-πD.3-2π8.已知|a|=5,b2=49,且|a+b|=a+b,则a-b的值为( )A.2或12B.2或-12C.-2或12D.-2或-129.一个长方体的体积为162 cm3,它的长、宽、高的比为3∶1∶2,则它的表面积为( )A.198 cm2B.162 cm2C.99 cm2D.81 cm210.如图,网格中小正方形的边长均为1,把阴影部分剪拼成一个正方形,正方形的边长为a.若4-a的整数部分和小数部分分别是x,y,则x(x-y)= ( )A.-2B.-2+6C.6D.2-6二、填空题(每小题3分,共18分)11.任意写一个无理数 .(满足-2到-1之间)12.若一个数的算术平方根是8,则这个数的立方根是 .13.已知a,b互为相反数,c,d互为倒数,则a3+b3+38cd的值为 .14.已知x-2的平方根是±7,且3x+y―2=4,则y的值为 .15.通过计算发现:13=1,13+23=3,13+23+33=6,13+23+33+43=10,仔细观察上面几道题的计算结果,请猜想13+23+…+1003= .16.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[2]=1.现对36进行如下操作:36[36]=6[6]=2[2]=1,这样对36进行3次操作后就会变为1.(1)类似地,对81进行 次上述操作后会变为1;(2)在只需要进行2次上述操作后就会变为1的所有正整数中,最大的是 .三、解答题(共52分)17.计算:(1)(4分)0.04+3-8-1―16; (2)(4分)16+3-27-(-3)2-|3-π|.2518.求下列各式中x的值.(1)(4分)4(x-3)2=9;(2)(4分)(x+10)3+125=0.19.(6分)已知M=3是m+3的算术平方根,N=2m-4n+3n―4是n-4的立方根,求M―N-3N的值.20.(8分)一个数值转换器,如图所示:(1)当输入的x为16时,输出的y值是 ;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;(3)若输入x值后,转换器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)若输出的y是3,请直接写出两个满足要求的x的值.21.(10分)木工李师傅现有一块面积为4 m2的正方形胶合板,准备做装饰材料用,他设计了如下两种方案.方案一:以正方形胶合板的边长为边裁出一块面积为3 m2的长方形装饰材料.方案二:沿着边的方向裁出一块面积为3 m2的长方形装饰材料,且其长宽之比为3∶2.李师傅设计的两种方案是否可行?若可行,请帮助解决如何裁剪;若不可行,请说明≈0.7)理由.(参考数据:1222.(12分)有两个十分喜欢探究的同学小明和小芳,他们善于将所做的题目进行归类,下面是他们的探究过程.(1)解题与归纳:①小明摘选了以下各题,请你帮他完成填空.22= ;52= ;62= ;02= ;(-3)2= ;(-6)2= .②归纳:对于任意实数a,有a2= =③小芳摘选了以下各题,请你帮她完成填空.(4)2= ;(9)2= ;(25)2= ;(36)2= ;(49)2= ;(0)2= .④归纳:对于任意非负实数a,有(a)2= .(2)应用:根据他们归纳得出的结论,解答问题.数a,b在数轴上的位置如图所示,化简:a2-b2-(a-b)2-(b―a)2.参考答案与解析1.A2.C 因为x2=(-0.7)2,所以x2=0.49,所以x=±0.7.3.B 81100=910,是有理数.根据有理数的定义可知,81100,3.141 592 643,711是有理数,共3个.4.D (-3)2=3,36=6,39≠3,-3-8=2.5.C 由题表可知被开方数a的小数点每向左或向右移动2位,算术平方根a的小数点就相应地移动1位.因为- 3.24=-1.8,所以32400=180,所以a=32 400.6.B ∵a是最小的正整数,∴a=1.∵b是最大的负整数,∴b=-1.∵c是平方根等于本身的数,∴c=0,∴a+b+c=1+(-1)+0=0.7.C 由题意知,在数轴上点A与点B之间的距离为π×1=π,且点B在点A的左侧,所以点B表示的数是3-π.8.D ∵|a|=5,∴a=±5.∵b2=49,∴b=±7.∵|a+b|=a+b,∴a+b>0,∴a=±5,b=7.∴当a=5, b=7时,a-b=5-7=-2;当a=-5,b=7时,a-b=-5-7=-12,∴a-b的值为-2或-12.9.A 由题意可设长方体的长、宽、高分别是3x cm,x cm,2x cm,则3x·x·2x=162,即6x3=162,x3=27,所以x=3,所以该长方体的长、宽、高分别是9 cm,3 cm,6 cm,所以它的表面积为2×(9×3+9×6+3×6)=198(cm2).10.B 由题意得S阴影=12×2×2×2+12×2×2=6,∴a2=6.∵a>0,∴a=6.∵4<6<9,∴2<6<3,∴1<4-6<2,∴4-a的整数部分x=1,小数部分y=3-6,∴x(x-y)=1×(1-3+6) =-2+6.11.-2(答案不唯一) ∵1<2<4,即1<2<2,∴-2<-2<-1,∴满足-2到-1之间的无理数可以为-2.12.4 由一个数的算术平方根是8可得,这个数为64,64的立方根是4,∴这个数的立方根为4.13.2 因为a,b互为相反数,所以a3与b3也互为相反数,故a3+b3=0.因为c,d互为倒数,所以cd=1,所以原式=0+38=0+2=2.14.15 由题意得x-2=49,∴x=51.∵3x+y―2=4,∴x+y-2=64,∴y=64+2-x=15.15.5 05013=1,13+23=1+2=3,13+23+33=1+2+3=6,13+23+33+43=1+2+3+4=10,可猜想13+23+…+1003=1+2+3+…+100=5 050.16.(1)3;(2)15 (1)81[81]=9[9]=3[3]=1,故对81进行3次上述操作后会变为1.(2)最大的是15,15[15]=3[3]=1,而16[16]=4[4]=2[2]=1,即在只需要进行2次上述操作后就会变为1的所有正整数中,最大的是15.17.解:(1)原式=0.2+(-2)-925=0.2-2-35=-2.4.(4分)(2)原式=4-3-3-(π -3)=4-3-3-π+3=-2-π+3.(4分)18.解:(1)因为4(x-3)2=9,所以(x-3)2=94,所以x-3=32或x-3=-32,解得x=92或x=32.(4分)(2)因为(x+10)3+125=0,所以(x+10)3=-125,所以x+10=3-125,所以x+10=-5,解得x=-15.(4分)19.解:因为M=3是m+3的算术平方根,所以m+3=32=9,即m=6. (2分)因为N=2m ―4n +3n ―4是n-4的立方根,所以2m-4n+3=3,将m=6代入2m-4n+3=3,解得n=3,所以 N=33―4=-1, (4分)所以 M ―N -3N =3―(―1)-3-1 =2+1=3. (6分)20.解:(1)2(2分)因为16的算术平方根是4,4是有理数,所以4不能输出.因为4的算术平方根是2,2是有理数,所以2不能输出.因为22,2是无理数,故输出2.(2)0,1.理由:因为0和1的算术平方根是它们本身,0和1是有理数,所以当x 为0或1时,始终输不出y 值.(4分)(3)x<0.当x<0时,导致开平方运算无法进行. (6分)(4)3或9.(答案不唯一)(8分)21.解:方案一可行.(1分)因为正方形胶合板的面积为4 m 2,所以正方形胶合板的边长为4=2(m).(2分)因为以正方形胶合板的边长为边裁一块面积为3 m 2的长方形装饰材料,所以所裁长方形的宽为3÷2=1.5(m).(3分)因此裁出一个长为2 m,宽为1.5 m 的长方形装饰材料是可行的.(5分)方案二不可行.理由如下:设所裁长方形装饰材料的长为3x m 、宽为2x m,则3x·2x=3,(6分)即x 2=12,解得x=12(负值已舍去),所以所裁长方形装饰材料的长为312m.(8分)因为312≈3×0.7=2.1,所以312>2,所以方案二不可行.(10分)22.解:(1)①2 5 6 0 3 6(3分)②|a|=(5分)③4 9 25 36 49 0(7分)④a(8分)(2)由题中数轴得,a<0,b>0,b>a,所以b-a>0, (9分)原式=|a|-|b|-|a-b|-(b-a)=-a-b+(a-b)-(b-a)=-a-b+a-b-b+a=a-3b. (12分)。
2021-2022学年华东师大新版八年级上册数学《第11章数的开方》单元测试卷(有答案)
2021-2022学年华东师大新版八年级上册数学《第11章数的开方》单元测试卷一.选择题1.9的平方根是()A.±3B.﹣3C.3D.2.9的平方根是()A.±3B.3C.﹣3D.3.4的平方根是()A.±4B.±2C.2D.﹣24.121的平方根是±11的数学表达式是()A.B.C.D.5.实数4的算术平方根是()A.B.±C.2D.±26.若+|y+3|=0,则的值为()A.B.﹣C.D.﹣7.下列说法正确的是()A.﹣3是﹣9的平方根B.3是(﹣3)2的算术平方根C.(﹣2)2的平方根是2D.8的立方根是±28.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.0.2的算术平方根是0.04D.﹣27的立方根是﹣39.实数﹣1,3.14,,π,,中,无理数的个数是()A.0B.1C.2D.310.式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9B.4.87C.4.88D.4.89二.填空题11.一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是.12.如果x<0,y>0且x2=4,y2=9,则x+y=.13.已知实数x,y满足+(y+1)2=0,则x﹣y等于.14.16的平方根是,的立方根是.15.=.16.正数的两个平方根是2a+1和4﹣3a,则这个正数是.17.正数a的两个平方根是方程3x+2y=2的一组解,则a=.18.方程x3﹣8=0的根是.19.(1)方程0.25x=1的解是x=.(2)用计算器计算:.(结果保留三个有效数字)20.下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的有(填序号).三.解答题21.求出下列x的值.(1)4x2﹣49=0;(2)27(x+1)3=﹣64.22.如果一个数的平方根是a+1和2a﹣7,求这个数.23.已知x,y,z满足+|x﹣y|+z2﹣z+=0,求2x﹣y+z的算术平方根.24.求x的值:(1)(x﹣2)2=1;(2)﹣27(x﹣1)3﹣125=0.25.已知2a﹣1的平方根是±3,3a+b﹣1的立方根是2,求2a﹣b的平方根.26.一个正数x的平方根是3a﹣4与8﹣a,则a和这个正数是多少?27.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.参考答案与试题解析一.选择题1.解:9的平方根是±3,故选:A.2.解:±=±3,故选:A.3.解:∵(±2)2=4,∴4的平方根是±2.故选:B.4.解:“121的平方根是±11”,根据平方根的定义,即可得出±=±11.故选:C.5.解:实数4的算术平方根是2.故选:C.6.解:∵+|y+3|=0,∴2x+1=0,y+3=0,解得x=﹣,y=﹣3,∴原式==.故选:C.7.解:A、负数没有平方根,故A错误;B、3是(﹣3)2的算术平方根,故B正确;C、(﹣2)2的平方根是±2,故C错误;D、8的立方根是2,故D错误.故选:B.8.解:A、,故A选项正确;B、=﹣9,故B选项正确;C、=0.2,故C选项错误;D、=﹣3,故D选项正确;故选:C.9.解:﹣1是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数.无理数有:,π,共3个.故选:D.10.解:∵≈1.732,≈1.414,∴2+≈2×1.732+1.414=4.878≈4.88.故选:C.二.填空题11.解:根据题意得3﹣a+2a+1=0,解得:a=﹣4,∴这个正数为(3﹣a)2=72=49,故答案为:49.12.解:∵x2=4,y2=9,∴x=±2,y=±3,又∵x<0,y>0,∴x=﹣2,y=3,∴x+y=﹣2+3=1.故答案为:1.13.解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故答案为:3.14.解:16的平方根是,=8,,即的立方根是2.故答案为:±4;2.15.解:∵62=36,∴.16.解:根据题意得:2a+1+4﹣3a=0,解得:a=5,可得这个正数的两个平方根为11和﹣11,则这个正数为121.故答案为:121.17.解:∵x、y是正数a的两个解,∴y=﹣x,∴3x+2(﹣x)=2,∴3x﹣2x=2,解得x=2,∴a=x2=4.故答案为:4.18.解:x3﹣8=0,x3=8,解得:x=2.故答案为:x=2.19.解:(1)∵0.25x=1,两边同时乘以4得,∴x=4.(2)﹣3.142≈3.6055﹣3.142=0.4636≈0.464.20.解:下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的为:②③,故答案为②③三.解答题21.解:(1)4x2﹣49=0x2=,解得:x=±;(2)27(x+1)3=﹣64(x+1)3=﹣,x+1=﹣,解得:x=﹣22.解:根据题意得a+1+2a﹣7=0,解得a=2.则这个数是:(a+1)2=9.23.解:∵+|x﹣y|+z2﹣z+=0,∴+|x﹣y|+(z﹣)2=0,∴2y+z=0,x﹣y=0,z﹣=0,解得:x=﹣,y=﹣,z=,则2x﹣y+z=2×(﹣)﹣(﹣)+=﹣++=.所以2x﹣y+z的算术平方根.24.解:(1)(x﹣2)2=1,∴(x﹣2)2=9,∴x﹣2=±3.解得:x=5或x=﹣1.(2)﹣27(x﹣1)3﹣125=0∴﹣27(x﹣1)3=125,∴(x﹣1)3=﹣,∴x﹣1=﹣,解得:x=﹣.25.解:∵2a﹣1的平方根是±3,∴2a﹣1=9,a=5,∵3a+b﹣1的立方根是2,∴3a+b﹣1=8,∴b=﹣6,∴2a﹣b=16,∴2a﹣b的平方根是±4.26.解:根据一个正数有两个平方根,它们互为相反数得:3a﹣4+8﹣a=0,即得:a=﹣2,即3a﹣4=﹣10,则这个正数=(﹣10)2=100.27.解:∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=.。
华师大八年级数学上《第11章数的开方》单元测试含答案解析.doc
第11章数的开方一、选择题1.在-3, 0, 4,低这四个数中,最大的数是()A.在1到2之间B.在2到3之间C.在3到4之间D. 8. 在已知实数:・1, 0,吉,・2中,最小的一个实数是 A. - 1 B. 0 C. £ D. - 2 29. 下列四个实数中,绝对值最小的数是( )A.・5B. -忑C. 1D. 410. 在・2, 0, 3,頁这四个数中,最大的数是( )A. - 2B. 0C. 3D. ^611. 在1, -2, 4,逅这四个数中,比0小的数是( A. -2 B. 1C. A /3D. 412. 四个实数・2, 0, -V2,1中,最大的实数是( A. -2 B. 0 C. - V2D. 113. 与无理数阿最接近的整数是( )A. 4B. 5C. 6D. 7A. -3B. 0C. 4D.后2.下列实数中,最小的数是( )A. -3B. 30.1D. 03.在实数1、0、-1、-2中,最小的实数是( )A ・・2 B.・1 C. 1 D. 04.实数 1, - 1, -寺,0,四个数中,最小的数是(A. 0B. 1C. - 1 一 'I5.在实数-2, 0, 2, 3中 ,最小的实数是()A. -2B. 0C. 2D. 36. a, b 是两个连续整数, 若a<V7<b,则a, b 分别是A. 2, 3B. 3, 2C. 3, 4D. 6, 8 7.估算、‘悩・2的值( )()在4到5之间 ( )14. 如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3 - <5的点P应落在线15. 估计匹尸介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0. 7与0. 8之间16. 若m=^-X ( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 217. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间( )A B C D~6 1 ~~2~;5 3 "A. C 与DB. A 与BC. A 与CD. B 与C18. 与1+頁最接近的整数是( )A. 4B. 3C. 2D. 119. 在数轴上标注了四段范围,如图,则表示旋的点落在( )/ Y V *、、,2^3^A.段①B.段②C.段③D.段④20. 若a= ( -3) ,3 - ( - 3) 14, b= ( -0. 6) ,2 - ( - 0. 6) 14, c= ( - 1.5) 11 - ( - 1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a21. 若k<V90<k+1 (k 是整数),则k二()A. 6B. 7C. 8D. 922. 估计舟履的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和923. 估计用的值在( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_.25. 若a<V6<b,且a、b是两个连续的整数,贝lj申二_.26. 若两个连续整数x、y满足x<{j+1Vy,则x+y的值是J___ £(用“〉”、“二”填空)27. 黄金比妬28. 请将2、舟、码这三个数用“〉”连结起来—.29. 它元的整数部分是—.30. 实数履・2的整数部分是_・第11章数的开方参考答案与试题解析一、选择题1.在・3, 0, 4,頁这四个数中,最大的数是()A. -3B. 0C. 4D. V6【考点】实数大小比较.【分析】根据有理数大小比较的法则进行判断即可.【解答】解:在-3, 0, 4,真这四个数中,-3<0<V6<4,最大的数是4.故选C.【点评】本题考查了有理数大小比较的法则,解题的关键是牢记法则,正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是本题的关键.2. 下列实数中,最小的数是()A. -3B. 3C. 4-D. 0 3【考点】实数大小比较.【分析】在数轴上表示出各数,再根据数轴的特点即可得出结论.【解答】解:如图所示:故选A.【点评】本题考查的是实数的大小比较,利用数形结合求解是解答此题的关键.3. 在实数1、0、-1、-2中,最小的实数是()A. -2B. -1C. 1D. 0【考点】实数大小比较.【分析】先在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】解:如图所示:• • ------ •0 ------- >■2 0 1 2・・•由数轴上各点的位置可知,- 2在数轴的最左侧,・••四个数中-2最小.故选A.【点评】本题考查的是实数的大小比较,熟知数轴上的任意两个数,右边的数总比左边的数大是解答此题的关键.4. 实数1,・1,・寺,0,四个数中,最小的数是()A. 0B. 1C. - 1D.-吉2【考点】实数大小比较.【专题】常规题型.【分析】根据正数>o>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.【解答】解:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得1 >0> - *> - 1, 所以在1, -1, -寺,0中,最小的数是-1.故选:C.【点评】此题主要考查了正、负数、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小,5. 在实数-2, 0, 2, 3中,最小的实数是()A. -2B. 0C. 2D. 3【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2<0<2<3,最小的实数是・2,故选:A.【点评】本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.6. a, b是两个连续整数,若a<V7<b,则a, b分别是()A. 2, 3B. 3, 2C. 3, 4D. 6, 8【考点】估算无理数的大小.【分析】根据A/4<V7<V9,可得答案.【解答】解:根据题意,可知五<百<肩,可得a二2, 23.故选:A.【点评】本题考查了估算无理数的大小,V4<V7<V9是解题关键.7. 估算、历_2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】估算无理数的大小.【分析】先估计何的整数部分,然后即可判断何・2的近似值.【解答】解:・・・5<何<6,A3<V27- 2<4,故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 在已知实数:-1, 0,寺,-2中,最小的一个实数是()A. -1B. 0C. |D. -2【考点】实数大小比较.【专题】常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小, 由此可得出答案.【解答】解:-2、-1、0、1中,最小的实数是-2.故选:D.【点评】本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.9. 下列四个实数中,绝对值最小的数是()A. - 5B.-伍C. 1D. 4【考点】实数大小比较.【分析】计算出各选项的绝对值,然后再比较大小即可.【解答】解:I -5|二5; | - *可也,|1|二1,⑷二4,绝对值最小的是1.故选C.【点评】本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.10. 在-2, 0, 3,頁这四个数中,最大的数是()A. -2B. 0C. 3D.【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2V0V低V3,故选:C.【点评】本题考查了实数比较大小,血<3是解题关键.11•在1, -2, 4, 这四个数中,比0小的数是()A. -2B. 1C. V3D. 4【考点】实数大小比较.【专题】常规题型.【分析】根据有理数比较大小的法则:负数都小于0即可选出答案.【解答】解:・2、1、4、yW这四个数中比0小的数是・2,故选:A.【点评】此题主要考查了有理数的比较大小,关键是熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12. 四个实数-2, 0, -V2, 1中,最大的实数是()A・・ 2 B. 0 C.・ V2D. 1【考点】实数大小比较.【分析】根据正数大于0, 0大于负数,正数大于负数,比较即可.【解答】解:J -2<-伍V0V1,・・・四个实数中,最大的实数是1.故选:D.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.13. 与无理数何最接近的整数是()A. 4B. 5C. 6D. 7【考点】估算无理数的大小.【分析】根据无理数的意义和二次根式的性质得出履无転,即可求出答案.【解答】解:・・•履<俑<负,・••何最接近的整数是仮,V36=6,故选:C.【点评】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道负在5和6之间,题目比较典型.14. 如图,已知数轴上的点A、B、C、D分别表示数・2、1、2、3,则表示数3 ■爸的点P应落在线段()4 9 兮9 £,-3 -1 0 ^2 3 4A. A0±B. 0B±C. BC±D. CD ±【考点】估算无理数的大小;实数与数轴.【分析】根据估计无理数的方法得出0<3-丽<1,进而得出答案.【解答】解:・・・2<馅<3,A0<3 - V5<b故表示数3 -頁的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出后的取值范围是解题关键.15. 估计茫1丄介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0. 6与0. 7之间D. 0. 7与0. 8之间【考点】估算无理数的大小.【分析】先估算旋的范围,再进一步估算圣丄,即可解答・【解答】解:V2. 22=4. 84, 2. 32=5, 29,:.2, 2<V5<2. 3,2.2-1 2.3-1・.・一-—=0. 6, ―-— =0. 65, 2 2V5 _ 1AO. 6<———<0. 65.2A/E _ 1所以' 7介于0. 6与0. 7之间.£故选:C.【点评】本题考查了估算有理数的大小,解决本题的关键是估算、‘用的大小.16. 若( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 2【考点】估算无理数的大小.【分析】先把m化简,再估算任大小,即可解答.【解答】解;m半X ( -2)二■伍,・・・1<V2<2,A■ 2< -近 V - 1,故选:C.【点评】本题考查了公式无理数的大小,解决本题的关键是估算迈的大小.17. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间()一 4 B C D0 1 ~L5~2~25 3A. C 与DB. A 与BC. A 与CD. B 与C【考点】估算无理数的大小;实数与数轴.【专题】计算题.【分析】确定出7的范围,利用算术平方根求出的范围,即可得到结果.【解答】解:V6.25<7<9,・・・2. 5<A/7<3,则表示听的点在数轴上表示时,所在C和D两个字母之间.故选A【点评】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.18. 与1朋最接近的整数是()A. 4B. 3C. 2D. 1【考点】估算无理数的大小.【分析】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+葩最接近的整数即可求解.【解答】解:・・・4<5<9,A2<V5<3.又5和4比较接近,・・・葩最接近的整数是2,・••与1+真最接近的整数是3,故选:B.【点评】此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.19. 在数轴上标注了四段范围,如图,则表示近的点落在()「②、: Y V 7、、,22―2728~Z9 VA.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2. 6^6. 76, 2. 72=7. 29, 2. 82=7. 84, 2. 92=8. 41, 32=9,V7. 84<8<8.41,・・・2・8<V8<2. 9,・•・仮的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.20. 若a二(・3)"・(・ 3) ", b二(・0. 6) 12・(・ 0. 6) 14, c=(・ 1.5) 11・(-1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a【考点】实数大小比较.【分析】分别判断出a・b与c・b的符号,即可得出答案.【解答】解:Ta - b二(-3) ” - ( -3) 14 - ( -0. 6) 12+ ( -0.6) 14= - 313 - 314 -些寻V0,5 5a < b,•/c - b=(・ 1.5) 11 - (- 1.5) 13・(・ 0.6) 12+ (・ 0.6) 14=(・ 1.5) n+1.5,3・ 0. 61Jo. 6“>0,・ \ c > b,c > b > a.故选D.【点评】此题考查了实数的大小比较,关键是通过判断两数的差,得出两数的大小.21 ・若k<V90<k+1 (k 是整数),则k二( )A. 6B. 7C. 8D. 9【考点】估算无理数的大小.【分析】根据勺示9, {而二10,可知9<価<10,依此即可得到k的值.【解答】解:TkvJ亦Vk+1 (k是整数),9<A/90<10,・•・k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.22. 估计后需+伍的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和9【考点】估算无理数的大小;二次根式的乘除法.【分析】先把各二次根式化为最简二次根式,再进行计算.占 +届=2 后平+3逅二2+3個【解答】解:••・・6V2+3@V7,•I、矽養应的运算结果在6和7两个连续自然数之间,故选:B.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.23. 估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】计算题.【分析】由于9<11<16,于是翻<届<岳,从而有3<VTi<4.【解答】解:V9<11<16,/. Va< V T L< V16,A3<V11<4.故选c.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_ -街<需<听_.【考点】实数大小比较.【专题】计算题.【分析】先分别得到7的平方根和立方根,然后比较大小.【解答】解:7的平方根为-衍,^7; 7的立方根为2厅,所以7的平方根和立方根按从小到大的顺序排列为-听<需<衔.故答案为:■衔<齿<衔.【点评】本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.25. 若a<V6<b,且a、b是两个连续的整数,贝I] J二8 .【考点】估算无理数的大小.【分析】先估算出航的范围,即可得出a、b的值,代入求出即可.【解答】解:・・・2<低V3,3—2, b—3,r.a b=8.故答案为:&【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出、用的范围.26. 若两个连续整数x、y满足xV徧1Vy,则x+y的值是7 .【考点】估算无理数的大小.【分析】先估算的范围,再估算叮g+1,即可解答.【解答】解:・・・2<妬<3,・・・3<岳+1<4,Vx<V5+Ky,x—3, y—4,A x+y=3+4=7.故答案为:7.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的范围.A/R - 1 127. 黄金比一> 4 (用“〉”、y“二”填空)2【考点】实数大小比较.【分析】根据分母相同,比较分子的大小即可,因为2<^5<3,从而得出伍-1>1,即可比较大小.【解答】解:・・・2<爸<3,A 1 < V5 ・ 1<2,•后1、1■■I• •r "八'2 2故答案为:>.【点评】本题考查了实数的大小比较,解题的关键是熟练掌握、用在哪两个整数之间,再比较大小.28. 请将2、号、低这三个数用“〉”连结起来号”斥>2・【考点】实数大小比较.【专题】存在型.【分析】先估算出馅的值,再比较出其大小即可.【解答】解:・・・、念2.236, "1=2.5, ••寺 >后>2.故答案为:-|>V5>2.【点评】本题考查的是实数的大小比较,熟记A/5^2. 236是解答此题的关键.29. 皿的整数部分是3 .【考点】估算无理数的大小.【分析】根据平方根的意义确定负的范围,则整数部分即可求得.【解答】解:V9<13<16,/.V13的整数部分是3.故答案是:3.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.30. 实数728-2的整数部分是3 .【考点】估算无理数的大小.【分析】首先得出姮的取值范围,进而得出姬・2的整数部分.【解答】解:・・・5<履<6,AV28 - 2的整数部分是:3.故答案为:3.【点评】此题主要考查了估计无理数大小,得出履的取值范围是解题关键.。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.aB.bC.cD.d2、下列运算不正确是()A. x3•x2=x5B.10 ﹣3=0.003C. =5D.(a3)4=a123、点A,B在数轴上的位置如图所示,则下列说法正确的是()A.a+b>0B.a-b<0C.a·b>0D. >04、5的算术平方根是()A.25B.±C.D.﹣5、下列说法:两个无理数的和可能是有理数;任意一个有理数都可以用数轴上的点表示;是三次二项式;立方根是本身的数有0和1;小明的身高约为米,则他身高的准确值a的范围是其中正确的有个A.1B.2C.3D.46、对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 [ ]=9 [ ]=3 [ ]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.47、实数a,b在数轴上的位置如图所示,则|a|﹣|b|可化简为()A.a﹣bB.b﹣aC.a+bD.﹣a﹣b8、已知是整数,且满足,则可能的值共有()A.3个B.6个C.49个D.99个9、下列四个实数中,比-1小的数是()A.-2B.0C.1D.210、下列算式正确的是()A.﹣(﹣3)2=9B.|﹣3|=﹣3C. =±3D. =﹣11、的算术平方根是()A. B. C. D.12、下列计算正确是( )A. =2B. =±2C. =2D. =±213、9的算术平方根是()A.3B.81C.±3D.±8114、下列运算正确的是()A. B. C. D.15、下列计算正确的是()A.a 2•a 4=a 8B. =±2C. =﹣1D.a 4÷a 2=a 2二、填空题(共10题,共计30分)16、若一个数的立方根等于这个数的算术平方根,则这个数是________.17、计算:(π﹣3.14)0+2cos60°=________.18、计算:________.19、比较大小:________ (填入“>”或“<”号).20、写出一个比-2 小的无理数________.21、在1~1000这1000个自然数中,立方根为有理数的个数为________22、任何实数a,可用[a]表示不超过a的最大整数,如[2]=2,[3.7]=3,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地:对325只需进行________次操作后变为1.23、-64的立方根与的平方根之和是________.24、已知,那么________.25、比较大小:2________ 3(填“>”、“=”或“<”).三、解答题(共5题,共计25分)26、计算:.27、计算:(结果精确到1).28、用计算器计算:+4×(精确到0.001)29、实数a,b在数轴上对应点的位置如图所示.化简:式子|b|+ .30、()﹣2﹣20150+÷﹣2sin45°.参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、C5、B6、C7、C8、B9、A10、D12、A13、A14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
华东师大版八年级数学上第章数的开方单元测试培优试题含答案.docx
数的开方单元测试卷第Ⅰ卷(选择题)一.选择题(共10 小题)1.下列说法正确的是()A.的相反数是B.2 是4 的平方根C.是无理数D.计算:=﹣32.下列各数中,是无理数的是()A.B.3.14 C.D.3.如图,数轴上的点A,B,O,C,D 分别表示数﹣ 2,﹣ 1, 0, 1, 2,则表示数 2﹣的点P 应落在()A.线段AB 上B.线段BO 上C.线段OC上D.线段CD上4.估计+1 的值,应在()A.1 和 2 之间B.2 和 3 之间C. 3 和 4 之间D.4 和 5 之间5.如图为 O、A、B、C 四点在数线上的位置图,其中 O 为原点,且 AC=1,OA=OB,若 C 点所表示的数为x,则B 点所表示的数与下列何者相等?()A.﹣( x+1)B.﹣( x﹣1)C. x+1 D.x ﹣ 16.若+| 3﹣y| =0,则x﹣y 的正确结果是()A.﹣ 1 B.1C.﹣ 5 D.57.已知 M=,则M 的取值范围是()A.8<M < 9B.7<M <8 C .6<M<7 D.5<M<68.已知三角形三边长为a,b,c,如果+| b﹣8|+ (c﹣10)2=0,则△ ABC 是()A.以 a 为斜边的直角三角形B.以 b 为斜边的直角三角形C.以 c 为斜边的直角三角形D.不是直角三角形9.若+|y﹣ 2 =0,则( x y)2017的值为()|+A.﹣ 1 B.1C.± 1 D.010.﹣2014 =()A.20142B.20142﹣ 1C.2015D.20152﹣ 1第Ⅱ 卷(非选择题)二.填空题(共 5 小题)11.一个正数的平方根分别是x+1 和x﹣5,则x=.12.计算:﹣| ﹣ 2|+ ()﹣ 1=.13.对于任意两个正数a, b,定义一种运算※如下: a※ b=,按照此法则计算 3※ 4=..已知2 是 x 的立方根,且(y﹣2z+5)2+=0,求的值.1415.已知,则=.三.解答题(共 6 小题)16.计算:++﹣17.( 1)计算:﹣14﹣2×(﹣ 3)2+÷(﹣)( 2)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D 分别落在点M、N 的位置,发现∠ EFM=2∠ BFM,求∠ EFC的度数.18.如图,数轴上 a、b、c 三个数所对应的点分别为A、 B、 C,已知: b 是最小的正整数,且 a、c 满足( c﹣6)2+| a+2| =0,①求代数式a2 c2﹣ 2ac 的值;+②若将数轴折叠,使得点 A 与点 B 重合,则与点 C 重合的点表示的数是.③请在数轴上确定一点 D,使得 AD=2BD,则点 D 表示的数是.19.如图,动点 M、 N 同时从原点出发沿数轴做匀速运动,已知动点M、 N 的运动速度比是 1:2(速度单位: 1 个单位长度 / 秒),设运动时间为 t秒.(1)若动点 M 向数轴负方向运动,动点 N 向数轴正方向运动,当 t=2 秒时,动点M 运动到 A 点,动点 N 运动到 B 点,且 AB=12(单位长度).①在直线l 上画出A、B 两点的位置,并回答:点 A 运动的速度是(单位长度 / 秒);点 B 运动的速度是(单位长度/ 秒).②若点 P 数上一点,且PA PB=OP,求的;(2)由( 1)中 A、B 两点的位置开始,若 M 、N 同再次开始按原速运,且在数上的运方向不限,再几秒, MN=4(位度)?20.先填写表,通察后再回答:a⋯0.00010.01110010000⋯⋯0.01x1y100⋯( 1)表格中 x=,y=;( 2)从表格中探究 a 与数位的律,并利用个律解决下面两个:①已知≈3.16,≈;②已知=8.973,若=897.3,用含 m 的代数式表示 b, b=;( 3)比与 a 的大小.21.如,在数上点 A 表示的数 a、点 B 表示数 b,a、b 足 | a 30|+(b+6)2=0.点O 是数原点.( 1)点 A 表示的数,点B表示的数,段AB的.( 2)若点 A 与点 C 之的距离表示AC,点 B 与点 C 之的距离表示BC,在数上找一点C,使 AC=2BC,点 C 在数上表示的数.( 3)有点 P、Q 都从 B 点出,点 P 以每秒 1 个位度的速度向点A 移;当点P 移到O 点,点Q 才从B 点出,并以每秒 3 个位度的速度向右移,且当点 P 到达 A 点,点 Q 就停止移,点 P 移的 t 秒,:当 t 多少,P、Q 两点相距 4 个位度?参考答案1.B.2.D.3.B.4.C.5.B.6.A.7.C.8.C.9.A.10.B.11.212.﹣ 1.13.14.315.16.解:原式 =4+ +﹣5=4+3﹣5=2.17.解:( 1)原式 =﹣1﹣ 18+9=﹣10;(2)由折叠得:∠ EFM=∠ EFC,∵∠ EFM=2∠BFM,∴设∠ EFM=∠ EFC=x,则有∠ BFM= x,∵∠ MFB+∠MFE+∠ EFC=180°,∴ x+x+ x=180°,解得: x=72°,则∠ EFC=72°.18.解:( 1)∵( c﹣ 6)2+| a+2| =0,∴a+2=0,c﹣6=0,解得 a=﹣2,c=6,∴a2+c2﹣ 2ac=4+36+24=64;( 2)∵ b 是最小的正整数,∴b=1,∵(﹣ 2+1)÷ 2=﹣0.5,∴6﹣(﹣ 0.5)=6.5,﹣ 0.5﹣6.5=﹣ 7,∴点 C 与数﹣ 7 表示的点重合;( 3)设点 D 表示的数为 x,则若点 D 在点 A 的左侧,则﹣ 2﹣x=2(1﹣x),解得 x=4(舍去);若点 D 在 A、B 之间,则 x﹣(﹣ 2)=2( 1﹣ x),解得 x=0;若点 D 在点 B 在右侧,则 x﹣(﹣ 2) =2(x﹣1),解得 x=4.综上所述,点 D 表示的数是 0 或 4.故答案为:﹣ 7; 0 或 4.19.解:( 1)①画出数轴,如图所示:可得点 M 运动的速度是 2(单位长度 / 秒);点 N 运动的速度是4(单位长度 / 秒);故答案为: 2,4;②设点 P 在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴ x≥2,当 2≤x≤ 8 时, PA﹣PB=(x+4)﹣( 8﹣x)=x+4﹣8+x,即 2x﹣4=x,此时 x=4;当 x>8 时, PA﹣PB=( x+4)﹣( x﹣8)=12,此时 x=12,则=2 或 4;( 2)设再经过 m 秒,可得 MN=4(单位长度),若M 、N 运动的方向相同,要使得 MN=4,必为 N 追击 M ,∴ | ( 8﹣ 4m)﹣(﹣ 4﹣2m) | =4,即 | 12﹣2m| =4,解得: m=4 或 m=8;若M 、N 运动方向相反,要使得 MN=4,必为 M、N 相向而行,∴ | ( 8﹣ 4m)﹣(﹣ 4+2m)| =4,即 | 12﹣ 6m| =4,解得: m= 或 m= ,综上, m=4 或 m=8 或 m=或m=.20.解:( 1)x=0.1,y=10;( 2)①根据题意得:≈ 31.6;②根据题意得: b=10000m;( 3)当a=0 或 1 时,=a;当 0<a<1 时,>a;当 a>1 时,<a,故答案为:( 1)0.1;10;( 2)① 31.6;②10000m 21.解:( 1)∵ | a﹣30|+ (b+6)2=0,∴a﹣ 30=0, b+6=0,解得 a=30,b=﹣ 6,AB=30﹣(﹣ 6) =36.故点 A 表示的数为 30,点 B 表示的数为﹣ 6,线段 AB的长为 36.(2)点 C 在线段 AB上,∵ AC=2BC,∴ AC=36×=24,点C 在数轴上表示的数为 30﹣ 24=6;点C 在射线 AB 上,∵AC=2BC,∴AC=36×2=72,点C 在数轴上表示的数为 30﹣ 72=﹣42.故点 C 在数轴上表示的数为 6 或﹣ 42;( 3)经过 t 秒后,点 P 表示的数为 t ﹣6,点 Q 表示的数为,(i)当 0< t≤ 6 时,点 Q 还在点 A 处,∴ PQ=t﹣ 6﹣(﹣ 6)=t=4;(ii)当 6<x≤9 时,点 P 在点 Q 的右侧,∴( t﹣ 6)﹣ [ 3( t﹣6)﹣ 6] =4,解得: t=7;(iii)当 9<t ≤30 时,点 P 在点 Q 的左侧,∴ 3( t﹣6)﹣ 6﹣( t﹣ 6) =4,解得: t=11.综上所述:当 t 为 4 秒、 7 秒和 11 秒时, P、Q 两点相距 4 个单位长度.故答案为: 30,﹣ 6, 36;6 或﹣ 42.。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、±2是4的()A.平方根B.相反数C.绝对值D.算术平方根2、下列说法正确的是()A.|-2|=-2B.0的倒数是0C.4的平方根是2D.-3的相反数是33、下列实数中最大的是()A. B. C. D.4、实数的值在( )A.0和1之间B.1和2之间 C.2和3之间 D.3和4之间5、下列各式运算中正确的是()A. B. C. D.6、下列有关平方根的叙述,正确的个数是()①如果a存在平方根,那么a>0;②如果a有两个不同的平方根,那么a>0;③如果a没有平方根,那么a<0;④如果a>0,那么a的平方根也大于0.A.1B.2C.3D.47、下列命题中,为真命题的是()A. 是13的算术平方根B.三角形的一个外角大于任何一个内角C. 是最简二次根式D.两条直线被第三条直线所截,内错角相等8、估计()的值应在()A.1和2之间B.3和4之间C.4和5之间D.5和6之间9、实数的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间10、计算的结果为( )A.3B.C.D.11、下列说法中正确的是()A.10的平方根是100B.-2不是4的平方根C. 的平方根是D.0.01的算术平方根是0.112、下列计算正确的是()A. =3B.﹣=9C.﹣=1 D.|﹣3|=﹣313、下列说法中正确的是()A. 的平方根是B. 的算术平方根是C. 与相等 D. 的立方根是14、下列说法错误的是 ( )A.无理数的相反数还是无理数B.无理数都是无限小数C.正数、负数统称有理数D.实数与数轴上的点一一对应15、计算﹣()2+(+π)0+(﹣)﹣2的结果是()A.1B.2C.D.3二、填空题(共10题,共计30分)16、-2的倒数是________,4的算术平方根是________.17、计算:= ________。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、若实数a,b满足+(b+)2=0,则a•b的值是()A.1B.-1C.D.-2、4的算术平方根是A.-4B.4C.-2D.23、7的平方根等于()A. B.49 C.±49 D.±4、下面实数比较大小正确的是()A.3>7B.C.0<﹣2D.2 2<35、下列运算中,正确的是()A. + =B.﹣a+2a=aC.(a 3)3=a6 D. =-36、下列等式成立的是().A. B. C. D.7、如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P 应落在线段()A.AO上B.OB上C.BC上D.CD上8、25的算术平方根是()A.5B.-5C.±5D.9、若实数 a,b 满足|a|>|b|,则与实数 a,b 对应的点在数轴上的位置可以是()A. B. C. D.10、在数轴上有、两个有理数的对应点,则下列结论中,正确的是()A. B. C. D.11、长方形ABCD在数轴上的位置如图所示,点D和点A对应的数分别为0和1,,若长方形ABCD绕着顶点A顺时针方向在数轴上旋转,记作1次翻转翻转1次后,点B所对应的数为3,再按上述方法绕着顶点B翻转1次,点C所对应的数是4,按照上述方法连续翻转循序渐进下列对于A,B,C,D落点所对应数的描述中:点A所对应的数可能为73;点B所对应的数可能为123;点C所对应的数可能为520;点D所对应的数可能为其中正确的有()A.1个B.2个C.3个D.4个12、的值等于().A. B.1 C. D.13、在四个实数2,0,﹣,﹣中,最小实数的倒数是()A.0B.﹣2C.D.﹣14、满足的整数x是()A.-2,-1,0,1,2B.-1,0,1,2,3C.-2,-1,1,2,3D.-1,0,1,215、若a2=9,=﹣2,则a+b=()A.﹣5B.﹣11C.﹣5 或﹣11D.±5或±11二、填空题(共10题,共计30分)16、在实数﹣5,﹣,0,π,中,最大的一个数是________.17、 =________.18、如图,在数轴上方作一个4×4的方格(每一方格的边长为1个单位),依次连结四边中点A,B,C,D得到一个正方形,点A落在数轴上,用圆规在点A的左侧的数轴上取点E使AE=AB.若点A在原点右侧且到原点的距离为1个单位,则点E表示的数是________。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、有下列说法:①任何无理数都是无限小数;②数轴上的点与有理数一一对应;③绝对值等于本身的数是0;④0除以任何数都得0;⑤一个数的平方根等于它本身的数是0,1.其中正确的个数是()A.1B.2C.3D.42、若a>0,b<0,那么a﹣b的值()A.大于零B.小于零C.等于零D.不能确定3、给出四个数0,,-1,3其中最小的是()A.0B.C.-1D.34、下列各式有意义的条件下不一定成立的是()A. =aB. =aC. =aD. =﹣a5、4的平方根是A.±2B.±C.2D.166、的算术平方根是( )A.2B.-2C.D.167、如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点到达点,下列说法正确的是()A.点所表示的是B.数轴上只有一个无理数C.数轴上只有无理数没有有理数D.数轴上的有理数比无理数要多一些8、若=2,则(2a-5)2-1的立方根是()A.4B.2C.±4D.±29、满足-<<的整数是()A.-2,-1,0,1,2,3B.-1,0,1,2,3C.-2,-1,0,1,2,D.-1,0,1,210、下列运算正确是()A. B. C. D.11、的值在()A.1和 2之间B.2 和 3之间C.3和 4之间D.4和 5之间12、有下列说法中正确的说法的个数是(1)无理数就是开方开不尽的数;(2)无理数都可以用数轴上的点来表示;(3)无理数是无限不循环小数,(4)无理数包括正无理数、零、负无理数;(5)不带根号的数一定是有理数()A.1个B.2个C.3个D.4个13、4的平方根是()A.8B.2C.±2D.±14、估计的运算结果是()A.6与7之间B.7与8之间C.8与9之问D.9与10之问15、在实数|﹣4|,﹣,0,π中,最小的数是()A.|﹣4|B.﹣C.0D.π二、填空题(共10题,共计30分)16、25的算术平方根是________;27的立方根是________.17、能够说明“=x不成立”的x的值是________(写出一个即可).18、在实数﹣2、0、﹣1、2、中,最小的是________ .19、已知|x|=3,y2=16,xy<0,则x﹣y=________.20、用计算器比较大小:________(填“>”、“=”、“<”)21、满足的整数的值 ________.22、比较大小:3 ________5 ;化简:=________.23、用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2=________.24、的相反数是________,的平方根是________。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如下表:被开方数a的小数点位置移动和它的算术平方根的小数点位置移动规律符合一定的规律,若=180,且= -1.8,则被开方数a的值为( )a …0.000001 0.0001 0.01 1 100 10000 1000000 ……0.001 0.01 0.1 1 10 100 1000 …A.32.4B.324C.32400D.-32402、的平方根是()A.-3B.3C.3或-3D.93、在,0,-1,π这四个数中,最大的数是()A. B.0 C.-1 D.π4、2的算术平方根是()A.4B.±4C.D.5、估计的运算结果应在下列哪两个数之间()A.3.5 和 4.0B.4.0 和 4.5C.4.5 和 5.0D.5.0 和 5.56、的平方根是()A.3B.C.9D.7、计算的结果为( )A.6B.-6C.18D.-188、下列各式中,运算正确的是()A. =±2B. ﹣|﹣9|=﹣(﹣9)C. (x2)2=x4D.=2﹣π9、下面四个数中与最接近的数是()A.2B.3C.4D.510、数轴上A、B两点表示的数分别是1和,点A关于点B的对称点是点C,则点C所表示的数是A. B. C. D.11、下列实数中,属于有理数的是()A. B.1. C.π D.12、在计算器上依次按键80÷8–30×3=后,显示器显示的结果为( ).A.-80B.-60C.150D.013、有理数 - 125的立方根为A.-5B.5C.±5D.-514、在3,0,﹣2,四个数中,最小的数是()A.3B.0C.﹣2D.15、下列说法正确的是()A.﹣1的绝对值的平方根是1B.0的平方根是 0 C. 是最简二次根式D.()﹣3等于二、填空题(共10题,共计30分)16、计算﹣(﹣1)2=________.17、化简的结果________.18、知,为两个连续的整数,且,则________.19、一组数,2,,2 ,,…2 按一定的规律排列着,则这组数中最大的有理数为________.20、(-3)2的平方根等于________ .21、比较大小:﹣________﹣2 .(填“>”或“<”)22、4的平方根等于________.23、-1 的立方根是________24、若,且,则=________;25、已知有理数,,满足,那么的平方根为________.三、解答题(共5题,共计25分)26、计算:.27、计算(1)﹣++(2)﹣>﹣3.28、已知2a﹣3的平方根是±5,2a+b+4的立方根是3,求a+b的平方根.29、已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,c是的整数部分,求a+2b-c的平方根.30、将下列各数填入相应的集合内:,1.010010001,,0,,…(相邻的两个2之间的3一次增加1个),.有理数集合{ …}无理数集合{ …}参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、C5、B6、B7、A9、B10、D11、B12、A13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、30、。
新华师大版八年级上册数学数的开方单元过关测试卷(附参考答案和评分标准)
新华师大版八年级上册数学第11章 数的开方单元过关测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 下列实数中,是无理数的为 【 】 (A ) 333.0- (B )722(C )π- (D )38- 2. 下列说法: ①实数与数轴上的点一一对应; ②无理数是开方开不尽的的数; ③负数没有立方根; ④4的平方根是2±,表示为24±=.其中错误的有 【 】 (A )0个 (B )1个 (C )2个 (D )3个3. 在下列各组数中,互为相反数的是 【 】 (A )2与38-- (B )2与21- (C )2-与2- (D )2与()22-4. 下面是某同学求解方根的作业题,其中正确的是 【 】 (A )()112-=- (B )2118333=(C )39±= (D )5212583-=-- 5. 如果a 的平方根是1±,则2021a 等于 【 】 (A )1± (B )1- (C )2021± (D )16. 一块正方体水晶砖的体积为100 cm 3,则它的棱长大约在 【 】 (A )4 cm ~5 cm 之间 (B )5 cm ~6 cm 之间 (C )6 cm ~7 cm 之间 (D )7 cm ~8 cm 之间7. 一个自然数的算术平方根是x ,则它后面的一个数的算术平方根是 【 】 (A )1+x (B )12+x (C )1+x (D )12+x8. 若9,422==b a ,且0>ab ,则b a +的值为 【 】 (A )5± (B )1± (C )5 (D )1-9. 在如图所示的数轴上表示实数37-的点可能是 【 】(A )点A (B )点B (C )点C (D )点D10. 一个长方体的体积为162 cm 3,长、宽、高的比为3 : 1 : 2,则它的表面积为【 】 (A )162 cm 2 (B )198 cm 2 (C )99 cm 2 (D )81 cm 2二、填空题(每小题3分,共15分)11.327的平方根是_________,()25-的算术平方根是_________,_________的立方根是1.0-. 12. 比较大小:215-_________1. 13. 两个连续整数y x ,满足y x <+<23,则=+y x _________. 14. 如果a 是2018的算术平方根,那么1002018的平方根是_________. 15. 通过计算发现:113=,32133=+,6321333=++,仔细观察上面几道题的计算结果,猜想=+++33310021 _________.三、解答题(本大题共8个小题,共75分)16. 计算:(每小题4分,共8分)(1)()3323812736425-÷⨯-+-⨯;(2)32234412364371412⨯⎪⎭⎫⎝⎛-⨯⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-++-+.17.(9分)已知12-a 的平方根是3±,23+-b a 的算术平方根是4,求b a 3+的立方根.18.(9分)已知a 是15的整数部分,b 是15的小数部分,求()()22152b a -+-的立方根.19.(9分)仿照下面的解题过程,解答问题:解答问题:已知21221+-+-=x x y ,求xy 的值.20.(9分)观察例题:∵974<<,即372<<,∴7的整数部分为2,小数部分为27-.请你观察上述规律后解决下面的问题: (1)规定用符号[]m 表示实数m 的整数部分.例如:[]314.3,032==⎥⎦⎤⎢⎣⎡,按此规定[]=+110_________.(2)如果3的小数部分为a ,5的小数部分为b ,求1--b a 的值.21.(10分)(1)用“>”“<”或“=”填空:1________2,2________3; (2)由以上可知:①=-21_________;②=-32_________; (3)利用上面的规律计算:3635433221-++-+-+- .22.(10分)有以下实数:()9,3,12,2,25,53332---. (1)请你计算其中有理数的和;(2)若2-x 是(1)中的和的平方,求2x 的值.23.(11分)如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 表示的数为m .(1)=m _________; (2)求11-++m m 的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有d c +2与162-d 互为相反数,求d c 32-的平方根.新华师大版八年级上册数学第11章 数的开方单元过关测试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. 3± 5 001.0- 12. < 13. 7 14. 10a± 15. 5050三、解答题(本大题共8个小题,共75分)16. 计算:(每小题4分,共8分) (1)()3323812736425-÷⨯-+-⨯;解:原式()()233425-⨯⨯+-⨯=281810-=--=(2)32234412364371412⨯⎪⎭⎫ ⎝⎛-⨯⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-++-+解:原式64161236427493⨯⨯⎪⎪⎭⎫ ⎝⎛+-+= 94234323=⨯⎪⎭⎫ ⎝⎛+-= 17.(9分)已知12-a 的平方根是3±,23+-b a 的算术平方根是4,求b a 3+的立方根.解:由题意可得:⎩⎨⎧=+-=-1623912b a a ……………………………………3分解之得:⎩⎨⎧==15b a……………………………………5分 ∴81353=⨯+=+b a……………………………………7分 ∵283=∴b a 3+的立方根为2.……………………………………9分 18.(9分)已知a 是15的整数部分,b 是15的小数部分,求()()22152ba -+-的立方根.解:∵16159<< ∴16159<< ∴4153<<∵a 是15的整数部分,b 是15的小数部分∴315,3-==b a……………………………………4分 ∴()()22152b a -+-()()[]()()4593631515631515322222=+=+-+-=--+⨯-=……………………………………7分 ∴()()22152b a -+-的立方根为345.……………………………………9分 19.(9分) 解:由题意可知:⎩⎨⎧≥-≥-012021x x 解之得:21=x ……………………………………5分∴2212122121=+-⨯+⨯-=y……………………………………7分 ∴1221=⨯=xy . ……………………………………9分 20.(9分)观察例题:∵974<<,即372<<,∴7的整数部分为2,小数部分为27-.请你观察上述规律后解决下面的问题:(1)规定用符号[]m 表示实数m 的整数部分.例如:[]314.3,032==⎥⎦⎤⎢⎣⎡,按此规定[]=+110_________.(2)如果3的小数部分为a ,5的小数部分为b ,求1--b a 的值. 解:(1)4;……………………………………3分 (2)∵954,431<<<< ∴954,431<<<< ∴352,231<<<<∵3的小数部分为a ,5的小数部分为b∴25,1-==b a……………………………………7分 ∴1--b a()12511251-+-=---=52-=.……………………………………9分 21.(10分)(1)用“>”“<”或“=”填空:1________2,2________3;(2)由以上可知: ①=-21_________; ②=-32_________; (3)利用上面的规律计算:3635433221-++-+-+- .解:(1)< < ;……………………………………2分 (2)①12-;……………………………………3分 ②23-;……………………………………4分 (3)原式342312-+-+-=613613536+-=+-=-++5=.……………………………………10分 22.(10分)有以下实数:()9,3,12,2,25,53332---. (1)请你计算其中有理数的和; (2)若2-x 是(1)中的和的平方,求2x 的值. 解:(1)()()93253332+-+-+327225+--= 1-=;……………………………………5分由题意可得:()1122=-=-x解之得:3=x……………………………………8分 ∴9322==x .……………………………………10分 23.(11分)如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 表示的数为m .(1)=m _________; (2)求11-++m m 的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有d c +2与162-d 互为相反数,求d c 32-的平方根. 解:(1)22-;……………………………………2分 (2)由(1)可知:11-++m m12232123122122-+-=-+-=--++-=2=;……………………………………5分 (3)∵d c +2与162-d 互为相反数∴01622=-++d d c ∵d c +2≥0,162-d ≥0 ∴016,022=-=+d d c解之得:4,2=-=d c 或4,2-==d c ……………………………………7分 当4,2=-=d c 时()16124432232-=--=⨯--⨯=-d c 此时d c 32-没有平方根;……………………………………9分 当4,2-==d c 时()16124432232=+=-⨯-⨯=-d c 此时d c 32-的平方根为4± 综上所述,d c 32- 的平方根为4±. ……………………………………11分。
华师大版八年级上册第11章《数的开方》单元测试卷含答案
华师大版八年级上册第11章《数的开方》单元测试卷(满分100分)姓名:___________班级:___________学号:___________成绩:___________ 一.选择题(共8小题,满分24分,每小题3分)1.在﹣1,0,π,这四个数中,最大的数是()A.﹣1B.0C.πD.2.等于()A.﹣4B.4C.±4D.2563.实数﹣2,0.3,,﹣,﹣π中,无理数的个数是()A.2B.3C.4D.54.实数a,b,c在数轴上的对应点的位置如图所示,若|a|=|b|,则下列结论中错误的是()A.a+b=0B.a+c<0C.b+c>0D.ac<05.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.96.下列说法,其中正确说法的个数是()①﹣64的立方根是4 ②49的算术平方根是±7③的立方根是④的平方根是A.1B.2C.3D.47.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.28.利用计算器计算出的下表中各数的算术平方根如下:………0.250.7906 2.57.9062579.06250…根据以上规律,若≈1.30,≈4.11,则≈()A.13.0B.130C.41.1D.411二.填空题(共6小题,满分24分,每小题4分)9.(4分)我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)10.(4分)规定用符号[m]表示一个实数m的整数部分,例如[]=0,[π]=3,按此规定,[+1]=.11.(4分)若m,n为实数,且|m+3|+=0,则()2020的值为.12.(4分)甲同学利用计算器探索.一个数x的平方,并将数据记录如表:x16.216.316.416.516.616.716.816.917.0 x2262.44265.69268.96272.25275.56278.89282.24285.61289请根据表求出275.56的平方根是.13.(4分)的立方根是.14.(4分)比较大小:52.三.解答题(共8小题,满分52分)15.(5分)计算:(﹣1)2020﹣(+)+.16.(6分)求出下列x的值:(1)﹣27x3+8=0;(2)3(x﹣1)2﹣12=0.17.(6分)已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.18.(6分)(1)求出下列各数:①﹣27的立方根;②3的平方根;③的算术平方根.(2)将(1)中求出的每一个数准确地表示在数轴上,并用<连接大小.19.(6分)有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.(1)已知﹣m☆3的结果是﹣4,则m=.(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n的值是多少?20.(7分)“比差法”是数学中常用的比较两个数大小的方法,即:.例如:比较﹣2与2的大小:∵﹣2﹣2=﹣4,又∵<<,则4<<5,∴﹣2﹣2=﹣4>0,∴﹣2>2.请根据上述方法解答以下问题:比较2﹣与﹣3的大小.21.(8分)阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若的整数部分为a,小数部分为b,求a2+b﹣的值.(2)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的值.22.(8分)(1)用“<““>“或“=“填空:,;(2)由以上可知:①|1﹣|=,②||=(3)计算:|1﹣|+|﹣|+|﹣+…+|﹣|.(结果保留根号)参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:根据实数比较大小的方法,可得﹣1<0<<π,∴在这四个数中,最大的数是π.故选:C.2.解:=4.故选:B.3.解:﹣,﹣π是无理数,共有2个无理数,故选:A.4.解:∵|a|=|b|,∴实数a,b在数轴上的对应点的中点是原点,∴a<0<b<c,且c>﹣a,∴a+b=0,A不符合题意;∴a+c>0,B符合题意;∴b+c>0,C不符合题意;∴ac<0,D不符合题意.故选:B.5.解:∵≈2.646,∴与最接近的是2.6,故选:B.6.解:①﹣64的立方根是﹣4,故此选项错误;②49的算术平方根是7,故此选项错误;③的立方根是,正确;④的平方根是:±,故此选项错误;故选:A.7.解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.8.解:由表格可以发现:被开方数的小数点(向左或者右)每移动两位,其算术平方根的小数点相应的向相同方向移动一位.∵16.9×100=1690,∴=×10=41.1.故选:C.二.填空题(共6小题,满分24分,每小题4分)9.解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.10.解:∵3<<4,∴4<<5,∴[+1]=4.故答案为:411.解:∵|m+3|+=0,∴m+3=0,n﹣3=0,解得m=﹣3,n=3,则()2020=()2020=(﹣1)2020=1,故答案为:1.12.解:观察表格数据可知:=16.6所以275.56的平方根是±16.6.故答案为±16.6.13.解:的立方根是,故答案为:14.解:∵5=,2=,∴>,∴5>2.故答案为:>.三.解答题(共8小题,满分52分)15.解:原式=1﹣(6+)+3=1﹣7+3=﹣3.16.解:(1)∵﹣27x3+8=0,∴﹣27x3=﹣8,则x3=,解得:x=;(2)∵3(x﹣1)2﹣12=0,∴3(x﹣1)2=12,∴(x﹣1)2=4,则x﹣1=±2解得:x=3或x=﹣1.17.解:(1)∵4a+7的立方根是3,2a+2b+2的算术平方根是4,∴4a+7=27,2a+2b+2=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴6a+3b=6×5+3×2=36,∴6a+3b的平方根为±6.18.解:(1)①﹣27的立方根是﹣3;②3的平方根是±;③的算术平方根是3;(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣<<3.19.解:(1)根据题意可得:﹣m☆3=32﹣2m+1=﹣4,解得:m=7;故答案为:7;(2)根据题意可得:2n☆(n﹣2)=9,即(n﹣2)2+4n+1=9,解得:n=2或﹣2,(n﹣2)☆2n=4n2+2(n﹣2)+1=9,解得:n=﹣2或,则n=﹣2或或2.20.解:2﹣﹣(﹣3)=2﹣+3=5﹣,∵<<,∴4<<5,∴5﹣>0,∴2﹣>﹣3.21.解:(1)∵3<<4,∴a=3,b=﹣3,∴a2+b﹣=32+﹣3﹣=6;(2)∵1<<2,又∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=﹣1,∴x﹣y=11﹣(﹣1)=12﹣.22.解:(1)∵1<2,2<3,∴<,<;故答案为:<;<;(2)∵1﹣<0,﹣<0,∴①|1﹣|=﹣1;②|﹣|=﹣;故答案为:﹣1;﹣;(3)原式=﹣1+﹣+﹣+…+﹣=﹣1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的开方单元测试题
班级: 姓名:__________
一、选择题:(每题2分,共24分)
1、在数-5,0,7
22,2006,20.80中,有平方根的数有( ) A 、1个 B 、2个 C 、3个 D 、4个
2、10的平方根应表示为( )
A 、210
B 、10±
C 、10
D 、10-
3、在数-27,-1.25,0,7
24中,立方根为正的数有( ) A 、1个 B 、2个 C 、3个 D 、0个
4、下面的运算中,是开平方运算的是( )
A 、4069)64(2=-
B 、864=
C 、864±=±
D 、4643=
5、下列各数中:5,-3,0,34,722,-1.732,25,2
π-,293+,无理数的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个
6、下列说法中,正确的有( )①无限小数是无理数;②无理数是无限小数;③两个无理数的和是无理数;④对于实数a 、b,如果22b a =,那么a=b ;⑤所有的有理数都可以用数轴上的点来表示,反过来,数轴上的所有点都表示有理数。
A 、②④
B 、①②⑤
C 、②
D 、②⑤
7、下列各式正确的是( )
A 、981±=
B 、14.314.3-=-ππ
C 、3927-=-
D 、235=-
8、在数轴上,原点和原点左边的所有点表示的数是( )
A 、负有理数
B 、负数
C 、零和负有理数
D 、零和负实数
9、a 、b A 、a 、b 互为相反数 B 、b+a 〉0 C 、零和负有理数 D 、 b-a 〉0 10、下列式子正确的是( )
A 、55〈
B 、23-〉-
C 、3223-〈-
D 、230-〈
11一个自然数的算术平方根为a ,则与这个自然数相邻的下一个自然数的算术平方根为( )
A 、22+a B 、12+a C 、1+a D 、1+a 0
12、若x -有意义,则x x -一定是( )A 、正数 B 、非负数 C 、负数 D 、非正数
二、填空题:(每空2分,共38分)
13、若a 的算术平方根为2
1,则a= 14、如果68.28,868.26.2333==x ,那么x=
15、若0125=-++--y x y x ,则=x y
16、若m=3,代数式2213m m m +-+=
17、若2
992
2--+-=x x x y +1,则y x 43+=
18、比较大小:11, 11-6- 19、38的平方根是 ,2)4(-的算术平方根是 ,81的平方根是
20、把2写成一个数的算术平方根的形式:
21、若一个正数的两个平方根为2m-6与3m+1,则这个数是 ;若a+3与2a-15是m 的平方根,则m=
22、绝对值最小的实数是 ,21-的绝对值是 ,21-的相反数是
23、若实数满足1-=a
a ,则a 是 ;若40≤≤a ,则a 的取值范围是 24、在数轴上,与表示7-的点相距2的点表示的数为
三、解答题:(每题2分,共8分)
25、求下列各数的平方根:
(1)0 (2)0.49 (3)16
91
(4)2)5(-
26、求下列各数的立方根:(每题2分,共8分)
(1)27102
(2)-0.008 (3)0 (4)125--
27、求下列各式的值:(每题3分,共27分)
(1)16.0 (2)169- (3)4
12± (4)3027.0
(5)3
1512169-- (6)36.009.0+ (7) 222129-
(8)
31000511003631- (9)1691691271943--+
28、求下列各式中的x 值:(每题5分,共20分)
(1)641212=x (2)02433=-x
(3)22)7()5(-=-x (4)32)4()12(25-=--x
29按照从小到大的顺序,用“<”把下列各数连接起来(4分)
14.31,1,5.0,)1(,8722005-----π
30、若2+-b a 与1-+b a 互为相反数,求22a+2b 的立方根(6分)
31、青云学府新建了一个面积为16平方米的传达室,计划用100块正方形的地板砖来铺设地面,那么所需要的正方形的地板砖的连长是多少?(7分)
32、若a 和b 互为相反数,c 与d 互为倒数,m 的倒数等于它本身,试化简:
m
cd b a m 233222----+(8分)
参考答案
1、D
2、B
3、A
4、C
5、D
6、C
7、B
8、D
9、D 10、C 11、
B 12、D
13、1/4 14、23600 15、3 16、11 17、13或5 18、> < 19、2± 4 ±3 20、4 21、 16 441或49 22、0 12- 12- 23、负实数 0≤a ≤2 24、2727--+-或
25、(1)0 (2)±0.7 (3)±5/4(4)±5
26、4/3 -0.2 0 -5
27、0.4 -13 ±3/2 0.3 7/8 0.9 20 -9/5 -13/16
28、(1)x=±8/11 (2)x=2 (3) x=-2 或 x=12 (4) x=13/10
或 x=-3/10 29、略
30、-2
31、0.4
32、2±2。