2013全国中考数学试题分类汇编----轴对称
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2013•郴州)在图示的方格纸中
(1)作出△ABC关于MN对称的图形△A1B1C1;
(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
(2)根据平移的性质结合图形解答.
解答:解:(1)△A1B1C1如图所示;
(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).
点评:本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对
球时,必须保证∠1的度数为( )
A .30°
B .45°
C .60°
D .75°
考点:生活中的轴对称现象;平行线的性质.
分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.
解答:解:要使白球反弹后能将黑球直接撞入袋中, ∠2+∠3=90°, ∵∠3=30°, ∴∠2=60°, ∴∠1=60°. 故选C .
点评:本题是考查图形的对称、旋转、分割以及分类的数学思想. (2013•绵阳)下列“数字”图形中,有且仅有一条对称轴的是()
(2013•潜江)如图,在△ABC 中,
AB =AC ,∠A =120°,BC =6cm ,AB 的垂直平分线交BC 于点M ,交AB
于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为 A .4cm
B .3cm
C .2cm
D .
1cm
A .
(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()
.B.C.D.
点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,且则点M
的坐标是( , ) .(1,3)
(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 3 种.
那么这个图形叫做轴对称图形.
解答: 解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,
选择的位置有以下几种:1处,2处,3处,选择的位置共有
3处. 故答案为:3.
(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3),点C 的坐标为(,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为
A .
B .
1
2
2
2
C
D.
(2013•宿迁)在平面直角坐标系xOy中,已知点(01)
A,,(1,2)
B,点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是▲.
(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B 的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()
A.B.C.D.2
CD,即可得出答案.
解答:解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,
则此时PA+PC的值最小,
∵DP=PA,
∴PA+PC=PD+PC=CD,
∵B(3,),
∴AB=,OA=3,∠B=60°,由勾股定理得:OB=2,
由三角形面积公式得:×OA×AB=×OB×AM,
∴AM=,
∴AD=2×=3,
∵∠AMB=90°,∠B=60°,
∴∠BAM=30°,
∵∠BAO=90°,
∴∠OAM=60°,
∵DN⊥OA,
∴∠NDA=30°,
∴AN=AD=,由勾股定理得:DN=,
∵C(,0),
∴CN=3﹣﹣=1,
在Rt△DNC中,由勾股定理得:DC==,
即PA+PC的最小值是,
故选B.
(2013•泰州)如图,△ABC中,AB+AC=6cm, BC的垂直平分线l与AC相交于点D,则△ABD的周长为___________cm.
【答案】:6.
(2013•日照)下面所给的交通标志图中是轴对称图形的是
答案:A
解析:A中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。
(2013泰安)下列图形:其中所有轴对称图形的对称轴条数之和为()
A.13 B.11 C.10 D.8
考点:轴对称图形.
分析:根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.解答:解:第一个图形是轴对称图形,有1条对称轴;
第二个图形是轴对称图形,有2条对称轴;
第三个图形是轴对称图形,有2条对称轴;
第四个图形是轴对称图形,有6条对称轴;
则所有轴对称图形的对称轴条数之和为11.
故选B.
点评:本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
(2013杭州)下列“表情图”中,属于轴对称图形的是()
A.B.C.D.
考点:轴对称图形.
分析:根据轴对称的定义,结合各选项进行判断即可.
解答:解:A.不是轴对称图形,故本选项错误;
B.不是轴对称图形,故本选项错误;
C.不是轴对称图形,故本选项错误;
D.是轴对称图形,故本选项正确;
故选D.
点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.
(2013•台州)下列四个艺术字中,不是轴对称的是()
(2013•广东)下列图形中,不是
..轴对称图形的是 C
(2013•广州)点P在线段AB的垂直平分线上,P A=7,则PB=______________. (2013•哈尔滨)如图。
在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN,点A、B、M、N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;
(2)请直接写出四边形ABCD 的周长.
.
B .
C .
D .
A . 形状没有改变,大小没有改变
B . 形状没有改变,大小有改变
(2013•临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()
可证明△BEC≌△DEC.
解答:解:∵AC垂直平分BD,
∴AB=AD,BC=CD,
∴AC平分∠BCD,平分∠BCD,EB=DE,
∴∠BCE=∠DCE,
在Rt△BCE和Rt△DCE中,
∴Rt△BCE≌Rt△DCE(HL),
故选:C.
点评:此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂。