第二章 金属的晶体结构

合集下载

第2章 金属及合金相的晶体结构

第2章 金属及合金相的晶体结构

1. 面心立方结构
面心立方结构金属:γ-Fe, Al, Cu, Ni, Au, Ag和Pt等。
结构符号A1,Pearson符号cF4。 每个晶胞含4个原子。
面心原子shared by 2 cells: 6 x 1/2 = 3 顶角原子shared by 8 cells: 8 x 1/8 = 1
略受压缩的八面体间隙; 八面体间隙中心位于棱边中心和面心 八面体间隙半径: r=1/2(a-2R)
r≈0.155 R 晶胞含6 (6×1/2+12×1/4 )个八面体间隙。 平均1个原子3有个八面体间隙。
非正四面体间隙。 四面体间隙半径: r= (a√5/4-R)
r≈0.291 R 晶胞含12 (4 ×6 ×1/2)个四面体间隙。 平均1个原子含6个四面体间隙。
ZA, ZB 为A、B组元价电子数, VB为B组元摩尔分数。
1933年,Bernal 建议称之为电子化合物。 Massalski认为称其为电子相更恰当。
§2.12正常价化合物
正离子价电子数正好能使负离子具有稳定的电子层结构,即 AmBn化合物中,meC=n(8-eA), 结合一般是离子键。 eA和eC分别是正和负离子在非电离状态下的价电子数。
§2.13 拓扑密堆积相(TCP相)
在很多化合物结构中,原子尺寸起主要作用,并倾向于紧密堆 垛,称为拓朴密堆相,包括间隙化合物、Laves、σ相等。
间隙化合物
由原子半径r比较大的过渡金属(M)与r比较小的H, B, C, N, O, 等非金属组成的化合物,非金属原子占据金属原子结构间隙。 具有金属光泽和导电性的高熔点、高硬度较脆的化合物。
§2.9间隙固溶体
面心立方结构
r=0.414R
r=0.225R

金属的晶体结构

金属的晶体结构

面心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:
③原子半径
面心立方晶格示意图
具有面心立方晶格 的金属有铝、铜、镍、 金、银、γ-铁等。
④致密度:0.74(74%)
第一节 金属的晶体结构
(2)密排六方晶格(胞)
金属原子分布在立方体的八个角上和六个面的中心。 面中心的原子与该面四个角上的原子紧靠。
体心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:一个体心立方晶胞所 含的原子数为2个。
体心立方晶格示意图 具有体心立方晶格
的金属有钼、钨、钒、 α-铁等。
第一节 金属的晶体结构
(1)体心立方晶格(胞)
体心立方晶胞特征: ③原子半径:晶胞中相距最近的两个原子之间距离的一半,或晶胞中原子 密度最大的方向上相邻两原子之间距离的一半称为原子半径(r原子)。
1.增大金属的过冷度 原理:一定体积的液态金属中,若成核速率N越大,则结晶后的晶粒
越多,晶粒就越细小;晶体长大速度G越快,则晶粒越粗。 随着过冷度的增加,形核速率和长大速度均会增大。但当过冷度超
过一定值后,成核速率和长大速度都会下降。对于液体金属,一般不会 得到如此大的过冷度,通常处于曲线的左边上升部分。所以,随着过冷 度的增大,成核速率和长大速度都增大,但前者的增大更快,因而比值 N/G也增大,结果使晶粒细化。
二、纯金属的晶体结构
晶体中原子(离子或分子)规则排列的方式称为晶体结构。 通过金属原子(离子)的中心划出许多空间直线,这些直线将形成空间格架。 这种格架称为晶格。晶格的结点为金属原子(或离子)平衡中心的位置。
晶体
晶格
第一节 金属的晶体结构
二、纯金属的晶体结构

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:

机械工程材料:第二章 金属的晶体结构与结晶

机械工程材料:第二章  金属的晶体结构与结晶
处原子排列不一致,存在一个过渡层,即晶界;
亚晶界:实际金属晶体内部,晶粒内原子排列也不完全理想 的规则排列,也存在很小位向差的小晶块,即亚晶 粒,亚晶粒的交界即亚晶界。
在实际晶体中,这三种缺陷随加工条件变化而变化,可产 生、发展,也可消失,对材料性能有很大影响。
常见的利用增加材料的缺陷,提高强度的方法
第二章 金属的晶体结构与结晶
金属特性与金属键 金属的晶体结构 实际金属结构 金属的结晶 金属铸锭组织
一、金属特性与金属键
原子的构造
①金属原子的最外层轨道电子少。 ②金属原子易失去电子而成为正离子。 ③金属键
金属正离子与自由电子间的静电作用, 使金属原子结合起来形成金属整体。
金属特性
关系
①优良的导电性和导热性。 ①导电:在电势作用下,自由
②不透明和具有金属光泽。
电子定向移动;
③较高的强度和较好的塑性。②正的电阻温度系数:
④正的电阻温度系Βιβλιοθήκη 。T↗,离子振动↗,电子运动阻力↗ ③塑性:金属中离子与电子间能保
持一定的相对关系。
二、金属的晶体结构
1. 晶体的基本知识
晶体与非晶体 晶体:内部原子在空间呈一定的有规则排列,具有固定熔 点和各向异性。(金刚石、盐) 非晶体:内部原子是无规则堆积在一起的。没有固定的熔 点,具有各向同性。(玻璃、石蜡)
晶格(点阵) 表示晶体中的原子(正离子)排列方式的空间几何体。 假设:A.金属中的原子(正离子)都是刚性小球; B.金属中的原子都缩小为一个点,线将点连 接起来,线与线的交点为节点。
晶胞:表示晶格几何特征的最小几何单元。 (1)晶格常数: 棱边长度 (a,b,c),单位A0(10-10m) ; 轴间夹角 (α、β、γ ) (2)晶面、晶向 : 晶面:在晶体中通过原子中心的平面,用晶面指数表示。

第二章 金属的晶体结构

第二章 金属的晶体结构

晶向指数简化确定方法
1 确定三维坐标系:所求晶向的起点为原点,棱 边以长度为坐标轴的长度单位。 2 求坐标:求所求晶向距起 点最近的原子在三个坐标轴 方向上的坐标值。 3 化最简整数,加方括号。 形式为 [uvw] ,坐标中出现 负值,在数字上方冠负号。
晶向指数的例子
所有平行的晶向,都 具有相同的晶向指数
内蒙古科技大学高等职业技术学院
(111) (111) (111) (111) {1 1 1}晶面族:
(111) (111) (111) (111)
(111)
(111)
(111)
(111)
内蒙古科技大学高等职业技术学院
3.4 晶向指数与晶面指数的联系

当某一晶向[uvw]位于或平行于某一晶面(hkl) 时,必须满足:hu+kv+lw=0。 [100]//(010);[110]位于(111)上 当某一晶向[uvw]垂直 于某一晶面(hkl) 时,必须满足:u=h, v=k,w=l。 [111]⊥(111); [010] ⊥(010)
晶面指数的例子

立方晶系中一些重要晶面的晶面指数
内蒙古科技大学高等职业技术学院
二、晶面族
晶面族:原子排列相同但空间位向不同 的所有晶面,以{hkl}表示。 立方晶系中的晶面族: {1 0 0}:(100)+(010)+(001)

内蒙古科技大学高等职业技术学院
{1 1 0}晶面族:
(110) (101) (011) (110) (101) (011)
基本概念

为了便于确定和区别晶体中不同方位的晶向和晶 面,国际上通用密勒指数(Miller indices)来统 一标定晶向指数与晶面指数。 晶面指数(indices of crystal plane ): 表示晶面的符号。 晶向指数(indices of crystal orientation): 表示晶向的符号。

第02章金属的晶体结构与结晶

第02章金属的晶体结构与结晶
冷却曲线是表示金属冷却时,温度随时间变化的关系曲 线。如图2-12曲线中的水平线段表明,液态金属凝固时 释放出的结晶潜热,恰好抵偿了向周围空气中散失的热 量。水平线段对应的温度就是纯金属的结晶温度。
图2-11 热分析装置示意图
图2-12 纯金属的冷却曲线
2.4.1.3 合金的结晶
合金的结晶过程与纯金属有相似之处,结晶过程都有结 晶潜热放出。不同之处是纯金属的结晶过程总是在某一 恒定温度下进行的,而大多数合金是在某一温度范围内 进行结晶,在结晶过程中各相的成分还会发生变化。所 以二者的冷却曲线是不相同的。
2.4.1.2 纯金属的结晶
用热分析实验来分析纯金属的结晶过程和冷却曲线。
目前,人们多用热分析法配合X射线等手段来研究金属 的结晶过程。热分析实验装置如图2-11所示。用该装置 将纯金属熔化,然后缓慢冷却,在冷却过程中,每隔一 定时间测量一次温度,将记录下来的数据描绘在时间温度坐标图中,便得到纯金属的冷却曲线,如图2-12所 示。
2.3.2.3 面缺陷
面缺陷主要是指晶界和亚晶界,如图2-10(a)、(b)所示。
实际金属一般为多晶体,即由许多位向不同的晶粒组成。 因此在实际金属中有很多晶界存在。由于晶界处原子排 列不规律,偏离平衡位置较多,因此晶格畸变程度较大。 晶界处的抗腐蚀能力较差、熔点较低,且抗塑性变形能 力较强。
除晶界外,晶粒内部是由一些小晶块组成的,它们的晶 格位向有微小的差异,人们把这些小晶块叫做亚晶粒, 亚晶粒之间的界面称为亚晶界。亚晶界处的原子排列不 规则,也存在着晶格畸变。
2.4.1.5 金属的结晶过程 金属的结晶是由两个基本过程组成的,即生出微小的晶 体核心(简称生核)和晶核进行长大(简称为核长大)。 如图2-13所示为金属的结晶过程示意图。结晶开始时, 液体中某些部位的原子集团先后按一定的晶格类型排列 成微小的晶核,以后晶核向着不同位向按树枝生长的方 式长大,当成长的枝晶相互接触时,晶体就向着尚未凝 固的部位生长,直到枝晶间的金属液全部凝固为止,最 后形成了许多小晶粒。

金属材料与热处理第二章 金属的晶体结构与结晶

金属材料与热处理第二章 金属的晶体结构与结晶
(1)增加过冷度 即加快金属液的冷却速度。 (2)变质处理 即在浇注前向金属液中加入少量形核剂(又称变质 剂或孕育剂),造成大量非自发形核,使晶粒细化。 (3)振动处理 金属结晶时,对金属液进行机械振动、超声波振动
或电磁振动等,使生长中的枝晶破碎,提高形核率,达到细化晶粒的 目的。
第三节 金属的同素异构转变
一、纯金属的冷却曲线和过冷现象
纯金属都有一个固定的结晶温度(或称凝固点 ),所以纯金属的结晶过程总是在一个恒定的温度下 进行的。
二、纯金属的结晶过程
纯金属的结晶过程是在冷却曲线上平台所经 历的这段时间内发生的,它是不断形成晶核和晶核 不断长大的过程,如图2-16所示。
图2-16 金属结晶过程示意图
图2-8 简单立方晶格中的晶向
五、金属的实际晶体结构
如果一个晶体内部其晶格位向(即原子排列的 方向)是完全一致的,则这种晶体称为单晶体,如图29a所示。
图2-9 单晶体和多晶体结构示意图 a)单晶体 b)多晶体
1.点缺陷 点缺陷是晶体中呈点状的缺陷,即在三维方向上的尺寸
都很小的晶体缺陷。
图2-10 空位和间隙原子示意图
同素异构转变是纯铁的一个重要特性,是钢 铁能够进行热处理的理论依据。金属的同素异 构转变过程与金属液的结晶过程很相似,实质上 它是一个重结晶过程,因此,同素异构转变同样遵 循结晶的一般规律:转变时需要过冷;有潜热产 生;转变过程也是在恒温下通过晶核的形成和长 大来完成的,如图2-20所示。但由于同素异构转
8.什么是过冷现象和过冷度?过冷度与冷却速度有什么关系? 它对铸件的晶粒大小有什么影响?
9.金属液结晶的必要条件是什么?试叙述纯金属的结晶过程 。
10.什么是晶粒与晶界?晶粒大小对金属力学性能有什么影 响?

02第二章 金属的晶体结构与结晶

02第二章 金属的晶体结构与结晶
组织。
放大100∼2000倍的组织称高倍组织或显微组织。 在电子显微镜下放大几千∼几十万倍的组织称精细组织或电镜组
织。
显微组织实质上是指在显微镜下观察到的金属中各相或各晶粒的
形态、数量、大小和分布的组合。
二、合金的相结构
1、固溶体 合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之
理工艺的重要依据。
根据组元数, 分为二元相图、三元相图和多元相图。
Fe-C二元相图
三元相图
1. 二元相图的建立
几乎所有的相图都是通过实验得到的,最常用
的是热分析法。
二元相图的建立步骤为:[以Cu-Ni合金(白铜)为例] 1、配制不同成分的合金,测出各合金的冷却曲线,找出曲线 上的相变点(停歇点或转折点)。 2、在温度-成分坐标中做成分垂线,将相变点标在成分垂线上 3、将这些相变点连接起来,即得到Cu-Ni相图。
因而细晶粒无益。但晶粒太粗易产生应力集中。因而
高温下晶粒过大、过小都不好。
2.细化晶粒的方法
晶粒的大小取决于晶核的形成速度和长大速度。
单位时间、单位体积内形成的晶核数目叫形核率(N)。
单位时间内晶核生长的长度
叫长大速度(G)。
N/G比值越大,晶粒越细小。 因此,凡是促进形核、抑制长 大的因素,都能细化晶粒。
第二章 金属的晶体结构 与结晶
不同的金属具有不同的
力学性能,主要是由于材 料内部具有不同的成分、
组织和结构。
第一节 金属的晶体结构
一、晶体与非晶体
晶体是指原子呈规则排列的固体。常态下金属
主要以晶体形式存在。晶体具有各向异性。 非晶体是指原子呈无序排列的固体。在一定条 件下晶体和非晶体可互相转化。
T= T0 –T1

2.2 固体结构--金属的晶体结构(07级)

2.2 固体结构--金属的晶体结构(07级)

第二章 固体结构
(1) 体心立方晶胞的晶格常数和原子半径 体心立方晶胞的晶格常数和原子半径
体心立方晶胞中原子沿立方体体对角线<111>晶 体心立方晶胞中原子沿立方体体对角线<111>晶 <111> 向上的原子彼此相切,紧密接触,相距最近。 向上的原子彼此相切,紧密接触,相距最近。设晶 格常数为a, a,则立方体对角线长度为 ,等于4个原子 等于4 格常数为a,则立方体对角线长度为 半径,所以体心立方晶胞中的原子半径r 半径,所以体心立方晶胞中的原子半径r:
二章 固体结构
原子线密度:单位长度上的原子数。如面心立方[110],原子数为2 原子线密度:单位长度上的原子数。如面心立方[110],原子数为2, [110] 线长度为a 则原子线密度2/a 2/a。 线长度为a,则原子线密度2/a。 通过计算不同晶向的原子线密度,可找出晶胞的原子最密排方向。 通过计算不同晶向的原子线密度,可找出晶胞的原子最密排方向。
第二章 固体结构
从以上可以得出: 从以上可以得出: • 体心立方晶胞的配位数为8 体心立方晶胞的配位数为8,致密度为 0.68; • 面心立方晶胞的配位数为12 面心立方晶胞的配位数为12 ,致密度为 0.74; 0.74; • 密排六方晶胞的配位数为12 密排六方晶胞的配位数为12 ,致密度为 0.74; 0.74; 面心立方晶胞和密排六方晶胞的配位数 和致密度完全相同, 和致密度完全相同,因此这两种晶胞是原子 排列最紧密的结构。 排列最紧密的结构。
第二章 固体结构
(3) 密排六方晶胞的配位数和致密度
以密排六方晶胞的底面中心原子为例,与之最近邻且是周 以密排六方晶胞的底面中心原子为例,与之最近邻且是周 围顶角上的六个原子,且与其上、 围顶角上的六个原子,且与其上、下相邻的晶胞内的三个原 子相互接触,可知其配位数为12 对六方晶系,致密度为: 12; 子相互接触,可知其配位数为12;对六方晶系,致密度为:

第二章4 晶体结构与塑性变形之小结

第二章4  晶体结构与塑性变形之小结

冷加工: 冷加工: 在金属的再结晶温度以下的塑性 变形加工。如低碳钢的冷轧、冷拔、冷冲等, 变形加工。如低碳钢的冷轧、冷拔、冷冲等, 有加工硬化的现象产生。 有加工硬化的现象产生。 热加工: 热加工 在金属的再结晶温度以上的塑性变 形加工。如碳钢的热轧、锻造等, 形加工。如碳钢的热轧、锻造等,因有动态再 结晶发生, 无加工硬化现象产生。 结晶发生 无加工硬化现象产生
一﹑金属的晶体结构
1.三种常见的金属晶体结构: 三种常见的金属晶体结构:
体心立方晶格; 面心方晶格; 体心立方晶格; 面心方晶格; 密排六方立方晶格 单晶体:晶体内部的晶格位相完全一致。 单晶体:晶体内部的晶格位相完全一致。 多晶体:由许多小单晶体组合成的晶体。 多晶体:由许多小单晶体组合成的晶体。实际金属 晶体是多晶体结构。 晶体是多晶体结构。
三、回复和再结晶
(一).回复 加热温度较低,晶内原子移动,点线缺陷复合消失、减少。 加热温度较低,晶内原子移动,点线缺陷复合消失、减少。晶 粒和显微组织仍保持变形后的形态,不发生明显变化。 粒和显微组织仍保持变形后的形态,不发生明显变化。 强度和硬度只略有降低, 塑性有所增高, 残余应力大大降低。 强度和硬度只略有降低 , 塑性有所增高 , 残余应力大大降低 。 去应力退火就是利用回复过程、 消除冷变形金属残余内应力, 去应力退火就是利用回复过程 、 消除冷变形金属残余内应力 , 保留加工硬化效果的工艺方法。 保留加工硬化效果的工艺方法。 (二).再结晶 加热温度较高,原子扩散能力增大,被压扁拉长、 加热温度较高,原子扩散能力增大,被压扁拉长、破碎的晶 粒重新生核、长大变成新的均匀、 粒重新生核、长大变成新的均匀、细小的等轴晶称再结晶 再结晶后,内应力全部消失,金属的强度和硬度明显降低, 再结晶后,内应力全部消失,金属的强度和硬度明显降低, 而塑性和韧性大大提高,加工硬化现象被消除。 而塑性和韧性大大提高,加工硬化现象被消除。 物理、化学性能基本上恢复到变形前的水平,晶格类型不变。 物理、化学性能基本上恢复到变形前的水平,晶格类型不变。 ).晶粒长大 (三).晶粒长大 继续加热保温会发生晶粒长大。 继续加热保温会发生晶粒长大。粗大的晶粒组织使金属的强 硬度、塑性、韧性等机械性能都显著降低。 度、硬度、塑性、韧性等机械性能都显著降低。

金属的晶体结构

金属的晶体结构
2 2 2 2 2 2
两晶面交线的晶向指数[uvw]
h1u k1v l1 w 0 h 2 u k 2 v l2 w 0 u:v: w k1 k2 l1 l1 : l2 l2 h1 h2 : h1 h2 k1 k2
u k1l2 l1k 2 v l1h 2 h 1l2 w h k k h 1 2 1 2
8 × 1 = 8个
(2) 体心立方(bcc)结构的间隙
6 × 1/2 +12 × 1/4 = 6个
24 × 1/2 = 12个
注:体心立方结构的四面体和八面体间隙不对称(其棱边长 度不全相等),这会对间隙原子的固溶及其产生的畸变有明 显的影响。
(3) 密排六方(hcp)结构的间隙 6 × 1 = 6个
确定六方晶系晶向指数步骤: 先确定三轴坐标系的晶向指数 [UVW],然后换算成四轴坐标 系的晶向指数 [uvtw]
u = (2U ― V)/3 v = (2V ― U)/3 t = ― (u+v)= ― (U+V) /3 w=W 反之,由指数画晶向:U = u – t ,V = v – t,W = w
配位数: 12
致密度:0.74
常见金属: Mg、Zn、 Be、Cd等。
三种典型金属结构的晶体学特点 晶体结构类型 结构特征 点阵常数 原子半径R 晶胞内原子数 配位数 致密度 面心立方(A1) 体心立方(A2) a
2 a 4
密排六方(A3) a, c (c/a =1.633)
2 2 a 1 a c , 2 2 3 4
(111) ( 1 1 1 )
● 晶体中具有等同条件而只是空间位向不同的各组晶面称为 晶面族,用 { hkl}表示,它代表由对称性相联系的若干组 等效晶面的总和 ; 如:立方晶系中

工程材料学2金属的晶体结构与结晶

工程材料学2金属的晶体结构与结晶

§2.1 晶体学基础知识
注意:晶面指数特征与与原点位置无关;每一指数对应一组平行的晶面 。
§2.1 晶体学基础知识
晶面族:原子排列情况相同,但空间位向不同的各组晶面的集合。
§2.1 晶体学基础知识
立方晶系常见的晶面 Z
(011)
(110
) (011
(101)

(101 )
Y
(110
) X
§2.1 晶体学基础知识
柱体。
四轴定向:晶面符号一般写为(hkil),指
数的排列顺序依次与a1轴、 a2轴、 a3轴、c轴相对
应,其中a1、a2、a3三轴间夹角为120o,c轴与它 们垂直。它们之间的关系为:i =-(h+k)。
2.2.3、六方晶系晶面、晶向表示方法
1、晶面指数:
方法同立方晶系, (hkil)为在四个坐标 轴的截距倒数的化简 ,自然可保证关系式 h+k+i=0。底面指 数为(0001)。
铅锭宏观组织
沿晶断口
§2.3 金属材料的实际晶体结构
点缺陷对材料性能的影响
(1)提高材料的电阻 定向流动的电子在点缺陷处受到非平衡 力(陷阱),增加了阻力,加速运动提高局部温度(发热)。
(2)加快原子的扩散迁移 空位可作为原子运动的周转站。 ( 3 ) 使强度、硬度提高,塑性、韧性下降。
§2.3 金属材料的实际晶体结构
体心立方晶格为单斜晶系
§2.2 纯金属的典型晶体结构
1.体心立方、面心立方为何不在前述七大晶系之内?
面心立方晶格为菱方晶系
§2.2 纯金属的典型晶体结构
2.面心立方、密排六方的致密度相同,原子堆积方式的主要差异是什么?
密排六方晶格的堆垛顺序为ABABAB… 面心立方晶格的堆垛顺序为ABCABCABC…

第二章金属与合金的晶体结构及铁碳相图

第二章金属与合金的晶体结构及铁碳相图
下一页 返回
ቤተ መጻሕፍቲ ባይዱ.2 实际金属的晶体结构
2.2.2金属的结晶
1.结晶的基本概念 物质由液态转变为固态的过程称为凝固,如果通过凝固形成
晶体,则又称为结晶。晶体物质都有一个平衡结晶温度(熔 点),液体只有低于这一温度时才会结晶,固体高于这一温度 时才能发生熔化。在平衡结晶温度,液体与晶体同时共存, 处于平衡状态。而非晶体物质无固定的凝固温度,凝固总是 在某一温度范围逐渐完成。 纯金属的实际结晶过程可用冷却曲线来描述。冷却曲线是描 述温度随时间而变化的曲线,是用热分析法测绘的。从图26的冷却曲线可以看出,液态金属随时间冷却到某一温度时, 在曲线上出现了一个平台,这个平台所对应的温度就是
1.单晶体和多晶体 晶体内部的晶格位向完全一致的晶体称为单晶体,金属的单
晶体只能靠特殊的方法制得。实际使用的金属材料都是由许 多晶格位向不同的微小晶体组成的,每个小晶体都相当于一 个单晶体,内部的晶格位向是一致的,而小晶体之间的位向 却不相同。这种外形呈多面体颗粒状的小晶体称为晶粒;晶粒 与晶粒之间的界面称为晶界;由许多晶粒组成的晶体称为多 晶体,如图2-5所示,实际金属就是多晶体。 2.晶体缺陷 第一节介绍的金属晶体内部原子规则有序地排列是理想晶体 的状态。实际上金属由于结晶或其他加工等条件的影响,内 部原子排列并不是理想的,存在着大量的晶体缺陷(点缺陷、 线缺陷和面缺陷)。这些缺陷的存在,对金属性能会产生显著 的影响。
上一页
下一页 返回
2.2 实际金属的晶体结构
(2)晶核的长大 如图2-7所示,当第一批晶核形成后液体中的原子便不断
地向晶核沉积长大,与此同时又有新的晶核生成并长大, 形核与长大这两个过程是同时在进行着的,直至每个晶核 长大到互相接触,而每个长大了的晶核也就成为了一个晶 粒。

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

2-3 根据组元数, 一般分为二元相图、三元相图。 三元相图
Fe-C二元相 图
2-3 同素异构转变 有些物质在固态下其晶格类型会随温度变化而发生变化,这 种现象称为同素异构转变。 锡,四方结构的白锡在13℃下转变为金刚石立方结构的灰 锡。 同素异构转变同样也遵循形核、长大的规律,但它是一个 固态下的相变过程,即固态相变。 除锡之外,铁、锰、钴、钛等也都存在着同素异构转变。
位错密度增加,能提高金属强度。
2-1
(3)面缺陷
呈面状分布的缺陷,主要是晶界和亚晶界。 晶体缺陷产生晶格畸变,使金属的强度、硬度提高,韧性下降。
2-1
二、合金的晶体结构 1.合金的基本概念
合金:两种或两种以上的金属与金属,或金属与非金属经一定方法合成的 具有金属特性的物质。 例如,钢和生铁是Fe与C的合金,黄铜是Cu和Zn的合金。 组元:组成合金最基本的物质。可以是元素,也可以是化合物。 黄铜的组元是铜和锌;青铜的组元是铜和锡。铁碳合金中的Fe3C,镁硅合 金中的Mg2Si。 合金系:组元不变,当组元比例发生变化,可配制出一系列不同成分、不 同性能的合金,这一系列的合金构成一个“合金系统”,简称合金系。
2-1
(2)金属化合物
合金组元间发生相互作用而形成一种具有金属特性的物质。
1.正常价化合物:如Mg2Si, Mg2Sn, Mg2Pb, Cu2Se等。
2.电子化合物:不遵守原子价规律,但有一定的电子浓度的化合物。
如Cu3Al, CuZn3, Cu5Zn8等。
3.间隙化合物:由过渡族金属元素与碳、氮、氢、硼等原子半径较
通常在钢中加入铝、钒,向铸铁液中加入硅铁合金。
(3)机械振动、超声振动、电磁搅拌: 使结晶过程中形成的枝晶折断裂碎,增加晶核数,达到细化晶粒的目的。

实际金属的晶体结构

实际金属的晶体结构

一、实际金属的多晶体结构
图2-11 刃型位错示意图
晶界上原子的排列是不规则的,并受到相邻晶粒位向的影响而取折衷位置。
由于多晶体中各个晶粒的内部构造是相同的,只是排列的位向不同,而各个方向上原子分布的密度大致平均,故多晶体表现出各向同
性,也叫“伪无向性”。
在实际金属中,晶体内部由于结晶条件或加工等方面的影响,使原子排列规则受到破坏,表现出原子排列的不完整性,称它为晶体缺
• 晶界的特点:晶界处能量高,易被腐蚀,熔点比晶内 低,晶界处杂质多,阻碍位错的运动,使金属不易发 生塑性变形(常温下,细晶粒金属的强度比粗晶粒金 属高)等。
第二章 金属与合金的晶体结构
• 图2-12 晶界结构示意图
第二章 金属与合金的晶体结构
• 亚晶界实际上是由一系列刃型位借所形成的小角 度晶界,如图2-13所示。由于亚晶界处原子排列 同样要产生晶格畸变,因而亚晶界对金属性能有 着与晶界相似的影响。
• 由于多晶体中各个晶粒的内部构造是相同的,只是 排列的位向不同,而各个方向上原子分布的密度大 致平均,故多晶体表现出各向同性,也叫“伪无向 性”。
多晶体中,晶粒之间存在着晶界。
第二章 金属与合金的晶体结构
一、实际金属的多晶体结构
晶界的特点:晶界处能量高,易被腐蚀,熔点比晶内低,晶界处杂质多,阻碍位错的运动,使金属不易发生塑性变形(常温下,细晶
第二章 金属与合金的晶体结构
第三节 实际金属的晶体结构
•一、实际金属的多晶体结构 •二、金属的晶体缺陷 •1.空位和间隙原子 •2.位错 •3.晶界和亚晶界
第二章 金属与合金的晶体结构
• 单晶体是指具有一致结晶位向的晶体(图2-9a), 表现出各向异性。而实际的金属都是由许多结晶位 向不同的单晶体组成的聚合体,称为多晶体,如图 2-9b所示。每一个小的单晶体叫做晶粒。晶粒与晶 粒之间的界面叫做晶界。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面心立方晶格参数
原子半径——晶胞中 原子密度最大的方向 [111]上相邻原子间平 衡距离的一半。
4rA 2a rA 2 a 4
配位数:12 致密度:
4 3 4 4 2 a 4 rA 3 4 nv 0.74 3 K 3 3 V a a
3
2.2 金属的典型晶体结构
面心立方晶格参数
面心 立方 晶格 中的 间隙
2.2 金属的典型晶体结构
面心立方晶格参数
面心 立方 晶格 中的 间隙
2.2 金属的典型晶体结构 密排六方晶格参数
具有该种 晶体结构 的金属有 Mg、Zn、 Cd、Be等 20多种
2.2 金属的典型晶体结构
密排六方晶格参数
2.1.4 晶面指数和晶向指数
晶面及晶面指数
晶面指数的确定方法 ①在以晶胞的边长作 为单位长度的右旋坐 标系中取该晶面在各 通常以(hkl)表示晶向指数的普 坐标轴上的截距。 遍形式。若所求晶面在坐标轴的截距 ②取截距的倒数。 为负值,则在相应指数上冠以负号。 ③将倒数约成互质整 数,加一圆括号。
2.1.2 材料原子的排列方式
非晶态
玻璃态
原子排列从总体上是无 规则的,近邻原子排列 有一定的规律,这叫做 “短程有序”
晶态
在整个材料内部原子排 列都是有一定规律的, 这叫做“长程有序”
2.1.2 材料原子的排列方式
2.1 晶体学基础
2.1.1 材料原子的键合特征 2.1.2 材料原子的排列方式 2.1.3 关于晶体结构的基本概念
2.1.4 晶面指数和晶向指数
2.1.5 晶带和晶面族
2.1.1 材料原子的键合特征
原子结构
结 构
原子的空 间排列 显微组织
2.1.1 材料原子的键合特征
2.1.1 材料原子的键合特征
外 层 电 子 作 用 形 式
稳定的八电子排布结构
接受或释放额外电子
共有电子
2.1.1 材料原子的键合特征
金属键
正常价化合物 间隙相
电子化合物
间隙化合物
是指按照一定价电子浓度的比值 组成一定晶格类型的化合物。电 子化合物的熔点和硬度都很高, 而塑性较差,是有色金属中的重 要强化相。
正常价化合物 间隙相 电子化合物
间隙化合物
当非金属原子半径与金属原 子半径的比值小于0.59时,将形 成具有简单晶体结构的金属间化 合物. 间隙相是一些合金工具钢和 硬质合金中重要的强化相,另外, 正常价化合物 电子化合物 可用作特殊的表面处理。
第二章 金属的晶体结构
2.1 晶体学基础 2.2 金属的典型晶体结构
2.3 合金相结构
2.4 晶体缺陷
2.2 金属的典型晶体结构
体心立方
三种 典型 晶体 结构
面心立方 密排六方
2.2 金属的典型晶体结构 体心立方晶格参数 具有该种 晶体结构 的金属有 Cr、V、Mo、 W和α -Fe 等30多种
2.1.4 晶面指数和晶向指数
晶向
晶体中任意两个原子间连线所指的方向叫晶向
2.1.4 晶面指数和晶向指数
晶向指数
晶向指数的确定方法 ①建立以晶胞的边长作为 单位长度的右旋坐标系。 ②定出该晶向上任两点的 通常以[uvw]表示晶向指数的普 坐标。 遍形式。若晶向指数指向坐标轴的 ③用末点坐标减去始点坐 标。 负方向时,则在晶向指数这一数字 ④将相减后所得结果约成 上冠以负号。 互质整数,加一方括号。
2)间隙固溶体——溶质原子填入溶剂原子的间隙处。
按固溶度分类:
1)有限固溶体——在一定条件下,溶质组元在固溶体中 的浓度有一定限度,超过这一限度就不再溶解,此时固溶体 称为有限固溶体。大部分固溶体属于有限固溶体。
2)无限固溶体——此种固溶体的溶质能以任意比溶入溶 剂,溶解度可达100%,如Cu-Ni(fcc晶体结构)。
2.1.3 关于晶体结构的基本概念
晶系 三斜晶系 单斜晶系
斜方晶系 正方晶系
轴(棱边)之间的夹角
菱方晶系
六方晶系 立方晶系
2.1 晶体学基础
2.1.1 材料原子的键合特征 2.1.2 材料原子的排列方式 2.1.3 关于晶体结构的基本概念 2.1.4 晶面指数和晶向指数 2.1.5 晶带和晶面族
间隙固溶体
置换固溶体
2. 固溶体的结构
1)晶格畸变 由于溶质与溶剂原子半径不同,因而正在溶质原子 附近的局部范围内形成弹性应力场,造成晶格畸变。 2)溶质偏聚与短程有序 研究表明,当同种原子的结合力较大时溶质原子倾 向于成群地聚在一起,形成许多偏聚区;当异种原子 结合力较大时,溶质原子在固溶体中的分布呈短程有 序。 3)长程有序 某些具有短程有序的固溶体,当其成分接近一定原 子比时(如1:1),可在低于某一临界温度时,转变 为长程有序结构,这种固溶体称为有序固溶体。

⑷ 三种常见晶格的密排面和密排方向
单位面积晶面上的原子数称晶面原子密度。 单位长度晶向上的原子数称晶向原子密度。 原子密度最大的晶面或晶向称密排面或密排方向。 密排面 数量 密排方向 数量
体心立方晶格 面心立方晶格
{110} {111}
6 4 1
<111> <110>
底面对角线
4 6 3
2. 3.2 合金相结构
两组元A和B组成合金时,除了可以形成固溶体之外, 如果溶质含量超过其溶解度时,可能形成新相,其成分 处于A在B中或 B在A中最大溶解度之间,故称中间相。 在该化合物中,除离子键、共价键外,金属键也参与作 用,因而具有一定金属性质,故称金属间化合物。
符合化合物原子价规律的金属间化合 1.4 合金相结构 物。它们具有严格的化合比,成分固 定不变。它的结构与相应分子式的离 子化合物晶体结构相同,如分子式具 固溶体 金属化合物 有AB型的正常价化合物其晶体结构为 NaCl型,多为离子化合物。
2.1.1 材料原子的键合特征
范德瓦尔键
2.1 晶体学基础
2.1.1 材料原子的键合特征 2.1.2 材料原子的排列方式 2.1.3 关于晶体结构的基本概念
2.1.4 晶面指数和晶向指数
2.1.5 晶带和晶面族
2.1.2 材料原子的排列方式
非晶态
玻璃态
原子排列从总体上是无 规则的,近邻原子排列 有一定的规律,这叫做 “短程有序”
110 101 011 101 110 011 110
112 112 121 211 112 112 112 121 121 121 211 211 21 1
组元

2.3 合金相结构

固溶体
ห้องสมุดไป่ตู้
中间相(金属化合物)
合金的组元之间以不同的比例混合, 形成的固相晶体结构与组成合金的 某一组元的晶体结构相同,这种相 称为固溶体。与固溶体结构相同的 组元叫做溶剂,其他组元称为溶质。
2. 3.1 固溶体
1. 固溶体的分类
按溶质原子在晶格中所占的位置分: 1)置换固溶体——溶质原子位于溶剂晶格的结点位置。
离子键 金属的特性: 具有正的电阻温度系数 具有良好的导电性 具有良好的导热性 具有良好的延展性 具有光泽
共价键
2.1.1 材料原子的键合特征
金属键
离子键
共价键
共有价电子→电子 云→键无方向性和 饱和性→①原子趋 向于规则排列②金 属有良好的导电性、 塑性等
2.1.1 材料原子的键合特征
金属键
离子键
hu kv lw 0
3)两个非平行晶面的共带轴指数为: u k l k l 1 2 2 1
v l 1h2 l2 h1 w h1k2 h2 k1
2.1.5 晶带和晶面族
六、晶面族 在同一晶体结构中,有些晶面虽然在空间的 位向不同,但其原子排列情况完全相同,这些 晶面属于一个晶面族,其晶面指数用{hkl}表示 在立方晶系中有下列晶面族: 111 111 111 111 11 100 100 010 001 1
Fe Fe Fe
1394 C 912 C
第二章 金属的晶体结构
2.1 晶体学基础
2.2 金属的典型晶体结构 2.3 合金相结构
2.4 晶体缺陷
2.3 合金相结构 合金
两种或两种以上金属元素,或金属 元素与非金属元素,经熔炼、烧结 或其它方法组合而成并具有金属特 性的物质 组成合金最基本的独立的物质,通 常组元就是组成合金的元素。 是合金中具有同一聚集状态、相同 晶体结构,成分和性能均一,并以 界面相互分开的组成部分
《金属材料及热处理》
第二章 金属的晶体结构
主讲人 刘 海
哈尔滨工业大学 空间材料与环境工程实验室
86412462,86418720
第二章 金属的晶体结构
2.1 晶体学基础 2.2 金属的典型晶体结构
2.3 合金相结构
2.4 晶体缺陷
2.1 晶体学基础
2.1.1 材料原子的键合特征 2.1.2 材料原子的排列方式 2.1.3 关于晶体结构的基本概念
3
2.2 金属的典型晶体结构 体心立方晶格参数
面心立方晶格中的间隙
2.2 金属的典型晶体结构 面心立方晶格参数
具有该种 晶体结构 的金属有 Al、Cu、 Ni和γ -Fe 等约20种
2.2 金属的典型晶体结构
面心立方晶格参数
晶胞原子数:
1 1 n 6 8 4 2 8
2.2 金属的典型晶体结构
晶胞原子数:
n 1 1 12 2 3 6 6 2
配位数:12
致密度:K 0.74
1.3 金属的典型晶体结构
密排六方晶格参数
原子半径——晶胞中原子 密度最大的方向[111]上相 邻原子间平衡距离的一半
相关文档
最新文档