3第三章 刚体的定轴转动
第三章 刚体的转动
M
o
r
F
M r F
m
力矩是矢量,M 的方向垂直于r和 F所决定的平面,其指向 用右手螺旋法则确定。
力矩的方向
2)力矩的单位、
牛· 米(N· m)
3)力矩的计算:
M 的大小、方向均与参考点的选择有关
M
m
M Fr sin
r
F
※在直角坐标系中,其表示式为 M r F ( xi yj zk ) ( Fx i Fy j Fz k )
例2 设质量为m,半径为R的细圆环和均匀圆盘分别绕通过各 自中心并与圆面垂直的轴转动,求圆环和圆盘的转动惯量.
解 (1)求质量为m,半径为R的圆环对中心轴的转动惯量.如图 (a)所示,在环上任取一质元,其质量为dm,该质元到转轴的距 离为R,则该质元对转轴的转动惯量为
dI R 2 dm
考虑到所有质元到转轴的距离均为R, 所以细圆环对中心轴的转动惯量为
dI x dm x dx
2 2
整个棒对中心轴的转 x dx ml 2 12
2
(2)转轴通过棒一端并与棒垂直时,整个棒对该轴的转动惯量为
1 2 I x dx ml 0 3
l 2
由此看出,同一均匀细棒,转轴位置不同,转动惯量不同.
刚体也是一个各质点之间无相对位置变化且质 量连续分布的质点系。
3.1 刚体定轴转动的描述
刚体的基本运动可以分为平动和转动,刚体 的各种复杂运动都可以看成是这两种运动的合成。
1.刚体的平动和定轴转动
平动
刚体的平动是指刚体在运动过 程中其中任意两点的连线始终保 持原来的方向(或者说,在运动 的各个时刻始终保持彼此平行)。 特点:其中各点在任意相同的时间内具有相同的位移和运动 轨迹,也具有相同的速度和加速度。因而刚体上任一点的运 动都可代表整个刚体的运动。 平动的刚体可看作质点。 刚体的转动比较复杂,我们只研究定轴转动。
第3章 刚体的定轴转动 习题答案
1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'
0
r dr
2
3
0
r dr
第三章 刚体的定轴转动
m r
i 1
n
2
i i
=J
1 2 Ek Jω 2
转动动能
ω 对应 v
J 对应 m
1 2 Ek mv 2
质点的动能
二 转动惯量 ( moment of inertia ) 质量 质点惯性大小的量度
J 与 m 对应
转动惯量 刚体转动惯性大小的量度
n
J mi ri
i 1
2
体分布
dm =ρdV dm =σdS dm =λdl
面分布 线分布
J r dm
2 m
单位:
kg · 2 m
说明: J r 2dm
m
1. J 与刚体的质量有关; 2. 质量一定,与质量的分布有关;
3. 与轴的位置有关。因此叫作绕轴的
转动惯量。
转动惯量的计算
例1 质量为m,半径为 r 的均匀细圆环, 对通过其中心并垂直环面的转轴的转动惯量。 解: 根据转动惯量的定义求解。
3. 题 3-2,3-8,3-9。
§3-1
刚体的定轴转动
刚体 ( rigid body ) :在任何情况下,其形状和大 小都不发生任何变化的物体 刚体是一种理想模型
一 刚体的运动 刚体的运动
{ 转动
平动
平动 ( translation ) 刚体运动时,其上任意两点的连线 , 在运动过程中始终保持其方向不变 。 刚体的平动遵从质点运动的规律
ω ω0 αt
1 2 θ θ0 ω0t αt 2 2 2 ω ω0 2α(θ θ0 )
切向加速度 ( tangential acceleration )
dv at dt d (rω) dt dω r dt
大学物理第3章刚体的定轴转动
13
【例5】长为 l、质量为 m 的匀质细杆,绕与杆垂直的 质心轴转动,求转动惯量 J。
【解】建立坐标系,分割质量元
J x2dm
l2 l 2
x2Байду номын сангаас
ml dx
1 ml 2 12
x o x dx
【例6】长为 l、质量为 m 的匀质细杆,绕细杆一端轴 转动,求转动惯量 J。
【解】J x2dm
L
L
11
【例2】半径为 R 质量为 M 的圆环,绕垂直于圆环平 面的质心轴转动,求转动惯量J。
【解】分割质量元,环上各质元到轴的距离相等。
M
J
R2dm R2
M
dm
MR2
0
0
【例3】在无质轻杆的 b 处 3b 处各系质量为 2m 和 m 的质点,可绕 O轴转动,求质点系的转动惯量J。
刚体作定轴转动时, 刚体上各质点都作圆周运动。 各质点运动的线量一般不同,但角量完全相同。
1.角坐标
OP与极轴之间的夹角称 为角坐标(或角位置)
角坐标为标量,但可有正负。
o
P
x
在定轴转动过程中,角坐标是时间的函数: =(t),称为转动方程。
3
2.角位移
角坐标的增量 称为刚体的角位移
i
i
i
得 LJ
v i m i ri
29
由刚体定轴转动定律
得到
MJ J
d dt
d( J ) dt
dL dt
M dL 定轴转动刚体角动量定理微分形式 dt
t
L
Mdt d
t0
L0
LLL0
3.刚体的定轴转动
2 3 2
2
6.16 10
3
2
3.14 m / s
2
2
6.16 10 m / s
例3-2:一飞轮在时间t 内转过角度 at bt 3 ct 4式中a、b、c都 是常量。求它的角加速度。 解:飞轮上某点的角位置可用θ 表示为: at bt 3 ct 4 将此式对t 求导数,即得飞轮角速度的表达式为:
O
刚体定轴转动的描述
(1) 定轴转动的角量描述
角位置: (t )
角位移: (t ) (t 0 ) 角速度:
d dt d
dt d
2
角加速度:
dt
2
角速度和角加速度均为矢量,定轴转动中其方向沿转轴的
方向并满足右手螺旋定则。
说明:在刚体的定轴转动中加速度、角加速度和角位移通常用 代数量表示。通常规定:当刚体作逆时针转动时,这些角量均 取正值;反之,取负值。
观察圆盘O和圆盘上一点P的运动:
O点的运动:沿着直线向前移动 圆盘上其他点的运动:除向前移动外,还绕圆盘中心O且垂直于盘面的轴转动。
1.刚体的平动:在运动过程中,若刚体上任意一条直线在各个时 刻的位置始终彼此平行,则这种运动叫做平动。
特点:刚体内所有点具有相同的位移、速度和加速度。 --刚体上任一点的运动规律即代表刚体的平动规律。
2
2
则整个刚体的转动动能为:
Ek
1 2
m i vi
2
1 2
m i ri
2
2
1 2
J
2
二、 力矩的功和功率
1.力矩的功
刚体的定轴转动
第3章 刚体的定轴转动刚体定轴转动所遵从的力学规律,实际上是质点运动的基本概念和原理在刚体中的应用。
重要的概念有转动惯量和力矩。
刚体的动能和角动量都有其特殊的表达式,但守恒定律同样适用于包括刚体的系统。
§1 刚体的运动一 刚体刚体是固体物件的理想化模型。
实际的固体在受力作用时总是要发生或大或小的形状和体积的改变。
如果在讨论一个固体的运动时,这种形状或体积的改变可以忽略,我们就把这个固体当做刚体处理。
这就是说,刚体是受力时不改变形状和体积的物体。
刚体可以看成由许多质点组成,每一个质点叫做刚体的一个质元,刚体这个质点系的特点是,在外力作用下各质元之间的相对位置保持不变。
既然是一个质点系。
所以关于质点系的基本定律就都可以应用。
当然,由于刚体这一质点系有其特点,所以这些基本定律就表现为更适合于研究刚体运动的特殊形式。
二 刚体的运动形式刚体的运动可以是平动、转动或二者的结合。
如果刚体在运动中,连结体内两点的直线在空间的指向总保持平行,这样的运动就叫平动。
在平动时,刚体内各质元的运动轨迹都一样,而且在同一时刻的速度和加速度都相等。
因此在描述刚体的平动时,就可以用一点的运动来代表,通常就用刚体质心的运动来代表整个刚体的平动。
平动是刚体的基本运动形式之一。
转动也是刚体的基本运动形式之一,它又可分为定轴转动和定点转动。
定轴转动:运动中各质元均做圆周运动,且各圆心都在同一条固定的直线(转轴)上。
定点转动:运动中刚体上只有一点固定不动,整个刚体绕过该定点的某一瞬时轴线转动。
刚体不受任何限制的的任意运动。
它可分解为以下两种刚体的基本运动:随基点(可任选)的平动,绕通过基点的瞬时轴的定点转动。
三 刚体定轴转动的运动学描述刚体的定轴转动是最简单的转动情况。
在这种运动中各质元均做圆周运动,而且各圆的圆心都在一条固定不动的直线上,这条直线叫转轴。
刚体绕某一固定转轴转动时,各质元作圆周运动的轨道半径不同,所以各质元的线速度、加速度一般是不同的。
力学讲义-3刚体的定轴转动
物体(包括子弹)在 B 点的速度大小和θ 角的大小。
【思路分析】 此题可分两个过程,第一阶段,子弹射入木块前后,水平方向动量守恒;
第二阶段,含子弹的木块由 A 点沿曲线运动到 B 点,由于作用在木块上的弹簧拉力为有心
力,所以角动量守恒。同时,机械能也守恒,可解之。
解 子弹与木块作完全非弹性碰撞,水平方向动量守恒。设碰后的速度为 uK ,其大小为
(1)
T2 − m2 g sin α = m2a
(2)
另根据转动定律,对滑轮有
还有辅助方程
T1′R − T2′R = J β
T1′ = T1 T2′ = T2 a = Rβ
联立求解上述六个方程,解得 m1 的加速度大小为
a
=
(
m1 − m2 sinα (m1 + m2 )R2
) gR2
+J
(3)
(4) (5) (6)
与质点直线运动相对应的定理和定律,为便于记忆和理解,此处给出了质点一维运动与刚体
定轴转动的相应公式:
2
质点一维运动
刚体定轴转动
位移 Δx 速度 υ = dx
dt
加速度 a = dυ = d2 x dt dt2
质量 m
K 力F
运动定律
K F
=
maK
动量
K P
=
mυK
动量定理
JK dp
=
JK F
dt
∫K Fdt
向弹回,碰撞时间极短,如图 3-4 所示。已知滑块与棒碰撞
前后的速率分别为υ 和 u ,桌面与细棒间的滑动摩擦系数为 μ 。求从碰撞后到细棒停止运动所需的时间。
【思路分析】 首先由碰撞过程角动量守恒求出碰后细棒的角速度,再求得细棒受到的
大学物理上第3章 刚体的定轴转动
z
(ω, β )
r fi
F 两边乘以r 两边乘以ri ,有: it ri + f it ri = ∆mi ait ri
对所有质元的同样的式子求和, 对所有质元的同样的式子求和,有:
fit
∆mi
Fit
r Fi
Fir
o
Fit ri + ∑ f it r i = ∑ ∆mi ait ri = β ∑ ( ∆mi ri 2 ) ∑
表示合外力矩,记作M ∑ F r 表示合外力矩,记作 表示内力矩之和, ∑ f r 表示内力矩之和,其值等于零
it i
it i
(∆mi ri 2 ) 称为刚体对轴的转动惯量,记作J 称为刚体对轴的转动惯量,记作 ∑
则上式可简写成: 则上式可简写成:M = Jβ
11
M = Jβ
刚体定轴转动定律: 刚体定轴转动定律:刚体所受的对于某一固定转动 轴的合外力矩等于刚体对此转轴的转动惯量与刚体 在此合外力矩作用下所获得的角加速度的乘积。 在此合外力矩作用下所获得的角加速度的乘积。 说明: 说明: 1. 上式是矢量式(在定轴转动中力矩只有两个方向)。 上式是矢量式(在定轴转动中力矩只有两个方向)。 2. M、J、β是对同一轴而言的。 是对同一轴而言的。 3. 上式反映了力矩的瞬时效应。M = Jβ = J dω 上式反映了力矩的瞬时效应。 dt 4. 刚体转动定律的地位与牛顿第二定律相当。 刚体转动定律的地位与牛顿第二定律相当。 5. 转动惯量 是刚体转动惯性大小的量度。 转动惯量J是刚体转动惯性大小的量度 是刚体转动惯性大小的量度。
2
§3.1
3.1.1 刚体的运动
刚体定轴转动的描述
刚体的平动:刚体在运动过程中, 刚体的平动:刚体在运动过程中,其 上任意两点的连线始终保持平行。 上任意两点的连线始终保持平行。 可以用质点动力学的方法 来处理刚体的平动问题。 来处理刚体的平动问题。 刚体的定轴转动: 刚体的定轴转动:刚体上各点都绕同 一直线作圆周运动, 一直线作圆周运动,而直线本身在空 间的位置保持不动的一种转动。 间的位置保持不动的一种转动。这条 直线称为转轴 转轴。 直线称为转轴。
第3章 刚体的定轴转动
F
Od
r *ϕ
P
方向: 沿轴向(使刚体绕轴逆时针改变运动状态为正) 方向: 沿轴向(使刚体绕轴逆时针改变运动状态为正) 单位: 单位: N ⋅ m (牛⋅米) 定轴转动的刚体受到几个力矩的作用, 定轴转动的刚体受到几个力矩的作用,合力矩是 各力矩的代数和。 各力矩的代数和。
6
3.2 刚体的定轴转动定律
4
3.1 刚体的运动
当刚体绕定轴转动的角加速度为恒量时, 当刚体绕定轴转动的角加速度为恒量时,刚体作 匀变速转动 。 刚体匀变速转动与质点匀变速直线运动公式对比 质点匀变速直线运动 质点匀变速直线运动 刚体绕 刚体绕定轴作匀变速转动
v = v 0 + at
x = x 0 + v 0 t + at
1 2
1
3.1 刚体的运动
3.1.2 刚体的定轴转动
转动:组成刚体的各质点都绕某一直线作 组成刚体的各质点都绕某一直线作 圆周运动, 这条线为转轴。 圆周运动, 这条线为转轴。 转轴 若转轴相对于给定的参考系在空间 固定不动,则称为刚体的定轴转动。 固定不动,则称为刚体的定轴转动。 刚体的定轴转动 刚体的一般运动 (如:运行的车轮) 运行的车轮) 随某点(基点) 随某点(基点)的平动 + 过该点 的定轴转动。 的定轴转动。
第3章 刚体的定轴转动 章 3.1 刚体的运动
刚体: 刚体:特殊的质点系 受力时质点系的形状和体积不改变
3.1.1 刚体的平动
在运动过程中刚体上的任 意一条直线在各个时刻的位置 都相互平行 任意质元运动都代表整体运动 任意质元运动都代表整体运动 质元运动都代表整体
A’ A B A”
B’
B”
可用质点运动学和动力学知识研究
第3章刚体的定轴转动
绕通过质心 由合外力矩决定(应用
轴的转动
转动定律)
第3章 刚体的定轴转动
例3 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
量为 的圆mC柱形滑轮 C,并系在另一质量为 的物mB
体 B 上. 滑轮与绳索间没有滑动, 且滑轮与轴承间的摩
擦力可略去不计. 问:(1) 两物体的线加速度为多少?
dt
M
dL
作用于质点的合力对参考点 O 的力矩 ,等于质点对该点 O 的角
dt 动量随时间的变化率.
第3章 刚体的定轴转动
M
dL
dt
t2 t1
Mdt
L2
L1
冲量矩
t2
Mdt
t1
质点的角动量定理:对同一参考点 O ,质点所受
的冲量矩等于质点角动量的增量.
3 质点的角动量守恒定律
M 0, L 恒矢量
的大小与角速度的平方成正比,比例系数为 k
( k 为大于零的常数).当 1 30 时,飞轮的角
加速度为
,所经历的时间为
M k2
M J
k 2
J
k
2 0
9J
第3章 刚体的定轴转动
M k2
M J J d
k 2 J d
dt
dt
t dt J
1
3
0
1
d
0
k 0 2
2J t
M mr 2
2)刚体
质量元受外力 Fej,内力 Fij
Mej Mij mjrj2
外力矩
内力矩
第3章 刚体的定轴转动
z
M
F
F
O
第03章 刚体定轴转动01-转动定律
作用于刚体内每一质元上的内力矩的矢量和为零,即
fr 0
i i i
14
F r
i i
i
为作用于刚体内每一质元上的外力矩的矢量和。
M Fi ri
i
定义:刚体的转动惯量J (moment of interia) 则有:
2 m r ii i
M J
即:
M J
刚体定轴转动的转动定律:刚体定轴转动的角加速度与它所 受的合外力矩成正比 ,与刚体的转动惯量成反比。 —— 刚体定轴转动的基本动力学规律。
dm 2 π r dr
P
3 2
圆环对轴的转动惯量
dJ r dm 2π r dr R 3 J 2π r dr π R 4 0 2 1 2 而 m π R 所以 J mR 2
圆盘对P 轴的转动惯量
R
R
O O
r dr
1 J P mR 2 mR 2 2
19
15
三、转动惯量
J mi ri
i
2
物理意义:刚体转动惯性的量度。 对于质量离散分布刚体的转动惯量
J mi ri 2 m1r12 m2r22
i
质量连续分布刚体的转动惯量
J lim
mi 0
2 2 m r r i i dm i
P1 y
P2
23
(3)如图所示,不计绳子的质量,滑轮的质量与半径分别为M
和R,滑轮与绳间只滚不滑,不计滑轮与轴间的摩擦力。 且 m1 m2 。 求重物释放后,物体的加速度和绳的张力。 A
m1 FN m1 FT1
O
C
取坐标如图
M
第三章刚体的定轴转动
§3.1 刚体定轴转动的动能定理和转动定律
二、刚体定轴转动的动能定理 B、对于定轴转动刚体,所有内力的功总和在任何过程中均为零。(内力成对,大小相等方向相反,
一对内力矩的代数和为零;∴内力矩的功总和为零。另一角度,内力的功相对位移为零 .)
3、功率:
d A F 2d r
pdAMdM
dt dt
当 与 M 同方向, 和 为正 当 与 M 反方向, 和 为负
§3.1 刚体定轴转动的动能定理和转动定律
1 2 其中(:1 3M h 2 1 m l2l(12) ca 2o M s) 1( 3g )m h 2g(h 2 ) h 2 a (1 co )s(4 )
由(2)(3)(4)式求得:
2Mg(1lcos)/22mg(1acos)
M2l/3m a2
(Ml 2ma)g(1cos)
2
25
整理,得:
1 10 gh,
b7
vcb
10 gh 7
§3.2 定轴转动的动量矩定理和动量矩守恒定律
(2)小球到达A点不脱离轨道,要求小球在A点的速 度vA 和角速度A满足:
m v a A 2 m g v A 2 a,gA 2 v b A 2 2 a b 2 g (4 )
由机械能守恒:
b<<a
飞轮作变加速转动
§3.1 刚体定轴转动的动能定理和转动定律 例题3-1-2:一长为 l ,重为W的均匀梯子,靠墙放置,如图。墙光滑,地面粗糙, 当梯子与地面成角 时,处于平衡状态,求梯子与地面的摩擦力。
解:刚体平衡同时要满足两个条件:
Fi 0
Mi 0
列出分量方程:
O
水平方向:
f1N2 0
竖直方向:
大学物理 第三章 刚体的定轴转动
a1 = β r1 , a2 = β r2
联立以上 5 个方程可得,两物体的加速度和绳子中的张力分别为
a1 = a2 =
( m1r1 − m2 r2 ) r1 g
J1 + J 2 + m1r12 + m2r22
( m1r1 − m2 r2 ) r2 g
1
(J T =
1
解 设滑轮的半径为 R ,转动惯量为 J ,如图 3.5 所示。使用大小等于 mg ,方向向下的力拉
ww
对物体有: 对滑轮有:
绳子时,如图 3.5(a),滑轮产生的角加速度为 β =
绳下段挂一质量为 m 的物体时,如图 3.5(b) ,若设绳子此时的拉力为 T,则
此时滑轮产生的角加速度为
mgR J + mR 2 比较可知,用大小等于 mg ,方向向下的拉力拉绳子时,滑轮产生的角加速度变大,本题 β=
习题精解
3-1 某刚体绕定轴做匀速转动, 对刚体上距转轴为 r 处的任意质元的法向加速度为和切线加 速度来正确的是() A. an , aτ 大小均随时间变化 C. an 的大小变化, aτ 的大小保持不变 B. an , aτ 大小均保持不变 D. an 大小保持不变, aτ 的大小变化
解 刚体绕定轴做匀变速转动时,因为 an = rω 2 , aτ = r β ,而 β 为恒量,所以 ω = ω0 + β t , 故 an = r ( ω0 + β t ) , aτ = r β 。可见: an 的大小变化, aτ 的大小保持恒定,本题答案为 C. 3-2 一飞轮以的角速度转动 300rad • min ,转动惯量为 5kg • m ,现施加一恒定的制动
03刚体的定轴转动
的质元受阻力矩大,
细杆的质量密度 m
l
质元质量 dm dx
o
xl dm m dx
x
质元受阻力矩:
dM 阻 dmgx
细杆受的阻力矩
m l
M阻
dM
阻
0l
gxdx
1 2
gl 2
1 2
mgl
24
转动中的功和能
一. 力矩的功
设刚体上P点受到外力 F 的作用, z
位移为 d
r,
dW F ds
功为 d
三. 匀变速转动公式
当刚体绕定轴转动的角加速度为恒量时,刚
体做匀变速转动 .
质点匀变速直线运动 刚体绕定轴作匀变速转动
v v0 at
x
x0
v0t
1 2
at 2
0 t
0
0t
1 2
t 2
v2 v02 2a(x x0 )
2 02 2 ( 0 )
5
定轴转动刚体的 转动定律 力矩 角动量 转动惯量
Li
质元mi对转轴Z的角动量为:
x
Liz
Li
cos( π 2
)
mi Riv i
sin
mi ri vi
对组成刚体的所有质元的角动量求和
z
vi
mi
ri Li
Ri
O
y
Lz Liz (rimivi) (miri2)ω
9
Lz Liz miri2 ( miri2 )
i
i
i
令 J miri2
刚体绕OZ轴转动的转动惯量
i
Lz Jω
刚体绕OZ轴转动的角动量
注意:
转动惯量、角动量都是相对量,都必须指明它们是
《大学物理》第三章 刚体的定轴转动
P
t
=
1 2
ω J 2 自
t
=
ω J 2 自 2P
=
2×105× (30π)
2×736×103
2
=
1.21×103s
(2) ω进 = 1度 秒 = 0.0175rad/s
ω进 =
M
Jω自
M = Jω进ω自
M = 2×105×0.0175×30π= 3.3×105 N返回.m退出
3-14 在如图所示的回转仪中,转盘的 质量为 0.15kg , 绕其轴线的转动惯量为: 1.50×10-4 kg.m2 ,架子的质量为 0.03kg, 由转盘与架子组成的系统被支持在一个支柱 的尖端O,尖端O到转盘中心的距离为0.04 m , 当转盘以一定角速度ω 绕其轴旋转时, 它便在水平面内以1/6 rev/s的转速进动。
为25cm,轴的一端 A用一根链条挂起,如
果原来轴在水平位置,并使轮子以ω自=12 rad/s的角速度旋转,方向如图所示,求:
(1)该轮自转的角动量;
(2)作用于轴上的外力矩;
(3)系统的进动角速度, ω
并判断进动方向。
AO
B
R
l 返回 退出
解:
(1)
J
=
m
R
2
回
=
5×(0.25 )2
ω
= 0.313 kg.m2
a
=
m
1+
m m
1g 2+
J
r2
T1 =
m 1g (m 2+ J m 1+m 2 + J
r 2) r2
T2 =
m 1m 2g m 1+m 2 + J
3第三章_刚体的定轴转动
d dt
J
,
刚体定轴转动定律:刚体作定轴转动时,合外力矩等 于刚体的转动惯量与角加速度的乘积.
例:一轻绳跨过一轴承光滑的定滑轮,绳的两端分别 悬有质量为m1 和m2 的物体,滑轮可视为均质圆盘, 质量为m,半径为r,绳子不可伸长而且与滑轮之间无 相对滑动.求物体加速度、滑轮转动的角加速度和绳 子的张力. o 解: 受力图如下, 设 m 2 >m 1 r
(m 2 m1 ) g (m1 m 2 1 2
1 2 1 2 m m)g
1 2
m
m )r
m)g T2
T1
m 2 (2 m1
m1 m 2
m1 m 2
3-2 定轴转动的动量矩定理和 动量矩守恒定律
预习要点 1. 认识质点对定点的动量矩的定义, 刚体对转轴的动 量矩如何计算? 2. 刚体定轴转动的动量矩定理的内容及数学表达式是
认识刚体
在研究物体的运动时,根据问题的性质和要求, 有时需要考虑物体的形状和大小,而忽略物体在力 的作用下引起的形变,即把物体看作是形状、大小 不会改变的物体—刚体:在外力作用下形状和大小 保持不变的物体(ideal model) 刚体特征: 构成刚体任意两质点间的距离,在运动过程中恒保 持不变。是一种“速冻”质点系。 研究任务: 刚体的运动,突出转动,将其上升为研究的主要问 题和对象。忽略了振动及其它变形运动。
J J
i
m i ri
2
2
m
r dm
例:如图质点系
J
m3 r3
r1 m 1
m2 r2
i3
m i ri
2
2
i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程. 有时还需要利用质点及刚体定轴转动的运动学公
式补充方程,然后对这些方程综合求解.
例:一轻绳跨过一轴承光滑的定滑轮,绳的两端分别悬 有质量为m1和m2的物体,滑轮可视为均质圆盘, 质量 为m,半径为r,绳子不可伸长而且与滑轮之间无相对 滑动.求物体加速度、滑轮转动的角加速度和绳子的张 力. o 解: 受力图如下,设 m 2 m 1 r m' F T1 F T2
怎样的?
3. 动量矩守恒定律的内容及守恒定律的条件是什么?
一、动量矩(角动量)
质量为 m 的质点以速度 v 在空间运动,某时刻相对原点 O 的位矢为 r ,质点相对于原
点的动量矩(角动量) L0 r p r m v 大小 L 0 rm v sin θ
t
0 (1 e ) 0 95 0 8 6(rad s )
(下一页)
1
⑵角加速度随时间变化的规律为: 0 d 2 e 4 5e (rad s ) dt ⑶ t =6 · s 时转过的角度为 0
t t
dt 0 (1 e
dr
力矩的功
W
O o
x
1
2
M d
转动动能
刚体内部质量为 mi 的质量元的速度为 v r i i 动能为
1 2 mi vi
2
刚体定轴转动的总能量(转动动能)
Ek
n
1 2
1
Δm1v1
2
2
1 2
n
Δm2 v2
2
1 2
1 2
mn vn
n
2
2
i 1
Δmi vi
组的功能原理和机械能转换与守恒定律讨论. 总之,刚
体作为特殊的质点组,它服从质点组的功能转换关系. 2. 刚体的定轴转动的动能应用 E k
1 2 J
2
计算.
三、刚体定轴转动的转动定律
转动惯量 J
J
n
1
m i ri
2
J称为刚体对转轴的转动惯量,与质点的质 量相对应。刚体转动动能与质点运动动能在 表达形式上具有相似性。
r
l O´ O´ 设棒的线密度为 ,取一距离转轴 OO´ 为 r 处 的质量元 d m λ d r, d J r 2 d m λr 2 d r
J 2
l 2
dr
l 2
dr
l/2
r dr
2
1 12
l
3
1 12
l
ml
2
2
0
如转轴过端点垂直于棒 J
r dr
1 3
第三章
刚体的定轴转动
第三章 刚体的定轴转动
3-0 第三章教学基本要求
3-1 刚体定轴转动的动能定理和转动定律 3-2 定轴转动的动量矩定理和动量矩守恒定律
教学基本要求
一、掌握描述刚体定轴转动的角位移、角速度和角加速度等概念. 二、掌握力对固定转轴的力矩的计算方法,了解转动惯量的概 念 三、理解刚体定轴转动的动能定理和刚体服从质点组的功能转 换关系. 四、理解刚体定轴转动定律. 五、理解角动量的概念, 理解刚体定轴转动的角动量守恒定律. 六、会计算力矩的功 (只限于恒定力矩的功) 、定轴转动刚体 的转动动能和对轴的角动量. 七、能综合应用转动定律和牛顿运动定律及质点、刚体定轴转 动的运动学公式计算质点刚体系统的简单动力学问题.
J J1 J 2
( 1 3
o
α
m1g m2g
1 3
l
ml
2
2
m 2l
2
m m 2 )l
2)系统的转动动能为:
Ek 1 2 Jω
2
1 1 2 2 ( m1 m 2 )l ω 2 3
o
α
m1g
l
3)系统所受重力有杆的重立和小球的重力.
则系统所受重力对轴的力矩的大小为:
2
对质量连续分布的刚体,任取质量元dm,其到轴 的距离为r,则转动惯量
J
r dm
2
单位:kg · 2(千克· 2). m 米
1 2 J
2
刚体定轴转动动能计算式:Ek
刚体定轴转动的动能定理
刚体是其内任两质点间距离不变的质点组,刚体 做定轴转动时,质点间无相对位移,质点间内力不作 功,外力功为其力矩的功;并且刚体无移动,动能的 变化只有定轴转动动能的变化.
八、能综合应用守恒定律求解质点刚体系统的简单动力学问题. 明确选择分析解决质点刚体系统力学问题规律时的优先考虑顺序.
3-1 刚体定轴转动的动能定理 和转动定律
预习要点 1. 注意描述刚体定轴转动的运动学方法. 2. 阅读附录1中矢量乘法. 力对转轴的力矩如何计算? 3. 领会刚体定轴转动的动能定理的意义. 注意区分平 动动能和转动动能的计算式. 注意力矩的功的计算 方法. 4. 转动惯量的定义是什么? 转动惯量与哪些因素有关? 5. 刚体定轴转动定律的内容及数学表达式如何? 注意 它的应用方法.
例:某种电动机启动后转速随时间变化
t
的关系为: 0 (1 e
), 式中 0 9 0rad s 2 0s
1
求: ⑴t =6 · s时的转速 ; 0
⑵角加速随时间变化的规律;
⑶启动后6 · s 内转过的圈数。 0
解:⑴根据题意转速随时间的变化关系,
将t =6 · s 代入,即得: 0
一、刚体及刚体定轴转动
刚体:在外力作用下,形状和大小都不发生变
化的物体(任意两质点间距离保持不变的特殊质点
组). 刚体的运动形式:平动、转动 .
平动:刚体中所有点的运动轨迹都保持完全相同.
转动:刚体中所有的点都绕同一直线作圆周运动.
转动分定轴转动和非定轴转动.
转轴不动, 刚体绕转轴运动叫刚体的定轴转动;
0 0
6s
6s
t
)dt
0 [t e
t
]0 9[(6 2 0 05) (0 2)]
6s
36 9rad
则 t =6 · s 时电动机转过的圈数 0
N 2 5 87圈
二、刚体定轴转动的动能定理
力矩 刚体绕Oz轴旋转, O为轴
与转动平面的交点,力 F 作用
垂直于转轴的平面叫转动平面.
描述刚体定轴转动的物理量
角坐标 (t ) 角位移
(t t ) (t )
O
z
(t )
x
角速度
lim
t
t 0
d dt
角加速度
d dt
定轴(Oz轴)条件下,由Oz轴正向俯视,逆时针转 向的 、 、 取正,顺时针取负.
刚体定轴转动定律:刚体作定轴转动时,合外力 矩等于刚体的转动惯量与角加速度的乘积.
七、牛顿定律和转动定律的综合应用
如果在一个物体系中,有的物体作平动,有的物 体作定轴转动,处理此问题仍然可以应用隔离法. 但 应分清哪些物体作平动,哪些物体作转动. 把平动物 体隔离出来,按牛顿第二定律写出其动力学方程;把 定轴转动物体隔离出来,按转动定律写出其动力学方
ml
2
0
刚体的转动惯量与刚体的质量m、刚体的质量分布 和转轴的位置有关.
例、求质量为m、半径为r 的均匀细圆环的转动惯量。
轴与圆环平面垂直并通过圆心。
解: 在圆环上任取质量元 dm
J
r
2
dm r
2
dm mr
2
O
r dm
J 是可加的,所以若为薄圆
筒(不计厚度)结果相同。
(下一页)
例、求质量为M、半径为R、厚为l 的均匀圆盘
2 Δm (r ω)
i i i 1
1
2
( mi ri )
2 i 1
2
转动惯量 比较转动动能 Ek
n
1 2
n
( mi ri )
2 i 1
2
与平动动能 E k
1 2
mv
2
i 1
m i ri
2
相当于描写转动惯性的物理量.
n
定义转动惯量
J
i 1
m i ri
L0
1 2 MR
2
。
(下一页)
转动定律
由动能定理:
W
2
1
M d
1 2
2
1 2
J
2 2
1 2
J 1
2
取微分形式: M d d (
两边除dt 由于 故得
M d dt d dt ,
d dt
J ) J d
Jω d dt
dω dt
M J
J
刚体的匀变速转动
0 (t t0 )
0 0 (t t0 )
2 2
(角加速度为恒量)
1 2
(t t0 )
2
0 2 ( 0 )
类似于 匀变速直线动
0
2 但是 非匀变速转动时:
dm ds
dm dV
质量为体分布
其中、、 分别为质量的 线密度、面密 度和体密度。
线分布
面分布
体分布
(下一页)
几 种 常 见 形 状 的 刚 体 的 转 动 惯 量
转动惯量的计算举例
求质量为m、长为l的均匀细长棒,对通过棒中心 和过端点并与棒垂直的两轴的转动惯量. O O