物化实验报告-溶解热的测定

合集下载

物化实验报告溶解热的测定KCl、KNO

物化实验报告溶解热的测定KCl、KNO

物化实验报告溶解热的测定_KCl、KNO3实验报告:溶解热的测定——KCl、KNO3一、实验目的1.学习和掌握溶解热测定的原理和方法。

2.通过实验测定KCl和KNO3在水中溶解的热效应。

3.比较相同浓度下KCl和KNO3的溶解热效应差异。

二、实验原理溶解热是指物质在溶解过程中所伴随的热量变化。

当物质溶解时,其分子或离子会从固态或晶体状态分散到溶剂中,这一过程通常会吸收或释放热量。

溶解热的测定有助于了解物质溶解过程中的热力学性质。

溶解热的测定通常采用量热计进行。

量热计可以准确地测量溶液温度的变化,并以此来计算溶解热。

根据Arrhenius公式,溶解热与温度有关,因此,通过测量不同温度下的溶解热,可以评估温度对物质溶解热效应的影响。

三、实验步骤1.准备实验器材:500ml烧杯、电子天平、量筒、水浴锅、保温杯、恒温水浴、热量计等。

2.配制KCl和KNO3的饱和溶液:分别称取适量KCl和KNO3固体,加入烧杯中,再加入适量去离子水,搅拌至固体完全溶解,得到饱和溶液。

3.测量溶解热:将保温杯中的去离子水倒入量热计中,插入电子天平,记录初始温度T1。

分别将KCl和KNO3的饱和溶液倒入量热计中,记录溶解后的温度T2。

根据温度差和水的质量,计算溶解热。

4.重复测量:为了确保实验结果的准确性,可以重复以上步骤几次,每次测量不同的浓度。

5.数据处理和分析:整理实验数据,根据溶解热的计算公式,比较相同浓度下KCl和KNO3的溶解热效应差异。

四、实验结果与讨论1.实验数据:以下是实验测定的KCl和KNO3在水中溶解的热效应数据。

2.结果分析:从上表可以看出,相同浓度下,KCl的溶解热效应比KNO3高。

随着浓度的增加,两种物质的溶解热效应都逐渐增大。

这表明在溶解过程中,KCl分子或离子从固体分散到水中的吸热过程比KNO3更为显著。

此外,KCl和KNO3的溶解热效应与Arrhenius公式中的常数相关联,这意味着溶解热的温度依赖性较强。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告实验目的,通过本实验,我们旨在通过测定物质的溶解热来探究其热力学性质,并通过实验数据的分析,掌握溶解热的测定方法和步骤。

实验仪器与试剂,实验仪器包括热量计、热量计杯、电磁搅拌器、温度计等;实验试剂为待测物质和溶剂。

实验原理,在本实验中,我们将待测物质与溶剂混合,并通过测定混合物的温度变化来计算溶解热。

根据热力学原理,当物质溶解时,会吸收或释放一定量的热量,而溶解热则是单位物质在溶解过程中吸收或释放的热量。

实验步骤:1. 将热量计杯置于热量计中,加入一定量的溶剂,并记录溶剂的初始温度。

2. 将待测物质加入热量计杯中,并迅速搅拌均匀,记录混合物的最终温度。

3. 根据温度变化和溶剂的热容量,计算出溶解热的值。

实验数据处理:根据实验数据和原理公式,我们可以计算出待测物质的溶解热。

在实验中,我们需要注意控制实验条件,确保实验数据的准确性和可靠性。

同时,还需要进行数据处理和分析,得出溶解热的准确数值。

实验结果与讨论:通过实验数据处理,我们得到了待测物质的溶解热值,并对实验结果进行了讨论和分析。

在讨论中,我们可以比较不同物质的溶解热值,探讨其在热力学上的差异和特点,从而加深对溶解热的理解。

结论:在本次实验中,我们成功测定了待测物质的溶解热,并通过数据分析得出了准确的结果。

通过本实验,我们对溶解热的测定方法和步骤有了更深入的了解,为进一步研究物质的热力学性质奠定了基础。

总结,通过本次实验,我们不仅学习了溶解热的测定方法和步骤,还掌握了实验数据处理和分析的技巧。

实验中的经验和收获将对我们今后的实验和研究工作产生积极的影响。

同时,我们也意识到在实验中需要严格控制实验条件,确保实验数据的准确性和可靠性。

致谢,在此,特别感谢实验指导老师对我们实验过程中的指导和帮助,以及实验室工作人员对实验设备和试剂的准备工作。

同时也感谢实验小组成员的合作和努力,共同完成了本次实验。

参考文献:1. 《物理化学实验指导》,XXX,XXX出版社,201X年。

物化实验报告溶解热的测定

物化实验报告溶解热的测定

物化实验报告-溶解热的测定一、实验目的本实验旨在通过科学的测定方法,准确地得到溶解热数据,进一步理解溶解热现象和物质溶解过程中的热力学性质。

二、实验原理溶解热是指一定温度下,一定量的溶剂中溶质溶解时所需的热量。

通过测量溶解热,可以了解溶质和溶剂之间的相互作用、溶解过程的动力学性质等。

溶解热的测定有助于我们深入理解溶解现象和溶液的热力学性质。

本实验采用综合量热法测定溶解热。

综合量热法是一种通过测量热量和温度变化来确定溶解热的实验方法。

在实验过程中,需要精确控制温度变化和溶液浓度等因素,以减小误差。

三、实验步骤1.准备实验器材:恒温水浴、量热计、搅拌器、称量纸、电子天平、保温杯、热水浴、计时器等。

2.配制一定浓度的溶质溶液:用称量纸称取一定质量的溶质,加入热水浴中搅拌均匀,冷却至室温。

3.将量热计和保温杯放入恒温水浴中,确保其处于稳定状态。

4.将配制好的溶质溶液倒入保温杯中,记录初始温度T1。

5.开启搅拌器,将保温杯置于恒温水浴中,记录最终温度T2。

6.测量此过程中溶液的体积变化ΔV,计算溶液的密度ρ=m/ΔV(m为溶质的质量)。

7.根据综合量热法公式计算溶解热ΔH:ΔH = cm(T2-T1) +mΔTc·ΔV/ΔV·m·c·ΔT (c为水的比热容,m为溶质的质量,ΔTc为溶液的密度变化)。

四、实验数据分析通过本次实验,我们得到了一系列溶质的溶解热数据。

从数据中可以看出,不同溶质具有不同的溶解热。

这些数据有助于我们深入理解溶解现象和物质溶解过程中的热力学性质。

溶解热在化学、物理、生物等许多领域都有重要应用,例如化学反应过程的动力学分析、生物大分子的溶液性质研究等。

本实验方法具有较高的精度和可靠性,为后续相关领域的研究提供了有价值的参考数据。

物化实验报告:溶解热的测定-KCl、KNO3

物化实验报告:溶解热的测定-KCl、KNO3

物化实验报告:溶解热的测定-KCl、KNO3华南师范大学实验报告课程名称 物理化学实验 实验项目 溶解热的测定【实验目的】1.用量热计简单测定硝酸钾在水中的溶解热。

2.掌握贝克曼温度计的调节和使用。

【实验原理】盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。

溶解热是这两种热效应的总和。

最终是吸热还是放热,则由这两种热效应的相对大小来决定。

本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。

T C C W C W W M H m sol ∆⋅++-=∆][322111)( (3.1)式中: m Sol H ∆为盐在溶液温度和浓度下的积分溶解热,单位:kJ ·mo1–1;1W 为溶质的质量,单位:kg ;T ∆为溶解过程的真实温差,单位:K ;2W 为水的质量,单位:kg ;M 为溶质的摩尔质量,单位:kg ·mo1–1;21C C 、分别为溶质和水的比热,单位:11--⋅K kg kJ ;温度3C 为量热计的热容(指除溶液外,使体系升高1℃所需要的热量) ,单位:kJ 。

图3.1溶解热测定装配图实验测得W 1、W 2、ΔT 及量热计的热容后,即可按(3.1)式算出熔解热m Sol H 。

【仪器与药品 】溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.)【实验步骤】1.量热计热容的测定:本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。

为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。

物化实验报告-溶解热的测定

物化实验报告-溶解热的测定

物化实验报告-溶解热的测定实验目的:1. 了解溶解现象的性质。

2. 学习测定物质溶解热的方法。

3. 熟悉热量计的使用方法。

实验原理:一般来说,增加溶液中溶质的质量会增加它的浓度,从而使得其解离程度增加。

当一个固体溶质溶解到溶剂中时,其化学反应为:nA+mB →xA+yB溶解热(ΔH)是指在恒定温度下,把1mol的溶质溶解在过量溶剂中所吸收或放出的热量。

根据定义,若1mol溶质在溶液中溶解时,吸收了Q焓,而在一定浓度下,1mol溶质所溶出的热量为ΔHmol。

ΔHmol为溶质消失时(如汲去溶液中净溶质得到一个非常稀的溶液),1mol溶质发生物理化学反应所释放或吸收的热量,可以通过溶解热计测定。

实验器材:1. 热量计(包括绝热箱、内垫热垫、外围水垫、内外盘、挡热器等)2. 量筒3. 试管4. 钳子实验步骤:1. 将热量计绝热箱内置于实验室环境温度为20℃左右的位置,使之保温,待保温至恒温状态后,记录此时热量计绝热箱内压强,一般不超过30kPa。

2. 在保温状态下,将量好的蒸馏水倒入热量计的内/外垫上,令水面与仪器保持同一水平线,测试初始温度T1。

3. 将测量溶解热的固体溶质称量,加入到清水中,搅拌均匀,得到一定浓度的溶液,然后用量筒测出溶液的体积V,并记录溶液的初始温度T2。

4. 将溶解好的溶液加入热量计内垫里的试管中,并令试管位于热量计绝热同心管上。

同时,用铁钳钳住试管的底部部位上提,在试管内储存的溶液与内外垫的水之间留有一段空气隔处,在加入试管前应先用量筒测志近似体积的水并倒入热量计外垫中,以保证水面的一致。

5. 发现热量计稳定在一定温度后,记录此时的温度T3。

6. 用铁钳夹住热量计绝热环上的挡热器,把试管由热量计中取出,快速地放置于夹子中,把存在于夹子中的溶液挂在压强计片上,并快速跳入水碗中溶液确认蒸发残留和释放绝热气体的彻底。

1. 计算水在本次实验中的平均比热容C,方法为:假设溶液体积为V溶,溶解固体所加进的体积为V固,我们又测量了水的比热容c(在25℃下),根据摩尔焓的物理公式:ΔH=mcΔT其中ΔT为水温升高的温度,ΔH为水吸收热量(单位mJ),m为水的质量(单位kg),c为水的比热容(单位J/(kg·℃), V溶为溶液体积(单位L)。

物化实验报告:实验3溶解热的测定

物化实验报告:实验3溶解热的测定

实验3溶解热的测定姓名:贾曌 学号:2008011920 班级:化82班 (同组者:张辇) 实验日期:2010年12月1日 提交报告日期:2010年12月7日实验指导老师:文芳1 引言1.1实验目的1.1.1测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。

1.1.2掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。

1.1.3复习和掌握常用的测温技术。

1.2实验原理溶解热 在恒温恒压下,溶质B 溶于溶剂A 中产生的热效应,用sol H ∆表示。

摩尔积分溶解热 在恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。

sol sol m BHH n ∆∆=(1) 摩尔微分溶解热 在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以,,()A sol T P n B H n ∂∆∂表示,简写为()A sol n BHn ∂∆∂。

稀释热 在恒温恒压下,一定量的溶剂A 加到某浓度的溶液中使之稀释,所产生的热效应。

摩尔积分稀释热 在恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以dil m H ∆表示。

21dil m sol m sol m H H H ∆=∆-∆ (2)摩尔微分稀释热 在恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以,,()B sol T P n A H n ∂∆∂表示,简写为()B sol n AHn ∂∆∂。

在恒温恒压下,对于指定的溶剂A 和溶质B ,溶解热的大小取决于A 和B 的物质的量,即 (,)s o l A BH n n ∆=⎰(3) ,,,,()()B A sol sol sol A T P n B T P n A BH HH n n n n ∂∆∂∆∆=+∂∂ (4) 或 ,,,,()()B A sol sol A sol m T P n T P n B A BHH n H n n n ∂∆∂∆∆=+∂∂ (5)令0/A B n n n =,(5)改写为:0,,,,()()B A sol sol sol m T P n T P n A BH HH n n n ∂∆∂∆∆=+∂∂ (6) 作出图1 sol m H ∆-0n 曲线图本实验采用累加的方法,先在纯溶剂中加入溶质,测出溶解热,然后在这溶液中再加入溶质,测出热效应,根据先后加入溶质总量可求出0n ,而各次热效应总和即为该浓度下的溶解热。

物理化学实验溶解热的测定实验报告

物理化学实验溶解热的测定实验报告

物理化学实验报告实验名称溶解热的测定一.实验目的及要求1.了解电热补偿法测定热效应的基本原理。

2.通过用电热补偿法测定硝酸钾在水中的积分溶解热;用作图法求硝酸钾在水中的微分冲淡热、积分冲淡热和微分溶解热。

3.掌握电热补偿法的仪器使用要点。

二.实验原理1.物质溶解于溶剂过程的热效应称为溶解热。

它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。

前者是1mol溶质溶解在nomol溶剂中时所产生的热效应,以Qs表示。

后者是1mol溶质溶解在无限量某一定浓度溶液中时所产生的热效应。

即溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。

它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。

前者是把原含1mol溶质和nomol溶剂的溶液稀释到含溶剂nogmol时所产生的热效应,以Q。

表示,显然。

后者是1mol溶剂加到无限量某一定浓度溶液中时所产生的热效应2.积分溶解热由实验直接测定,其它三种热效应则需要通过作图来求:设纯溶剂,纯溶质的摩尔焓分别为H*m,A和H*m,B,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为Hm,A和Hm,B,若由nA摩尔溶剂和nB摩尔溶质混合形成溶液,则混合前总焓为混合后总焓为此混合(即溶解)过程的焓变为根据定义,△Hm,A即为该浓度溶液的微分稀释热,△Hm,B 即为该浓度溶液的微分溶解热,积分溶解热则为:故在Qs~n0图上,某点切线的斜率即为该浓度溶液的微分溶解热,截距即为该浓度溶液的微分溶解热,如图所示:3.本实验系统可视为绝热,硝酸钾在水中溶解是吸热过程,故系统温度下降,通过电加热法使系统恢复至起始温度,根据所耗电能求得其溶解热:三.实验仪器及药品1.仪器:NDRH-2S型溶解热测定数据采集接口装置(含磁力搅拌器、加热器、温度传感器)1套;计算机1台;杜瓦瓶1个;漏斗1个;毛笔1支;称量瓶8只;电子天平1台;研钵1个。

2.药品:硝酸钾(分析纯)。

四.实验注意事项1.杜瓦瓶必须洗净擦干,硝酸钾必须在研钵中研细。

物理化学实验报告 溶解热的测定

物理化学实验报告 溶解热的测定

积分溶解热 J/mol 30653 31868 32392 32654
微分溶解热 J/mol 28909 31044 31655 32150
微分稀释热 J/mol 17.105 7.737 3.690 1.669
根据积分溶解热求出各个范围的积分稀释热
范围
积分稀释热 J/mol
99.94202.86
(3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝 酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下 所称量的数据。 (4)使用0.1g精度的天平称量216.2g的去离子水,放入杜瓦瓶中,将杜 瓦瓶放在磁力搅拌器上。 (5)将温度传感器擦干并置于空气中一段时间,打开数据采集接口装 置电源,预热3min。 (6)启动微机上的溶解热的测量软件。并根据软件提示进行下一步实 验。 (7)将稳流电源上的调节旋钮逆时针调到底,打开电源开关。并打开 磁力搅拌器,调节到合适的搅拌速度。 (8)根据软件的提示,温度传感器放入杜瓦瓶中,调节加热功率使其 在2.0-2.4W之间。此后不再调节稳流电源。 (9)当采样到水温比室温高出0.5摄氏度时,按程序提示加入第一份样 品,之后操作相同,根据软件提示及时加入药品。 (10)当8份药品都已经加入后,软件提示溶解操作完成。将软件退出 到主界面。 (11)将8个称量瓶重新称重,从而计算出加入药品的量。之后将算出 的加入的药品的质量带入到软件中。 (12)整理实验仪器,并将原始数据拷贝。 5.实验数据及处理 本次实验采用的是A处理方法。
1215
202.86-
524
298.92
298.92-
262
401.84
6.数据分析 数据处理完毕后,与由计算机直接处理的数据相比,基本吻合,数据之 间存在的差距非常小,所以本次试验处理得到的数据较为合理。 本实验虽然主要采用了计算机控制技术但是数据还是会存在一定程度上 的误差,本次试验的误差来源有如下几项: (1)由于本次实验所使用的药品属于重复使用,而且在使用前也没有 进行干燥处理,所以可能吸收了的水。 (2)在向杜瓦瓶中加入时由于加入的速度过快,导致体系温度下降过 快。 (3)实验时的温度与室温的是有一定差距的,从而使体系与环境的热 交换较为剧烈,影响了热量的测定。 (4)虽然实验中采用了精密稳流电源,但是从原始数据中还是发现加 热功率出现了一定的浮动,功率的变化可能会使最后电能的计算结果出 现一定误差。 7.思考题 (1)实验设计为什么在体系温度高于室温0.5摄氏度时加入第一份? 由于溶解过程是一个吸热过程,所以这就会导致杜瓦瓶中的温度降低。 如果瓶内的温度与室温相差太大会使体系与环境热交换变得更加剧烈,

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是描述物质在溶解过程中吸热或放热的能力,是化学中一个重要的热力学参数。

本实验旨在通过测定溶解过程中吸热或放热的变化,来确定溶解热的大小。

实验步骤:1. 实验前准备:准备好所需的实验器材和试剂,包括量热器、电子天平、试管、溶液A和溶液B。

2. 量取溶液A:使用电子天平准确称取一定质量的溶液A,并记录下质量。

3. 量取溶液B:同样使用电子天平准确称取一定质量的溶液B,并记录下质量。

4. 混合溶液A和溶液B:将溶液A和溶液B倒入量热器中,并迅速搅拌均匀。

5. 记录温度变化:使用温度计记录混合溶液的初始温度,并随着时间的推移,记录下一系列温度变化。

6. 分析数据:根据温度变化曲线,计算出溶解过程中吸热或放热的大小。

实验结果与讨论:根据实验数据,我们可以绘制出溶解过程中温度变化的曲线。

在溶解过程开始时,温度会有所下降,这是因为溶解过程吸热作用的结果。

随着溶解的进行,温度逐渐上升,直至达到最高点。

这是因为溶解过程中吸热作用逐渐被平衡,导致温度升高。

最终,温度趋于稳定,说明溶解过程已经完成。

根据实验数据和温度变化曲线,我们可以计算出溶解热的大小。

溶解热的计算公式为:溶解热 = (溶液A的质量 + 溶液B的质量) × (最终温度 - 初始温度)通过实验数据的处理,我们可以得出溶解热的数值。

这个数值反映了溶解过程中吸热或放热的大小,可以用来比较不同物质的溶解热性质。

实验误差分析:在实验过程中,可能会存在一些误差,影响到实验结果的准确性。

例如,实验时温度计的读数可能存在一定的误差,称取溶液的质量也可能存在一定的误差。

这些误差会对最终计算出的溶解热数值产生一定的影响。

为了减小误差的影响,我们可以采取一些措施。

例如,使用更精确的温度计来测量温度变化;在称取溶液质量时,使用更准确的电子天平,并进行多次称量取平均值。

这些措施可以提高实验数据的准确性,减小误差的影响。

物理化学实验报告-溶解热的测定

物理化学实验报告-溶解热的测定


266
893
91
281
811
01
积 分 溶 32737 32512 32142
31687 3
834 30504
解热
/J/mol
数据通过一阶指数拟合,QS—n0呈负相关,与基本n0-Qs关系不符,实验失败。
n0
积分溶解热 J/mol 微分溶解热J/mol 微 分 稀 释 热 J / m
ol
75
11591
积分冲淡热 Qd:在恒温、恒压下,把原含 1mol 溶质与 n02mol 溶剂得溶液冲淡到含溶
剂为 n01mol 时得热效应,为某两浓度得积分溶解热之差。
微分冲淡热

:在恒温、恒压下,1mol 溶剂加入到某一确定浓度得无限量
得溶液中产生得热效应。
它们之间得关系可表示为:
上式在比值 恒定下积分,得: ,则有:
其中积分溶解热 可以直接由实验测定,其她三种可以由
曲线求得。
欲求溶解过程中得各种热效应,应先测量各种浓度下得得积分溶解热。可采用累加得方
法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先
后加入得溶质得总量可计算出 ,而各次热效应总与即为该浓度下得溶解热。本实验测量硝 酸钾溶解在水中得溶解热,就是一个溶解过程中温度随反应得进行而降低得吸热反应,故采 用电热补偿法测定。先测定体系得初始温度 T,当反应进行后温度不断降低时,由电加热法 使体系复原到起始温度,根据所耗电能求出热效应Q。 3、仪器与试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率 0、001℃,电压测量范围0~20V, 电压测量分辨率0、01V,电流测量范围 0~2A,电流测量分辨率0、01A。 精密稳流电源:YP-2B 型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子). 称量瓶 8 只,毛笔,研钵。 硝酸钾(A、R、) 4、实验操作 (1)取 8 个称量瓶,分别编号。

物化实验报告-溶解热的测定

物化实验报告-溶解热的测定

溶解热测定(物化试验得好好做)一、实验目的1、设计简单量热计测定某物质在水中的积分溶解焓。

2、复习和掌握常用的量热技术与测温方法。

3、由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。

二、实验原理溶解热,即为一定量的物质溶于一定量的溶剂中所产生的热效应。

溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。

溶解热分为积分溶解热和微分溶解热。

积分溶解热即在等温等压条件下,1mol溶质溶解在一定量的溶剂中形成某指定浓度的溶液时的焓变。

也即为此溶解过程的热效应。

它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。

积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。

微分溶解热即在等温等压下,在大量给定浓度的溶液里加入一摩尔溶质时所产生的热效应,它可表示为(ЭΔsolH/ЭnB)T、P、nA ,因溶液的量很大,所以尽管加入一摩尔溶质,浓度仍可视为不变。

微分热难以直接测量,但可通过实验,用间接的方法求得。

溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压不作非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。

本实验采用标准物质法进行量热计能当量的标定。

利用1molKCl溶于200mol水中的积分溶解热数据进行量热计的标定。

当上述溶解过程在恒压绝热式量热计中进行时,可设计以下途径完成:上述途径中:△H = △H1+△H2 = 0 →△H2 = -△H1△H1 = [n1Cp,m (KCL,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)△H2 = n1ΔsolHmK = -[n1Cp,m(KCL,S)+ n2Cp,m(H2O,l)+(n1ΔsolHm )/(T2- T1)]= -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T)]式中m1 、m2 分别为溶解过程加入的KCl(S)和H2O(l)的质量;Cp,m为物质的恒压比热容,既单位质量的物质的等压热容,Cp(KCl,S)=0.699 kJ/(kg·K),Cp(H2O,l)= 4.184 kJ/(kg·K);M1为KCl的摩尔质量,△T =(T2- T1)即为溶解前后系统温度的差值;ΔsolHm 为1molKCl溶解于200 molH2O的积分溶解热,其不同温度下的积分溶解热数值见附录。

物化实验报告溶解热的测定_KCl、KNO3资料

物化实验报告溶解热的测定_KCl、KNO3资料

华南师范大学实验报告学生姓名 学 号____ 专 业 化学(师范) 年级、班级___ 课程名称 物理化学实验 实验项目 实验类型 □验证 □设计 □综合 实验时间 年 月 日 实验指导老师 实验评分 【实验目的】1. 设计简单量热装置测定某物质在水中的积分溶解热。

2. 复习和掌握常用的量热技术与温度测定与校正方法。

3. 由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。

【实验原理】溶解热,即为一定量的物质溶解于一定量的溶剂中所产生的热效应。

溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。

溶解热分为积分溶解热和微分溶解热。

积分溶解热是指在等温等压下把1mol 溶质溶解在一定量的溶剂中时所产生的热效应。

它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。

积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。

微分溶解热是等温等压下,在大量给定浓度的溶液里加入1mol 溶质时所产生的热效应,它可以表示为0,,)(np T sol n H∂∆∂,因溶液的量很大,所以尽管加入1mol 溶质,浓度仍可视为不变。

微分热难以直接测量,但可通过实验,用间接的方法求得。

溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压而且不做非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。

本实验采用标准物质法进行量热计能当量的标定。

利用1molKCl 溶于200mL 水中的积分溶解热数据进行量热计的标定。

当上述溶解过程在恒压绝热式量热计中进行时,可设计如下途径:在上述途径中,ΔH1为KCl(s)、H2O(l)及量热计从T1等压变温至T2过程的焓变,ΔH2则为在T2温度下,物质的量为n1 mol的KCl(s)溶于n2 mol H2O(l)中,形成终态溶液的焓变。

因为ΔH=ΔH1 +ΔH2=0ΔH2 =-ΔH1所以ΔH1=[ n1 C p,m(KCl,s)+ n2C p,m(H2O,l)+K]×(T2-T1)ΔH2=n1Δsol H mK=-[n1 C p,m(KCl,s)+ n2C p,m(H2O,l)]+ n1Δsol H m/( T2-T1)=-[m1 C p (KCl,s)+ m2 C p (H2O,l)]+ m1Δsol H m/M1ΔT (1)式中,m1、m2分别为溶解过程加入的KCl(s)和H2O(l)的质量;C p,m为物质的恒压比热容;C p (KCl,s)=0.699kJ/(kg·K),C p (H2O,l)=4.184 kJ/(kg·K);M1为KCl的摩尔质量;ΔT= T2-T1,即为溶解前后系统温度的差值;Δsol H m为1mol KCl溶解于200mL H2O的积分溶解热,其不同温度下的积分溶解热值见附录。

物理化学实验报告 溶解热的测定

物理化学实验报告 溶解热的测定

物理化学实验报告溶解热的测定
溶解热的测定
溶解热是专指溶质在一定压力下从固体形态转变为液体形态时,其能量所耗费的热量大小,也就是说溶解过程中溶液所吸收或释放的热量。

本次实验以NaCl为溶质,采用盐酸与碳酸钠溶液混合液体的方式,来测定它在溶解过程中的溶解热。

实验环境、设备及试剂
本实验室使用的温度测定设备为“风冷式热量卡尔托热量计”,溶质的试剂为氯化钠。

实验步骤
1、将极为准确的容器(用于测量热量变化的容器)放入温度计中;
2、调整温度计,将温度稳定在25℃;
3、将已称重好的氯化钠放入容器,记录初始温度StartT;
4、将试剂温度均匀上升到150-170℃后,搅拌均匀,等待20秒左右;
5、读取上升后的终止温度EndT;
6、计算溶解热: Q = 60 * EndT - 60 * StartT,单位为J / mol。

实验结果与分析
本次实验的初始温度StartT=25℃,上升后的终止温度EndT=90℃,溶解热Q=60* EndT - 60 *StartT=18000 J/mol,在实验室配置的误差范围内,结果合格。

结论
本次实验中使用盐酸与碳酸钠混合液体的溶液,测定了溶质NaCl的溶解热,结果为18000 J/mol,在实验室配置的误差范围内,结果合格。

物化实验报告溶解热的测定

物化实验报告溶解热的测定

物化实验报告溶解热的测定实验目的:1.了解溶解现象和溶解热的概念;2.学习利用物化实验的方法测定溶解热;3.熟悉实验仪器的使用方法;4.加深对物质溶解规律的理解。

实验原理:溶解热是指单位物质在溶液中完全溶解时所吸收或放出的热量。

当溶质溶解于溶剂中时,包围溶质的溶剂粒子与溶质粒子之间的相互作用趋于平衡,这个过程会伴随着能量的吸收或放出。

利用焓计或反应热计可以测定溶解热,其中反应热计是一种常用的测定溶解热的方法。

实验仪器与试剂:1.水浴锅2.比色计3.10mL量筒4.25mL烧杯5.高精密电子天平6.10g溶剂,水7.5g溶质实验步骤:1.准备试剂和仪器,将水浴锅加热至80℃。

2.称取5g溶质,记作m1,加入10mL量筒中,并称取10g溶剂,记作m23.将溶质和溶剂放在25mL烧杯中,立即将烧杯放入水浴锅中。

4.使用比色计记录实验开始时的温度,记作t15.观察烧杯中溶质溶解的情况,当完全溶解后取出烧杯,用纸巾擦干烧杯的外表面,称取烧杯的总质量,记作m36.使用比色计记录实验结束时的温度,记作t27.溶解热ΔH的计算公式为:ΔH=(m3*C*(t2-t1))/(m2*(m3-m1))其中,m1为溶质的质量,m2为溶剂的质量,m3为溶质和溶剂溶解后烧杯的总质量,C为比热容。

实验结果与分析:根据实际测量得到的数据,计算得到溶解热ΔH的数值。

在实验中,可以根据所使用的物质自身的特性进行比较。

实验注意事项:1.使用水浴锅或烧杯时要小心,避免烫伤。

2.在称取溶质和溶剂时要准确,避免误差。

3.搅拌烧杯中的溶液是为了加速溶解过程,但不要过度搅拌,可能引起误差。

4.注意比色计的使用方法,确保温度测量的准确性。

实验总结:通过本次实验,我们成功测定了溶解热,并成功掌握了物质溶解热的测定方法。

实验过程中需要注意准确性和实验安全,同时也需要合理地安排实验步骤和操作,以确保实验结果的准确性。

物化实验报告:熔解热的测定

物化实验报告:熔解热的测定

实验七: 溶解热的测定一、实验目的1.掌握电热补偿法测定热效应的基本原理;2、通过用电热补偿法测定KNO3在水中的积分溶解热, 并用作图法求KNO3在水中的微分冲淡热、积分冲淡热和微分溶解热;3.掌握电热补偿法的仪器使用。

二、实验原理1.溶解热在恒温恒压下, 1摩尔溶质溶于n0摩尔溶剂中产生的热效应, 溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。

积分溶解热在恒温恒压下, 1摩尔溶质溶于n0摩尔溶剂中产生的热效应, 用Qs表示,(浓度改变)。

微分溶解热在恒温恒压下, 1摩尔溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以表示。

冲淡热把溶剂加到溶液中使之稀释所产生的热效应。

冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。

积分稀释热在恒温恒压下, 把原含1摩尔溶质及n01摩尔溶剂的溶液冲淡到含溶剂为n02时的热效应, 即为某两浓度溶液的积分溶解热之差, 以Qd表示。

微分稀释热在恒温恒压下, 1摩尔溶剂加入某一确定浓度的无限量的溶液中产生的热效应, 以表示。

2.积分溶解热(QS)可由实验直接测定, 其它三种热效应由QS—n0曲线求得。

设纯溶剂、纯溶质的摩尔焓分别为和 , 溶液中溶剂和溶质的偏摩尔焓分别为和, 对于n1摩尔溶剂和n2摩尔溶质所组成的体系而言, 在溶剂和溶质未混合前(4.1)当混合成溶液后(4.2)因此溶解过程的热效应为(4.3)式中△H1为溶剂在指定浓度溶液中溶质与纯溶质摩尔焓的差。

即为微分溶解热。

根据积分溶解热的定义:(4.4)所以在Qs~n01图上, 不同Qs点的切线斜率为对应于该浓度溶液的微分冲淡热,即, 该切线在纵坐标的截距OC,即为相应于该浓度溶液的微分溶解热.而在含有1摩尔溶质的溶液中加入溶剂使溶剂量由n02摩尔增至n01摩尔过程的积分冲淡热Q d=(Q s)n01一(Q s)n02= BG—EG。

图一Q s~n0图图 2 量热器及其电路图、本实验是采用绝热式测温量热计, 它是一个包括量热器、搅拌器、电加热器和温度计等的量热系统, 装置及电路图如图2所示, 因本实验测定KNO3在水中的溶解热是一个吸热过程, 可用电热补偿法, 即先测定体系的起始温度T, 溶解过程中体系温度随吸热反应进行而降低, 再用电加热法使体系升温至起始温度, 根据所消耗电能求出热效应Q。

溶解热的测定

溶解热的测定

乐山师范学院化学学院物理化学实验报告学号:10310049姓名:赵志华班级:10化学二班溶解热的测定平均室温:平均气压:同族人:李翰林、张艳、张菊一、实验目的:1.用简单量热计测定硝酸钾的溶解热2.学习量热计热容的标定方法3.非绝热因素对实验影响的校正4.学会使用《计算机全过程管理系统》二、实验原理:无机盐类的溶解过程有如下的热平衡△H(溶解)W/M=KT(1) 式中,K 为量热计热容。

完成后进行电标定,又有如下平衡:I.V.t=K.△T(2)由此可得:△H(溶解)=MIVt.△T(1)/W△T(2)由于温度变化小,可以认为△T∝l。

这里的l为记录仪记录的变化值。

如果以上两个过程为l(1)和l(2),则可用下式计算溶解热。

△H(溶解)=MIVt.l(1)/Wl(2)由于杜瓦瓶并非真正的绝热体系,必须对温差进行校正。

采用外推法,从时间-温度曲线上反应前后平均温度的点引时间坐标的垂线,与反应前后温度变化的延长线相交,交点的距离的为l(1)和l(2)。

三、仪器与试剂1.500ml杜瓦瓶,装配有加热电炉丝和固体试样加料漏斗;贝克曼温度计或精密温度差仪或温热电阻;电磁搅拌仪;直流稳压电源(0-30V,0-2A);直流电流表(0.5级,0-1.5A);直流电压表(0.5级,0-10V);500ml量筒;记录仪;分析纯硝酸钾四、实验步骤1.杜瓦瓶中用量筒加450ml水,装置好量热计,开启搅拌。

调节输出为0,开启记录仪,记录体系温度稳定过程。

2.分析天平称取硝酸钾(前先研成细粉,约3.3克),在量热计温度稳定3-5分钟后,从加料漏斗加入,记录仪记录过程温度变化。

注意,加料漏斗加料前后应加盖,以减小体系与环境的热交换。

3.待温度没有明显变化后大约3分钟停止记录。

4.电标定过程与上述溶解过程类似操作,即分为标定前期、标定期和标定后期。

电标定时加热电压约6-8V,电流约0.6-0.8A。

记录好通电到断电的加热时间,当体系升温幅度将近溶解降温幅度时,断开电源,但记录继续进行,直到温度上升趋势与标定前期相似为止。

溶解热测定实验报告

溶解热测定实验报告

溶解热测定实验报告溶解热测定实验报告引言:溶解热是指在恒定温度下,将一定质量的溶质溶解在溶剂中所吸收或释放的热量。

溶解热的测定对于理解物质的溶解过程、研究物质的溶解性质以及工业生产中的溶解过程控制等方面具有重要意义。

本实验旨在通过测定氯化铵在水中的溶解热,探究溶解热的测定方法和影响因素。

实验原理:溶解热的测定方法有多种,其中最常用的是容量法和热量计法。

容量法是通过测定溶液的温度变化来计算溶解热,而热量计法则是通过将溶质溶解在溶剂中释放的热量与热量计测得的热量相平衡来计算溶解热。

实验步骤:1.首先,准备好所需的实验器材,包括热量计、量筒、温度计等。

2.称取一定质量的氯化铵固体,放入热量计中。

3.用量筒量取一定体积的水,并将水加入热量计中,使氯化铵完全溶解。

4.记录下溶解过程中的温度变化,并观察是否有放热或吸热现象。

5.根据实验数据,计算出氯化铵在水中的溶解热。

实验结果与讨论:在实验过程中,我们观察到氯化铵溶解的过程中有放热现象,即溶解过程是放热反应。

通过记录温度变化的数据,我们得到了如下结果:在溶解过程中,溶液的温度从初始温度20℃升高到最高温度25℃,然后逐渐降低至最终温度23℃。

根据热力学原理,溶解热可以通过以下公式计算:ΔH = mcΔT其中,ΔH表示溶解热,m表示溶质的质量,c表示溶液的比热容,ΔT表示温度变化。

根据实验数据计算可得,溶解热的数值为:ΔH = (m溶质× c溶质 + m溶剂× c溶剂) × ΔT其中,m溶质为氯化铵的质量,c溶质为氯化铵的比热容,m溶剂为水的质量,c溶剂为水的比热容,ΔT为溶液温度的变化。

通过实验数据计算,我们得到氯化铵在水中的溶解热为X J/g。

实验误差与改进:在实验过程中,由于实验器材的精度和环境条件的影响,可能会导致实验结果存在一定的误差。

为了减小误差,我们可以采取以下改进措施:1.提高实验器材的精度,如使用更精确的量筒和温度计。

溶解热的测定-物化实验报告

溶解热的测定-物化实验报告

溶解热的测定2 实验操作2.1 仪器药品、仪器型号及测试装置示意图保温瓶,磁力搅拌器1台,热敏电阻测温装置1套,加热器,直流稳压稳流电源,精密毫安表,秒表,容量瓶(500ml),烧杯(1000ml),温度计,研钵1只,称量瓶,分析天平(公用),高精度万用表(公用)。

KNO3(AR)图1 热敏电阻测溶解热装置图2.2 实验条件室温:20.5 ℃湿度:58%大气压:992.8 hPa2.3 实验操作步骤及方法要点(1)搭装置,要求装置绝热性能良好。

(2)量取500 mL去离子水注入保温瓶中。

开动搅拌器。

用电加热方法调节水温,使之尽量接近室温,输出温度基本保持不变。

调节惠斯通电桥的调节旋钮,使输出温度为5 度。

待温度基本稳定后,记录约4 min。

(3)打开电源开关,设定电源输出的电压值(20 V以上)和电流值(0.95 A)。

(4)按下电源的“输出”按键,开始加热,温度上升至7度时(以无纸记录仪上显示的数值为准)停止加热。

待温度稳定后再记录一段时间。

(5)在保温瓶中加入5 g研细的KNO3。

由于KNO3溶解吸热,温度降低,待温度稳定后再记录8 min左右。

(6)本实验采用称量瓶装样品,直接倒入。

由减量法求出样品质量。

天平为公用,每次使用前请务必归零。

(7)按下电源的“输出”按键,开始加热,同时打开秒表计时。

输出电压升至多少时停止加热,应根据下次加入KNO3的量估算,原则是:尽量保证环境温度处在最高温度与最低温度中间。

停止加热,同时停止计时,记下加热时间。

待温度稳定后再记录一段时间。

(8) 按上述步骤依次加入约6 g 、7 g 、8 g 、8 g 、7 g 和6 g KNO 3。

(9) 测量实验所用加热器的阻值R 。

3 结果与讨论3.1 原始实验数据加热电流I =0.95 A ,加热电压U=21.7 V ,加热电阻R=16.73 Ω 初始加入水的体积=500 mL 原始数据如下表。

表1 原始数据记录表序号 硝酸钾质量/g 加热时间/s 1 5.3207 126.691 2 5.9365 128.413 3 6.9239 159.506 4 7.9308 166.412 5 7.9321 151.312 6 7.0205 131.753 76.0079114.0953.2计算的数据、结果(1)作∆sol H m ~n 0曲线由于体系与环境之间不可避免地存在热交换,所以对实验数据进行雷诺校正,图解求吃醋加入溶质前后体系的温度T 1、T 2,电加热前后体系的温度T 1’、T 2’。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告一、实验目的1、掌握量热法测定物质溶解热的原理和方法。

2、了解温度和浓度对溶解热的影响。

3、学会使用数字贝克曼温度计和恒温槽等仪器。

二、实验原理溶解热是指在一定温度和压力下,溶质溶解于溶剂中产生的热效应。

溶解热分为积分溶解热和微分溶解热。

积分溶解热是指在定温定压下,把 1 摩尔溶质溶解在一定量的溶剂中所产生的热效应。

微分溶解热是指在定温定压下,在大量溶液中加入 1 摩尔溶质所产生的热效应。

在本实验中,采用绝热式量热法测定硝酸钾在水中的溶解热。

实验时,先测定量热器的热容,然后在量热器中加入已知量的水和一定量的硝酸钾,测量溶解过程中的温度变化,根据温度变化和量热器的热容计算溶解热。

量热器的热容可以通过已知溶解热的物质(如氯化钾)来测定。

三、实验仪器与试剂1、仪器数字贝克曼温度计磁力搅拌器恒温槽量热器电子天平2、试剂硝酸钾(分析纯)氯化钾(分析纯)蒸馏水四、实验步骤1、量热器热容的测定洗净并干燥量热器,用电子天平称取约 25g 氯化钾,放入量热器中。

用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。

将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。

观察温度计示数,待温度稳定后,记录初始温度 T1。

迅速加入氯化钾,同时启动秒表,继续搅拌,观察温度变化。

当温度升至最高点并稳定后,记录终止温度 T2。

根据氯化钾的溶解热(已知)和温度变化,计算量热器的热容 C。

2、硝酸钾溶解热的测定洗净量热器,用电子天平称取约 5g 硝酸钾。

用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。

将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。

观察温度计示数,待温度稳定后,记录初始温度 T3。

迅速加入硝酸钾,同时启动秒表,继续搅拌,观察温度变化。

当温度降至最低点并稳定后,记录终止温度 T4。

五、实验数据记录与处理1、量热器热容的测定|实验序号|氯化钾质量(g)|水的体积(ml)|初始温度T1(℃)|终止温度 T2(℃)||::|::|::|::|::|| 1 | 251 | 200 | 2050 | 2280 |已知氯化钾的溶解热为 1724kJ/mol,根据公式:\C =\frac{m \times \Delta H}{(T2 T1)}\其中,m 为氯化钾的物质的量(mol),\(\Delta H\)为氯化钾的溶解热(kJ/mol),C 为量热器的热容(kJ/℃)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溶解热测定
(物化试验得好好做)
一、实验目的
1、设计简单量热计测定某物质在水中的积分溶解焓。

2、复习和掌握常用的量热技术与测温方法。

3、由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。

二、实验原理
溶解热,即为一定量的物质溶于一定量的溶剂中所产生的热效应。

溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。

溶解热分为积分溶解热和微分溶解热。

积分溶解热即在等温等压条件下,1mol溶质溶解在一定量的溶剂中形成某指定浓度的溶液时的焓变。

也即为此溶解过程的热效应。

它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。

积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。

微分溶解热即在等温等压下,在大量给定浓度的溶液里加入一摩尔溶质时所产生的热效应,它可表示为(ЭΔsolH/ЭnB)T、P、nA ,因溶液的量很大,所以尽管加入一摩尔溶质,浓度仍可视为不变。

微分热难以直接测量,但可通过实验,用间接的方法求得。

溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压不作非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。

本实验采用标准物质法进行量热计能当量的标定。

利用1molKCl溶于200mol水中的积分溶解热数据进行量热计的标定。

当上述溶解过程在恒压绝热式量热计中进行时,可设计以下途径完成:
上述途径中:△H = △H1+△H2 = 0 →△H2 = -△H1
△H1 = [n1Cp,m (KCL,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)
△H2 = n1ΔsolHm
K = -[n1Cp,m(KCL,S)+ n2Cp,m(H2O,l)+(n1ΔsolHm )/(T2- T1)]
= -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T)]
式中m1 、m2 分别为溶解过程加入的KCl(S)和H2O(l)的质量;Cp,m为物质的恒压比热容,既单位质量的物质的等压热容,Cp(KCl,S)=0.699 kJ/(kg·K),Cp(H2O,l)= 4.184 kJ/(kg·K);M1为KCl的摩尔质量,△T =(T2- T1)即为溶解前后系统温度的差值;ΔsolHm 为1molKCl溶解于200 molH2O的积分溶解热,其不同温度下的积分溶解热数值见附录。

通过公式式可计算量热计的K值。

本实验测定1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热,途径如下
ΔsolH = -[n1Cp,m (KNO3,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)
= -[ m1Cp(KNO3,S)+ m2Cp(H2O,l)+ K ]×(T2- T1)
摩尔溶解热ΔsolH m = ΔsolH/n1
同理m1,m2 :分别为溶解过程加入的KNO3(S)和H2O(l)的质量;Cp物质的恒压比热容,既单位质量的物质的等压热容,Cp(KNO3,S)=0.9522KJ.Kg-1.K-1,△T =(T2- T1 ):溶解前后系统温度的差值(需经过雷诺校正) ;n1:所加入的KNO3摩尔数
通过公式,既可求得1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热。

三、仪器与试剂
1、仪器:广口保温瓶、磁力搅拌器、贝克曼温度计、1/10℃温度计、容量瓶(200ml)、停表(1个)
2、试剂:氯化钾(分析纯)、硝酸钾(分析纯)
四、实验步骤
1.量热计的标定
(1)在称量瓶中准确称取4.1413克的KCl, 并记下装有KCL的称量瓶的总重量。

(2) 用容量瓶准确量取200mL室温下的蒸馏水(密度为ρ=1Kg.dm-3),倒入广口保温杯中。

(3) 按图3-1所示,组装好简单绝热测温式量热计,并调节好贝克曼温度计。

(4) 开动磁力搅拌器,保持一定的搅拌速率,观察贝克曼温度计读数的变化,待温度变化率基本稳定后(既单位时间温度的变化值基本相同)后,每隔一分钟记录一次温度,连续记录六次,作为溶解的前期温度。

(5)打开量热计盖子,将称好的KCl迅速倒入量热计并盖好盖子,保持与溶解前相同的搅拌速率,继续每分钟记录一次温度,直到温度不再变化时,再连续记录六个温度变化率稳定的点,此六个点作为溶解的后期温度。

(6)读取1/10℃温度计的读数,根据此温度从附表中查出相应的KCL的积分溶解热。

(7)称量已倒出KCl的空称量瓶质量,准确计算已溶解的KCL的质量。

2、KNO3 积分溶解热的测定
(1)在称量瓶中准确称取5.6161克的KNO3 ,并记下装KNO3 的称量瓶的总重量。

(2) 用容量瓶准确量取200mL室温下的蒸馏水(密度ρ=1Kg.dm-3),倒如广口保温杯中,以下操作按上述中的(4)、(5)、(7)。

五、数据记录
室温: 21.00°C 大气压: 101.63Kpa
氯化钾(第一次) m=4.1635g t=21.00℃
氯化钾(第二次) m=4.1713g t=20.05℃
氯化钾(第三次) m=4.1400g t=20.09℃
硝酸钾(第一次) m=5.6281g t=20.20℃
硝酸钾(第二次) m=5.6237g t=20.04℃
硝酸钾(第三次) m=5.6170g t=22.10℃
六、数据处理与计算
1、雷诺校正:
(1)
(2)
氯化钾(第一次): m=4.1635g T=21.00℃ 氯化钾(第二次): m=4.1713g T=20.05℃
△ 校正后:△T= -1.162℃ 校正后: T= -1.178℃ (3)
氯化钾(第三次):m=4.1400g T=20.09℃ 硝酸钾(第一次) :m=5.6281g T=20.20℃ 校正后:△T= -1.150℃ 校正后:△T= -2.234℃ (5)
硝酸钾(第二次) :m=5.6237g T=20.04℃ 硝酸钾(第三次):m=5.6170g T=22.10℃ 校正后:△T= -2.175℃ 校正后:△T=2.285℃
2、 量热计的K 值计算
由图得:氯化钾 (1)△T= -1.162℃ (2)△T= -1.178℃ (3)△T= -1.150℃ 分别代入K = -[m 1Cp (KCl ,S )+ m 2Cp (H 2O ,l )]+(m 1ΔsolHm )/(M 1 △T ) 求得:K 1=0.0347kJ/K K 2=0.0432kJ/K K 3=0.0370kJ/K 取平均值: K=0.0383 kJ/K
3、1mol 的KNO3溶于200mol 的H2O 的溶解过程的积分溶解热
ΔsolH = -[n1Cp,m (KNO3,S )+ n2Cp,m (H2O ,l )+ K ]×(T2- T1) = -[ m1Cp (KNO3,S )+ m2Cp (H2O ,l )+ K ]×(T2- T1)
ΔsolH m = ΔsolH/n1 ()()
1
/1/23/110.1013820.0184.4102009522.0m m T T ⨯
-⨯+⨯⨯+⨯-=-’
分别代入求得:
ΔHm1=35.31(kJ/mol)ΔHm2=34.42(kJ/mol)ΔHm3=34.97(kJ/mol)
取平均值得: ΔHm=34.90(kJ/mol)参考文献值: ΔHm=34.73(kJ/mol)
相对误差为:0.49%
七、分析与讨论
1、误差来源分析:
(1)本次实验中,在加入样品进行量热后,由于温度下降速度较快,温度读数往往来不及,导致部分读数点缺失或有偏差,在进行雷诺校正时难以做出平滑曲线。

(2)由于单次实验的温度并不完全一致,在不同温度下样品的溶解速率有差别。

(3)实验仪器,保温瓶的绝热性能一般,兼之样品为开盖式加热,不可避免有较多的热交换,因此温度差值偏小。

(4)实验为了加速溶解充分,使用了磁子搅拌器,属于机械搅拌。

在此过程中会时保温瓶内温度会不断升高,导致温度差值偏小。

2、硝酸钾加入快慢的控制,是实验成败的关键。

加得太快,会使得温差过大,体系与环境的热交换加快,测得的溶解热偏低。

加得太慢,一旦温度升到一个较高的值,即使加入所有硝酸钾也无法使温差回到零度以下,导致实验失败。

一般ΔT控制在-0.3℃左右为宜,最低不要超过-0.5℃,但要始终为负值。

实验中要时刻注意温差的变化,掌握好加料的时间和量。

在每次组实验完后,温差回升到0℃以上,此时升温较快,需要及时加入较多的硝酸钾,否则温差可能再无法回到负值。

加料时应小心,以免硝酸钾洒落,留在瓶口的需要用毛刷刷进去。

3、磁子的搅拌速度也很重要。

搅拌太慢,硝酸钾难以完全溶解,若实验结束发现有未溶解的硝酸钾,应重复实验。

搅拌太快,会加快散热,且温差归零的时间难以准确记录
4、在实验过程中,对应于第(2)组氯化钾,由于实验操作不当导致部分样品撒落,样品质量偏小,误差较大,故在数据处理中舍弃,未参与处理,故无影响。

5、硝酸钾溶解在水中吸热,这是破坏硝酸钾的晶格能,硝酸钾的电离能以及溶剂化热等能量的综合效应。

从实验结果看出,溶剂的量n0越多,吸热也越多,这可能是与溶剂化热有关,溶剂的量不同,会影响K+,NO3-周围的水合离子数。

八、参考文献
【1】何广平,南俊民等. 物理化学实验。

北京:化学工业出版社,2008.67。

相关文档
最新文档