2021年中考数学 几何专题训练:全等三角形(含答案)
河北省廊坊市廊坊四中2021年九年级中考复习全等三角形综合(含知识点、练习题、答案、作业)
三角形综合讲义全等综合知识精讲一.全等三角形的断定方法:边角边定理()SAS:两边和它们的夹角对应相等的两个三角形全等.角边角定理()ASA:两角和它们的夹边对应相等的两个三角形全等.边边边定理()SSS:三边对应相等的两个三角形全等.角角边定理()AAS:两个角和其中一个角的对边对应相等的两个三角形全等.斜边、直角边定理()HL:斜边和一条直角边对应相等的两个直角三角形全等.二.全等三角形的应用:1.运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线;2.能通过断定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的根底.1.三.全等三角形辅助线的作法2.1.中点类辅助线作法见到中线(中点),我们可以联想的内容无非是倍长中线或者是与中点有关的一条线段,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见,常见添加方法如以下图〔AD是∆底边的中线).ABC2.角平分线类辅助线作法有以下三种作辅助线的方式:〔1〕由角平分线上的一点向角的两边作垂线;〔2〕过角平分线上的一点作角平分线的垂线,从而形成等腰三角形;〔3〕OA OB=,这种对称的图形应用得也较为普遍.3.截长补短类辅助线作法截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长〞,就是将三者中最长的那条线段一分为二,使其中的一条线段等于的两条较短线段中的一条,然后证明其中的另一段与的另一条线段相等;所谓“补短〞,就是将一个的较短的线段延长至与另一个的较短的长度相等,然后求出延长后的线段与最长的线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进展求解.三点剖析 一.考点:1.全等三角形的断定2.全等三角形辅助线的作法 二.重难点:1.全等三角形的断定2.全等三角形辅助线的作法 三.易错点:1.在使用断定定理证明两个三角形全等时要注意条件的顺序必须和断定定理要求的一样,对应顶点要对应.2.辅助线只是一个指导方法,出现相关条件或结论时不一定要作辅助线或者是按照模型作辅助线,关键是如何分析题目;3.辅助线不是随意都可以作的,比方“作一条线段等于另外一条线段且与某条线段夹角是多少度〞这种辅助线就不一定能作出来. 1.全等三角形的断定2.全等三角形辅助线的作法 例题讲解一:全等与三角形综合例1.1.1把两个全等的Rt ABC ∆和Rt EFG ∆〔其直角边长均为4〕叠放在一起〔如图①〕,且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合,现将三角板EFG 绕O 点顺时针旋转〔旋转角α满足条件:090α︒<<︒〕,四边形CHGK 是旋转过程中两三角板的重叠局部〔如图②〕〔1〕在上述旋转过程中,BH 与CK 有怎样的数量关系,四边形CHGK 的面积有何变化?证明你发现的结论;〔2〕连接HK ,在上述旋转过程中,设BH=X ,GKH ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;〔3〕在〔2〕的前提下,是否存在某一位置,使GKH ∆的面积恰好等于ABC ∆面积的516?假设存在,求出此时x 的值;假设不存在,说明理由.【答案】〔1〕面积是4,是一个定值,在旋转中没有变化;理由见解析;〔2〕04x <<;〔3〕存在.【解析】〔1〕在上述旋转过程中,BH =CK ,四边形CHGK 的面积不变证明:连接CG 、KH ,ABC ∆为等腰直角三角形,()O G 为其斜边中点,CG BG ∴=,CG AB ⊥45ACG B ∴∠=∠=︒ BGH ∠与CGK ∠均为旋转角,BGH CGK ∴∠=∠在BGH ∆与CGK ∆中,B KCG BG CG BGH CGK ∠=∠⎧⎪=⎨⎪∠=∠⎩()BGH CGK ASA ∴∆∆≌ BH CK ∴=,BGH CGK S S ∆∆∴=111444222CHG CGK CHG BGH ABC CHGK S S S S S S ∆∆∆∆∆∴=+=+==⨯⨯⨯=四边形〔2〕4AC BC ==,x BH =,4CH x ∴=-,CH x = 由GHK CHK CHGK S S S ∆∆=-四边形得()1442y x x =-- 21242y x x ∴=-+ 由090α︒<<︒,得到max 4BH BC == 04x ∴<<.〔3〕存在;根据题意,得215248216x x -+=⨯ 解这个方程,得11x =,23x =即当11x =或23x =时,GHK ∆的面积均等于ABC ∆的面积的516. 例1.1.2如图1所示,点E 、F 在线段AC 上,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,垂足分别为点E ,F ;DE ,BF 分别在线段AC 的两侧,且AE=CF ,AB=CD ,BD 与AC 相交于点G . 〔1〕求证:EG=GF ;〔2〕假设点E 在F 的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.〔3〕假设点E 、F 分别在线段CA 的延长线与反向延长线上,其余条件不变,〔1〕中结论是否成立?〔要求:在备用图中画出图形,直接判断,不必说明理由〕 【答案】〔1〕见解析〔2〕成立,见解析〔3〕成立 【解析】〔1〕∵DE ⊥AC ,BF ⊥AC , ∴∠DEG=∠BFE=90°. ∵AE=CF ,∴AE+EF=CF+EF . ∴AF=CE .在Rt △ABF 和Rt △CDE 中, ∴Rt △ABF ≌Rt △CDE 〔HL 〕, ∴BF=DE .在△BFG 和△DEG 中BFG DEG BGF DGE BF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG ≌△DGE 〔AAS 〕. ∴EG=FG .〔2〕〔1〕中结论仍然成立. 理由如下:∵AE=CF , ∴AE ﹣EF=CF ﹣EF . ∴AF=CE .∵DE ⊥AC ,BF ⊥AC , ∴∠DEG=∠BFE=90°.在Rt △ABF 和Rt △CDE 中AB CD AF CE =⎧⎨=⎩,∴Rt△ABF≌Rt△CDE〔HL〕.∴BF=DE.在△BFG和△DEG中BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG≌△DGE〔AAS〕.∴EG=FG.〔3〕〔1〕中结论仍然成立.如下图:理由如下:∵AE=CF,∴AE+ACEF=CF+AC.∴AF=CE.∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.在Rt△ABF和Rt△CDE中AB CD AF CE=⎧⎨=⎩,∴Rt△ABF≌Rt△CDE〔HL〕.∴BF=DE.在△BFG和△DEG中BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG≌△DGE〔AAS〕.∴EG=FG.例1.1.3等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上一点,连接CF,过点B作BH⊥CF交CF 于G,交AC于H.〔1〕如图〔1〕,延长BH到点E,连接AE,当∠EAB=90°,AE=1,F为AB的三等分点,且BF<AF 时,求BE的长;〔2〕如图〔2〕,假设F为AB中点,连接FH,求证:BH+FH=CF;【答案】见解析【解析】〔1〕∵BH⊥CF,∠ABC=90°,∴∠ABE+∠CFB=∠CFB+∠BCF=90°,∴∠ABE=∠BCF,在△ABE与△BCF中,90EAB FBCAB BABE BCFC︒∠=∠⎧∠=∠=⎪=⎨⎪⎩,∴△ABE∽△BCF,∴BF=AE=1,∵F为AB的三等分点,且BF<AF,∴AB=3BF=3,∴〔2〕证明:过点A 作AD ⊥AB 交BH 的延长线于点D . ∴∠BAD=∠CBF=90°,∴∠D+∠ABD=∠CFB+∠ABD=90°, ∴∠ABD=∠BCF ,在△ABD 与△BCF 中,DAB FBC D CFBAB BC ∠=∠⎧⎪⎨⎪=∠=⎩∠,∴Rt △BAD ≌Rt △CBF , ∴AD=BF ,BD=CF . ∵F 为AB 的中点, ∴AF=BF , ∴AD=AF ,在△ADH 与△AFH 中,45AD AF AH DAH HAF AH ︒∠=∠==⎧⎪⎨⎪=⎩,∴△AHD ≌△AHF , ∴DH=FH .∵BD=BH+DH=BH+FH , ∴BH+FH=CF ;例:等边ABC ∆中,点O 是边AC ,BC 的垂直平分线的交点,M ,N 分别在直线AC ,BC 上,且60MON ∠=︒.〔1〕如图1,当CM CN =时,M ,N 分别在边AC ,BC 上时,请写出AM 、CN 、MN 三者之间的数量关系;〔2〕如图2,当CM CN ≠时,M ,N 分别在边AC ,BC 上时,〔1〕中的结论是否仍然成 立?假设成立,请你加以证明;假设不成立,请说明理由;【答案】〔1〕AM CN MN =+〔2〕AM CN MN =+〔3〕MN AM CN =+ 【解析】该题考察的是等边三角形的性质和全等三角形的性质和断定. 〔1〕如图1,在AM 上截取AN CN '=,连接ON ',OC ,OA , ∵O 是边AC 和BC 垂直平分线的交点,ABC ∆是等边三角形, ∴OC OA =,O 也是等边三角形三个角的平分线交点, ∵在OCN ∆和OAN ∆'中 OCN OAN ∆∆'≌〔SAS 〕,∴60AON COM ∠'+∠=︒,即NOM N OM ∠=∠', ∵在NOM ∆和'N OM ∆中∴'NOM N OM ∆∆≌〔SAS 〕,∴AM CN MN =+……2分〔2〕如图2,过点O 作OD AC ⊥,OE BC ⊥易得OD OE =,120DOE ∠=︒, 在边AC 上截取'DN NE =,连接'ON , ∴'DON EON ∆∆≌, ……4分 易证'MON MON ∆∆≌……4分 课后作业1ABC ∆,90BAC ∠=︒,等腰直角BDE ∆,90BDE ∠=︒,BD=DE ,点D 在线段AC 上.〔1〕如图1,当30ACB ∠=︒,点E 在BC 上时,试判断AD 与CE 的数量关系,并加以证明;〔2〕如图2,当45ACB ∠=︒,点E 在BC 外时,连接EC\、BD 并延长交于点F ,设ED 与BC 交于点N ,图中是否存在与BN 相等的线段?假设存在,请加以证明.假设不存在,请说明理由. 【答案】见解析.【解析】解:〔1〕2ED AD =.理由是:BDE ∆是等腰直角三角形 ∴45DBE DEB ∠=∠=︒ 又Rt ABC ∆中,30ACB ∠=︒,60ABC ∴∠=︒ 604515ABD ABC DBE ∴∠=∠-∠=︒-︒=︒ 同理60CEP ∠=︒,180180604515PED CEP DEB ∴∠=︒-∠-∠=︒-︒-︒=︒PDE ABD ∴∠=∠ ∴在ABD ∆和PDE ∆中,90DPE A PDE ABD DE BD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ABD PDE AAS ∴∆∆≌AD PE ∴= 又∵Rt PCE ∆中,30C ∠=︒,2CE PE ∴= 2CE AD ∴=. 〔2〕BN EF =,理由是:如图2,过E 作EG AC ⊥,交AC 的延长线于G在ABD ∆和GDE ∆中,90GDE ABD G A DE BD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABD GDB AAS ∴∆∆≌ AD GE ∴=,DG AB =AB AC =,AC DG ∴= AD DG GE ∴== CGE ∴∆是等腰直角三角形 45GCE ∴∠=︒F DNB ∴∠=∠ 在FDE ∆和NDB ∆中,F DNB FDE NDB DE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩2如图1,在ABC ∆中,ACB ∠是锐角,点D 为射线BC 上的一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .〔1〕假如AB=AC ,90BAC ∠=︒,①当点D 在线段BC 上时〔与点B 不重合〕,如图2,线段CF 、BD 所在直线的位置关系为 ,线段CF 、BD 的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;〔2〕假如AB=AC ,BAC ∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥〔点C 、F 不重合〕,并说明理由. 【答案】见解析.【解析】证明:〔1〕①正方形ADEF 中,AD=AF ,90BAC DAF ∠=∠=︒ BAD CAF ∴∠=∠ 又AB AC = DAB FAC ∴∆∆≌ CF BD ∴=,B ACF ∠=∠ 90ACB ACF ∴∠+∠=︒ 即CF BD ⊥.②当点D 在BC 的延长线上时①的结论仍成立.由正方形ADEF 得AD=AF ,90DAF ∠=︒ 90BAC ∠=︒ DAF BAC ∴∠=∠ DAB FAC ∴∠=∠ 又AB AC = DAB FAC ∴∆∆≌90BCF ACB ACF ∴∠=∠+∠=︒ 即CF BD ⊥.〔2〕当45ACB ∠=︒时,CF BD ⊥〔如图〕.理由:过点A 作AG AC ⊥交CB 的延长线于点G ,那么90GAC ∠=︒,45ACB ∠=︒,90AGC ACB ∠=︒-∠,904545AGC ∴∠=︒-︒=︒ 45ACB AGC ∴∠=∠=︒,AC AG ∴= DAG FAC ∠=∠〔同角的余角相等〕,AD=AF 即CF BC ⊥.3如图1,将两个完全一样的三角形纸片ABC 和DEC 重合放置,其中90C ∠=︒,30B E ∠=∠=︒. 〔1〕操作发现如图2,固定ABC ∆,使DEC ∆绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是 ;②设BDC ∆的面积为1S ,AEC ∆的面积为2S ,那么1S 与2S 的数量关系是 .〔2〕猜测论证当DEC ∆绕点C 旋转到如图3所示的位置时,小明猜测〔1〕中1S 与2S 的数量关系仍然成立,并尝试分别作出了BDC ∆和AEC ∆中BC 、CE 边上的高,请你证明小明的猜测. 〔3〕拓展探究60ABC ∠=︒,点D 是角平分线上一点,BD=CD=4,DE//ABA 交BC 于点E 〔如图4〕.假设在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请直接写出相应的BF 的长.【答案】见解析.【解析】解:〔1〕①∵DEC ∆绕点C 旋转点D 恰好落在AB 边上,AC CD ∴= 90903060BAC B ∠=︒-∠=︒-︒=︒,ACD ∴∆是等边三角形,60ACD ∴∠=︒ 又60CDE BAC ∠=∠=︒ ACD CDE ∴∠=∠ //DE AC ∴.②30B ∠=︒,90C ∠=︒ 12CD AC AB ∴==BD AD AC ∴== 根据等边三角形的性质,ACD ∆的边AC 、AD 上的高相等 ∴BCD ∆的面积和AEC ∆的面积相等〔等底等高的三角形的面积相等〕,即12S S =〔2〕如图,DEC ∆是由ABC ∆绕点C 旋转得到,BC CE ∴=,AC CD =在ACN ∆和DCM ∆中,90ACN DCM CMD N AC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACN DCM AAS ∴∆∆≌ AN DM ∴=BDC ∴∆的面积和AEC ∆的面积相等〔等底等高的三角形的面积相等〕即12S S =;〔3〕如图,过点D 作DF 1//BE ,易求四边形BE DF 1是菱形,所以BE= DF 1,且BE 、DF 1上的高相等,此时1DCF BDE S S ∆∆=;过点D 作2DF BD ⊥,60ABC ∠=︒,DF 1//BE ,2160F F D ABC ∴∠=∠=︒,∵B F 1=D F 1,11302F BD ABC ∠=∠=︒,290F DB ∠=︒,1260F DF ABC ∴∠=∠=︒ 12DF F ∴∆是等边三角形,12DF DF ∴=BD CD =,60ABC ∠=︒,点D 是角平分线上一点,160302DBC DCB ∴∠=∠=⨯︒=︒12CDF CDF ∴∠=∠ 在1CDF ∆和2CDF ∆中,1212DF DF CDF CDF CD CD =⎧⎪∠=∠⎨⎪=⎩()12CDF CDF SAS ∴∆∆≌∴点F 2也是所求的点,60ABC ∠=︒,点D 是角平分线上的一点,DE //AB 160302DBC BDE ABD ∴∠=∠=∠=⨯︒=︒ 又4BD =故BF.。
2021年中考数学基础过关:17《全等三角形》(含答案)
2021年中考数学基础过关:17《全等三角形》一、选择题1.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC2.如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是()A.∠B=∠E,BC=EFB.∠A=∠D,BC=EFC.∠A=∠D,∠B=∠ED.BC=EF,AC=DF3.如下图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=20°,则∠EAC=( )A.20°B.64°C.30°D.65°4.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC6.如图,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠DEF等于( )A.100°B.53°C.47°D.33°7.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D、E,AD=2.5cm,DE=1.7cm,则BE的长()A.0.8cmB.0.7cmC.0.6cmD.1cm8.如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分钟,在原地休息了4分钟,然后以500米/分的速度匀速骑回出发地,设时间为x分钟,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个桶注水,注5分钟后停止,等4分钟后,再以2升/分的速度匀速倒空桶中的水,设时间为x分钟,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0,其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.3二、填空题9.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有对.10.如图,点F、C在线段BE 上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件,依据是.11.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.12.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD,CD.若∠B=65°,则∠ADC的大小为 .13.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=60°,∠A=68°,AB=13cm,则∠F= 度,DE= cm.14.如图,CA=CB,CD=CE,∠ACB=∠DCE=40°,AD、BE交于点H,连接CH,则∠CHE= .三、解答题15.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.16.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.参考答案1.C2.B3.B4.B5.C6.D7.A .8.C9.答案为: 6.10.答案为:AC=DF ,SAS .11.答案为:4.12.答案为:65°;13.答案为:52,13.14.答案为:70°.15.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB(答案不唯一).(2)选△ABE ≌△CDF ,证明:∵AB ∥CD ,∴∠BAE=∠DCF.∵AF=CE ,∴AF +EF=CE +EF ,即AE=CF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS).16.(1)证明:∵AC 是角平分线,CE ⊥AB 于E ,CF ⊥AD 于F ,∴CE=CF ,∠F=∠CEB=90°,在Rt △BCE 和Rt △DCF 中,∴△BCE ≌△DCF ;(2)解:∵CE ⊥AB 于E ,CF ⊥AD 于F ,∴∠F=∠CEA=90°,在Rt △FAC 和Rt △EAC 中,,∴Rt △FAC ≌Rt △EAC ,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.。
2021年中考数学专题复习:全等三角形(二)
2021年中考数学专题复习:全等三角形(二)1.在△ABC中,AB=AC,点D是BC的中点,点E和点F是AC上的两点,AB=BF,连接ED 交BF于点H.(1)如图1,连接BE,若∠BEC=90°,BC=10,CE=6,求AB的长;(2)如图2,G为ED延长线上一点,且BD=BG,∠ABF=∠CBG,求证:AE=EF.2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.3.如图,△ABC中,∠ACB=90°,AC=12,BC=16.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P 和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.4.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.5.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).6.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD 为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.7.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD 相交于点F.求证:(1)BF=AC;(2)CE=BF.8.在平面直角坐标系中,A(7,0),B(0,7).(1)如图1,P是AB上一点且=,求P点坐标;(2)如图2,D为OA上一点,AC∥OB且∠CBO=∠DCB,求∠CBD的度数;(3)如图3,E为OA上一点,OF⊥BE于F,若∠EOF=∠ABE,求的值9.如图,点A、C、D、B在同一条直线上,且AC=BD,∠A=∠B,∠E=∠F.(1)求证:△ADE≌△BCF;(2)若∠BCF=65°,求∠DMF的度数.10.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM 于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD 之间的数量关系并证明.11.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B 落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.12.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.13.请将下面的说理过程和理由补充完整.如图,点B,E,C,F在一条直线上,BE=CF,AB∥DE,AB=DE,说明AC=DF.解:∵BE=CF,(已知)∴BE+EC=CF+ .(等式的性质)即BC=.∵AB∥DE,(已知).∴∠B=.()又∵AB=DE,(已知)∴△ABC≌△DEF.()∴AC=DF.()14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:∠ABE=∠ACE;(2)如图2,若BE的延长线交AC于点F,CE的延长线交AB于点G.求证:EF=EG.15.已知,在△ABC中,AC=BC.分别过A,B点作互相平行的直线AM和BN.过点C的直线分别交直线AM,BN于点D,E.(1)如图1.若CD=CE.求∠ABE的大小;(2)如图2.∠ABC=∠DEB=60°.求证:AD+DC=BE.参考答案1.解:(1)如图1,连接AD,∵AB=AC,点D是BC的中点,∴AD⊥BC∵∠BEC=90°,BC=10,CE=6,∴BE===8设AB=x,则AE=x﹣6∵AE2+BE2=AB2,即(x﹣6)2+82=x2,解得:x=,∴AB=,(2)证明:如图2,连接BE,∵BD=BG∴∠BDG=∠BGD∵AB=BF,∴∠A=∠AFB∵∠ABF=∠CBG,∴∠BDG=∠A∴∠EDC=∠BDG=∠A∵∠A+∠ABC+∠C=∠EDC+∠CED+∠C=180°∴∠CED=∠ABC∵AB=AC∴∠C=∠ABC∴∠C=∠CED∴DE=DC∵点D是BC的中点,∴BD=DC∴DE=DC=BD∴∠BED=∠EBD∵∠BED+∠EBD+∠C+∠CED=180°,即2∠BED+2∠CED=180°∴∠BED+∠CED=90°∴BE⊥AF∵BA=BF∴AE=EF2.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.3.解:∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,,CP=12﹣2t,CQ=16﹣6t,∴12﹣2t=16﹣6t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=12﹣2t=6t﹣16,∴t=3.5;③P到BC上,Q在AC时,此时不存在;理由是:16÷6×2<12,Q到AC上时,P点也在AC上;④当Q到A点(和A重合),P在BC上时,∵CP=CQ=AC=12.CP=12﹣2t,∴2t﹣12=12,∴t=12符合题意;答:点P运动1或3.5或12时,△PEC与△QFC全等.4.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.5.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE =S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.6.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;7.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中∵,∴△BDF≌△CDA(AAS),∴BF=AC;(2)证明:∵BE⊥AC,∴∠AEB=∠CEB,∵BE平分∠ABC,∴∠ABE=∠CBE,在△AEB和△CEB中∵,∴△AEB≌△CEB(ASA),∴AE=CE,即CE=AC,∵由(1)知AC=BF,∴CE=BF.8.解:(1)作PG⊥x轴于G,PN⊥y轴于N,∵A(7,0),B(0,7),∴OA=7,OB=7,∵PG⊥x轴,∴PG∥OB,∴△AGP∽△AOB,∴=,即=,解得,PG=3,同理,PN=4,∴P点坐标为(4,3);(2)作BG⊥AC交AC的延长线于G,作BH⊥CD于H,∴四边形BOAG为矩形,∴BO=BG,∵OA=OB,∴矩形BOAG为正方形,∵AC∥OB,∴∠CBO=∠BCG,∵∠CBO=∠DCB,∴∠BCG=∠DCB,在△BCH和△BCG中,,∴△BCH≌△BCG(AAS),∴∠CBH=∠CBG,BG=BH,∴BO=BH,在Rt△BOD和Rt△BHD中,,∴Rt△BOD≌Rt△BHD(HL),∴∠BOD=∠HOD,∴∠CBD=∠DBH+∠CBH=∠OBG=45°;(3)∵OA=OB,∴∠ABO=∠BAO=45°,∵∠BEO=∠BAE+∠ABE=45°+∠EOF,∵OF⊥BE,∴∠BEO+∠EOF=90°,∴∠BEO=67.5°,∠EOF=22.5°,则∠OBE=22.5°,作∠BOP=∠OBE=22.5°,则PB=PO,∠OPF=45°,设OF=a,则PF=OF=a,由勾股定理得,OP=a,∴PB=a,∴BF=a+a,∵∠BOP=∠OBE,∠OFB=∠EFO=90°,∴△OFB∽△EFO,∴EF==a﹣a,∴==2.9.证明:如图所示:(1)∵AD=AC+CD,BC=BD+CD,AC=BD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(AAS),(2)∵△AED≌△BFC,∴∠ADE=∠BCF,又∵∠BCF=65°,∴∠ADE=65°,又∵∠ADE+∠BCF=∠DMF∴∠DMF=65°×2=130°.10.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.11.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.12.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS);(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.13.解:∵BE=CF,(已知)∴BE+EC=CF+EC(等式的性质)即BC=EF.∵AB∥DE,(已知)∴∠B=∠DEF.(两直线平行,同位角相等)又∵AB=DE,(已知)∴△ABC≌△DEF(SAS)∴AC=DF.(全等三角形对应边相等)故答案为:EC;EF;∠DEF;两直线平行,同位角相等;SAS;全等三角形对应边相等.14.解:(1)证明:∵点D是BC的中点,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴∠ABE=∠ACE;(2)如图,由(1)知,△ABE≌△ACE,∴BE=CE,∠ABE=∠ACE,在△BEG和△CEF中,,∴△BEG≌△CEF(ASA),∴EG=EF.15.(1)解:如图1,延长AC交BN于点F,∵AM∥BN,∴∠DAF=∠AFB,在△ADC和△FEC中,,∴△ADC≌△FEC(AAS),∵AC=BC,∴BC=AC=FC=AF,∴△ABF是直角三角形,∴∠ABE=90°;(2)证明:如图2,在EB上截取EH=EC,连CH,∵AC=BC,∠ABC=60°,∴△ABC为等边三角形,∵∠DEB=60°,∴△CHE是等边三角形,∴∠CHE=60°,∠HCE=60°,∴∠BHC=120°,∵AM∥BN,∴∠ADC+∠BEC=180°,∴∠ADC=120°,∴∠DAC+∠DCA=60°,又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,∴∠DCA+∠BCH=60°,∴∠DAC=∠BCH,在△DAC与△HCB中,,∴△DAC≌△HCB(AAS),∴AD=CH,DC=BH,又∵CH=CE=HE,∴BE=BH+HE=DC+AD,即AD+DC=BE.。
2021年中考数学 专题训练:全等三角形(含答案)
2021中考数学 专题训练:全等三角形一、选择题1. 如图,△ABC ≌△EDF ,DF=BC ,AB=ED ,AC=15,EC=10,则CF 的长是( )A .5B .8C .10D .152. 已知图中的两个三角形全等,则∠α的度数为 ()A .105°B .75°C .60°D .45°3. 如图,P为OC 上一点,PM ⊥OA ,PN ⊥OB ,垂足分别为M ,N ,PM =PN ,∠BOC =30°,则∠AOB 的度数为( )A .30°B .45°C .60°D .50°4. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .25. 如图,添加下列条件,不能判定△ABD ≌△ACD 的是( )A.BD=CD,AB=ACB.∠ADB=∠ADC,BD=CDC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=CD6. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2+2B.23+C.32+D.37. 如图,已知点A,B,C,D在同一条直线上,△AEC≌△DFB.如果AD=37 cm,BC=15 cm,那么AB的长为()A.10 cmB.11 cmC.12 cmD.13 cm8. 如图,△ACB≌△A'CB',∠ACA'=30°,则∠BCB'的度数为()A.20°B.30°C.35°D.40°9. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()10. 如图,点G 在AB 的延长线上,∠GBC ,∠BAC 的平分线相交于点F ,BE ⊥CF于点H .若∠AFB =40°,则∠BCF 的度数为( )A .40°B .50°C .55°D .60°二、填空题11. 如图,在△ABC 中,∠C =90°,∠CAB =50°,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E ,F ;②分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边于点D ,则∠ADC 的度数为________.12.如图,已知AC =FE ,BC =DE ,点A ,D ,B ,F 在同一直线上,要使△ABC ≌△FDE ,还需添加一个..条件,这个条件可以是__________(填一个即可).13. 如图,小明和小丽为了测量池塘两端A ,B 两点之间的距离,先取一个可以直接到达点A 和点B 的点C ,沿AC 方向走到点D 处,使CD =AC ;再用同样的方法确定点E ,使CE =BC .若量得DE 的长为60米,则池塘两端A ,B 两点之间的距离是______米.14. 已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1.若这两个三角形全等,则x的值为.15. 要测量河岸相对两点A,B之间的距离,已知AB垂直于河岸BF,先在BF 上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是________米.三、解答题16. 如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明(不再添加辅助线和字母).17. 如图2-Z-20,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.18. 如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD.求证:CF=DE.2021中考数学 专题训练:全等三角形-答案一、选择题1. 【答案】A [解析] ∵△ABC ≌△EDF ,AC=15,∴EF=AC=15. ∵EC=10,∴CF=EF-EC=15-10=5.2. 【答案】B3. 【答案】C[解析] ∵点P 在OC 上,PM ⊥OA ,PN ⊥OB ,PM =PN ,∴OC 是∠AOB 的平分线.∵∠BOC =30°,∴∠AOB =60°.4. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCEADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .5. 【答案】D[解析] A .在△ABD 和△ACD 中,⎩⎨⎧AD =AD ,AB =AC ,BD =CD ,∴△ABD ≌△ACD(SSS),故本选项不符合题意; B .在△ABD 和△ACD 中,⎩⎨⎧AD =AD ,∠ADB =∠ADC ,BD =CD ,∴△ABD ≌△ACD(SAS),故本选项不符合题意; C .在△ABD 和△ACD 中,⎩⎨⎧∠BAD =∠CAD ,∠B =∠C ,AD =AD ,∴△ABD ≌△ACD(AAS),故本选项不符合题意;D .根据∠B =∠C ,AD =AD ,BD =CD 不能推出△ABD ≌△ACD(SSA),故本选项符合题意.故选D.6. 【答案】A【解析】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F ,∴DF=DE=1, 在Rt △BED 中,∠B=30°,∴BD=2DE=2,在Rt △CDF 中,∠C=45°,∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴CD=22DF CF +=2, ∴BC=BD+CD=22+,故选A .7. 【答案】B[解析] ∵△AEC ≌△DFB ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=37 cm ,BC=15 cm , ∴AB==11(cm).8. 【答案】B[解析] 由△ACB ≌△A'CB',得∠ACB=∠A'CB'.由等式的基本性质,得∠ACB-∠A'CB=∠A'CB'-∠A'CB.所以∠BCB'=∠ACA'=30°.9. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.10. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB =40°,易得∠ACB =80°. ∴∠ZCY =100°.∴∠BCF =50°.二、填空题11. 【答案】65°12. 【答案】答案不唯一,如∠C =∠E 或AB =FD 等13. 【答案】60[解析] 在△ACB 和△DCE 中,⎩⎨⎧AC =DC ,∠ACB =∠DCE ,BC =EC ,∴△ACB ≌△DCE(SAS).∴DE =AB. ∵DE =60米,∴AB =60米.14. 【答案】4[解析] ∵△ABC 的三边长分别为6,7,10,△DEF 的三边长分别为6,3x-2,2x-1,这两个三角形全等,∴3x-2=10,2x-1=7,解得x=4;还可以是3x-2=7,2x-1=10,这种情况不成立.15. 【答案】20三、解答题16. 【答案】解:(答案不唯一)添加条件:AC =DF. 证明:∵BF =EC ,∴BF -CF =EC -CF ,即BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AC =DF ,∠1=∠2,BC =EF ,∴△ABC ≌△DEF.17. 【答案】证明:∵C 是AB 的中点,∴AC=CB.在△ACD 和△CBE 中,∴△ACD ≌△CBE (SSS). ∴∠A=∠ECB.∴AD ∥CE.∴∠A+∠ECA=180°.18. 【答案】证明:∵AE =BF ,∴AE +EF =BF +EF , 即AF =BE.∵AC ∥BD ,∴∠CAF =∠DBE.在△ACF 和△BDE 中,⎩⎨⎧AC =BD ,∠CAF =∠DBE ,AF =BE ,∴△ACF ≌△BDE(SAS). ∴CF =DE.。
2021年全国中考数学真题分类汇编--三角形:全等三角形(答案版 )
A. 添加一个条件 AB=DE,
又 BC EF, B E
∴△ABC ≌△DEF (SAS)
D. AC∥FD
故 A 不符合题意; B. 添加一个条件∠A=∠D
又 BC EF, B E VABC≌VDEF ( AAS)
故 B 不符合题意; C. 添加一个条件 AC=DF ,不能判断△ABC≌△DEF ,故 C 符合题意; D. 添加一个条件 AC∥FD
,
∴△ABE≌△ACD(SAS), ∴BE=CD; 选择条件②的证明为: ∵∠ABC=∠ACB, ∴AB=AC, 在△ABE 和△ACD 中,
,
∴△ABE≌△ACD(ASA), ∴BE=CD; 选择条件③的证明为: ∵∠ABC=∠ACB,
∴AB=AC, ∵FB=FC, ∴∠FBC=∠FCB, ∴∠ABC﹣∠FBC=∠ACB﹣∠FCB, 即∠ABE=∠ACD, 在△ABE 和△ACD 中,
【分析】若选择条件①,利用∠ABC=∠ACB 得到 AB=AC,则可根据“SAS”可判断△ ABE≌△ACD,从而得到 BE=CD; 选择条件②,利用∠ABC=∠ACB 得到 AB=AC,则可根据“ASA”可判断△ABE≌△ACD, 从而得到 BE=CD; 选择条件③,利用∠ABC=∠ACB 得到 AB=AC,再证明∠ABE=∠ACD,则可根据 “ASA”可判断△ABE≌△ACD,从而得到 BE=CD. 【解答】证明:选择条件①的证明为: ∵∠ABC=∠ACB, ∴AB=AC, 在△ABE 和△ACD 中,
【答案】 4
【解析】 【分析】证明三角形全等,再利用勾股定理即可求出.
【详解】解:由题意: AD 平分 CAB , DE AB 于 E , CAD EAD , AED 90 , 又 AD 为公共边,
中考数学复习《全等三角形》专题训练-附带有答案
中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。
2021年中考数学专项训练: 全等三角形(含答案)
一、选择题10.(2020·宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长{答案}A{解析}本题考查了全等三角形的判定和性质,等边三角形的性质,五边形DECHF的周长为DE+CE+CH+FH +DF,∵△ABC和△FGH是两个等边三角形,∴△AFH≌△CHG,∴CH=AF.∵△BDE和△FGH是两个全等的等边三角形,∴DE=FH=BD=BE,∴DE+CE+CH+FH+DF=BE+CE+CH+BD+DF=BC+BF+CH=BC+BA,∴只需要知道△ABC的周长就可以求得五边形DECHF的周长,因此本题选A.(2020·四川甘孜州)9.如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE ≌△ACD的是( )A.AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC{答案}B{解析}本题考查了全等三角形的判定.由全等三角形的判定“SAS”、“AAS”、“ASA”可得,添加选项A、C、D都能判定两三角形全等;而添加选项B则不能判定两三角形全等,故选B.7.(2020·绵阳)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点.若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.4{答案}B{解析}延长HG交BC于点M.∴DF∥BC,GH⊥DF,∴∠GMC=∠MGD=∠C=90°,∴四边形GMCD为矩形,∴MG=CD=2,∴BE平分∠ABC,∴∠ABE=∠EBC,又∴∠A=∠BMG=90°,∴△ABE∽△MBG,∴==,∴BG=2EG,∴∠HGD=90°,点E为DH的中点,∴DH=2EG=2ED,∴DH=BG,∴EG=ED,∴∠EGD=∠EDG,∴DF∥BC,∴∠EGD=∠GBM,∴∠EDG=∠GBM,又∴∠HGD=∠BMG=90°,∴△DHG≌△BGM,∴HG=GM=2.故选项B正确.BEBGAEMG238.(2020·鄂州)如图,在△AOB 和△COD 中,OA =OB ,OC =OD ,OA <OC ,36AOB COD ︒∠=∠=.连接AC 、BD 交于点M ,连接OM .下列结论:①36AMB ︒∠=;②AC BD =;③OM 平分AOD ∠;④MO 平分AMD ∠其中正确的结论个数有( )个. A .4 B .3 C .2 D .1 {答案}B{解析}本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.由SAS 证明△AOC ≌△BOD ,得到∠OAC =∠OBD ,由三角形的外角性质得:∠AMB +∠OBD =∠AOB +∠OAC ,得出∠AMB =∠AOB =36°,①正确;根据全等三角形的性质得出∠OCA =∠ODB ,AC =BD ,②正确;作OG ⊥AC 于G ,OH ⊥BD 于H ,如图所示:则∠OGC =∠OHD =90°,由AAS 证明△OCG ≌△ODH (AAS ),得出OG =OH ,由角平分线的判定方法得出MO 平分AMD ∠,④正确;由∠AOB =∠COD ,得出当∠DOM =∠AOM 时,OM 才平分∠BOC ,假设∠DOM =∠AOM ,由△AOC ≌△BOD 得出∠COM =∠BOM ,由MO 平分∠BMC 得出∠CMO =∠BMO ,推出△COM ≌△BOM ,得OB =OC ,而OA =OB ,所以OA =OC ,而OA OC <,故③错误;即可得出结论. 正确的有①②④; 故选B .11.如图,在中,,将绕点C 顺时针旋转得到,使点B 的对应点E 恰好落在边上,点A 的对应点为D ,延长交于点F ,则下列结论一定正确的是( )ABC 90ACB ∠=︒ABC DEC AC DE ABA. B. C. D.{答案}D{解析}本题考查旋转的性质以及全等三角形的性质,证明过程常用角的互换、直角互余作为解题工具,另外证明题当中反证法也极为常见,需要熟练利用.可通过旋转的性质得出△ABC与△DEC全等,故可判断A选项;可利用相似的性质结合反证法判断B,C选项;最后根据角的互换,直角互余判断D选项.由已知得:△ABC△DEC,则AC=DC,∠A=∠D,∠B=∠CED,故A选项错误;∵∠A=∠A,∠B=∠CED=∠AEF,故△AEF△ABC,则,假设BC=EF,则有AE=AB,由图显然可知AE AB,故假设BC=EF不成立,故B选项错误;假设∠AEF=∠D,则∠CED=∠AEF=∠D,故△CED为等腰直角三角形,即△ABC为等腰直角三角形,因为题干信息△ABC未说明其三角形性质,故假设∠AEF=∠D不一定成立,故C选项错误;∵∠ACB=90°,∴∠A+∠B=90°.又∵∠A=∠D,∴∠B+∠D=90°.故AB⊥DF,D选项正确.故选:D.7.(2020·淄博)如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED【解析】∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.6.(2020·永州)如图,已知,AB DC ABC DCB=∠=∠.能直接判断ABC DCB△≌△的方法是()AC DE=BC EF=AEF D∠=∠AB DF⊥≅EF AEBC AB≠A. SASB. AASC. SSSD. ASA【答案】A【详解】在△ABC和△DCB中,AB DCABC DCBBC CB=⎧⎪∠=∠⎨⎪=⎩,∴ABC DCB△≌△(SAS),故选:A.7.(2020·邵阳)如图,四边形ABCD是平行四边形,点E,B,D,F在同一条直线上,请添加一个条件使得△ABE ≌△CDF,下列不正确的是()A.AE=CFB.∠AEB=∠CFDC.∠EAB=∠FCDD.BE=DF{答案} A{解析}本题考查了平行四边形的性质、全等三角形的判定和性质等知识,∴四边形ABCD是平行四边形,∴AB=CD,AB∴CD,∴∴ABD=∴BDC,∴∴ABE+∴ABD=∴BDC+∴CDF,∴∴ABE=∴CDF,A.若添加AE CF=,则无法证明ABE CDF△≌△,故A错误;B.若添加AEB CFD∠=∠,运用AAS可以证明ABE CDF△≌△,故选项B正确;C.若添加EAB FCD∠=∠,运用ASA可以证明ABE CDF△≌△,故选项C正确;D.若添加BE DF=,运用SAS可以证明ABE CDF△≌△,故选项D正确.因此本题选A.二、填空题 18.(2019·上海)在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且△ACD ≌△C 1A 1D 1,那么AD 的长是 . {答案}53{解析}如图,∵在∴ABC 和∴A1B1C1中,∠C =∠C1=90°,AC =A1C1=3,BC =4,B1C1=2, ∴AB5,设AD =x ,则BD =5-x ,∵△ACD ≌△C1A1D1,∴C1D1=AD =x ,∠A1C1D1=∠A ,∠A1D1C1=∠CDA , ∴∠C1D1B1=∠BDC ,∵∠B =90°-∠A ,∠B1C1D1=90°-∠A1C1D1,∴∠B1C1D1=∠B ,∴△C1B1 D1∽△BCD , ∴1111BD BC C D C B =,即5x x-=2,解得x =53.∴AD 的长为53. 13.(2020·黑龙江龙东)如图,Rt∴ABC 和Rt∴EDF 中,BC ∴DF ,在不添加任何辅助线的情况下,请你添加一个条件 ,使Rt∴ABC 和Rt∴EDF 全等.{答案} AB =ED 答案不唯一.{解析}本题考查了三角形全等的条件,解:∴Rt∴ABC 和Rt∴EDF 中,∴∴BAC =∴DEF =90°,∴BC∴DF ,∴∴DFE =∴BCA ,∴添加AB =ED ,在Rt∴ABC 和Rt∴EDF 中{∠DFE =∠BCA∠DEF =∠BAC AB =ED,∴Rt∴ABC∴Rt∴EDF (AAS ),故答案为:AB =ED 答案不唯一. 14.(2020·北京)在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD ≌△ACD ,这个条件可以是 (写出一个即可). {答案}答案不唯一,∠BAD =∠CAD 或者BD =CD 或AD ⊥BC{解析}根据等腰三角形三线合一的性质可得,要使△ABD ≌△ACD ,则可以填∠BAD =∠CAD 或者BD =CD 或AD ⊥BC 均可.13.(2020·齐齐哈尔如图,已知在△ABD 和△ABC 中,∠DAB =∠CAB ,点A 、B 、E 在同一条直线上,若使△ABD ≌△ABC ,则还需添加的一个条件是 .(只填一个即可) {答案} AD =AC (∠D =∠C 或∠ABD =∠ABC 等){解析}利用全等三角形的判定方法添加条件.∵∠DAB =∠CAB ,AB =AB , ∴当添加AD =AC 时,可根据“SAS ”判断△ABD ≌△ABC ; 当添加∠D =∠C 时,可根据“AAS ”判断△ABD ≌△ABC ; 当添加∠ABD =∠ABC 时,可根据“ASA ”判断△ABD ≌△ABC . 故答案为AD =AC (∠D =∠C 或∠ABD =∠ABC 等).14.(2020·怀化)如图,在△ABC 和△ADC 中,AB =AD ,BC =DC ,∠B =130°,则∠D = °.{答案}130{解析}根据全等三角形的判定定理得出△ABC ≌△ADC ,根据平行线的性质得出∠D =∠B ,代入求出即可. 证明:∵在△ADC 和△ABC 中 {AD =AB AC =AC CD =CB, ∴△ABC ≌△ADC (SSS ), ∴∠D =∠B , ∵∠B =130°, ∴∠D =130°, 故答案为:130.15.(2020·抚顺本溪辽阳)如图,在△ABC 中,M ,N 分别是AB 和AC 的中点,连接MN ,点E 是CN 的中点,连接ME 并延长,交BC 的延长线于点D ,若BC =4,则CD 的长为 .{答案}2{解析}本题可根据三角形中位线定理,及三角形全等的知识求解.∵M ,N 分别是AB 和AC 的中点,∴MN =12BC =2,MN ∥BC .∴∠NME =∠D ,∵NE =CE ,∠NEM =∠CED ,∴△NEM ≌△CED ,∴CD =MN =2.三、解答题 18.(2020·温州) 如图,在△ABC 和△DCE 中,AC =DE ,∠B =∠DCE =90° ,点A ,C ,D 依次在同一直线上,且AB // DE .(1)求证:△ABC ≌△DCE .(2)连结AE ,当BC =5,AC =12时,求AE 的长.{解析}本题考查了平行线的性质、全等三角形的判定、勾股定理等知识.(1)由AB//DE,得到∠BAC =∠D. 又因为∠B =∠DCE =90°,AC =DE ,所以△ABC ≌△DCE(AAS).(2)由(1)知BC =CE ,从而在Rt △ACE 中,利用勾股定理求AE.E ADBCMN E CB A{答案}解:(1): AB//DE,∴∠BAC=∠D. 又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS).(2)由(1)知△ABC≌△DCE,∴CE=BC=5.在Rt△ACE中,∵AC=12, CE=5,2251213 AE∴=+=.21.(2020台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.20.(2020·铜仁)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.{解析}由已知条件“BF=EC”结合图形可知:BC=EF,欲证△ABC≌△DEF,目前已经知道的条件是一边(BF=EC)、一角(∠B=∠E),所以可以考虑全等三角形的判定定理AAS、SAS或ASA,再次分析已知条件,发现由AC∥DF可得出∠ACB=∠DFE,所以考虑由ASA定理证得结果.{答案}证明:∵AC∥DF,∴∠ACB=∠DFE.又∵BF=CE,∴BC=EF.在△ABC和△DEF中,∵,∴△ABC≌△DEF(ASA).26.(2020·常德)已知D是RR△RRR斜边AB的中点,∠RRR=90°,∠RRR=30°,过点D作Rt△RRR使∠RRR=90°,∠RRR=30°,连接CE并延长CE到点P,使RR=RR,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①RR=RR;②∠RRR=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠RRR+∠RRR=30°.{解析} (1)①证明△CBP是直角三角形,根据直角三角形斜边上的中线等于斜边的一半可得结论;②根据同位角相等可得BC//EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB(SAS),再由EF是DQ的垂直平分线,可得结论.{答案}解:证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°−30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC//DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC//DM,∴BMBC =BDAB=12,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED//BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=12PC=EP;②∵∠ABC=∠DFE=30°,∴BC//EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°−∠FDC=120°−(60°+∠EDC)=60°−∠EDC=60°−∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.25.(2020·黔东南州)如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.{解析}(1)依据等式的性质可证明∠BCD=∠ACE,然后依据SAS可证明△ACE≌△BCD;(2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;(3)如图2,过点A作AF⊥CD于F,先根据平角的定义得∠ACD=60°,利用特殊角的三角函数可得AF的长(也可以利用含30度角的直角三角形的性质),由三角形面积公式可得△ACD的面积,最后根据勾股定理可得AD的长.{答案}解:(1)全等.理由是:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,{CD=CE∠BCD=∠ACEBC=AC,∴△ACE≌△BCD(SAS);(2)如图3,由(1)得:△BCD≌△ACE,∴BD =AE ,∵△DCE 都是等边三角形,∴∠CDE =60°,CD =DE =2, ∵∠ADC =30°,∴∠ADE =∠ADC+∠CDE =30°+60°=90°,在Rt △ADE 中,AD =3,DE =2,∴AE =√AD 2+DE 2=√9+4=√13,∴BD =√13; (3)如图2,过A 作AF ⊥CD 于F ,∵B 、C 、E 三点在一条直线上,∴∠BCA+∠ACD+∠DCE =180°,∵△ABC 和△DCE 都是等边三角形,∴∠BCA =∠DCE =60°,∴∠ACD =60°, 在Rt △ACF 中,sin ∠ACF =AFAC ,∴AF =AC ×sin ∠ACF =1×√32=√32, ∴S △ACD =12×CD ×AF =12×2×√32=√32,∴CF =AC ×cos ∠ACF =1×12=12,FD =CD ﹣CF =2−12=32,在Rt △AFD 中,AD2=AF2+FD2=(√32)2+(32)2=3,∴AD =√3.23.(2020·安徽)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE =AD .EC 与BD 相交于点G ,与AD 相交于点F ,AF =AB . (1)求证:BD ⊥EC ;(2)若AB =1,求AE 的长;(3)如图2,连接AG ,求证:EG -DG =2AG .图1 图2{解析}(1)证明△AEF ≌△ADB ,结合已知条件,等量代换求∠EGB =90°即可; (2)证明△AEF ∽△DCF ,代入已知与等量,转化成方程求解;(3)以AG 为腰构造等腰直角三角形,将EG 、DG 和2AG 转化到同一条直线中求解.{答案}(1)证明:因为四边形ABCD 是矩形,点E 在BA 的延长线上,所以∠EAF =∠DAB =90°,又AE =AD ,AF =AB ,所以△AEF ≌△ADB ,∠AEF =∠ADB.所以∠GEB +∠GBE =∠ADB +∠ABD =90°,即∠EGB =90°,故BD ⊥EC.(2)解:由矩形性质知 AE//CD.所以∠AEF =∠DCF ,∠EAF =∠CDF,所以△AEF ∽△DCF ,AE AFDC DF =,即AE DF =AF DC.设AE =AD =a(a>0),则有a (a -1)=1,化简得a 2-a -1=0,解得a =15+ 或15- (舍),所以AE 的长为15+.(3)证明:方法一:如图1,在线段EG 上取点P ,使得EP =DG ,在△AEP 与△ADG 中,AE =AD ,∠AEP =∠ADG ,EP =DG ,所以△AEP ≌△ADG ,所以AP =AG ,∠EAP =∠DAG , 所以∠PAG =∠PAD +∠DAG =∠PAD +∠EAP =∠DAE =90°,△PAG 为等腰直角三角形. 于是EG -DG =EG -EP =PG =2AG.方法二,如图2,过点A 作AG 的垂线,与DB 的延长线交于点Q.在△AEG 与△ADQ 中,G CE D FG CE BA D FAE =AD ,∠AEG =∠ADQ ,∠EAG =90°+∠DAG =∠DAQ ,所以△AEG ≌△ADQ , 所以EG =DQ ,AG =AQ ,△AGQ 为等腰直直角三角形,于是EG -DG =DQ -DG =QG图1 图224.(2020·哈尔滨)已知:在△ABC 中,AB =AC ,点D 、点E 在边BC 上,BD =CE ,连接AD 、AE . (1)如图1,求证:AD =AE ;(2)如图2,当∠DAE =∠C =45°时,过点B 作BF ∥AC 交AD 的延长线于点F ,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.{解析}本题考查了全等判定与等腰三角形判定,(1)只需要证明△ABD ≌ △ACE 即可得出结论,(2)根据(1)中的结论知道△ADE 中∠DAE =45°,AD =AE ,所以45°和∠ADE 或∠AED 的所有相等的角所在三角形为符合条件的三角形.{答案} (1)证明:如图1∵AB =AC ∴∠ABC =∠ACB ∵BD =CE ∴△ABD ≌ △ACE ∴AD =AE (2)如图2 △ADE △BDF △BAE △CAD23(2020·江苏徐州)如图,AC ⊥BC ,DC ⊥EC ,AC =BC ,DC =EC ,AE 与BD 交于点F . (1)求证:AE =BD ; (2)求∠AFD 的度数. (第23题){解析} (1)先利用边角边证明△ACE ≌△BCD ,然后由全等三角形的性质得到AE=BD ;(2)利用全等三角形的性质以及三角形的内角和定理来进行证明.{答案}解:(1)∵AC ⊥CB ,CD ⊥EC ,∴∠ACB=∠ECD=90˚,∴∠ACE=∠BCD ,在△ACE 和△BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ,∴AE=BD.(2)∵△ACE ≌△BCD ,∴∠A=∠B ,∵∠AGC=∠BGF ,∴∠BFA=∠ACB=90˚,∴∠AFD=∠BFA=90˚.26.(2020·苏州)问题1:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.A求证:AB CD BC+=.问题2:如图②,在四边形ABCD中,45B C∠=∠=︒,P是BC上一点,PA PD=,90APD∠=︒.求ABCCDB+的值.{解析}问题1:证法一:证明ABP PCD∆∆≌;证法二:根据三角函数求解;问题2:分别过点A、D作BC的垂线,垂足为E、F转化为问题1求解。
2021年九年级数学中考复习——几何专题:全等三角形性质与判定(二)
2021年九年级数学中考复习——几何专题:全等三角形性质与判定(二)1.已知:如图,E是∠AOB平分线上的一点,EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD.求证:(1)OC=OD;(2)OE是CD的垂直平分线.2.补充完成下列推理过程:.如图,在△ABC中,AB=AC,点D,E分别是BC,AC上的点,且BD=CE,连接AD,DE,若∠ADE=∠B.求证:AD=DE.证明:∵AB=AC∴∠B=∠C()∵∠ADC=∠B+∠()且∠ADE=∠B∴∠ADC=∠ADE+∠又∵∠ADC=∠ADE+∠CDE∴∠BAD=∠CDE在△BAD和△CDE中.∠B=∠C∠BAD=∠CDE=∴△BAD≌△CDE()∴AD=DE()3.如图,在Rt△ABC中,∠B=90°,过A作AC的垂线交∠BCA的角分线于点D.CD交AB于点F.(1)求证:∠ADF=∠AFD;(2)如图2,DE⊥AF,若AC+BC=16,DE=4,求BC的长.4.如图,在四边形ABCD中,∠C=90°,连接BD,∠ABD=45°,且∠ADB=∠CDB,过A点作AE⊥BD于点E,交BC于点F,求证:AD=BF.5.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.6.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=16,DE=4,求△ADC的面积.7.(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.8.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.9.把两个含有45°角的直角三角板如图放置,点D在BC上,连结BE、AD,且AD的延长线交BE于点F.(1)求证:AF⊥BE;(2)若BD=2,AE=8,求EC,AC的长.10.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC =∠BAD =90°,得S 四边形ABCD =S △ABC +S △ADC =S ABC +S ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG =FN =HM =GH +MN =2cm ,∠G =∠N =90°,求五边形FGHMN 的面积.参考答案1.证明:(1)∵OE 平分∠AOB ,∴∠COE =∠DOE ,∵EC ⊥OA ,ED ⊥OB ,∴∠OCE =∠ODE =90°,又∵OE=OE,∴△OCE≌△ODE(AAS),∴OC=OD;(2)∵△OCE≌△ODE,∴OC=OD,CE=DE,∴OE是CD的垂直平分线.2.解:∵AB=AC,∴∠B=∠C(等边对等角),∵∠ADC=∠B+∠BAD(三角形的外角性质),且∠ADE=∠B,∴∠ADC=∠ADE+∠BAD,又∵∠ADC=∠ADE+∠CDE,∴∠BAD=∠CDE,在△BAD和△CDE中.,∴△BAD≌△CDE(AAS)∴AD=DE(全等三角形的对应边相等);故答案为:等边对等角;BAD,三角形的外角性质;BAD;BE,CE;AAS;全等三角形的对应边相等.3.证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCF,∵DA⊥AC,∴∠DAC=∠B=90°,∴∠ACD+∠D=90°,∠BCF+∠CFB=90°,∴∠D=∠CFB,∴∠ADF=∠CFB=∠AFD;(2)如图,过点D作DH⊥BC,交CB的延长线于H,在△ACD和△HCD中,,∴△ACD≌△HCD(AAS),∴AC=CH,∵∠ABC=∠H=90°,DE⊥AB,∠ABH=90°,∴AB∥DH,DE∥BH,∴DE=BH=4,∵AC+BC=16,∴CH+BC=BH+BC+BC=4+2BC=16,∴BC=6.4.证明:∵AE⊥BD,∴∠AEB=∠AED=∠BEF=90°,∵∠ABD=45°,∴∠BAE=45°=∠ABE,∴AE=BE,∵∠C=90°,∠BEF=90°,∴∠BDC+∠DBC=90°,∠BFE+∠DBC=90°,∴∠BFE=∠BDC,∵∠BDC=∠ADB,∴∠ADB=∠BFE,即∠ADE=∠BFE,在△AED和△BEF中,∴△AED≌△BEF(AAS),∴AD=BF.5.解:(1)∵∠B=70°,AB=AD,∴∠ADB=∠B=70°,∵∠B+∠BAD+∠ADB=180°,∴∠BAD=40°,∵∠CAE=∠BAD,∴∠CAE=40°,∵AE∥BC,∴∠C=∠CAE=40°;(2)AD平分∠BDE,理由是:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS)∴∠B=∠ADE,∵∠B=∠ADB,∴∠ADE=∠ADB,即AD平分∠BDE.6.(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵DE=DF,DE=4,∴DF=4,∵AC=16,∴△ADC的面积是==32.7.(1)证明:在△ACE和△BCE中,∵,∴△ACE≌△BCE(SAS);(2)AE=BE.理由如下:在CE上截取CF=DE,在△ADE和△BCF中,∵,∴△ADE≌△BCF(SAS),∴AE=BF,∠AED=∠CFB,∵∠AED+∠BEF=180°,∠CFB+∠EFB=180°,∴∠BEF=∠EFB,∴BE=BF,∴AE=BE.8.证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)由(1)可知,∠F=∠ACB,∵∠A=60°,∠B=80°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(60°+80°)=40°,∴∠F=∠ACB=40°.9.证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴∠ECD=∠BCA=0°,CE=CD,BC=AC,∴在△ECB和△DCA中,,∴△ECB≌△DCA(SAS),∴∠BEC=∠ADC,又∠ADC+∠DAC=90°,∴∠BEC+∠DAC=90°,∴∠AFE=90°,即AF⊥BE.(2)解:∵AE=8,∴EC+AC=8①,∵DB=2,∴BC﹣DC=2.∵BC=AC,EC=DC,∴AC﹣EC=2②,∴由①、②得:EC=3,AC=5.10.解:(1)由题意可得,AE=AC=2,∠EAC=90°,则△EAC的面积是:=2(cm2),即四边形ABCD的面积为2cm2,故答案为:2;(2)连接FH、FM,延长MN到O,截取NO=GH,在△GFH和△NFO中,,∴△GFH≌△NFO(SAS),∴FH=FO,∵FG=FN=HM=GH+MN=2cm,GH=NO,∴HM=OM,在△HFM和△OFM中,。
2021年九年级数学中考复习小专题突破训练:全等三角形的判定与性质综合(附答案)
2021年九年级数学中考复习小专题突破训练:全等三角形的判定与性质综合(附答案)1.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50B.62C.65D.682.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a23.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM 平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.14.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF =b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c5.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定6.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个B.2个C.3个D.4个7.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD ⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个8.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①P A平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD =CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个11.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN 在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.112.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE13.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF =45°,则CF的长为()A.2B.3C.D.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.16.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=.17.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.18.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.19.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.20.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD 的长为.21.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是(填序号)22.如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC长是cm.23.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB =4,则三角形ABC的面积是.24.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是.25.如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有(将所有正确答案的序号填写在横线上).26.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.27.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE =60°.若BD=2CE,则DE的长为.28.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.29.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B =∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.30.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.31.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.32.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.33.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.34.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.35.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.参考答案1.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EF A=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EF A=∠AGB,∠EAF=∠ABG⇒△EF A≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=F A+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选:A.2.解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.3.解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的个数有3个;故选:B.4.解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.5.解:在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠BAC的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故选:A.6.解:∵△ABD、△BCE为等边三角形,∴AB=DB,∠ABD=∠CBE=60°,BE=BC,∴∠ABE=∠DBC,∠PBQ=60°,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴①正确;∵△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,∴②正确;在△ABP和△DBQ中,,∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形,∴③正确;∵∠DMA=60°,∴∠AMC=120°,∴∠AMC+∠PBQ=180°,∴P、B、Q、M四点共圆,∵BP=BQ,∴,∴∠BMP=∠BMQ,即MB平分∠AMC;∴④正确;综上所述:正确的结论有4个;故选:D.7.解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选:A.8.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.9.解:(1)P A平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠P AR=∠P AS,∴P A平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵P A平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.10.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选:D.11.解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN,∴EM=NF,PM=PN,故(1)正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故(3)正确,∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,在旋转过程中,△PMN是等腰三角形,形状是相似的,因为PM的长度是变化的,所以MN的长度是变化的,故(4)错误,故选:B.12.解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),13.解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选:A.14.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.15.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.16.解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.17.解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.18.解:∵△ABO≌△ADO,∴AB=AD,∠BAO=∠DAO,∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确;∴BC=DC,故②正确.故答案为:①②③.19.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.20.解:在AD的上方过点A作AD′⊥AD,使得AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.21.解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④由③知AD=AE=EC,∴④正确;综上所述,正确的结论是①②④.故答案是:①②④.22.解:延长CD至点E,使DE=BC,连接AE,∵∠BAD=∠BCD=90°,∴∠2+∠B=180°,∵∠1+∠2=180°,∠2+∠B=180°,∴∠1=∠B,在△ABC与△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠EAD=∠BAC,AC=AE,S△AEC=S四边形ABCD ∵∠BAD=90°,∴∠EAC=90°,∴△ACE是等腰直角三角形,∵四边形ABCD的面积为24cm2,∴AC2=24,解得AC=4或﹣4,∵AC为正数,∴AC=4.故答案为:4.23.解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠F AB=90°,∵∠ABF=90°,∴∠AFB+∠F AB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.24.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠FED=∠EF A=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EF A=∠AGB,∠EAF=∠ABG⇒△EF A≌△ABG同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=F A+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故答案为50.25.解:①BE平分∠ABC,∴∠EBC=∠ABC,∵CE平分∠ACD,∴∠DCE=ACD,∵∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,∴∠EBC+∠BEC=(∠BAC+∠ABC)=∠EBC+BAC,∴∠BEC=∠BAC,故①正确;∵②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故②错误.③BE平分∠ABC,∴∠ABE=∠CBE,∵GE∥BC,∴∠CBE=∠GEB,∴BG=GE,同理CH=HE,∴BG﹣CH=GE﹣EH=GH,故③正确.④过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,∴EN=ED,∴EN=EM,∴AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180°﹣2z,∠ACB=180﹣2x,∵∠ABC+∠ACB+∠BAC=180°,∴2y+180°﹣2z+180°﹣2x=180°,∴x+z=y+90°,∵z=y+∠AEB,∴x+y+∠AEB=y+90°,∴x+∠AEB=90°,即∠ACE+∠AEB=90°,故④正确;故答案为:①③④.26.解:∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO,在△COD和△COB中,,∴△COD≌△COB,∴∠D=∠CBO,∵∠BAC=80°,∴∠BAD=100°,∴∠BAO=40°,∴∠DAO=140°,∵AD=AO,∴∠D=20°,∴∠CBO=20°,∴∠ABC=40°,∴∠BCA=60°,故答案为:60°.27.解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM ⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠F AE=∠F AC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠F AE=∠F AC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CF=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.28.证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.29.解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.30.(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.31.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.32.(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.33.(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)成立.证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴△BCF≌△BEF(HL),∴CF=EF;∵△ABC≌△DBE,∴AC=DE,∴AF=AC+FC=DE+EF.34.(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.35.解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),。
2021中考数学 几何专题训练:全等三角形(含答案)
2021中考数学几何专题训练:全等三角形一、选择题(本大题共10道小题)1. 下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙2. 如图,已知∠1=∠2,欲证△ABD≌△ACD,还需从下列条件中补选一个,则错误的选项是( )A.∠ADB=∠ADC B.∠B=∠CC.DB=DC D.AB=AC3. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是( )A.SAS B.AAA C.SSS D.HL4. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去( )A.只带①B.只带②C.只带③D.带①和②5. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC6. 如图所示,已知△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB的度数为()A.40°B.50°C.55°D.60°7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为( )A.a+c B.b+cC.a-b+c D.a+b-c8. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2+2B.23+C.32+D.39. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有( )A.4个B.3个C.2个D.1个10. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()二、填空题(本大题共8道小题)11. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.12. 如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC =DB,③AB=DC,其中不能判定△ABC≌△DCB的是________(只填序号).13. 如图,AC与BD相交于点O,且AB=CD,请添加一个条件:________,使得△ABO≌△CDO.14. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.15. 如图,点O在△ABC的内部,且到三边的距离相等.若∠BOC=130°,则∠A=________°.16. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.17. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE=________cm.18. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、解答题(本大题共4道小题)19. 如图,在△ABC中,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是142.5 cm2,AB=20 cm,AC=18 cm,求DE的长.20. 如图所示,BE=CF,DE⊥AM于点E,DF⊥AN于点F,点B,C分别在AM,AN上,且BD=CD,AD是∠BAC的平分线吗?为什么?21. 如图,在菱形ABCD中,AB=5,sin∠ABD=55,点P是射线BC上一点,连接AP交菱形对角线BD于点E,连接EC.(1)求证:△ABE≌△CBE;(2)如图①,当点P在线段BC上时,且BP=2,求△PEC的面积;(3)如图②,当点P在线段BC的延长线上时,若CE⊥EP,求线段BP的长.22. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.2021中考数学几何专题训练:全等三角形-答案一、选择题(本大题共10道小题)1. 【答案】B[解析]依据SAS全等判定可得乙三角形与△ABC全等;依据AAS全等判定可得丙三角形与△ABC全等,不能判定甲三角形与△ABC全等.故选B.2. 【答案】C [解析] 当添加条件A时,可用“ASA”证明△ABD≌△ACD;当添加条件B时,可用“AAS”证明△ABD≌△ACD;当添加条件D时,可用“SAS”证明△ABD≌△ACD;当添加条件C时,不能证明△ABD≌△ACD.3. 【答案】D4. 【答案】C [解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.5. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.6. 【答案】D[解析] 因为△ABC≌△ADE,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.7. 【答案】D [解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF=DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.8. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴22+2DF CF∴BC=BD+CD=22+A.9. 【答案】A [解析] 如图,到三条直线a,b,c的距离相等的点一共有4个.10. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.二、填空题(本大题共8道小题)11. 【答案】角的内部到角的两边距离相等的点在角的平分线上12. 【答案】②[解析] ∵已知∠ABC=∠DCB,且BC=CB,∴若添加①∠A=∠D,则可由“AAS”判定△ABC≌△DCB;若添加②AC=DB,则属于“SSA”,不能判定△ABC≌△DCB;若添加③AB=DC,则可由“SAS”判定△ABC≌△DCB.13. 【答案】∠A=∠C或∠B=∠D或AB∥CD(答案不唯一)[解析] 由题意可知∠AOB=∠COD,AB=CD.∵AB是∠AOB的对边,CD是∠COD的对边,∴只能添加角相等,故可添加∠A=∠C或∠B=∠D或AB∥CD.14. 【答案】12[解析] 如图,连接BE.∵D为Rt△ABC中斜边BC上的一点,过点D作BC的垂线,交AC于点E,∴∠A=∠BDE=90°.在Rt△DBE和Rt△ABE中,∴Rt△DBE≌Rt△ABE(HL).∴DE=AE.∵AE=12 cm,∴DE=12 cm.15. 【答案】80 [解析] ∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB.∴∠A=180°-(∠ABC+∠ACB)=180°-2(∠OBC+∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.17. 【答案】3 [解析] ∵∠ACB=90°,∴∠ECF+∠BCD=90°.∵CD⊥AB,∴∠BCD +∠B =90°.∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎪⎨⎪⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE.∵AE =AC -CE ,BC =2 cm ,EF =5 cm ,∴AE =5-2=3(cm).18. 【答案】16 [解析] ∵BF ∥AC ,∴∠EBF=∠EAD.在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD.∵当FD ⊥AC 时,FD 最短,此时FD=BC=5,∴四边形FBCD 周长的最小值为5+11=16.三、解答题(本大题共4道小题)19. 【答案】解:∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF.设DE =x cm ,则S △ABD =12AB ·DE =12×20x =10x(cm 2),S △ACD =12AC ·DF =12×18x =9x(cm 2).∵S △ABC =S △ABD +S △ACD ,∴10x +9x =142.5,解得x =7.5,∴DE =7.5 cm.20. 【答案】解:AD 是∠BAC 的平分线.理由:∵DE ⊥AM 于点E ,DF ⊥AN 于点F ,∴∠DEB =∠DFC =90°.在Rt △DBE 与Rt △DCF 中,⎩⎪⎨⎪⎧BE =CF ,BD =CD ,∴Rt △DBE ≌Rt △DCF(HL).∴DE =DF.又∵DE ⊥AM ,DF ⊥AN ,∴AD 是∠BAC 的平分线.21. 【答案】(1)证明:∵四边形ABCD 是菱形,∴AB =BC ,∠ABE =∠CBE .在△ABE 和△CBE 中,AB =BC ,∠ABE =∠CBE ,BE =BE ,∴△ABE ≌△CBE (SAS);(2)解:如解图①,连接AC 交BD 于点O ,分别过点A 、E 作BC 的垂线,垂足分别为点H 、F ,解图①∵四边形ABCD 是菱形,∴AC ⊥BD ,∵AB =5,sin ∠ABD =55,∴AO =OC =5,∴BO =OD =25,∴AC =25,BD =45, ∵12AC ·BD =BC ·AH , 即12×25×45=5AH ,∴AH =4,∵AD ∥BC ,∴△AED ∽△PEB , ∴AE PE =ADBP ,∴AE +PEPE =AD +BPBP , 即APPE =5+22=72,∴AP =72PE ,又∵EF ∥AH ,∴△EFP ∽△AHP , ∴EFAH =PEAP ,∴EF =PEAP ·AH =PE 72PE×4=87,∴S △PEC =12PC ·EF =12×(5-2)×87=127;(3)解:如解图②,连接AC 交BD 于点O ,解图②∵△ABE ≌△CBE ,CE ⊥PE , ∴∠AEB =∠CEB =45°,∴AO =OE =5,∴DE =OD -OE =25-5=5,BE =3 5.∵AD ∥BP ,∴△ADE ∽△PBE ,∴AD BP =DEBE ,∴5BP =535,∴BP =15.22. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎪⎨⎪⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF(ASA).∴S△ABE=S△CAF.∴S△ABE+S△CDF=S△CAF+S△CDF=S△ACD. ∵CD=2BD,△ABC的面积为15,∴S△ACD=10.∴S△ABE+S△CDF=10.。
2021年中考数学专项复习 专题 三角形全等的相关证明及计算含答案
专题二三角形全等的相关证明及计算1.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.第1题图2.已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EA D.第2题图3.如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.第3题图4.如图,AB=AD,AC=AE,∠BAE=∠DA C.求证:∠C=∠E.第4题图5.如图,点E,F在线段BD上,且BE=DF,AE=CF,AD=C B.求证:∠A=∠C.第5题图6.如图,D是AC上一点,AB=AD,DE∥AB,∠B=∠DAE.求证:BC=AE.第6题图7.如图,已知点E,C在线段BF上,BE=CF,AC∥DF,请添加一个条件(不得添加辅助线),使得△ABC ≌△DEF,并说明理由.第7题图8.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=C D.求证:AG=DH.第8题图9.如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.第9题图10.如图,在△ABC中,D是BC边上一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.第10题图参考答案专题二 三角形全等的相关证明及计算1. 证明:在△AEB 和△DEC 中,⎩⎪⎨⎪⎧AE =DE ,∠AEB =∠DEC ,BE =CE ,∴△AEB ≌△DEC (SAS).∴∠B =∠C .2. 证明:∵∠ECB =70°,∴∠ACB =110°.又∵∠D =110°,∴∠ACB =∠D .∵AB ∥DE ,∴∠CAB =∠E .在△ABC 和△EAD 中,⎩⎪⎨⎪⎧∠ACB =∠D ,∠CAB =∠E ,AB =EA ,∴△ABC ≌△EAD (AAS ).3. 证明:在Rt △ACB 和Rt △BDA 中,∠C =∠D =90°,⎩⎪⎨⎪⎧AB =BA ,AD =BC , ∴Rt △ACB ≌Rt △BDA (HL).∴∠CBA =∠DAB .∴OA =OB .又∵AD =BC ,∴CO =DO .4. 证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE .∴∠BAC =∠DAE .在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).∴∠C =∠E .5. 证明:∵BE =DF ,∴BE -EF =DF -EF ,即BF =DE .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧DE =BF ,AE =CF ,AD =CB ,∴△ADE ≌△CBF (SSS).∴∠A =∠C .6. 证明:∵DE ∥AB ,∴∠CAB =∠EDA .在△CBA 和△EAD 中,⎩⎪⎨⎪⎧∠B =∠DAE ,AB =AD ,∠CAB =∠EDA ,∴△CBA ≌△EAD (ASA).∴BC =AE .7. 解:添加AC =DF .(答案不唯一)理由:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF .∵AC ∥DF ,∴∠ACB =∠DFE .在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AC =DF ,∠ACB =∠DFE ,BC =EF ,∴△ABC ≌△DEF (SAS).8. 证明:∵AB ∥CD , ∴∠A =∠D .又∵CE ∥BF , ∴∠AHB =∠DGC .在△ABH 和△DCG 中,⎩⎪⎨⎪⎧∠AHB =∠DGC ,∠A =∠D ,AB =CD ,∴△ABH ≌△DCG (AAS ).∴AH =DG .又∵AH =AG +GH , DG =DH +GH ,∴AG =DH .9. (1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,AB =BC .∴∠A =∠CBF .∵BE ⊥AD ,CF ⊥AB ,∴∠AEB =∠BFC =90°.在△ABE 和△BCF 中,⎩⎪⎨⎪⎧∠AEB =∠BFC ,∠A =∠CBF ,AB =BC ,∴△ABE ≌△BCF (AAS ).∴AE =BF ;(2)解:∵BE ⊥AD ,点E 恰好是AD 中点,∴BE 垂直平分AD .∴BD =AB =2.10. (1)证明:∵BE 平分∠ABC ,∴∠ABE =∠DBE .在△ABE 与△DBE 中,⎩⎪⎨⎪⎧AB =DB ,∠ABE =∠DBE ,BE =BE ,∴△ABE ≌△DBE (SAS);(2)解:∵∠A =100°,∠C =50°,∴∠ABC =30°.∴∠ABE =12∠ABC =15°. ∴∠AEB =180°-∠A -∠ABE =180°-100°-15°=65°.。
2021年全国各地中考数学真题分类解析汇编:21 全等三角形
全等三角形(包括命题)一、选择题1.(2021年四川资阳,第6题3分)以下命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形考点:命题与定理.分析:利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.解答:解:A、有可能是等腰梯形,故错误;B、对角线互相垂直的平行四边形是菱形,故错误;C、对角线相等的梯形是等腰梯形,故错误;D、正确,应选D.点评:此题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.2. (2021•毕节地区,第5题3分)以下表达正确的选项是( )D 、两边及其夹角对应相等的两个三角形全等 ,应选项错误. 应选C .点评:此题考查了方差的意义、不等号的性质、全等三角形的判定及确定圆的条件 ,属于根本定理的应用 ,较为简单.3. (2021·台湾 ,第9题3分 )如图 ,坐标平面上 ,△ABC 与△DEF 全等 ,其中A 、B 、C 的对应顶点分别为D 、E 、F ,且AB =BC =5.假设A 点的坐标为(﹣3 ,1) ,B 、C 两点在方程式y =﹣3的图形上 ,D 、E 两点在y 轴上 ,那么F 点到y 轴的距离为何 ?( )A .2B .3C .4D .5分析:如图 ,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P .由AB =BC ,△ABC ≌△DEF ,就可以得出△AKC ≌△CHA ≌△DPF ,就可以得出结论.解:如图 ,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P . ∴∠DPF =∠AKC =∠CHA =90°. ∵AB =BC , ∴∠BAC =∠BC A . 在△AKC 和△CHA 中 .⎩⎪⎨⎪⎧∠AKC =∠CHA AC =CA ∠BAC =∠BCA .∴△AKC ≌△CHA (ASA ) , ∴KC =H A .∵B 、C 两点在方程式y =﹣3的图形上 ,且A 点的坐标为(﹣3 ,1) , ∴AH =4. ∴KC =4.∵△ABC ≌△DEF ,∴∠BAC =∠EDF ,AC =DF . 在△AKC 和△DPF 中 ,⎩⎪⎨⎪⎧∠AKC =∠DPF ∠BAC =∠EDF AC =DF . ∴△AKC ≌△DPF (AAS ) , ∴KC =PF =4. 应选C .点评:此题考查了坐标与图象的性质的运用 ,垂直的性质的运用 ,全等三角形的判定及性质的运用 ,等腰三角形的性质的运用 ,解答时证明三角形全等是关键.4. (2021•益阳 ,第7题 ,4分 )如图 ,平行四边形ABCD 中 ,E ,F 是对角线BD 上的两点 ,如果添加一个条件使△ABE ≌△CDF ,那么添加的条件是 ( )(第1题图 )A . A E =CFB . B E =FDC . B F =DED . ∠1 =∠2考点:平行四边形的性质;全等三角形的判定. 分析: 利用平行四边形的性质以及全等三角形的判定分别分得出即可. 解答:解:A 、当AE =CF 无法得出△ABE ≌△CDF ,故此选项符合题意; B 、当BE =FD ,∵平行四边形ABCD 中 ,∴AB =CD ,∠ABE =∠CDF ,在△ABE和△CDF中,∴△ABE≌△CDF (SAS ) ,故此选项错误;C、当BF =ED ,∴BE =DF ,∵平行四边形ABCD中,∴AB =CD ,∠ABE =∠CDF ,在△ABE和△CDF中,∴△ABE≌△CDF (SAS ) ,故此选项错误;D、当∠1 =∠2 ,∵平行四边形ABCD中,∴AB =CD ,∠ABE =∠CDF ,在△ABE和△CDF中,∴△ABE≌△CDF (ASA ) ,故此选项错误;应选:A.点评:此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.5. (2021年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2 ,1 ) ,点C的纵坐标是4 ,那么B、C两点的坐标分别是()(第2题图)A.(,3 )、(﹣,4 ) B.(,3 )、(﹣,4 )C.(,)、(﹣,4 ) D.(,)、(﹣,4 )考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质 .分析:首|先过点A作AD⊥x轴于点D ,过点B作BE⊥x轴于点E ,过点C作CF∥y轴,过点A作AF∥x轴,交点为F ,易得△CAF≌△BOE ,△AOD∽△OBE ,然后由相似三角形的对应边成比例,求得答案.解答:过点A作AD⊥x轴于点D ,过点B作BE⊥x轴于点E ,过点C作CF∥y轴,过点A作AF∥x轴,交点为F ,∵四边形AOBC是矩形,∴AC∥OB ,AC =OB ,∴∠CAF =∠BOE ,在△ACF和△OBE中,,∴△CAF≌△BOE (AAS ) ,∴BE =CF =4﹣1 =3 ,∵∠AOD +∠BOE =∠BOE +∠OBE =90° ,∴∠AOD =∠OBE ,∵∠ADO =∠OEB =90° ,∴△AOD∽△OBE ,∴,即, ∴OE =,即点B (,3 ) ,∴AF =OE =,∴点C的横坐标为:﹣(2﹣) =﹣,∴点D (﹣,4 ).应选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.6. (2021•扬州,第8题,3分)如图,在四边形ABCD中,AB =AD=6 ,AB⊥BC ,AD⊥CD ,∠BAD =60° ,点M、N分别在AB、AD边上,假设AM:MB =AN:ND =1:2 ,那么tan∠MCN = ()(第3题图)A.B.C.D.﹣2考点:全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理专题:计算题.分析:连接AC ,通过三角形全等,求得∠BAC =30° ,从而求得BC的长,然后根据勾股定理求得CM的长,连接MN ,过M点作ME⊥ON于E ,那么△MNA是等边三角形求得MN =2 ,设NF =x ,表示出CF ,根据勾股定理即可求得MF ,然后求得tan∠MCN.解答:解:∵AB =AD =6 ,AM:MB =AN:ND =1:2 ,∴AM =AN =2 ,BM =DN =4 ,连接MN ,连接AC ,∵AB⊥BC ,AD⊥CD ,∠BAD =60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC (LH )∴∠BAC =∠DAC =∠BAD =30° ,MC =NC ,∴BC =AC ,∴AC2 =BC2 +AB2 ,即(2BC )2 =BC2 +AB2 ,3BC2 =AB2 ,∴BC =2,在Rt△BMC中,CM ===2.∵AN =AM ,∠MAN =60° ,∴△MAN是等边三角形,∴MN =AM =AN =2 ,过M点作ME⊥ON于E ,设NE =x ,那么CE =2﹣x ,∴MN2﹣NE2 =MC2﹣EC2 ,即4﹣x2 = (2)2﹣(2﹣x )2 ,解得:x =,∴EC =2﹣=,∴ME ==,∴tan∠MCN ==应选A.点评:此题考查了全等三角形的判定与性质,勾股定理以及解直角三角函数,熟练掌握全等三角形的判定与性质是解此题的关键.7.(2021年山东泰安,第16题3分)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB =∠CED =90° ,∠A =45° ,∠D =30°.把△DCE绕点C顺时针旋转15°得到△D1CE1 ,如图② ,连接D1B ,那么∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°分析:根据直角三角形两锐角互余求出∠DCE =60° ,旋转的性质可得∠BCE1 =15° ,然后求出∠BCD1 =45° ,从而得到∠BCD1 =∠A ,利用"边角边〞证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C =∠ABC =45° ,再根据∠E1D1B =∠BD1C﹣∠CD1E1计算即可得解.解:∵∠CED =90° ,∠D =30° ,∴∠DCE =60° ,∵△DCE绕点C顺时针旋转15° ,∴∠BCE1 =15° ,∴∠BCD1 =60°﹣15° =45° ,∴∠BCD1 =∠A ,在△ABC和△D1CB中,,∴△ABC≌△D1CB (SAS ) ,∴∠BD1C =∠ABC =45° ,∴∠E1D1B =∠BD1C﹣∠CD1E1 =45°﹣30° =15°.应选D.点评:此题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键.二.填空题1.(2021•新疆,第14题5分)如图,Rt△ABC中,∠ABC =90° ,DE垂直平分AC ,垂足为O ,AD∥BC ,且AB =3 ,BC =4 ,那么AD的长为.考点:勾股定理;全等三角形的判定与性质;线段垂直平分线的性质.分析:先根据勾股定理求出AC的长,再根据DE垂直平分AC得出OA的长,根据相似三角形的判定定理得出△AOD∽△CBA ,由相似三角形的对应边成比例即可得出结论.解答:解:∵Rt△ABC中,∠ABC =90° ,AB =3 ,BC =4 ,∴AC ===5 ,∵DE垂直平分AC ,垂足为O ,∴OA =AC =,∠AOD =∠B =90° ,∵AD∥BC ,∴∠A =∠C ,∴△AOD∽△CBA ,∴=,即=,解得AD =.故答案为:.点评:此题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2. (2021•毕节地区,第20题5分)如图,在Rt△ABC中,∠ABC =90° ,AB =3 ,AC =5 ,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,那么BE的长为.考点:翻折变换(折叠问题)分析:利用勾股定理求出BC =4 ,设BE =x ,那么CE =4﹣x ,在Rt△B'EC中,利用勾股定理解出x的值即可.解答:解:BC ==4 ,由折叠的性质得:BE =BE′ ,AB =AB′ ,设BE =x ,那么B′E =x ,CE =4﹣x ,B′C =AC﹣AB′ =AC﹣AB =2 ,在Rt△B′EC中,B′E2 +B′C2 =EC2 ,即x2 +22 = (4﹣x )2 ,解得:x =.故答案为:.点评:此题考查了翻折变换的知识,解答此题的关键是掌握翻折变换的性质及勾股定理的表达式.3. (2021•武汉,第16题3分)如图,在四边形ABCD中,AD =4 ,CD =3 ,∠ABC =∠ACB=∠ADC =45° ,那么BD的长为.考点:全等三角形的判定与性质;勾股定理;等腰直角三角形分析:根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS ,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.解答:解:作AD′⊥AD ,AD′ =AD ,连接CD′ ,DD′ ,如图:,∵∠BAC +∠CAD =∠DAD′ +∠CAD ,即∠BAD =∠CAD′ ,在△BAD与△CAD′中,,∴△BAD≌△CAD′ (SAS ) ,∴BD =CD′.∠DAD′ =90°由勾股定理得DD′=,∠D′DA +∠ADC =90°由勾股定理得CD′ =,∴BD =CD′ =,故答案为:.点评:此题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.4. (2021•泰州,第16题,3分)如图,正方向ABCD的边长为3cm ,E为CD边上一点,∠DAE =30° ,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.假设PQ=AE ,那么AP等于1或2cm.(第1题图)考点:全等三角形的判定与性质;正方形的性质;解直角三角形分析:根据题意画出图形,过P作PN⊥BC ,交BC于点N ,由ABCD为正方形,得到AD =DC =PN ,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE =NQ ,∠DAE =∠NPQ =30° ,再由PN与DC平行,得到∠PF A =∠DEA =60° ,进而得到PM垂直于AE ,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.解答:解:根据题意画出图形,过P作PN⊥BC ,交BC于点N ,∵四边形ABCD为正方形,∴AD =DC =PN ,在Rt△ADE中,∠DAE =30° ,AD =3cm ,∴tan30° =,即DE =cm ,根据勾股定理得:AE ==2cm ,∵M为AE的中点,∴AM =AE =cm ,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ (HL ) ,∴DE =NQ ,∠DAE =∠NPQ =30° ,∵PN∥DC ,∴∠PF A =∠DEA =60° ,∴∠PMF =90° ,即PM⊥AF ,在Rt△AMP中,∠MAP =30° ,cos30° =,∴AP ===2cm;由对称性得到AP′ =DP =AD﹣AP =3﹣2 =1cm ,综上,AP等于1cm或2cm.故答案为:1或2.点评:此题考查了全等三角形的判定与性质,正方形的性质,熟练掌握全等三角形的判定与性质是解此题的关键.三.解答题1.(2021年四川资阳,第23题11分)如图,直线l1∥l2 ,线段AB在直线l1上,BC垂直于l1交l2于点C ,且AB =BC ,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E (点A、E位于点B的两侧) ,满足BP =BE ,连接AP、CE.(1 )求证:△ABP≌△CBE;(2 )连结AD、BD ,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n (n>1 )时,设△P AD的面积为S1 ,△PCE的面积为S2 ,求的值.考点:相似形综合题.分析:(1 )求出∠ABP =∠CBE ,根据SAS推出即可;(2 )①延长AP交CE于点H ,求出AP⊥CE ,证出△CPD∽△BPE ,推出DP =PE ,求出平行四边形BDCE ,推出CE∥BD即可;②分别用S表示出△P AD和△PCE的面积,代入求出即可.解答:(1 )证明:∵BC⊥直线l1 ,∴∠ABP =∠CBE ,在△ABP和△CBE中∴△ABP≌△CBE (SAS );(2 )①证明:延长AP交CE于点H ,∵△ABP≌△CBE ,∴∠P AB =∠ECB ,∴∠P AB +∠AEE =∠ECB +∠AEH =90° ,∴AP⊥CE ,∵=2 ,即P为BC的中点,直线l1∥直线l2 , ∴△CPD∽△BPE ,∴==,∴DP =PE ,∴四边形BDCE是平行四边形,∴CE∥BD ,∵AP⊥CE ,∴AP⊥BD;②解:∵=N∴BC =n•BP ,∴CP = (n﹣1 )•BP ,∵CD∥BE ,∴△CPD∽△BPE ,∴==n﹣1 ,即S2 = (n﹣1 )S ,∵S△P AB =S△BCE =n•S ,∴△P AE = (n +1 )•S ,∵==n﹣1 ,∴S1 = (n +1 ) (n﹣1 )•S ,∴==n +1.点评:此题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查了学生的推理能力,题目比拟好,有一定的难度.2.(2021•新疆,第20题10分)如图,△ABC ,按如下步骤作图:①分别以A ,C为圆心,大于AC的长为半径画弧,两弧交于P ,Q两点;②作直线PQ ,分别交AB ,AC于点E ,D ,连接CE;③过C作CF∥AB交PQ于点F ,连接AF.(1 )求证:△AED≌△CFD;(2 )求证:四边形AECF是菱形.考点:菱形的判定;全等三角形的判定与性质;作图-根本作图.分析:(1 )由作图知:PQ为线段AC的垂直平分线,从而得到AE =CE ,AD =CD ,然后根据CF∥AB得到∠EAC =∠FCA ,∠CFD =∠AED ,利用ASA证得两三角形全等即可;(2 )根据全等得到AE =CF ,然后根据EF为线段AC的垂直平分线,得到EC =EA ,FC=F A ,从而得到EC =EA =FC =F A ,利用四边相等的四边形是菱形判定四边形AECF为菱形.解答:解:(1 )由作图知:PQ为线段AC的垂直平分线,∴AE =CE ,AD =CD ,∵CF∥AB∴∠EAC =∠FCA ,∠CFD =∠AED ,在△AED与△CFD中,,∴△AED≌△CFD;(2 )∵△AED≌△CFD ,∴AE =CF ,∵EF为线段AC的垂直平分线,∴EC =EA ,FC =F A ,∴EC =EA =FC =F A ,∴四边形AECF为菱形.点评:此题考查了菱形的判定、全等的判定与性质及根本作图,解题的关键是了解通过作图能得到直线的垂直平分线.3 .(2021年云南省,第16题5分)如图,在△ABC和△ABD中,AC与BD相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AC =B D.考点:全等三角形的判定与性质.专题:证明题.分析:根据"SAS〞可证明△ADB≌△BAC ,由全等三角形的性质即可证明AC =B D.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC (SAS ) ,∴AC =B D.点评:此题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.4.(2021•温州,第18题8分)如图,在所给方格纸中,每个小正方形边长都是1 ,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处) ,请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1 )图甲中的格点正方形ABCD;(2 )图乙中的格点平行四边形ABC D.注:图甲,图乙在答题卡上,分割线画成实线.考点:作图-应用与设计作图.分析:(1 )利用三角形的形状以及各边长进而拼出正方形即可;(2 )利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1 )如图甲所示:(2 )如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.5.(2021•舟山,第20题8分):如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD ,BC于E ,F两点,连结BE ,DF.(1 )求证:△DOE≌△BOF.(2 )当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定分析:(1 )利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA );(2 )首|先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE =ED ,即可得出答案.解答:(1 )证明:∵在▱ABCD中,O为对角线BD的中点,∴BO =DO ,∠EDB =∠FBO ,在△EOD和△FOB中,∴△DOE≌△BOF (ASA );(2 )解:当∠DOE =90°时,四边形BFED为菱形,理由:∵△DOE≌△BOF ,∴BF =DE ,又∵BF∥DE ,∴四边形EBFD是平行四边形,∵BO =DO ,∠EOD =90° ,∴EB =DE ,∴四边形BFED为菱形.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE =DE是解题关键.6. (2021•武汉,第19题6分)如图,AC和BD相交于点O ,OA =OC ,OB =O D.求证:DC∥A B.考点:全等三角形的判定与性质;平行线的判定专题:证明题.分析:根据边角边定理求证△ODC≌△OBA ,可得∠C =∠A (或者∠D=∠B ) ,即可证明DC∥A B.解答:证明:∵在△ODC和△OBA中,∵,∴△ODC≌△OBA (SAS ) ,∴∠C =∠A (或者∠D =∠B ) (全等三角形对应角相等) ,∴DC∥AB (内错角相等,两直线平行).点评:此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证△ODC≌△OB A.7. (2021•邵阳,第21题8分)如图,点A、F、E、C在同一直线上,AB∥CD ,∠ABE =∠CDF ,AF =CE.(1 )从图中任找两组全等三角形;(2 )从(1 )中任选一组进行证明.考点:全等三角形的判定分析:(1 )根据题目所给条件可分析出△ABE≌△CDF ,△AFD≌△CEB;(2 )根据AB∥CD可得∠1 =∠2 ,根据AF =CE可得AE =FC ,然后再证明△ABE≌△CDF即可.解答:解:(1 )△ABE≌△CDF ,△AFD≌△CEB;(2 )∵AB∥CD ,∴∠1 =∠2 ,∵AF =CE ,∴AF +EF =CE +EF ,即AE =FC ,在△ABE和△CDF中,,∴△ABE≌△CDF (AAS ).点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,假设有两边一角对应相等时,角必须是两边的夹角.8.(2021·台湾,第29题分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90° ,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.分析:根据∠BCE=∠ACD=90° ,可得∠3=∠5 ,又根据∠BAE=∠1+∠2=90° ,∠2+∠D =90° ,可得∠1=∠D ,继而根据AAS可判定△ABC≌△DE C.解:∵∠BCE=∠ACD=90° ,∴∠3+∠4=∠4+∠5 ,∴∠3=∠5 ,在△ACD 中 ,∠ACD =90° ,∴∠2+∠D =90° ,∵∠BAE =∠1+∠2=90° ,∴∠1=∠D ,在△ABC 和△DEC 中 ,⎩⎪⎨⎪⎧∠1=∠D∠3=∠5 BC =CE . ∴△ABC ≌△DEC (AAS ).点评:此题考查了全等的判定方法 ,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等 ,判定两个三角形全等时 ,必须有边的参与 ,假设有两边一角对应相等时 ,角必须是两边的夹角.9. (2021·云南昆明 ,第16题5分 ):如图 ,点A 、B 、C 、D 在同一条直线上 ,AB =CD ,AE ∥CF ,且AE =CF .求证:∠E =∠F考点: 全等三角形的判定与性质.分析: 首|先根据AE ∥CF ,可得∠A =∠C , ,结合AB =CD ,AE =CF .可知证明出△ABE ≌△CDF ,即可得到∠E =∠F.解答: 证明:∵AE ∥CF ,∴∠A =∠C ,∵在△ABE 和△CDF 中 ,⎪⎩⎪⎨⎧=∠=∠=CF AE C A CD AB∴△ABE ≌△CDF (SAS ) ,∴∠E =∠F点评: 此题主要考查了全等三角形的判定与性质的知识 ,解答此题的关键是熟练掌握判定定理以及平行线的性质,此题根底题,比拟简单.10. (2021•湘潭,第20题)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F ,假设AD =3 ,BD =6.(1 )求证:△EDF≌△CBF;(2 )求∠EB C.(第20题图)考点:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质分析:(1 )首|先根据矩形的性质和折叠的性质可得DE =BC ,∠E =∠C =90° ,对顶角∠DFE =∠BFC ,利用AAS可判定△DEF≌△BCF;(2 )在Rt△ABD中,根据AD =3 ,BD =6 ,可得出∠ABD =30° ,然后利用折叠的性质可得∠DBE =30° ,继而可求得∠EBC的度数.解答:(1 )证明:由折叠的性质可得:DE =BC ,∠E =∠C =90° ,在△DEF和△BCF中,,∴△DEF≌△BCF (AAS );(2 )解:在Rt△ABD中,∵AD =3 ,BD =6 ,∴∠ABD =30° ,由折叠的性质可得;∠DBE =∠ABD =30° ,∴∠EBC =90°﹣30°﹣30° =30°.点评:此题考查了折叠的性质、矩形的性质,以及全等三角形的判定与性质,正确证明三角形全等是关键.11. (2021•株洲,第22题,8分)如图,在Rt△ABC中,∠C =90° ,∠A的平分线交BC于点E ,EF⊥AB于点F ,点F恰好是AB的一个三等分点(AF>BF ).(1 )求证:△ACE≌△AFE;(2 )求tan∠CAE的值.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;锐角三角函数的定义分析:(1 )根据角的平分线的性质可求得CE =EF ,然后根据直角三角形的判定定理求得三角形全等.(2 )由△ACE≌△AFE ,得出AC =AF ,CE =EF ,设BF =m ,那么AC =2m ,AF =2m ,AB=3m ,根据勾股定理可求得,tan∠B ==,CE =EF =,在RT△ACE中,tan∠CAE ===;解答:(1 )证明:∵AE是∠BAC的平分线,EC⊥AC ,EF⊥AF ,∴CE =EF ,在Rt△ACE与Rt△AFE中,,∴Rt△ACE≌Rt△AFE (HL );(2 )解:由(1 )可知△ACE≌△AFE ,∴AC =AF ,CE =EF ,设BF =m ,那么AC =2m ,AF =2m ,AB =3m ,∴BC ===m ,∴在RT△ABC中,tan∠B ===,在RT△EFB中,EF =BF•tan∠B =,∴CE =EF =,在RT△ACE中,tan∠CAE ===;∴tan∠CAE =.点评:此题考查了直角三角形的判定、性质和利用三角函数解直角三角形,根据条件表示出线段的值是解此题的关键.12. (2021年江苏南京,第27题)【问题提出】学习了三角形全等的判定方法(即"SAS〞、"ASA〞、"AAS〞、"SSS〞)和直角三角形全等的判定方法(即"HL〞)后,我们继续对"两个三角形满足两边和其中一边的对角对应相等〞的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B进行分类,可分为"∠B是直角、钝角、锐角〞三种情况进行探究.(第3题图)【深入探究】第|一种情况:当∠B是直角时,△ABC≌△DEF.(1 )如图① ,在△ABC和△DEF ,AC =DF ,BC =EF ,∠B =∠E =90° ,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2 )如图② ,在△ABC和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3 )在△ABC和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF ,使△DEF和△ABC不全等.(不写作法,保存作图痕迹)(4 )∠B还要满足什么条件,就可以使△ABC≌△DEF ?请直接写出结论:在△ABC和△DEF中,AC =DF ,BC =EF ,∠B =∠E ,且∠B、∠E都是锐角,假设∠B≥∠A,那么△ABC≌△DEF.考点:全等三角形的判定与性质分析:(1 )根据直角三角形全等的方法"HL〞证明;(2 )过点C作CG⊥AB交AB的延长线于G ,过点F作DH⊥DE交DE的延长线于H ,根据等角的补角相等求出∠CBG =∠FEH ,再利用"角角边〞证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG =FH ,再利用"HL〞证明Rt△ACG和Rt△DFH 全等,根据全等三角形对应角相等可得∠A =∠D ,然后利用"角角边〞证明△ABC和△DEF全等;(3 )以点C为圆心,以AC长为半径画弧,与AB相交于点D ,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4 )根据三种情况结论,∠B不小于∠A即可.解答:(1 )解:HL;(2 )证明:如图,过点C作CG⊥AB交AB的延长线于G ,过点F作DH⊥DE交DE的延长线于H ,∵∠B =∠E ,且∠B、∠E都是钝角,∴180°﹣∠B =180°﹣∠E ,即∠CBG =∠FEH ,在△CBG和△FEH中,,∴△CBG≌△FEH (AAS ) ,∴CG =FH ,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH (HL ) ,∴∠A =∠D ,在△ABC和△DEF中,,∴△ABC≌△DEF (AAS );(3 )解:如图,△DEF和△ABC不全等;(4 )解:假设∠B≥∠A ,那么△ABC≌△DEF.故答案为:(1 )HL;(4 )∠B≥∠A.点评:此题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.13. (2021•扬州,第28题,12分)矩形ABCD的一条边AD =8 ,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(第4题图)(1 )如图1 ,折痕与边BC交于点O ,连结AP、OP、O A.①求证:△OCP∽△PDA;②假设△OCP与△PDA的面积比为1:4 ,求边AB的长;(2 )假设图1中的点P恰好是CD边的中点,求∠OAB的度数;(3 )如图2 ,,擦去折痕AO、线段OP ,连结BP.动点M在线段AP上(点M与点P、A不重合) ,动点N在线段AB的延长线上,且BN =PM ,连结MN交PB于点F ,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?假设变化,说明理由;假设不变,求出线段EF的长度.考点:相似形综合题;全等三角形的判定与性质;等腰三角形的判定与性质;勾股定理;矩形的性质;特殊角的三角函数值.专题:综合题;动点型;探究型.分析:(1 )只需证明两对对应角分别相等即可证到两个三角形相似,然后根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.(2 )由DP =DC =AB =AP及∠D =90° ,利用三角函数即可求出∠DAP的度数,进而求出∠OAB的度数.(3 )由边相等常常联想到全等,但BN与PM所在的三角形并不全等,且这两条线段的位置很不协调,可通过作平行线构造全等,然后运用三角形全等及等腰三角形的性质即可推出EF是PB的一半,只需求出PB长就可以求出EF长.解答:解:(1 )如图1 ,①∵四边形ABCD是矩形,∴AD =BC ,DC =AB ,∠DAB =∠B =∠C =∠D =90°.由折叠可得:AP =AB ,PO =BO ,∠P AO =∠BAO.∠APO =∠B.∴∠APO =90°.∴∠APD =90°﹣∠CPO =∠PO C.∵∠D =∠C ,∠APD =∠PO C.∴△OCP∽△PD A.②∵△OCP与△PDA的面积比为1:4 ,∴====.∴PD =2OC ,P A =2OP ,DA =2CP.∵AD =8 ,∴CP =4 ,BC =8.设OP =x ,那么OB =x ,CO =8﹣x.在Rt△PCO中,∵∠C =90° ,CP =4 ,OP =x ,CO =8﹣x ,∴x2 = (8﹣x )2 +42.解得:x =5.∴AB =AP =2OP =10.∴边AB的长为10.(2 )如图1 ,∵P是CD边的中点,∴DP =D C.∵DC =AB ,AB =AP ,∴DP =AP.∵∠D =90° ,∴sin∠DAP ==.∴∠DAP =30°.∵∠DAB =90° ,∠P AO =∠BAO ,∠DAP =30° , ∴∠OAB =30°.∴∠OAB的度数为30°.(3 )作MQ∥AN ,交PB于点Q ,如图2.∵AP =AB ,MQ∥AN ,∴∠APB =∠ABP ,∠ABP =∠MQP.∴∠APB =∠MQP.∴MP =MQ.∵MP =MQ ,ME⊥PQ ,∴PE =EQ =PQ.∵BN =PM ,MP =MQ ,∴BN =QM.∵MQ∥AN ,∴∠QMF =∠BNF.在△MFQ和△NFB中,.∴△MFQ≌△NF B.∴QF =BF.∴QF =Q B.∴EF =EQ +QF =PQ +QB =P B.由(1 )中的结论可得:PC =4 ,BC =8 ,∠C =90°.∴PB ==4.∴EF =PB =2.∴在(1 )的条件下,当点M、N在移动过程中,线段EF的长度不变,长度为2.点评:此题是一道运动变化类的题目,考查了相似三角形的性质和判定、全等三角形的性质和判定、矩形的性质、等腰三角形的性质和判定、勾股定理、特殊角的三角函数值等知识,综合性比拟强,而添加适当的辅助线是解决最|后一个问题的关键.14. (2021•德州,第23题10分)问题背景:如图1:在四边形ABC中,AB =AD ,∠BAD =120° ,∠B =∠ADC =90°.E ,F分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD之间的数量关系.小|王同学探究此问题的方法是,延长FD到点G.使DG =BE.连结AG ,先证明△ABE≌△ADG ,再证明△AEF≌△AGF ,可得出结论,他的结论应是EF =BE +DF;探索延伸:如图2 ,假设在四边形ABCD中,AB =AD ,∠B +∠D =180°.E ,F分别是BC ,CD上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由;实际应用:如图3 ,在某次军|事演习中,舰艇甲在指挥中|心(O处)北偏西30°的A处,舰艇乙在指挥中|心南偏东70°的B处,并且两舰艇到指挥中|心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进小时后,指挥中|心观测到甲、乙两舰艇分别到达E ,F处,且两舰艇之间的夹角为70° ,试求此时两舰艇之间的距离.考点:全等三角形的判定与性质.分析:问题背景:根据全等三角形对应边相等解答;探索延伸:延长FD到G ,使DG =BE ,连接AG ,根据同角的补角相等求出∠B =∠ADG ,然后利用"边角边〞证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE =AG ,∠BAE =∠DAG ,再求出∠EAF =∠GAF ,然后利用"边角边〞证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF =GF ,然后求解即可;实际应用:连接EF ,延长AE、BF相交于点C ,然后求出∠EAF =∠AOB ,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.解答:解:问题背景:EF =BE +DF;探索延伸:EF =BE +DF仍然成立.证明如下:如图,延长FD到G ,使DG =BE ,连接AG ,∵∠B +∠ADC =180° ,∠ADC +∠ADG =180° ,∴∠B =∠ADG ,在△ABE和△ADG中,,∴△ABE≌△ADG (SAS ) ,∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF和△GAF中,,∴△AEF≌△GAF (SAS ) ,∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF;实际应用:如图,连接EF ,延长AE、BF相交于点C ,∵∠AOB =30° +90° + (90°﹣70° ) =140° ,∠EOF =70° ,∴∠EAF =∠AOB ,又∵OA =OB ,∠OAC +∠OBC = (90°﹣30° ) + (70° +50° ) =180° ,∴符合探索延伸中的条件,∴结论EF =AE +BF成立,即EF =1.5× (60 +80 ) =210海里.答:此时两舰艇之间的距离是210海里.点评:此题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是此题的难点.15.(2021年山东泰安,第27题)如图,∠ABC =90° ,D、E分别在BC、AC上,AD⊥DE ,且AD =DE ,点F是AE的中点,FD与AB相交于点M.(1 )求证:∠FMC =∠FCM;(2 )AD与MC垂直吗?并说明理由.分析:(1 )根据等腰直角三角形的性质得出DF⊥AE ,DF =AF =EF ,进而利用全等三角形的判定得出△DFC≌△AFM (AAS ) ,即可得出答案;(2 )由(1 )知,∠MFC =90° ,FD =EF ,FM =FC ,即可得出∠FDE =∠FMC =45° ,即可理由平行线的判定得出答案.(1 )证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE ,DF =AF =EF ,又∵∠ABC =90° ,∠DCF ,∠AMF都与∠MAC互余,∴∠DCF =∠AMF ,在△DFC和△AFM中,,∴△DFC≌△AFM (AAS ) ,∴CF =MF ,∴∠FMC =∠FCM;(2 )AD⊥MC ,理由:由(1 )知,∠MFC =90° ,FD =EF ,FM =FC ,∴∠FDE =∠FMC =45° ,∴DE∥CM ,∴AD⊥M C.点评:此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,得出∠DCF =∠AMF是解题关键.。
2021中考数学真题分类专题16 三角形及全等三角形(共40题含解析)
专题16三角形及全等三角形(共40题)一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点 2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理8.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinC a c b R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF 的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是413.(2021·湖南娄底市·中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m - B .102m - C .10 D .414.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A .80︒B .70︒C .60︒D .50︒16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点A B 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD 为ABC 的角平分线的是( ) A . B .C .D .二、填空题18.(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.19.(2021·江苏苏州市·中考真题)如图.在Rt ABC △中,90C ∠=︒,AF EF =.若72CFE ∠=︒,则B ∠=______.20.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.21.(2021·江苏连云港市·中考真题)如图,BE 是ABC 的中线,点F 在BE 上,延长AF 交BC 于点D .若3BF FE =,则BD DC=______.22.(2021·四川遂宁市·中考真题)如图,在∠ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则∠ABD 的周长是 _____ .23.(2021·云南中考真题)已知ABC 的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC 的一条边长为6,则点D 到直线AB 的距离为__________.24.(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)25.(2021·四川成都市·中考真题)如图,在Rt ABC 中,90,C AC BC ∠=︒=,按以下步骤作图:∠以点A 为圆心,以任意长为半径作弧,分别交,AC AB 于点M ,N ;∠分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠内交于点O ;∠作射线AO ,交BC 于点D .若点D 到AB 的距离为1,则BC的长为_______.三、解答题26.(2021·陕西中考真题)如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.27.(2021·湖南衡阳市·中考真题)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.28.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.29.(2021·四川泸州市·中考真题)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE30.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.31.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.32.(2021·江苏连云港市·中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC 是边长为3的等边三角形,E 是边AC 上的一点,且1AE =,小亮以BE 为边作等边三角形BEF ,如图1,求CF 的长;(2)ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;(3)ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B 为顶点作正方形BFGH,其中点F、G都在直线AE上,如图4,当点E到达点B时,点F、G、H与点B 重合.则点H所经过的路径长为______,点G所经过的路径长为______.,点D是BC边上一点(不与点B、C重33.(2021·四川乐山市·中考真题)在等腰ABC中,AB AC合),连结AD.(1)如图1,若60C ∠=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE ∠=________;(2)若60C ∠=°,将线段AD 绕点A 顺时针旋转60︒得到线段AE ,连结BE .∠在图2中补全图形;∠探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE ==,且ADE C ∠=∠,试探究BE 、BD 、AC 之间满足的数量关系,并证明.34.(2021·安徽中考真题)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作CF //AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD △≌△;(2)如图2,若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF 的延长线经过AD 的中点M ,求BE EC的值.35.(2021·重庆中考真题)如图,四边形ABCD 为平行四边形,连接AC ,且2AC AB =.请用尺规完成基本作图:作出BAC ∠的角平分线与BC 交于点E .连接BD 交AE 于点F ,交AC 于点O ,猜想线段BF 和线段DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)36.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.37.(2021·江苏无锡市·中考真题)已知:如图,AC ,DB 相交于点O ,AB DC =,ABO DCO ∠=∠.求证:(1)ABO DCO △≌△;(2)OBC OCB ∠=∠.38.(2021·福建中考真题)如图,在ABC 中,D 是边BC 上的点,,⊥⊥DE AC DF AB ,垂足分别为E ,F ,且,DE DF CE BF ==.求证:B C ∠=∠.39.(2021·四川南充市·中考真题)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.40.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,3ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.2021年中考数学真题分项汇编【全国通用】专题16三角形及全等三角形 试题解析(共40题)一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠∠ABC =∠BCD ,∠CB 平分∠DCE ,∠∠BCE =∠BCD ,∠∠BCE =∠ABC ,∠∠AEC =∠BCE +∠ABC =40°,∠∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B【分析】 由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∠25B ∠=︒,50C ∠=︒,∠在Rt ∠BEC 中,由三角形内角和可得105BEC ∠=︒,∠35A ∠=︒,∠170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒【答案】C【分析】 由垂直的定义可得∠2=90°;根据对顶角相等可得510α∠=∠=︒,再根据三角形外角的性质即可求得140β∠=︒.【详解】∠13l l ⊥,∠∠2=90°;∠510α∠=∠=︒,∠125090140β∠=∠+∠=︒+︒=︒.故选C .【点睛】本题考查了垂直的定义、对顶角的性质、三角形外角的性质,熟练运用三角形外角的性质是解决问题的关键.5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】 连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∠∠BCD =100°,∠∠CBD +∠CDB =180°-100°=80°,∠∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,故选D .【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形.7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A与B,利用理论与实践相结合可判断C与D.【详解】解:A. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A不符合题意;B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.8.(2021·四川泸州市·中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OA,利用圆的面积公式S 圆=163π. 【详解】解:方法一:∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 603c R C ===︒,∠3R =, ∠S 圆=2221633R OA ππππ⎛=== ⎝⎭.方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,∠∠AOB =2∠C =2×60°=120°,∠OA =OB ,∠∠OAB =∠OBA =()1180120302︒-︒=︒, ∠OD ∠AB ,AB 为弦,∠AD =BD =122AB =,∠AD =OA cos30°,∠OA =343cos30223AD ÷︒=÷=, ∠S 圆=222431633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】 根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABC ∠DCB (ASA ),选项B ,添加 AB DC =,在ABC 和DCB 中, AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ∠DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】 解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件∠A =∠D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断∠ABC ∠∠DEF ,故C 符合题意;D. 添加一个条件AC ∠FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形【答案】D【分析】 此题是有关剪纸的问题,此类问题应亲自动手折一折,剪一剪.【详解】解:由题可知,AD 平分BAC ∠,折叠后AEO △与AFO 重合,故全等,所以EO =OF ;又作了AD 的垂直平分线,即EO 垂直平分AD ,所以AO =DO ,且EO ∠AD ;由平行四边形的判定:对角线互相平分的四边形为平行四边形,所以AEDF 为平行四边形;又AD ∠EF ,所以平行四边形AEDF 为菱形.故选:.D【点睛】本题主要考察学生对于立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,有几何图形想象出实物的图形”的要求相一致,充分体现了实践操作性原则.12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,42b a +是分式,故选项错误; D.若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A .【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.13.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4 【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简. 14.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∠//,140m n ∠=︒,∠∠4=∠1=40°,∠230∠=︒,∠34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点A B 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒【答案】C【分析】 根据题意可得直线MN 是线段AB 的垂直平分线,进而可得CB AC =,利用平行线的性质及等腰三角形中等边对等角,可得40CAB CBA ∠=∠=︒,所以可求得100ACB ∠=︒.【详解】∠已知分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,∠直线MN 垂直平分线段AB ,∠CB AC =,∠//a b ,140∠=︒,∠140CBA ∠=∠=︒,∠40CAB CBA ∠=∠=︒,∠180100ACB CBA CAB ∠=︒-∠-∠=︒.故选:C.【点睛】题目主要考查线段垂直平分线的作法及性质、平行线的性质等,根据题意得出直线MN垂直平分线段AB 是解题关键.17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD为ABC的角平分线的是()A.B.C.D.【答案】C【分析】根据角平分线画法逐一进行判断即可.【详解】A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为ACB的角平分线,满足题意。
2021年全国中考数学真题分类汇编: 全等三角形(含答案)
一、选择题7.(2021·哈尔滨)如图,ABC DEC∆≅∆,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF CD∠的度数为()∠=︒,则CAF⊥,垂足为点F,若65BCEA.30︒B.25︒C.35︒D.65︒B【解答】ABC DEC∴∠=∠=︒,AF CDACD BCE⊥,∆≅∆,ACB DCE∠=︒,65∴∠=∠,65BCE∴∠=︒,90AFCCAF∴∠=︒-︒=︒.∴∠+∠=︒,90652590CAF ACD7.(2021•重庆A卷)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FDC【解析】∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意.8.(2021•重庆B卷)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC 和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠DB【解析】在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明.11.(2021·威海)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是()A .∠ADC =∠AEB B .CD ∥ABC .DE =GED .BF 2=CF •ACC {解析}由已知条件∠CAB =∠DAE ,AB =AC ,AD =AE ,可以证明△EAB ≌△DAC,所以可得选项A 是正确的;已知条件∠CAB =36°,AB =AC ,可求出∠ABC =∠ACB=72°,由△EAB ≌△DAC,结合已知角平分线,可以证明∠DCA =∠EBA =36°,从而可以证明同旁内角互补,证明选项B是正确的,通过计算证明△CFB 和△CBA 都是黄金三角形,从而证明这两个三角形相似,证明选项D 是正确的,因此本题选C .10.(2021•泰安)如图,在平行四边形ABCD 中,E 是BD 的中点,则下列四个结论:①AM =CN ;②若MD =AM ,∠A =90°,则BM =CM ;③若MD =2AM ,则S △MNC =S △BNE ;④若AB =MN ,则△MFN 与△DFC 全等.其中正确结论的个数为( )A .1个B .2个C .3个D .4个D 【解析】①∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠ADB =∠CBD ,∵E 是BD 的中点,∴BE =DE ,在△MDE 和△NBE 中,{∠MDB =∠NBDDE =BE ∠DEM =∠BEN ,∴△MDE ≌△NBE (ASA ),∴DM =BN ,∴AM =CN ,故①正确;②若MD =AM ,∠A =90°,则平行四边形ABCD 为矩形,∴∠ADC =∠A =90°,在△BAM 和△CDM 中,{AB =DC∠A =∠ADC AM =DM ,∴△BAM ≌△CDM (SAS ),∴BM =CM ,故②正确;③过点M 作MG ⊥BC ,交BC 于G ,过点E 作EH ⊥BC ,交BC 于H ,由①可知四边形MBCD 是平行四边形,E 为BD 中点,∴MG =2EH ,又∵MD =2AM ,BN =MD ,AM =NC ,∴S △MNC =12NC •MG =12•12BN •2EH =12BN •EH =S △BNE ,故③正确;④∵AB =MN ,AB =DC ,∴MN =DC ,又∵AD ∥BC ,∴四边形MNCD 是等腰梯形或平行四边形,如果四边形MNCD 是等腰梯形,∴∠MNC =∠DCN ,在△MNC和△DCN中,{AN=DC∠MNC=∠DCN NC=CN,∴△MNC≌△DCN(SAS),∴∠NMC=∠CDN,在△MFN和△DFC中,{∠MFN=∠DFC∠NMC=∠CDN MN=DC,∴△MFN≌△DFC(AAS),如果是平行四边形,由平行四边形的性质可以得到△MFN≌△DFC,故④正确.6.(2021•成都)如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFDC【解析】由四边形ABCD是菱形可得:AB=AD,∠B=∠D,A、添加BE=DF,可用SAS证明△ABE≌△ADF,故不符合题意;B、添加∠BAE=∠DAF,可用ASA证明△ABE≌△ADF,故不符合题意;C、添加AE=AD,不能证明△ABE≌△ADF,故符合题意;D、添加∠AEB=∠AFD,可用AAS证明△ABE≌△ADF,故不符合题意.12.(2021•眉山)如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2√3,其中正确结论的序号为()A.①④B.①②③C.②③④D.①②③④D【解析】①∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ODA=60°,AD=OD,∵△DFE为等边三角形,∴∠EDF=∠EFD=∠DEF=60°,DF=DE,∵∠BDE+∠FDO=∠ADF+∠FDO=60°,∴∠BDE=∠ADF,∵∠ADF+∠AFD+∠DAF=180°,∴∠ADF+∠AFD=180°﹣∠DAF=120°,∵∠EFC+∠AFD+∠DFE=180°,∴∠EFC+∠AFD=180°﹣∠DFE=120°,∴∠ADF=∠EFC,∴∠BDE=∠EFC,故结论①正确;②如图,连接OE,在△DAF和△DOE中,{AD=OD∠ADF=∠ODE DF=DE,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE =∠DOE ,在△ODE 和△OCE 中,{OD =OC∠DOE =∠COE OE =OE ,∴△ODE ≌△OCE (SAS ),∴ED =EC ,∠OCE =∠ODE ,故结论②正确;③∵∠ODE =∠ADF ,∴∠ADF =∠OCE ,即∠ADF =∠ECF ,故结论③正确;④如图,延长OE 至E ′,使OE ′=OD ,连接DE ′,∵△DAF ≌△DOE ,∠DOE =60°,∴点F 在线段AO 上从点A 至点O 运动时,点E 从点O 沿线段OE ′运动到E ′,∵OE ′=OD =AD =AB •tan ∠ABD =6•tan30°=2√3,∴点E 运动的路程是2√3,故结论④正确.3.(2021•南充)如图,点O 是▱ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F ,下列结论成立的是( )A .OE =OFB .AE =BFC .∠DOC =∠OCD D .∠CFE =∠DEFA 【解析】∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,BO =DO ,AD ∥BC ,∴∠EAO =∠FCO ,在△AOE 和△COF 中,{∠EAO =∠FCOAO =CO ∠AOE =∠COF ,∴△AOE ≌△COF (ASA ),∴OE =OF ,AE =CF ,∠CFE =∠AEF ,又∵∠DOC =∠BOA ,∴选项A 正确,选项B 、C 、D 不正确.8.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB 的两边OA 、OB 上分别在取OC =OD ,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是∠AOB 的平分线.这里构造全等三角形的依据是( )A .SASB .ASAC .AASD .SSSD 【解答】在△COM 和△DOM 中,{OC =OD OM =OM MC =MD,所以△COM ≌△DOM (SSS ),所以∠COM =∠DOM ,即OM 是∠AOB 的平分线,故选:D .二、填空题12.(2021·齐齐哈尔) 如图,AC =AD ,∠1=∠2,要使△ABC ≌△AED ,应添加的条件是 .(只需写出一个条件即可)∠B =∠E ;或∠C =∠D ;或AB =AE ;{解析}∵∠1=∠2,∴∠BAC =∠EAD ,又AC =AD ,若添加:∠B =∠E ,根据AAS 可判断△ABC ≌△AED ;若添加:∠C =∠D ,根据ASA 可判断△ABC≌△AED ;若添加:AB =AE ,根据SAS 可判断△ABC ≌△AED .12.(2021·济宁)如图,四边形ABCD 中,∠BAC =∠DAC ,请补充一个条件 ,使△ABC≌△ADC .{答案}AD =AB (答案不唯一)17.(2021·贺州)如图,一次函数y =x +4与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且∠OPC =45°,PC =PO ,则点P 的标为______.) {解析}∵直线y =x +4,∴A (-4,0),B (0,4).∴OA =OB .∴∠OAB=∠OBA =45°.∴∠AOP +∠APO =135°.∵∠OPC =45°,∴∠BPC +∠APO =135°.∴∠AOP =∠BPC .又PO =PC ,∴△AOP ≌△BPC .∴PB =AO =4.如图,过点P 作PD ⊥OB 于点D ,则△PBD 是等腰直角三角形,∴PD =BD =PB =.OD =OB -BD =4-.∴点P 的坐标为(-,4-).16.(2021·常州) 中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法,如图所示,在△ABC 中,分别取AB 、AC 的中点D 、E ,连接DE ,过点A 作AF ⊥DE ,垂足为F ,将△ABC 分割后拼成矩形BCHG ,若DE=3,AF=2,则△ABC 的面积是 .D CE{答案}12{解析}∵四边形BGHC 是矩形,∴∠G=∠H=90°,∵AF ⊥DE ,∴∠AFD=∠AFE=90°,∴∠G=∠AFD=90°,∠H=∠AFE=90°,∵D 、E 分别是AB 、AC 的中点,∴AD=BD ,AE=CE ,∵∠ADF=∠BDG ,∠AEF=∠CEH ,∴△ADF ≌△BDG ,△AEF ≌△CEH ,∴AF=BG=3,DF=DG ,EF=HE ,∵DE=DF+EF=3,∴DG+DF+EF+EH=2DE=6,∴矩形BGHC 的面积为:2×6=12,∵△ADF ≌△BDG ,△AEF ≌△CEH ,∴△ABC 的面积=矩形BGHC 的面积=12.三、解答题21.(2021·雅安)如图,OAD ∆为等腰直角三角形,延长OA 至点B 使OB OD =,ABCD 是矩形,其对角线AC ,BD 交于点E ,连接OE 交AD 于点F .(1)求证:OAF DAB ∆≅∆;(2)求DF AF的值.解:(1)证明:四边形ABCD 是矩形,BE DE ∴=,90BAD ∠=︒,90ABD ADB ∴∠+∠=︒,OB OD =,BE DE =,OE BD ∴⊥,90OEB ∴∠=︒,90BOE OBE ∴∠+∠=︒,BOE BDA ∴∠=∠,OAD ∆为等腰直角三角形,AO AD ∴=,90OAD ∠=︒,OAD BAD ∴∠=∠,在AOF ∆和ABD ∆中,BOE BDA AO AD OAF BAD ∠=∠⎧⎪=⎨⎪∠=∠⎩,()OAF DAB ASA ∴∆≅∆,(2)由(1)得,OAF DAB ∆≅∆,AF AB ∴=,连接BF ,如图,BF ∴=,BE DE =,OE BD ⊥,DF BF ∴=,DF ∴,∴DF AF19.(2021·大连)如图,点A ,D ,B ,E 在一条直线上,AD BE =,AC DF =,//AC DF .求证:BC EF =.证明:AD BE =,AD BD BE BD ∴+=+,即AB DE =,//AC DF ,A EDF ∴∠=∠,在ABC ∆与DEF ∆中,AB DE A EDF AC DF =⎧⎪∠=∠⎨⎪=⎩,()ABC DEF SAS ∴∆≅∆,BC EF ∴=.21.(2021·湘西州)如图,在△ABC 中,点D 在AB 边上,CB =CD ,将边CA 绕点C 旋转到CE 的位置,使得∠ECA =∠DCB ,连接DE 与AC 交于点F ,且∠B =70°,∠A =10°.(1)求证:AB =ED ;(2)求∠AFE 的度数.解:(1)证明:∵∠ECA =∠DCB ,∴∠ECA+∠ACD=∠DCB+∠ACD,即∠ECD=∠BCA,由旋转可得CA=CE,在△BCA和△DCE中,,∴△BCA≌△DCE(SAS).∴AB=ED.(2)由(1)中结论可得∠CDE=∠B=70°,又CB=CD,∴∠B=∠CDB=70°,∴∠EDA=180°﹣∠BDE=180°﹣70°×2=40°,∴∠AFE=∠EDA+∠A=40°+10°=50°.24.(2021·哈尔滨)已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作⊥,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.BM CE(1)如图1,求证:CE BH=;(2)如图2,若AE AB∆除=,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(AEG 外),使写出的每个三角形都与AEG∆全等.证明:(1)四边形ABCD是正方形,∠=∠=︒,BCD ADC∴===,90BC CD AD AB⊥,BM CE∴∠=∠=︒,HMC ADC90∴∠+∠=︒∠+∠,H HCM E ECD90∴∠=∠,H E在EDC∆中,∆和HCB90E H EDC HCB CD BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()EDC HCB AAS ∴∆≅∆,CE BH ∴=.(2)BCG ∆,DCF ∆,DHF ∆,ABF ∆,理由如下:AE AB =,AE BC AD CD ∴===,EDC HCB ∆≅∆,ED HC ∴=,AD CD =,AE HD CD AB ∴===,在AEG ∆和BCG ∆中,90EAG CBG AGE BGCAE BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AEG BCG AAS ∴∆≅∆,12AG BG AB ∴==, 同理可证AFB DFH ∆≅∆,12AF DF AD ∴==, AG AF DF ∴==,在AEG ∆和ABF ∆中,90AE AB EAG BAF AG AF =⎧⎪∠=∠=︒⎨⎪=⎩,()AEG ABF SAS ∴∆≅∆,同理可证AEG DHF ∆≅∆,AEG DCF ∆≅∆.21.(2021•台州)如图,在四边形ABCD 中,AB =AD =20,BC =DC =10√2.(1)求证:△ABC ≌△ADC ;(2)当∠BCA =45°时,求∠BAD 的度数.解:(1)证明:在△ABC 和△ADC 中,{AB =ADBC =DC AC =AC ,∴△ABC ≌△ADC (SSS ).(2)过点B 作BE ⊥AC 于点E ,如图所示,∵∠BCA =45°,BC =10√2,∴sin ∠BCA =sin45°=BEBC =10√2=√22,∴BE =10. 又∵在Rt △ABE 中,AB =20,BE =10,∴∠BAE =30°.又∵△ABC ≌△ADC ,∴∠BAD =∠BAE +∠DAC =2∠BAE =2×30°=60°.20.(2021·铜仁)如图,AB 交CD 于点О,在AOC ∆与BOD ∆中,有下列三个条件:①OC OD =,②AC BD =,③A B ∠=∠.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法,若多选的只按第一种选法评分,后面的选法不给分)(1)你选的条件为____________、____________,结论为____________; (2)证明你的结论.解: (1)解法(一):条件为①OC =OD ,③∠A =∠B ,结论为②AC =BD . 解法(二):条件为②AC =BD ,③∠A =∠B, 结论为①OC =OD . (2)证明(一):在∆AOC 和∆BOD 中,{∠A =∠B∠AOC =∠BOD (对顶角相等)OC =OD∴∆AOC ≅∆BOD (AAS ) ∴AC=BD.证明(二):在∆AOC 和∆BOD 中,{∠A=∠B∠AOC=∠BOD(对顶角相等)AC=BD∴∆AOC≅∆BOD(AAS)∴OC=OD.19.(2021•杭州)在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,在△ABC中,∠ABC=∠ACB,点D在AB边上(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连接BE,CD,BE与CD相交于点F.若,求证:BE=CD.注:如果选择多个条件分别作答,按第一个解答计分.证明:选择条件①的证明为:∵∠ABC=∠ACB,∴AB=AC.在△ABE和△ACD中,{AB=AC∠A=∠AAE=AD,∴△ABE≌△ACD(SAS),∴BE=CD.选择条件②的证明为:∵∠ABC=∠ACB,∴AB=AC.在△ABE和△ACD中,{∠ABE=∠ACDAB=AC∠A=∠A,∴△ABE≌△ACD(ASA),∴BE=CD.选择条件③的证明为:∵∠ABC=∠ACB,∴AB=AC.∵FB=FC,∴∠FBC=∠FCB,∴∠ABC﹣∠FBC=∠ACB﹣∠FCB,即∠ABE=∠ACD.在△ABE和△ACD中,{∠ABE=∠ACDAB=AC∠A=∠A,∴△ABE≌△ACD(ASA),∴BE=CD.19.(2021•长沙19题)人教版初中数学教科书八年级上册第35﹣36页告诉我们作一个三角形与已知三角形全等的方法:已知:△ABC.求作:△A′B′C′,使得△A′B′C′≌△ABC.作法:如图.(1)画B'C′=BC;(2)分别以点B′,C′为圆心,线段AB,AC长为半径画弧,两弧相交于点A′;(3)连接线段A′B′,A′C′,则△A′B′C′即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的空上): 证明:由作图可知,在△A ′B ′C ′和△ABC 中, {B′C′=BC ,A′B′=______,A′C′=_________,∴△A 'B 'C ′≌ .(2)这种作一个三角形与已知三角形全等的方法的依据是 .(填序号) ①AAS ②ASA ③SAS ④SSS 解:(1)AB AC △ABC (2)④19.(2021·安顺、贵阳) 如图,在矩形ABCD 中,点M 在DC 上,AM =AB ,且BN ⊥AM ,垂足为N . (1)求证:△ABN ≌△MAD ;(2)若AD =2,AN =4,求四边形BCMN 的面积.解:(1)在矩形ABCD 中,∠D =90°,DC ∥AB ,∴∠BAN =∠AMD ,∵BN ⊥AM ,∴∠BNA =90°, 在△MAD 和△ABN 中,∠BAN =∠AMD , ∠BNA =∠D =90°, 又∵BA =AM ,∴△ABN ≌△MAD (AAS ). (2)∵△ABN ≌△MAD ,∴BN =AD , ∵AD =2,∴BN =2, 又∵AN =4,∴在Rt △ABN 中,由勾股定理,得AB =52,54522=⨯=ABCD S 矩形,44221=⨯⨯==MAD ABN S S △△, ∴854-=--=MAD ABN ABCD BCMN S S S S △△矩形四边形.18.(2021•南充)如图,∠BAC =90°,AD 是∠BAC 内部一条射线,若AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .求证:AF =BE .证明:∵∠BAC =90°,∴∠BAE +∠F AC =90°, ∵BE ⊥AD ,CF ⊥AD ,∴∠BEA =∠AFC =90°, ∴∠BAE +∠EBA =90°,∴∠EBA =∠F AC , 在△ACF 和△BAE 中,{∠AFC =∠BEA ∠FAC =∠EBAAC =BA,∴△ACF ≌△BAE (AAS ),∴AF =BE . 23.(2021•湖州)已知在△ACD 中,P 是CD 的中点,B 是AD 延长线上的一点,连结BC ,AP .(1)如图1,若∠ACB =90°,∠CAD =60°,BD =AC ,AP =√3,求BC 的长. (2)过点D 作DE ∥AC ,交AP 延长线于点E ,如图2所示,若∠CAD =60°,BD =AC ,求证:BC =2AP . (3)如图3,若∠CAD =45°,是否存在实数m ,当BD =mAC 时,BC =2AP ?若存在,请直接写出m 的值;若不存在,请说明理由.解:(1)∵∠ACB =90°,∠CAD =60°,∴AB =AC cos60°=2AC ,∵BD =AC ,∴AD =AC ,∴△ADC 是等边三角形,∴∠ACD =60°, ∵P 是CD 的中点,∴AP ⊥CD ,在Rt △APC 中,AP =√3,∴AC =APsin60°=2,∴BC =AC ×tan60°=2√3, (2)证明:连接BE ,∵DE ∥AC ,∴∠CAP =∠DEP ,在△CP A 和△DPE 中,{∠CAP =∠DEP∠CPA =∠EPD CP =DP ,∴△CP A ≌△DPE (AAS ),∴AP =EP =12AE ,DE =AC ,∵BD =AC ,∴BD =DE ,又∵DE ∥AC ,∴∠BDE =∠CAD =60°,∴△BDE 是等边三角形,∴BD =BE ,∠EBD =60°,∵BD =AC ,∴AC =BE ,在△CAB 和△EBA 中,{AC =BE∠CAB =∠EBA AB =BA ,∴△CAB ≌△EBA (SAS ),∴AE =BC ,∴BC =2AP ,(3)存在这样的m ,m =√2.理由如下:作DE ∥AC 交AP 延长线于E ,连接BE , 由(2)同理可得DE =AC ,∠EDB =∠CAD =45°,AE =2AP ,当BD =√2AC 时,∴BD =√2DE , ∵∠EDB =45°,作BF ⊥DE 于F ,∴BD =√2DF ,∴DE =DF ,∴点E ,F 重合, ∴∠BED =90°,∴∠EBD =∠EDB =45°,∴BE =DE =AC , 同(2)可证:△CAB ≌△EBA (SAS ),∴BC =AE =2AP , ∴存在m =√2,使得BC =2AP16.(2021•云南)如图,在四边形ABCD 中,AD =BC ,AC =BD ,AC 与BD 相交于点E .求证:∠DAC =∠CBD .证明:在△DCA 和△DCB 中,{AD =BCAC =BD DC =CD,∴△CDA ≌△DCB (SSS ),∴∠DAC =∠CBD . 26.(2021•重庆A 卷)在△ABC 中,AB =AC ,D 是边BC 上一动点,连接AD ,将AD 绕点A 逆时针旋转至AE 的位置,使得∠DAE +∠BAC =180°. (1)如图1,当∠BAC =90°时,连接BE ,交AC 于点F .若BE 平分∠ABC ,BD =2,求AF 的长; (2)如图2,连接BE ,取BE 的中点G ,连接AG .猜想AG 与CD 存在的数量关系,并证明你的猜想; (3)如图3,在(2)的条件下,连接DG ,CE .若∠BAC =120°,当BD >CD ,∠AEC =150°时,请直接写出BD−DG CE的值.解:(1)连接CE ,过点F 作FQ ⊥BC 于Q , ∵BE 平分∠ABC ,∠BAC =90°,∴F A =FQ , ∵AB =AC ,∴∠ABC =∠ACB =45°,∴FQ =√22CF , ∵∠BAC +∠DAE =180°,∴∠DAE =∠BAC =90°,∴∠BAD =∠CAE ,由旋转知,AD =AE ,∴△ABD ≌△ACE (SAS ), ∴BD =CE =2,∠ABD =∠ACE =45°,∴∠BCE =90°,∴∠CBF +∠BEC =90°, ∵BE 平分∠ABC ,∴∠ABF =∠CBF ,∴∠ABF +∠BEC =90°, ∵∠BAC =90°,∴∠ABF +∠AFB =90°,∴∠AFB =∠BEC ,∵∠AFB =∠CFE ,∴∠BEC =∠CFE ,∴CF =CE =2,∴AF =FQ =√22CF =√2;(2)AG =12CD ,理由:延长BA 至点M ,使AM =AB ,连接EM , ∵G 是BE 的中点,∴AG =12ME ,∵∠BAC +∠DAE =∠BAC +∠CAM =180°,∴∠DAE =∠CAM ,∴∠DAC =∠EAM , ∵AB =AM ,AB =AC ,∴AC =AM ,∵AD =AE ,∴△ADC ≌△AEM (SAS ), ∴CD =CM ,∴AG =12CD ;(3)如图3,连接DE ,AD 与BE 的交点记作点N , ∵∠BAC +∠DAE =180°,∠BAC =120°,∴∠DAE =60°,∵AD =AE ,∴△ADE 是等边三角形,∴AE =DE ,∠ADE =∠AED =60°, ∵∠AEC =150°,∴∠DEC =∠AEC ﹣∠AED =90°, 在△ABC 中,AB =AC ,∠BAC =120°,∴∠ACB =∠ABC =30°, ∵∠AEC =150°,∴∠ABC +∠AEC =180°,∴点A ,B ,C ,E 四点共圆, ∴∠BEC =∠BAC =120°,∴∠BED =∠BEC ﹣∠DEC =30°, ∴∠DNE =180°﹣∠BED ﹣∠ADE =90°,∵AE =DE ,∴AN =DN ,∴BD 是AD 的垂直平分线,∴AG =DG ,BA =BD =AC , ∴∠ABE =∠DBE =12∠ABC =15°,∴∠ACE =∠ABE =15°,∴∠DCE =45°, ∵∠DEC =90°,∴∠EDC =45°=∠DCE ,∴DE =CE ,∴AD =DE ,设AG =a ,则DG =a ,由(2)知,AG =12CD ,∴CD =2AG =2a ,∴CE =DE =√22CD =√2a ,∴AD =√2a ,∴DN =12AD =√22a , 过点D 作DH ⊥AC 于H ,在Rt △AHC 中,∠ACB =30°,CD =2a ,∴DH =a , 根据勾股定理得,CH =√3a ,在Rt △AHD 中,根据勾股定理得,AH =√AA 2−AA 2=a , ∴AC =AH +CH =a +√3a ,∴BD =a +√3a ,∴AA −AA AA=√3A √2A=√62.18.(2021•泸州)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE .证明:在△ABE与△ACD中,{∠A=∠A AB=AC∠B=∠C,∴△ABE≌△ACD(ASA).∴AD=AE.∴BD=CE.21.(2021·无锡) 已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.{答案}解:(1)∵AB=DC,∠ABO=∠DCO,∠AOB=∠DOC,∴△AOB≌△DOC,∴OB=OC,OA=OD,∴OA+OC=OB+OD,即AC=BD.∵AB=DC,AC=BD,BC公共,∴△ABO≌△DCO;(2)由(1)可知OB=OC,∴∠OBC=∠OCB.18.(2021·福建) 如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C证明:DE⊥AC,DF⊥AB,∠DEC=∠DFB=90°。
2021年中考数学 专题汇编:全等三角形(含答案)
2021中考数学专题汇编:全等三角形一、选择题(本大题共10道小题)1. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE2. 到三角形三边距离相等的点是()A.三条中线的交点B.三条高(或三条高所在直线)的交点C.三边垂直平分线的交点D.三条内角平分线的交点3. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+cB.b+cC.a-b+cD.a+b-c4. 如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE5. 如图所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定Rt△ABC≌Rt△ABD成立,还需要添加的条件是 ()A.∠BAC=∠BADB.BC=BD或AC=ADC.∠ABC=∠ABDD.AC=BD6. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=EDB.∠A=∠DEF,AC=EDC.AC=ED,AB=EFD.∠A=∠DEF,BC=FD7. 如图,若AB=AC,AD=AE,∠BAC=∠DAE,则∠ABD等于()A.∠EAC B.∠ADE C.∠BAD D.∠ACE8. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 69. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误10. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题(本大题共8道小题)11. 如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是__________(填一个即可).12. 如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.13. 如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A 为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为________.14. 如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC =DB,③AB=DC,其中不能判定△ABC≌△DCB的是________(只填序号).15. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC≌△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).16. 如图所示,已知AD∥BC,则∠1=∠2,理由是________________;又知AD =CB,AC为公共边,则△ADC≌△CBA,理由是______,则∠DCA=∠BAC,理由是__________________,则AB∥DC,理由是________________________________.17. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.18. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题(本大题共4道小题)19. 如图,在△ABC中,AD是中线,CE⊥AD于点E,BF⊥AD交AD的延长线于点F.求证:BF=CE.20. 如图2-Z-20,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.21. 如图,在∠AOB的两边OA,OB上分别取点D,M和点E,N,使OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.22. 在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:△AEM ≌△DFM;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形;(3)如图③,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G,若MG=nME,求n的值.2021中考数学专题汇编:全等三角形-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.2. 【答案】D3. 【答案】D[解析]∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C,又∵AB=CD,∴△CED≌△AFB,∴AF=CE=a,DE=BF=b,DF=DE-EF=b-c,∴AD=AF+DF=a+b-c,故选D.4. 【答案】B5. 【答案】B[解析] 要添加的条件为BC=BD或AC=AD.理由:若添加的条件为BC=BD,在Rt△ABC和Rt△ABD中,∴Rt △ABC ≌Rt △ABD (HL); 若添加的条件为AC=AD,在Rt △ABC 和Rt △ABD 中,∴Rt △ABC ≌Rt △ABD (HL).6. 【答案】C[解析] A .添加BC=FD ,AC=ED ,可利用“SAS”判定△ABC ≌△EFD ;B .添加∠A=∠DEF ,AC=ED ,可利用“ASA”判定△ABC ≌△EFD ; C .添加AC=ED ,AB=EF ,不能判定△ABC ≌△EFD ;D .添加∠A=∠DEF ,BC=FD ,可利用“AAS”判定△ABC ≌△EFD.7. 【答案】D[解析] ∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE(SAS).∴∠ABD =∠ACE.8. 【答案】B【解析】如解图,连接OC ,由已知条件易得∠A =∠OCE ,CO =AO ,∠DOE =∠COA ,∴∠DOE -∠COD =∠COA -∠COD ,即∠AOD =∠COE ,∴△AOD ≌△COE (ASA),∴AD =CE ,进而得CD +CE =CD +AD =AC=22AB =3,故选B.9. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.10. 【答案】D【解析】如解图,①当OM 1=2时,点N 1与点O 重合,△PMN是等边三角形;②当ON 2=2时,点M 2与点O 重合,△PMN 是等边三角形;③当点M 3,N 3分别是OM 1,ON 2的中点时,△PMN 是等边三角形;④当取∠M 1PM 4=∠OPN 4时,易证△M 1PM 4≌△OPN 4(SAS),∴PM 4=PN 4,又∵∠M 4PN 4=60°,∴△PMN 是等边三角形,此时点M ,N 有无数个,综上所述,故选D.二、填空题(本大题共8道小题)11. 【答案】答案不唯一,如AB=AC12. 【答案】AB=AC13. 【答案】65°14. 【答案】②[解析] ∵已知∠ABC=∠DCB,且BC=CB,∴若添加①∠A=∠D,则可由“AAS”判定△ABC≌△DCB;若添加②AC=DB,则属于“SSA”,不能判定△ABC≌△DCB;若添加③AB=DC,则可由“SAS”判定△ABC≌△DCB.15. 【答案】答案不唯一,如∠C=∠E或AB=FD等16. 【答案】两直线平行,内错角相等SAS全等三角形的对应角相等内错角相等,两直线平行17. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.18. 【答案】32°[解析] ∵PD=PE=PF,PD⊥AB交BA的延长线于点D,PE⊥AC 于点E,PF⊥BC交BC的延长线于点F,∴CP平分∠ACF,BP平分∠ABC.∴∠PCF=12∠ACF,∠PBF=12∠ABC.∴∠BPC=∠PCF-∠PBF=12(∠ACF-∠ABC)=12∠BAC=32°.三、解答题(本大题共4道小题)19. 【答案】证明:∵CE ⊥AD ,BF ⊥AD , ∴∠CED =∠BFD =90°.∵AD 是△ABC 的中线,∴BD =CD.在△BFD 和△CED 中,⎩⎨⎧∠BFD =∠CED ,∠BDF =∠CDE ,BD =CD ,∴△BFD ≌△CED(AAS).∴BF =CE.20. 【答案】证明:∵C 是AB 的中点,∴AC=CB.在△ACD 和△CBE 中,∴△ACD ≌△CBE (SSS). ∴∠A=∠ECB.∴AD ∥CE.∴∠A+∠ECA=180°.21. 【答案】证明:如图,过点C 作CG ⊥OA 于点G ,CF ⊥OB 于点F .在△MOE 和△NOD 中,∴△MOE ≌△NOD (SAS). ∴S △MOE =S △NOD .∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE , 即S △MDC =S △NEC .由三角形面积公式得DM ·CG=EN ·CF .∵OM=ON ,OD=OE , ∴DM=EN.∴CG=CF . 又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.22. 【答案】(1)证明:∵四边形ABCD 是矩形, ∴∠EAM =∠FDM =90°, ∵M 是AD 的中点, ∴AM =DM ,在△AME 和△DMF 中,⎩⎨⎧∠A =∠FDBAM =DM∠AME =∠DMF, ∴△AEM ≌△DFM (ASA);(2)证明:如解图①,过点G 作GH ⊥AD 于H ,解图①∵∠A =∠B =∠AHG =90°, ∴四边形ABGH 是矩形, ∴GH =AB =2, ∵M 是AD 的中点,∴AM =12AD =2,∴AM =GH , ∵MG ⊥EF ,∴∠GME =90° ∴∠AME +∠GMH =90°. ∵∠AME +∠AEM =90°, ∴∠AEM =∠GMH , 在△AEM 和△HMG 中,⎩⎨⎧AM =GH∠AEM =∠GMH ∠A =∠AHG, ∴△AEM ≌△HMG , ∴ME =MG ,∴∠EGM =45°,由(1)得△AEM ≌△DFM ,∴ME =MF ,∵MG ⊥EF ,FMG EMG ≌△△ ,∴GE =GF ,∴∠EGF =2∠EGM =90°,∴△GEF 是等腰直角三角形.(3)解:如解图②,过点G 作GH ⊥AD 交AD 延长线于点H ,解图②∵∠A =∠B =∠AHG =90°,∴四边形ABGH 是矩形,∴GH =AB =23,∵MG ⊥EF ,∴∠GME =90°,∴∠AME +∠GMH =90°,∵∠AME +∠AEM =90°,∴∠AEM =∠GMH ,又∵∠A =∠GHM =90°,∴△AEM ∽△HMG ,∴EM MG =AM GH ,在Rt △GME 中,tan ∠MEG =MG EM = 3.∴n =3。
苏科版2021年中考数学总复习《全等三角形》(含答案)
苏科版2021年中考数学总复习《全等三角形》一、选择题1.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同。
B.图形全等,只与形状、大小有关,而与它们的位置无关。
C.全等图形的面积相等,面积相等的两个图形是全等形。
D.全等三角形的对应边相等,对应角相等。
2.△ABC与△DFE是全等三角形,A与D对应,B与F对应,则按标有字母的线段计算,图中相等的线段有()A.1组B.2组C.3组D.4组3.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D.则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③4.如图,AD,BC相交于点O,OA=OD,OB=OC.下列结论正确的是()A.△AOB≌△DOCB.△ABO≌△DOC C.∠A=∠CD.∠B=∠D5.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()A.3个 B.2个 C.1个 D.0个6.如图,已知AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠27.△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为()A.3 B.4 C.5 D.3或4或58.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为( )A.90°B.108°C.110°D.126°二、填空题9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是10.如图,已知AB=AD,要使△ABC≌△ADC,那么可以添加条件.11.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=_______.12.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.三、解答题13.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?14.如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.15.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.16.如图,在△ABC中,∠ABC=60゜,AD、CE分别平分∠BAC、∠ACB,AD、CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.参考答案1.C2.D3.答案为:D.4.A5.C6.答案为:D.7.B8.B9.答案为:ASA10.答案为:DC=BC(或∠DAC=∠BAC或AC平分∠DAB等)11.答案为:90°12.答案为:1<AD<9.13.(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.14.证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC.即:∠BAC=∠DAE.在△ABC与又△ADE中,,∴△ABC≌△ADE.∴BC=DE.15.证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.16.解:如图,在AC上截取AF=AE,连接OF∵AD平分∠BAC,∴∠BAD=∠CAD,在△AOE和△AOF中∴△AOE≌△AOF(SAS),∴∠AOE=∠AOF,∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,∴∠AOC=120°;(2)∵∠AOC=120°,∴∠AOE=60°,∴∠AOF=∠COD=60°=∠COF,在△COF和△COD中,∴△COF≌△COD(ASA)∴CF=CD,∴AC=AF+CF=AE+CD.。
2021年九年级数学中考复习——几何专题:全等三角形性质与判定(三)
2021年九年级数学中考复习——几何专题:全等三角形性质与判定(三)1.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连结CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DA=12,则ED的长是.2.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s 的速度由点B向点C运动,同时,点Q在线段AC上由点A向点C以4cm/s的速度运动.若P、Q两点分别从B、A两点同时出发,回答下列问题:(1)经过2s后,此时PB=cm,CQ=cm;(2)在(1)的条件下,证明:△BPD≌△CQP;(3)当△CPQ的周长为18cm时,求经过多少秒后,△CPQ为等腰三角形?3.已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.4.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:BE=AD;(2)求∠BFD的度数.5.若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.6.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,P A=PD,∠APD=90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,P A=PD,∠APD=90°.求的值.7.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)请直接写出AD,BE,DE之间的数量关系:.8.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在边BC上(不与点B、C重合),BE⊥AD,垂足为E,过点C作CF⊥CE,交线段AD于点F.(1)试说明△CAF≌△CBE的理由;(2)数学老师在课堂上提出一个问题,如果EF=2AF,试说明CD=BD的理由.班级同学随后进行了热烈讨论,小明同学提出了自己的想法,可以取EF的中点H,联结CH,就能得出结论,你能否能根据小明同学的想法,写出CD=BD的理由.9.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若∠ACB=65°,求∠BDC的度数.10.如图,在等腰直角三角形ABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.(1)若AB=2,BF=3,求AD的长度;(2)G为AC中点,连接GF,GE,GB,求证:GE=GF.参考答案1.证明:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA,在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)解:∵△BCE≌△CAD,∴BE=DC=5,AD=CE=12,∴DE=CE﹣CD=12﹣5=7.故答案为:7.2.(1)解:当P,Q两点分别从B,A两点同时出发运动2秒时,有BP=2×2=4cm,AQ=4×2=8cm,则CP=BC﹣BP=10﹣4=6cm,∴CQ=AC﹣AQ=12﹣8=4cm,故答案为:4,4;(2)证明:∵D是AB的中点,∴BD=AB=6cm,∴BP=CQ,BD=CP,又∵△ABC中,AB=AC,∴∠B=∠C,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(3)解:设当P,Q两点同时出发运动t秒时,有BP=2t,CP=10﹣2t,CQ=12﹣4t,∴PQ=18﹣(10﹣2t)﹣(12﹣4t)=6t﹣4,要使△CPQ是等腰三角形,则可分为三种情况讨论:①当CP=CQ时,则有10﹣2t=12﹣4t,解得:t=1;②当PQ=PC时,则有6t﹣4=10﹣2t解得:t=;③当QP=QC时,则有6t﹣4=12﹣4t解得:t=;综上所述,当t=1s或s或s时,△CPQ是等腰三角形.3.(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FBD=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.4.(1)证明:∵△ABC为等边三角形,∴∠BAE=∠C=60°,AB=CA,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴BE=AD;(2)解:∵∠BFD=∠ABE+∠BAD,又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.5.解:(1)四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90°,B是DE的中点,∴∠E=∠BAE=45°,∠ABE=90°,∵△ABC是等腰三角形,∠BAC=90°,∴∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,∴BC∥AE,AC∥BE,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DC,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.6.证明:(1)∵∠B=∠APD=90°,∴∠BAP+∠APB=90°,∠APB+∠DPC=90°,∴∠BAP=∠DPC,又P A=PD,∠B=∠C=90°,∴△BAP≌△CPD(AAS),∴BP=CD,AB=PC,∴BC=BP+PC=AB+CD;(2)如图2,过点A作AE⊥BC于E,过点D作DF⊥BC于F,由(1)可知,EF=AE+DF,∵∠B=∠C=45°,AE⊥BC,DF⊥BC,∴∠B=∠BAE=45°,∠C=∠CDF=45°,∴BE=AE,CF=DF,AB=AE,CD=DF,∴BC=BE+EF+CF=2(AE+DF),∴==.7.证明:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA,在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)∵△BCE≌△CAD,∴BE=DC,AD=CE,∴AD=CE=CD+DE=BE+DE,故答案为:AD=BE+DE.8.解:(1)∵BE⊥AD,∴∠ACB=∠BED=90°,又∵∠ADC=∠BDE,∴∠CAF=∠CBE,∵CE⊥CF,∴∠ECF=∠ACB=90°,∴∠ACF=∠BCE,又∵AC=BC,∴△CAF≌△CBE(ASA);(2)如图,取EF的中点H,联结CH,∵△CAF≌△CBE,∴CF=CE,AF=BE,∴△CEF是等腰直角三角形,∵点H是EF中点,∴CH=FH=EH=EF,CH⊥EF,∵EF=2AF,∴CH=AF=FH=EH,∴CH=BE,又∵∠CDH=∠BDE,∠CHD=∠BED=90°,∴△CHD≌△BED(AAS),∴CD=BD.9.证明:(1)∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE和△ACD中,∴△ABE≌△ACD(ASA),∴AE=AD;(2)解:∵∠ACB=65°,AB=AC,∴∠ABC=∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°,∵∠ABD=∠ACD,∠AOB=∠COD,∴∠BDC=∠BAC=50°.10.解:(1)∵DE⊥BE,AB⊥BE,∴DE∥AB,∴△ABC∽△DEC,∵∠ABC=90°,AB=BC,∴△CDE为等腰直角三角形,∵CE=BF=3,∴CD=3,∵AB=2,∴AC=2,∴AD=AC+CD=5;(2)证明:∵G是等腰直角△ABC斜边AC中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021中考数学几何专题训练:全等三角形一、选择题(本大题共10道小题)1. 下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙2. 如图,已知∠1=∠2,欲证△ABD≌△ACD,还需从下列条件中补选一个,则错误的选项是()A.∠ADB=∠ADC B.∠B=∠CC.DB=DC D.AB=AC3. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL4. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带①B.只带②C.只带③D.带①和②5. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC6. 如图所示,已知△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB的度数为 ()A.40°B.50°C.55°D.60°7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c8. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2B23C.32D.39. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有()A.4个B.3个C.2个D.1个10. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()二、填空题(本大题共8道小题)11. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.12. 如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC =DB,③AB=DC,其中不能判定△ABC≌△DCB的是________(只填序号).13. 如图,AC与BD相交于点O,且AB=CD,请添加一个条件:________,使得△ABO≌△CDO.14. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.15. 如图,点O在△ABC的内部,且到三边的距离相等.若∠BOC=130°,则∠A =________°.16. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.17. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.18. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、解答题(本大题共4道小题)19. 如图,在△ABC中,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC 于点F,△ABC的面积是142.5 cm2,AB=20 cm,AC=18 cm,求DE的长.20. 如图所示,BE=CF,DE⊥AM于点E,DF⊥AN于点F,点B,C分别在AM,AN上,且BD=CD,AD是∠BAC的平分线吗?为什么?21. 如图,在菱形ABCD中,AB=5,sin∠ABD=55,点P是射线BC上一点,连接AP交菱形对角线BD于点E,连接EC.(1)求证:△ABE≌△CBE;(2)如图①,当点P在线段BC上时,且BP=2,求△PEC的面积;(3)如图②,当点P在线段BC的延长线上时,若CE⊥EP,求线段BP的长.22. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.2021中考数学几何专题训练:全等三角形-答案一、选择题(本大题共10道小题)1. 【答案】B[解析]依据SAS全等判定可得乙三角形与△ABC全等;依据AAS全等判定可得丙三角形与△ABC全等,不能判定甲三角形与△ABC全等.故选B.2. 【答案】C[解析] 当添加条件A时,可用“ASA”证明△ABD≌△ACD;当添加条件B时,可用“AAS”证明△ABD≌△ACD;当添加条件D时,可用“SAS”证明△ABD≌△ACD;当添加条件C时,不能证明△ABD≌△ACD.3. 【答案】D4. 【答案】C[解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.5. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.6. 【答案】D[解析] 因为△ABC≌△ADE,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.7. 【答案】D[解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF =DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.8. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴22+2DF CF∴BC=BD+CD=22A.9. 【答案】A[解析] 如图,到三条直线a,b,c的距离相等的点一共有4个.10. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.二、填空题(本大题共8道小题)11. 【答案】角的内部到角的两边距离相等的点在角的平分线上12. 【答案】②[解析] ∵已知∠ABC=∠DCB,且BC=CB,∴若添加①∠A=∠D,则可由“AAS”判定△ABC≌△DCB;若添加②AC=DB,则属于“SSA”,不能判定△ABC≌△DCB;若添加③AB=DC,则可由“SAS”判定△ABC≌△DCB.13. 【答案】∠A=∠C或∠B=∠D或AB∥CD(答案不唯一)[解析] 由题意可知∠AOB=∠COD,AB=CD.∵AB是∠AOB的对边,CD是∠COD的对边,∴只能添加角相等,故可添加∠A =∠C或∠B=∠D或AB∥CD.14. 【答案】12[解析] 如图,连接BE.∵D为Rt△ABC中斜边BC上的一点,过点D作BC的垂线,交AC于点E,∴∠A=∠BDE=90°.在Rt△DBE和Rt△ABE中,∴Rt△DBE≌Rt△ABE(HL).∴DE=AE.∵AE=12 cm,∴DE=12 cm.15. 【答案】80[解析] ∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB.∴∠A =180°-(∠ABC +∠ACB)=180°-2(∠OBC +∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】70【解析】∵∠ABC=90°,AB=AC ,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt △ABE 和Rt △CBF 中,AB CB AE CF =⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.17. 【答案】3[解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°. ∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE. ∵AE =AC -CE ,BC =2 cm ,EF =5 cm , ∴AE =5-2=3(cm).18. 【答案】16[解析] ∵BF ∥AC ,∴∠EBF=∠EAD.在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD. ∵当FD ⊥AC 时,FD 最短,此时FD=BC=5, ∴四边形FBCD 周长的最小值为5+11=16.三、解答题(本大题共4道小题)19. 【答案】解:∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF.设DE =x cm ,则S △ABD =12AB·DE =12×20x =10x(cm 2),S △ACD =12AC·DF =12×18x =9x(cm 2).∵S △ABC =S △ABD +S △ACD ,∴10x +9x =142.5, 解得x =7.5,∴DE =7.5 cm.20. 【答案】解:AD 是∠BAC 的平分线.理由:∵DE ⊥AM 于点E ,DF ⊥AN 于点F , ∴∠DEB =∠DFC =90°.在Rt △DBE 与Rt △DCF 中,⎩⎨⎧BE =CF ,BD =CD ,∴Rt △DBE ≌Rt △DCF(HL). ∴DE =DF.又∵DE ⊥AM ,DF ⊥AN , ∴AD 是∠BAC 的平分线.21. 【答案】(1)证明:∵四边形ABCD 是菱形,∴AB =BC ,∠ABE =∠CBE .在△ABE 和△CBE 中,AB =BC ,∠ABE =∠CBE ,BE =BE , ∴△ABE ≌△CBE (SAS);(2)解:如解图①,连接AC 交BD 于点O ,分别过点A 、E 作BC 的垂线,垂足分别为点H 、F ,解图①∵四边形ABCD 是菱形, ∴AC ⊥BD ,∵AB =5,sin ∠ABD =55, ∴AO =OC =5,∴BO =OD =25, ∴AC =25,BD =45, ∵12AC ·BD =BC ·AH ,即12×25×45=5AH ,∴AH =4,∵AD ∥BC ,∴△AED ∽△PEB , ∴AE PE =AD BP, ∴AE +PE PE =AD +BP BP ,即AP PE =5+22=72,∴AP =72PE ,又∵EF ∥AH ,∴△EFP ∽△AHP ,∴EF AH =PE AP ,∴EF =PE AP ·AH =PE 72PE×4=87,∴S △PEC =12PC ·EF =12×(5-2)×87=127;(3)解:如解图②,连接AC 交BD 于点O ,解图②∵△ABE ≌△CBE ,CE ⊥PE ,∴∠AEB =∠CEB =45°,∴AO =OE =5,∴DE =OD -OE =25-5=5,BE =3 5.∵AD ∥BP ,∴△ADE ∽△PBE ,∴AD BP =DE BE ,∴5BP =535, ∴BP =15.22. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF(ASA).∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD .∵CD =2BD ,△ABC 的面积为15,∴S △ACD =10.∴S △ABE +S △CDF =10.。