常用运放电路
运算放大器的常见电路

vi1 - vn vi2 - vn vn - vo
R1
R2
R3
- vo
R3 R1
vi1
R3 R2
vi2
若 R1 R2 R3 则有 - vo vi1 vi2
(该电路也称为加法电路)
2.4.4 积分电路和微分电路
1. 积分电路
根据“虚短”,得 vP vP 0
根据“虚断”,得
ii 0
因此
当Avo(vP-vN) V-时 vO= V-
电压传输特性 vO= f (vP-vN)
线性范围内 vO=Avo(vP-vN)
Avo——斜率
end
2.2 理想运算放大器
1. vo的饱和极限值等于运放的电源电压 V+和V-
2. 运放的开环电压增益很高 若(vP-vN)>0 则 vO= +Vom=V+ 若(vP-vN)<0 则 vO= –Vom=V-
2. 运算放大器的电路模型
通常: ▪ 开环电压增益
Avo的105 (很高)
▪ 输入电阻 ri 106Ω (很大)
▪ 输出电阻 ro 100Ω (很小)
图2.1.3 运算放大器的电路模型
vO=Avo(vP-vN)
( V-< vO <V+ )
注意输入输出的相位关系
2. 运算放大器的电路模型
当Avo(vP-vN) V+ 时 vO= V+
引入反馈后
vn 0,vp(vi)不变
→ (vp-vn)↓ → vo↓
使输出减小了,增益Av=vo/vi下降了,这时的反馈称为负反馈。
2.3.1 同相放大电路
3. 虚假短路 ▪ 图中输出通过负反馈的作用,使vn自动 地跟踪vp, 即vp≈vn,或vid=vp-vn≈0。这种现象 称为虚假短路,简称虚短
最全的运放典型应用电路

U& o
=
1−
R1 j ω0
U& i
ω
波 电 路
jωc U& + = U& −
ω o
=
1 RC
同
相
ui>uR uo=+Uo(sat)
比
ui=uR 转折点
较
ui<uR uo= - Uo(sat)
器
反
相
ui>uR uo=-Uo(sat)
比
ui=uR 转折点
较
ui<uR uo=+Uo(sat)
器
滞
回
u− = ui
RF
u+ = 0
u− = 0
ui + ui2 + ui3 = − uo
R1 R2 R3
RF
主要特征
uo
=
(1 +
RF R1
)ui
(电压串联负反馈)
uo
=
−
RF R1
ui
(电压并联负反馈)
uo
=
−RF
(
ui1 R1
+
ui2 R2
+
ui3 ) R3
u+
=
R3 R2 + R3
ui 2
u−
=
R1
1 +
R2
( R1uo
比 较
u+
=
R1 R1 + R2
uo
器
矩
形 波
u+
=
R1 R1 + R2
uo
T = 2RC ln(1 + 2R2 )
运放常见电路

运放常见电路
一、非反馈式运放常见电路
1. 比较器电路
比较器电路是一种非反馈式运放电路,通过将输入信号与参考电压进行比较,输出高低电平信号。
比较器电路可以用于数字电路中的信号处理和控制。
2. 跟随器电路
跟随器电路是一种非反馈式运放电路,用于将输入信号的变化转换为输出信号的变化,通常用于信号放大和模拟信号处理。
3. 倍增器电路
倍增器电路是一种非反馈式运放电路,通过将输入信号经过放大和整流处理后,输出信号的幅值是输入信号幅值的倍数。
倍增器电路常用于信号处理和测量仪器。
二、反馈式运放常见电路
1. 反相放大器电路
反相放大器电路是一种基本的反馈式运放电路,通常用于信号放大和滤波。
在该电路中,输入信号经过运放放大后,再通过反向输入回路与输入端接通,实现负反馈,使放大倍数得以精
确控制。
2. 非反相放大器电路
非反相放大器电路是一种基本的反馈式运放电路,通常用于信号放大和滤波。
与反相放大器电路不同的是,在该电路中,在输入端和反向输入回路之间串联了一个电阻,起到电压分压作用,使得放大倍数为正值。
3. 低通滤波器电路
低通滤波器电路是一种反馈式运放电路,它可以滤除高频成分,只保留低频成分。
在该电路中,输入信号经过运放放大后,通过并联的电容和电阻与反向输入回路相连,形成一个一阶低通滤波器。
4. 高通滤波器电路
高通滤波器电路是一种反馈式运放电路,它可以滤除低频成分,只保留高频成分。
在该电路中,输入信号经过电容和电阻串联后,与运放的反向输入端相连,形成一个一阶高通滤波器。
常用运算放大器16个基本运算电路

5. 微分运算电路
微分运算电路如图 5 所示,
XFG1
R2 15kΩ
C2
22nF
V3
R1
C1
4
12 V
2
1kΩ
22nF
U1A
1
3
T L082CD
8
V2 12 V
XSC1
A +_
B +_
Ext Trig +
_
图5
电路的输出电压为 uo 为:
uo = −R2C1 dui dt
式中, R2C1 为微分电路的时间常数。若选用集成运放的最大输出电压为UOM ,
式中,Auf = 1+ RF / R1 为同相比例放大电路的电压增益。同样要求 Auf 必须小于 3, 电路才能稳定工作,当 f = fo 时,带通滤波器具有最大电压增益 Auo ,其值为:
Auo = Auf / (3 − Auf )
10. 二阶带阻滤波电路
二阶带阻滤波电路如图 10 所示,
C1
1nF R1
_
图 15 全波整流电路是一种对交流整流的电路,能够把交流转换成单一方向电 流,最少由两个整流器合并而成,一个负责正方向,一个负责负方向,最典 型的全波整流电路是由四个二极管组成的整流桥,一般用于电源的整流。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需 要中心抽头、制造麻烦,整流二极管需承受的反向电压高,故一般适用于要 求输出电压不太高的场合。
R1 10kΩ
4 2
12 V
U1A 1
3
8 TL082CD
R3 9kΩ
V2 12 V
D2 1N4148
XSC1
A +_
运放常用电路

运放常用电路运放是一种重要的电子元器件,它可以被应用于各种领域,包括放大、滤波、计算、比较、振荡等等。
在实际应用中,运放常用电路有很多种,下面我们来了解一些常见的运放电路。
1. 基本放大电路基本放大电路是运放应用中最基本的电路之一,它可以实现信号的放大。
它由一个运放、两个电阻和一个输入信号源组成。
其中一个电阻与输入信号源串联,另一个电阻与运放的负输入端和输出端串联,正输入端接地。
基本放大电路的放大倍数由两个电阻的比值决定,可以通过改变电阻值来实现放大倍数的调节。
2. 反馈放大电路反馈放大电路是一种通过反馈来控制放大倍数的电路。
它由一个运放、两个电阻和一个反馈电阻组成。
其中一个电阻与输入信号源串联,另一个电阻与运放的负输入端和反馈电阻串联,正输入端接地。
反馈电阻的作用是将输出信号反馈到运放的负输入端,从而使运放输出稳定,放大倍数受到控制。
3. 滤波电路滤波电路是一种可以滤除不需要的频率成分的电路。
它由一个运放、电容和电阻组成。
其中一个电阻和一个电容串联,另一个电阻与运放的负输入端和输出端串联,正输入端接地。
滤波电路可以分为低通滤波电路和高通滤波电路两种,具体的滤波效果取决于电容和电阻的数值。
4. 比较电路比较电路是一种可以比较两个输入信号大小的电路。
它由一个运放、两个输入信号和一个参考电压源组成。
其中一个输入信号与参考电压源相比较,另一个输入信号与运放的正输入端相连。
当参考电压大于输入信号时,输出为正电压;当参考电压小于输入信号时,输出为负电压。
5. 振荡电路振荡电路是一种可以产生周期性信号的电路。
它由一个运放、电容和电阻组成。
其中一个电容和一个电阻串联,另一个电阻与运放的正输入端和输出端串联,负输入端接地。
振荡电路可以分为正弦波振荡电路和方波振荡电路两种,具体的振荡频率和波形取决于电容和电阻的数值。
以上是常见的五种运放常用电路,它们都有各自不同的应用场景和特点。
在实际应用中,我们可以根据需要选择不同的运放电路来实现特定的功能。
运算放大器详细的应用电路(很详细)

积分电路的其它用途:
去除高频干扰
将方波变为三角波
移相
在模数转换中将电压量变为时间量
§8.3?积分电路和微分电路
8.3.2?微分电路
微分实验电路
把三角波变为方波
(Vi:三角波,频率 1KHz,幅度 0.2V)
输入正弦波
(Vi:正弦波,频率 1KHz,幅度 0.2V)
思考:输入信号与输出信号间的相位关系?
根据与 R1?、Rf?的关系,集成运放两输入端外接电阻的对称条件。
计算出:R=3979Ω?取 R=3.9KΩ 2.根据Q值求和,因为时,根据与、的关系,集成运放两输入端外接电阻的对称条件
例题 1 仿真结果 例题与习题 2 LPF 例题与习题 2 仿真结果 例题与习题 3 HPF 例题与习题 3 仿真结果 例题与习题 4 例题与习题 4 仿真结果 vo1:红色 vo?:蓝色
、
e.?全通滤波器(APF)?
4.?按频率特性在截止频率 fp 附近形状的不同可分为 Butterworth,?Chebyshev?和?Bessel 等。 理想有源滤波器的频响: 滤波器的用途 滤波器主要用来滤除信号中无用的频率成分,例如,有一个较低频率的信号,其中包含一些较高频率成分的
干扰。滤波过程如图所示。 §8.6?有源滤波电路 8.6.2?低通滤波电路?(LPF) 低通滤波器的主要技术指标
组成:简单 RC 滤波器同相放大器特点:│Avp?│>0,带负载能力强缺点:阻带衰减太慢,选择性较差。 二.?性能分析
有源滤波电路的分析方法: 1.电路图→电路的传递函数 Av(s)→频率特性 Av(jω) 2.?根据定义求出主要参数 3.?画出电路的幅频特性 一阶 LPF 的幅频特性: 8.6.2.2?简单二阶?LPF
运算放大器基本电路——11个经典电路

遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!我曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。
而运放的输出电压是有限的,一般在 10 V~14 V。
因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1M Ω以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。
我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。
运放pi电路

运放pi电路运放(Operational Amplifier,简称Op Amp)是一种重要的电子元件,常用于各种电路中,包括放大器、滤波器、比较器等。
本文将重点介绍运放的一个重要电路——PI电路。
PI电路是一种常用的运放反馈电路,由比例放大器(Proportional Amplifier)和积分器(Integrator)组成。
它的特点是能够在频率响应范围内提供高增益,并且具有良好的抗干扰能力。
我们来了解一下比例放大器。
比例放大器是由运放和几个电阻组成的,它的作用是放大输入信号的幅度。
在PI电路中,比例放大器起到了放大输入信号的作用,使得输出信号能够更好地与输入信号保持一定的比例关系。
接下来,我们来介绍积分器。
积分器是由运放、电容和电阻组成的,它的作用是将输入信号进行积分运算。
在PI电路中,积分器起到了对输入信号进行积分的作用,使得输出信号能够更好地反映输入信号的变化趋势。
PI电路的工作原理如下:首先,输入信号经过比例放大器放大后,进入积分器进行积分运算。
积分器的输出信号再经过比例放大器放大后,作为反馈信号与输入信号进行比较,从而产生输出信号。
通过反馈作用,PI电路能够根据输入信号的变化情况调整输出信号,使得输出信号能够更好地与输入信号保持一定的比例关系。
PI电路有许多应用,其中一个重要的应用是温度控制系统。
在温度控制系统中,PI电路可以根据温度传感器的信号来调整加热器的输出功率,从而实现对温度的控制。
比例放大器负责放大温度传感器的信号,而积分器则根据温度传感器信号的变化趋势来调整加热器的输出功率,以保持温度稳定。
除了温度控制系统,PI电路还广泛应用于电力电子领域。
在电力电子中,PI电路可以用于电压调节、电流控制等方面。
比例放大器负责放大输入信号,而积分器则根据输入信号的变化趋势来调整输出信号,以实现对电力的稳定控制。
运放PI电路是一种重要的电子电路,具有高增益、抗干扰能力强等特点。
它在温度控制、电力电子等领域有着广泛的应用。
运算放大器11种经典电路

精心整理运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。
在分析它的工作原理时倘没有抓住核心,往往令人头大。
特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。
????遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。
???今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
???虚短和虚断的概念???由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。
而运放的输出电压是有限的,一般在10V~14V。
因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
????“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
???由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
???在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。
(完整)经典的运算放大器基本电路大全,推荐文档

运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运算放大器详细的应用电路(很详细)

§比例运算电路之蔡仲巾千创作8.1.1 反相比例电路1. 基本电路电压并联负反馈输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求放大倍数较大时,反馈电阻阻值高,稳定性差。
如果要求放大倍数100,R1=100K,Rf=10M2. T型反馈网络虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反馈输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟随器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§加减运算电路8.2.1 求和电路1.反相求和电路虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系2.同相求和电路虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使Vo=2Vi1+5Vi2-10Vi3解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K例2:如图电路,求Avf,Ri解:§积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变成三角波(Vi:方波,频率500Hz,幅度1V)将三角波变成正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频干扰将方波变成三角波移相在模数转换中将电压量变成时间量§积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变成方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§对数和指数运算电路8.4.1 对数电路对数电路改进基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差未几大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性不同较大,所以运算只在较小的电流范围内误差较小。
常用运放电路图及计算公式

Op Array AmpCircuitCollectionAN-31TL H 7057Practical Differentiatorf c e12q R2C1f h e12q R1C1e12q R2C2f c m f h m f unity gainTL H 7057–9IntegratorV OUT e b1R1C1t2t1V IN dtf c e12q R1C1R1e R2For minimum offset error dueto input bias currentTL H 7057–10Fast IntegratorTL H 7057–11Current to Voltage ConverterV OUT e l IN R1For minimum error due tobias current R2e R1TL H 7057–12Circuit for Operating the LM101without a Negative SupplyTL H 7057–13Circuit for Generating theSecond Positive VoltageTL H 7057–14 2Neutralizing Input Capacitance to Optimize Response TimeC N sR1R2C S TL H 7057–15Integrator with Bias Current CompensationAdjust for zero integrator drift Current drift typically 0 1 n A C over b 55 C to 125 C temperature rangeTL H 7057–16Voltage Comparator for Driving DTL or TTL Integrated CircuitsTL H 7057–17Threshold Detector for PhotodiodesTL H 7057–18Double-Ended Limit DetectorV OUT e 4 6V for V LT s V IN s V UT V OUT e 0V forV IN k V LT or V IN l V UTTL H 7057–19Multiple Aperture Window DiscriminatorTL H 7057–203Offset Voltage Adjustment for Inverting AmplifiersUsing Any Type of Feedback Element RANGE e g VR2R1JTL H 7057–21Offset Voltage Adjustment for Non-Inverting AmplifiersUsing Any Type of Feedback ElementRANGE e g V R2R1JGAINe 1aR5R4a R2TL H 7057–22Offset Voltage Adjustment for Voltage Followers RANGE e g VR3R1JTL H 7057–23Offset Voltage Adjustment for Differential AmplifiersR2e R3a R4RANGE e g V R5R4J R1R1a R3JGAIN eR2R1TL H 7057–24Offset Voltage Adjustment for InvertingAmplifiers Using 10k X Source Resistance or LessR1e 2000R3U R4R4U R3s 10k X RANGE e g VR3U R4R1JTL H 7057–254SECTION2 SIGNAL GENERATIONLow Frequency Sine Wave Generator with Quadrature OutputTL H 7057–26 High Frequency Sine Wave Generator with Quadrature Outputf o e10kHzTL H 7057–275Free-Running Multivibrator Chosen for oscillation at 100HzTL H 7057–28Wein Bridge Sine Wave OscillatorR1e R2C1e C2 Eldema 1869f e12q R1C110V 14mA BulbTL H 7057–29Function GeneratorTL H 7057–30Pulse Width ModulatorTL H 7057–316Bilateral Current SourceI OUT e R3V IN R1R5R3e R4a R5R1e R2TL H 7057–32Bilateral Current SourceI OUT eR3V INR1R5R3e R4a R5R1e R2TL H 7057–33Wein Bridge Oscillator with FET Amplitude StabilizationR1e R2C1e C2f e12q R1C1TL H 7057–347Low Power Supply for Integrated Circuit TestingTL H 7057–35 V OUT e1V k XTL H 7057–91Positive Voltage ReferenceTL H 7057–36Positive Voltage ReferenceTL H 7057–37 8Negative Voltage Reference TL H 7057–38Negative Voltage ReferenceTL H 7057–39Precision Current Sink I O eV IN R1V IN t 0VTL H 7057–40Precision Current SourceTL H 7057–41SECTION 3 SIGNAL PROCESSINGDifferential-Input Instrumentation AmplifierR4R2e R5R3A V eR4R2TL H 7057–429Variable Gain Differential-Input Instrumentation AmplifierGain adjustA V e10b4R6TL H 7057–43 Instrumentation Amplifier with g100Volt Common Mode RangeR3e R4R1e R6e10R3A V e R7 R6Matching determines common R1e R5e10R2mode rejectionR2e R3TL H 7057–4410Instrumentation Amplifier with g10Volt Common Mode RangeR1e R4R2e R5R6e R7Matching Determines CMRRA V e R6R2 1a2R1R3JTL H 7057–45High Input Impedance Instrumentation AmplifierR1e R4 R2e R3A V e1a R1 R2Matching determines CMRRMay be deleted to maximize bandwidth TL H 7057–46Bridge Amplifier with Low Noise CompensationReduces feed through ofpower supply noise by20dBand makes supply bypassingunnecessaryTrim for best commonmode rejectionGain adjustTL H 7057–4711Bridge Amplifier R1R S1e R2R S2V OUT e V a1bR1R S1JTL H 7057–48Precision DiodeTL H 7057–49Precision Clamp E REF must have a source im-pedance of less than 200X if D2is usedTL H 7057–50Fast Half Wave RectifierTL H 7057–51Precision AC to DC ConverterFeedforward compensation can be used to make a fast full wave rectifier without a filter TL H 7057–52Low Drift Peak DetectorTL H 7057–5312Absolute Value Amplifier with Polarity Detector V OUT e b l V IN l c R2R1R2 R1eR4a R3R3TL H 7057–54Sample and HoldPolycarbonate-dielectric capacitorTL H 7057–55Sample and HoldWorst case drift less than2 5mV secTeflon Polyethylene or PolycarbonateDielectric CapacitorTL H 7057–5613Low Drift IntegratorTL H 7057–57Q1and Q3should not have internal gate-protection diodes Worst case drift less than 500m V sec over b 55 C to a 125 CFast Summing Amplifier with Low Input CurrentTL H 7057–58In addition to increasing speed the LM101A raises high and low frequency gain increases output drive capability and eliminates thermal feedbackPower Bandwidth 250kHzSmall Signal Bandwidth 3 5MHz Slew Rate 10V m sC5e6c 10b 8R f14Fast Integrator with Low Input CurrentTL H 7057–59Adjustable Q Notch Filterf O e12q R1C1e 60HzR1e R2e R3C1e C2e C23TL H 7057–6015Easily Tuned Notch Filter R4e R5R1e R3R4e R1f O e12q R40C1C2TL H 7057–61Tuned Circuitf O e12q0R1R2C1C2TL H 7057–62Two-Stage Tuned Circuitf O e12q0R1R2C1C2TL H 7057–6316Negative Capacitance MultiplierC e R2R3C1I L e V OS a R2I OSR3R S e R3(R1a R IN) R IN A VOTL H 7057–65Variable Capacitance MultiplierC e 1a R b R a J C1TL H 7057–66Simulated InductorL t R1R2C1R S e R2R P e R1TL H 7057–67Capacitance MultiplierC eR1R3C1I L eV OS a I OS R1R3R S e R3TL H 7057–68 17High Pass Active FilterTL H 7057–71Values are for100Hz cutoff Use metalized polycarbonate capacitors for good temperature stabilityLow Pass Active FilterTL H 7057–72 Values are for10kHz cutoff Use silvered mica capacitors for good temperature stabilityNonlinear Operational Amplifier with Temperature Compensated BreakpointsTL H 7057–7318Current MonitorV OUT e R1R3 R2I LTL H 7057–74Saturating Servo Preamplifier withRate FeedbackTL H 7057–75 Power BoosterTL H 7057–7619Analog MultiplierR5e R1 V b10JV1t0V OUT e V1V210TL H 7057–77Long Interval TimerLow leakage b0 017m F per second delayTL H 7057–78Fast Zero Crossing DetectorTL H 7057–79 Propagation delay approximately200nsDTL or TTL fanout of threeMinimize stray capacitancePin8Amplifier for Piezoelectric TransducerLow frequency cutoff e R1C1TL H 7057–80Temperature ProbeSet for0V at0 CAdjust for100mV CTL H 7057–81 20Photodiode AmplifierV OUT e R1I DTL H 7057–82Photodiode AmplifierV OUT e10V m ATL H 7057–83 Operating photodiode with less than3mVacross it eliminates leakage currentsHigh Input Impedance AC FollowerTL H 7057–84Temperature Compensated Logarithmic Converter1k X(g1%)at25 C a3500ppm CAvailable from Vishay UltronixGrand Junction CO Q81SeriesDetermines current for zerocrossing on output 10m Aas shownTL H 7057–8510nA k I IN k1mASensitivity is1V per decade21R o o t E x t r a c t o r2N 3728m a t c h e d p a i r sT L H 7057–8622Multiplier DividerTL H 7057–87 Cube GeneratorTL H 7057–8823A N -31O p A m p C i r c u i t C o l l e c t i o nFast Log Generator1k X (g 1%)at 25 C a 3500ppm CAvailable from Vishay Ultronix Grand Junction CO Q81SeriesTL H 7057–89Anti-Log Generator1k X (g 1%)at 25 C a 3500ppm CAvailable from Vishay Ultronix Grand Junction CO Q81SeriesTL H 7057–90LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or 2 A critical component is any component of a life systems which (a)are intended for surgical implant support device or system whose failure to perform can into the body or (b)support or sustain life and whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system or to affect its safety or with instructions for use provided in the labeling can effectivenessbe reasonably expected to result in a significant injury to the userNational Semiconductor National Semiconductor National Semiconductor National Semiconductor CorporationEuropeHong Kong LtdJapan Ltd1111West Bardin RoadFax (a 49)0-180-530858613th Floor Straight Block Tel81-043-299-2309十种精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和 图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R 并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的.最后的结论供大家在电路设计的时候参考.。
运算放大器11种经典电路

运算放大器的11钟经典电路虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。
而运放的输出电压是有限的,一般在 10 V~14 V。
因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。
我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。
好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。
图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。
流过R1的电流I1 = (Vi - V-)/R1 ……a 流过R2的电流I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ……c I1 = I2 ……d 求解上面的初中代数方程得Vout = (-R2/R1)*Vi 这就是传说中的反向放大器的输入输出关系式了。
运算放大器11种经典电路

精心整理运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。
在分析它的工作原理时倘没有抓住核心,往往令人头大。
特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。
????遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。
???今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
???虚短和虚断的概念???由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。
而运放的输出电压是有限的,一般在10V~14V。
因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
????“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
???由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
???在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。
常用运放电路

常用OP电路类型如下:1. Inverter Amp. 反相位放大电路:放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。
R3 = R4 提供 1 / 2 电源偏压C3 为电源去耦合滤波C1, C2 输入及输出端隔直流此时输出端信号相位与输入端相反2. Non-inverter Amp. 同相位放大电路:放大倍数为Av=R2 / R1R3 = R4提供 1 / 2电源偏压C1, C2, C3 为隔直流此时输出端信号相位与输入端相同3. Voltage follower 缓冲放大电路:O/P输出端电位与I/P输入端电位相同单双电源皆可工作4. Comparator比较器电路:I/P 电压高于Ref时O/P输出端为Logic低电位I/P 电压低于Ref时O/P输出端为Logic高电位R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低单双电源皆可工作5. Square-wave oscillator 方块波震荡电路R2 = R3 = R4 = 100 KR1 = 100 K, C1 = 0.01 uFFreq = 1 /(2π* R1 * C1)6. Pulse generator脉波产生器电路:R2 = R3 = R4 = 100 KR1 = 30 K, C1 = 0.01 uF, R5 = 150 KO/P输出端 On Cycle = 1 /(2π* R5 * C1)O/P输出端 Off Cycle =1 /(2π* R1 * C1)7. Active low-pass filter 主动低通滤波器电路:R1 = R2 = 16 KR3 = R4 = 100 KC1 = C2 = 0.01 uF放大倍数Av = R4 / (R3+R4)Freq = 1 KHz8. Active band-pass filter 主动带通滤波器电路:R7 = R8 = 100 K, C3 = 10 uFR1 = R2 = 390 K, C1 = C2 = 0.01 uFR3 = 620, R4 = 620KFreq = 1 KHz, Q=259. Window detector窗型检知器电路:当I/P电位高于OP1+端电位时, Led 1暗/Led 2亮当I/P电位高于OP2-端电位时, Led 1亮/Led 2暗只有当I/P电位高于OP2-端电位, 却又低于OP1+端电位时, Led 1与 Led 2同时皆亮如果适当选择R1, R2,R3数值可用以检知I/P电位是否合乎规格。
20种运放典型电路总结

20种运放典型电路总结运放(Operational Amplifier,简称OP-AMP)是一种非常重要的电子元件,用于放大和处理电信号。
它被广泛应用于各种电子设备和电路中。
在本文中,我们将总结并介绍20种常见的运放典型电路。
1. 基本放大电路:最简单的运放应用,用于放大输入信号,常用于音频放大器和传感器信号放大器中。
2. 反相放大电路:输入信号与输出信号相反,通过调整电阻比例可以实现不同的放大倍数。
3. 非反相放大电路:输入信号与输出信号相同,同样可以通过电阻比例调整放大倍数。
4. 比较器电路:用于比较两个输入信号的大小,输出高电平或低电平。
5. 总体反馈电路:将输出信号的一部分反馈到输入端,改变放大器的增益和频率响应特性。
6. 高通滤波器电路:通过运放和电容构成的电路,用于滤除低频信号,只保留高频信号。
7. 低通滤波器电路:与高通滤波器相反,滤除高频信号,只保留低频信号。
8. 带通滤波器电路:同时滤除高频和低频信号,只保留中间频率的信号。
9. 增量器电路:将输入信号与参考电平进行比较,输出相对差异。
10. 仪表放大器电路:用于放大微弱信号,常用于测量和精确控制设备中。
11. 斜坡发生器电路:通过电容和电阻的组合,产生具有特定斜率的信号。
12. 脉冲放大器电路:放大脉冲信号,常用于数模转换器和通信系统中。
13. 限幅器电路:限制输入信号的幅度范围,常用于保护电路。
14. 调幅解调器电路:将音频信号调制到载波中,在接收端解调还原原始信号。
15. 器件驱动电路:用于驱动各种器件(如LED、电机等)的运放电路。
16. 稳压电路:通过负反馈调整输出电压或电流,保持稳定。
17. 振荡器电路:产生特定频率的信号,常用于时钟电路和无线电设备。
18. 差动放大器电路:输入信号与共模信号进行放大和处理。
19. 加法器电路:将多个输入信号相加,得到一个输出信号。
20. 数模转换器电路:将模拟信号转换为数字信号,常用于数据采集和处理。
运算放大器11种经典电路 电子工程师必备

运算放大器11种经典电路电子工程师必备2011年11月16日星期三 14:43运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。
在分析它的工作原理时倘没有抓住核心,往往令人头大。
特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。
遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。
今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。
而运放的输出电压是有限的,一般在 10 V~14 V。
因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
集成运放的典型电路-完整版课件

典型的集成运放 双极型集成运放 F007 CMOS 集成运放 C14573
4.3.1 双极型集成运放 F007
一、引脚
(a)
(b)
连
接
示
意
图
图 4.3.1 F007 的引脚及连接示意图
二、电路原理图
图 4.3.2 F007 电路原理图
偏置电路
基准电流:
VT8
I REF
4. 输出级
VT14、 VT18 、VT19 准互补对称电路;
VD1、 VD2 、R9、 R10 过载保护电路;
VT15 、R7、R8 为功 率管提供静态基流。
IC13
VD1
R7
+VCC
VT14
R9 uo
R8
uI
VT15
VD2
VT18
R10
VT19
-VEE 图 4.3.7 F007 输出级
原理电路
VCC
VEE
- UBE12 R5
- UBE11
I8
至输入级
基准电流产生各放
VT9
I3,4 IC9 IC10
VT10
VT12
+VCC
VT13
R5 IREF
IC12
VT11 至中间级
大级所需的偏置电流。
R4
各路偏置电流的关系:
图 4.3.3 F007 的偏置电路-VCC I3, 4
IREF
I11 微电流源 IC10
IC12 镜像电流源 IC13
镜像电流源
IC9
IC8
中间级
输出级
输入级
2. 输入级 VT1、VT2、VT3、VT4 组成共集 - 共基差分放大电路电 路;VT1、VT2 基极接收差分输入信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LFC2 高增益运算放大器
LFC3 中增益运算放大器
LFC4 低功耗运算放大器
LFC54 低功耗运算放大器
LFC75 低功耗运算放大器
F003 通用Ⅱ型运算放大器
F004(5G23) 中增益运算放大器
F005 中增益运算放大器
F006 通用Ⅱ型运算放大器
F007(5G24) 通用Ⅲ型运算放大器F010 低功耗运算放大器
F011 低功耗运算放大器
F1550 射频放大器
F1490 宽频带放大器
F1590 宽频带放大器
F157/A 通用型运算放大器
F253 低功耗运算放大器
F741(F007) 通用Ⅲ型运算放大器F741A 通用型运算放大器
F747 双运算放大器
OP-07 超低失调运算放大器
OP111A 低噪声运算放大器
F4741 通用型四运算放大器
F101A/201A 通用型运算放大器
F301A 通用型运算放大器
F108 通用型运算放大器
F308 通用型运算放大器
F110/210 电压跟随器
F310 电压跟随器
F118/218 高速运算放大器
F441 低功耗JEET输入运算放大器F318 高速运算放大器
F124/224 四运算放大器
F324 四运算放大器
F148 通用型四运算放大器
F248/348 通用型四运算放大器
F158/258 单电源双运算放大器
F358 单电源双运算放大器
F1558 通用型双运算放大器
F4558 双运算放大器
LF791 单块集成功率运算放大器LF4136 高性能四运算放大器
FD37/FD38 运算放大器
FD46 高速运送放大器
LF082 高输入阻抗运送放大器
LFOP37 超低噪声精密放大器
LF3140 高输入阻抗双运送放大器
LF7650 斩波自稳零运送放大器
LZ1606 积分放大器
LZ19001 挠性石英表伺服电路变换放大器LBMZ1901 热电偶温度变换器
LM741 运算放大器
LM747 双运算放大器
OP-07 超低失调运算放大器
LM101/201 通用型运算放大器
LM301 通用型运算放大器
LM108/208 通用型运算放大器
LM308 通用型运算放大器
LM110 电压跟随器
LM310 电压跟随器
LM118/218 高速运算放大器
LM318 高速运算放大器
LM124/224 四运算放大器
LM324 四运算放大器
LM148 四741运算放大器
LM248/348 四741运算放大器
LM158/258 单电源双运算放大器
LM358 单电源双运算放大器
LM1558 双运算放大器
OP-27CP 低噪声运算放大器
TL062 低功耗JEET运算放大器
TL072 低噪声JEET输入型运算放大器TL081 通用JEET输入型运算放大器
TL082 四高阻运算放大器(JEET)
TL084 四高阻运算放大器(JEET)
MC1458 双运放(内补偿)
LF147/347 JEET输入型运算放大器
LF156/256/356 JEET输入型运算放大器LF107/307 运算放大器
LF351 宽带运算放大器
LF353 双高阻运算放大器
LF155/355 JEET输入型运算放大器
LF157/357 JEET输入型运算放大器
LM359 双运放(GB=400MC)
LM381 双前置放大器
CA3080 跨导运算放大器
CA3100 宽频带运算放大器
CA3130 BiMOS运算放大器
CA3140 BiMOS运算放大器
CA3240 BiMOS双运算放大器
CA3193 BiMOS精密运算放大器CA3401 单电源运算放大器
MC3303 单电源四运算放大器
MC3403 低功耗四运放
LF411 低失调低漂移JEET输入运放LF444 四高阻抗运算放大器
μpc4558低噪声宽频带运放
MC4741 四通用运放
LM709 通用运放
LM725 低漂移高精度运放
LM733 宽带放大器
LM748 双运放
ICL7650 斩波稳零运放
ICL7660 CMOS电压放大(变换)器。