拉伸法测弹性模量实验报告.doc
拉伸法测弹性模量实验报告
![拉伸法测弹性模量实验报告](https://img.taocdn.com/s3/m/f36fdf47dc36a32d7375a417866fb84ae55cc367.png)
拉伸法测弹性模量实验报告一、实验目的1、掌握拉伸法测量金属丝弹性模量的基本原理和方法。
2、学会使用光杠杆法测量微小长度变化。
3、学会使用游标卡尺、螺旋测微器等测量工具,提高实验操作技能。
4、学习数据处理和误差分析的方法,培养科学严谨的实验态度。
二、实验原理弹性模量是描述材料抵抗弹性变形能力的物理量。
对于一根长度为$L$、横截面积为$S$ 的金属丝,在受到沿其长度方向的拉力$F$ 作用时,金属丝会伸长$\Delta L$。
根据胡克定律,在弹性限度内,应力与应变成正比,即$F/S = E \cdot \Delta L/L$,其中$E$ 为弹性模量。
将上式变形可得:$E = FL/(S\Delta L)$由于金属丝的横截面积$S =\pi d^2/4$(其中$d$ 为金属丝的直径),且伸长量$\Delta L$ 通常很小,难以直接测量。
本实验采用光杠杆法来测量微小伸长量$\Delta L$。
光杠杆原理:光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的固定槽内,后尖足置于圆柱体小砝码上。
当金属丝伸长时,光杠杆后尖足随之下降,从而带动平面镜转动一个微小角度$\theta$。
通过望远镜和标尺,可以测量出平面镜转动前后标尺的读数变化$\Delta n$。
根据几何关系,有:$\Delta L = b\Delta n/2D$ (其中$b$ 为光杠杆常数,即前两尖足到后尖足的垂直距离;$D$ 为望远镜到平面镜的距离)将其代入弹性模量的表达式,可得:$E = 8FLD/(\pi d^2b\Delta n)$三、实验仪器1、杨氏模量测定仪:包括立柱、底座、金属丝、砝码托盘等。
2、光杠杆及望远镜尺组:用于测量微小长度变化。
3、游标卡尺:测量金属丝的长度。
4、螺旋测微器:测量金属丝的直径。
5、砝码若干:提供拉力。
四、实验步骤1、调节仪器调节杨氏模量测定仪的底座水平,使立柱垂直于底座。
将光杠杆放置在平台上,使其前两尖足位于固定槽内,后尖足置于圆柱体小砝码上,并调整光杠杆平面镜与平台垂直。
弹性模量的测定实验报告
![弹性模量的测定实验报告](https://img.taocdn.com/s3/m/1a27149181eb6294dd88d0d233d4b14e85243e26.png)
弹性模量的测定实验报告弹性模量的测定实验报告引言:弹性模量是材料力学性质的一个重要参数,用于描述材料在受力后的变形程度。
本实验旨在通过测定金属材料的拉伸变形,计算其弹性模量,并探讨不同因素对弹性模量的影响。
实验装置与方法:实验中使用的装置主要包括拉伸试验机、测量仪器和金属试样。
首先,选择一根长度为L、直径为d的金属试样,并对其进行表面处理以确保试样表面光滑。
然后,在拉伸试验机上夹住试样的两端,使其处于拉伸状态。
通过加载装置施加拉力,同时使用测量仪器记录试样的变形程度。
实验步骤:1. 准备工作:清洁金属试样表面,确保试样无明显缺陷。
2. 安装试样:将试样放入拉伸试验机夹具中,调整夹具使试样两端固定。
3. 测量初始长度:使用游标卡尺等测量工具测量试样的初始长度L0。
4. 施加拉力:通过加载装置施加逐渐增加的拉力,同时记录下相应的拉伸变形量。
5. 测量最终长度:当试样断裂时,使用测量工具测量试样的最终长度L1。
6. 数据处理:根据测得的拉伸变形量和试样的几何参数,计算弹性模量。
结果与讨论:根据实验数据,我们计算得到了金属试样的弹性模量。
在本实验中,我们选择了不同材料的试样进行测试,包括铜、铝和钢等。
通过对比不同材料的弹性模量,我们可以发现不同材料具有不同的弹性特性。
此外,我们还探究了温度和应变速率对弹性模量的影响。
实验结果表明,随着温度的升高,金属材料的弹性模量会发生变化。
这是因为温度的变化会导致材料内部晶格结构的改变,进而影响材料的弹性性质。
另外,应变速率也会对弹性模量产生影响。
较高的应变速率会导致材料内部的位错运动增加,从而使材料的弹性模量降低。
结论:通过本实验,我们成功测定了金属材料的弹性模量,并探究了不同因素对弹性模量的影响。
实验结果表明,不同材料具有不同的弹性特性,且温度和应变速率对弹性模量有一定的影响。
这对于材料科学和工程应用具有重要的意义,可为材料选择和设计提供参考依据。
总结:本实验通过测定金属材料的拉伸变形,计算其弹性模量,并探讨了不同因素对弹性模量的影响。
大学物理-拉伸法测弹性模量 实验报告
![大学物理-拉伸法测弹性模量 实验报告](https://img.taocdn.com/s3/m/7ff2250f33687e21ae45a903.png)
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
静态拉伸法测弹性模量实验报告
![静态拉伸法测弹性模量实验报告](https://img.taocdn.com/s3/m/f0b5c77b6c85ec3a87c2c5fe.png)
静态拉伸法测弹性模量实验报告弹性模量(亦称杨氏模量)是固体材料的一个重要物理参数,它标志着材料对于拉伸或压缩形变的抵抗能力。
作为测定金属材料弹性模量的一个传统方法,静态拉伸法在一起合理配置、误差分析和长度的放大测量等方面有着普遍意义,但这种方法拉伸试验荷载大,加载速度慢,存在弛豫过程,对于脆性材料和不同温度条件下的测量难以实现。
实验原理及仪器胡克定律指出,对于有拉伸压缩形变的弹性形体,在弹性范围内,应力F 与应变L∆成正比,即式中比例系数E 称为材料的弹性模量,它是描写材料自身弹性的物理量.改写上式则有、(1)可见,只要测量外力F 、材料(本实验用金属丝)的长度L 和截面积S ,以及金属丝的长度变化量L ∆,就可以计算出弹性模量E 。
其中,F 、S 和L 都是比较容易测得的,唯有L ∆很小,用一般的量具不易准确测量。
本实验采用光杠杆镜尺组进行长度微小变化量的测量,这是一种非接触式的长度放大测量的方法。
本实验采用的主要实验仪器有: 弹性模量仪(如图1)、光杠杆镜尺组(如图2)、螺旋测微器、米尺、砝码等。
图1 弹性模量测量装置图2 光杠杆 图3 光杠杆放大原理仪器调节好后,金属丝未伸长前,在望远镜中可看到由平面镜反射的标尺的像,将望远镜的细叉丝对准标尺的刻度,读出读数为R 0;将砝码加在砝码托上后,金属丝被拉长,光杠杆镜面向后倾斜了α角.根据光的反射定律可知,此时在望远镜中细叉丝对准的是镜面反射后的标尺上的刻度R 1,其对应的入射光和反射光的夹角为2α。
设N=R 1-R 2,K 为光杠杆的前后足之间的垂直距离,D 为光杠杆镜面到标尺之间的距离,考虑到,角很小,所以有可得∆ (2)将式(2)代入式(1)即得拉伸法测定金属丝弹性模量的计算公式E (3)式中d 为金属丝的直径.实验步骤1.1 调整弹性模量仪① 调节三脚底座上的调节螺丝,使立柱铅直。
② 将光杠杆放在平台上,两前足放在平台前面的横槽内,后足放在夹子B 上,注意后足不要与金属丝相碰。
静态拉伸法测材料的弹性模量实验报告
![静态拉伸法测材料的弹性模量实验报告](https://img.taocdn.com/s3/m/6fe4050a905f804d2b160b4e767f5acfa1c78318.png)
静态拉伸法测材料的弹性模量实验报告
静态拉伸法测材料的弹性模量实验报告实验日期:2012年12月1日—4日,2012年11月24日9点20分
试样编号:12实验者姓名:胡超祥所在班级:08机电2班实验目的:1.学习与掌握静态拉伸法测定钢材弹性模量;2.了解钢材弹性模量的实际意义。
3.巩固理论知识。
实验原理:静态拉伸法测定钢材的弹性模量是将被测试样放入试样夹中并施以拉伸负荷后,通过测定试样开始破坏前单位面积上的变形来确定试样的弹性模量,即为弹性模量。
一般钢铁材料具有良好的塑性和韧性,其弹性模量比较大,因此可采用这种方法测得它们的弹性模量。
主要仪器:1、金属丝线材。
- 1 -。
实验 用拉伸法测量杨氏弹性模量
![实验 用拉伸法测量杨氏弹性模量](https://img.taocdn.com/s3/m/4b1b1e1652ea551810a6871b.png)
于支架上,上端固定,下端加砝码, 对钢丝施加力F,测出钢丝相应
的伸长量ΔL, 即可求出Y。钢丝长度L用钢卷尺测量,钢丝的横截 面积S=πd2/4,直径d用千分尺测出 ,力F由砝码的质量求出。在实 际测量中 , 由于钢丝伸长量 ΔL 的值很小 , 约 10-1mm 数量级。因 此,ΔL的测量采用光杠杆放大法进行测量。
不确定度Δd=__________mm。 测量结果d=(__________±___________) mm。
(3) 单次测L、D、b值: L=(___________±___________)m
D=(___________±___________)m
b=(___________±___________)m
(n)
n
(n )
钢丝微小伸长量的放大量的测量结果为Δn=(____±____) cm。
(2) 测量钢丝的直径, 将数据记录于表3 - 5 - 2中。 表 3 - 5 - 2 测量钢丝的直径数据表 d0=___________mm
测量部位 测量方向 d/mm 上 纵 向 部 横向 中 纵 向 部 横 向 下 纵 向 部 横 向 平均值
四、 实验内容
1. 仪器调节 (1) 按图 3-5-2安装仪器,调节支架底座螺丝 , 使底座水平 (观 察底座上的水准仪)。 (2) 调节反射镜,使其镜面与托台大致垂直, 再调光源的高低, 使它与反射镜面等高。 (3) 调节标尺铅直,调节光源透镜及标尺到镜面间的距离 D,
使镜头刻线在标尺上的像清晰。再适当调节反射镜的方向、 标
11 2
物 质 名 称 铸铜(99.9%)
精炼或韧炼铜(99.99%)
杨氏弹性模量
(1011 达因/厘米 2)
拉伸法测弹性模量 实验报告
![拉伸法测弹性模量 实验报告](https://img.taocdn.com/s3/m/508a46dfaeaad1f346933f8f.png)
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
拉伸法测弹性模量实验报告
![拉伸法测弹性模量实验报告](https://img.taocdn.com/s3/m/effbc572366baf1ffc4ffe4733687e21af45ffd0.png)
2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。
单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。
实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。
弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。
E的单位是Pa。
本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。
钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。
δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。
通过多次测量并用逐差法处理数据达到减少随机误差的目的。
(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。
其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。
三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。
由物镜和测微目镜构成。
测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。
故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。
四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。
调节底座螺钉使夹具不与周围支架碰蹭。
(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。
弹性模量的测量实验报告
![弹性模量的测量实验报告](https://img.taocdn.com/s3/m/1aec2f044531b90d6c85ec3a87c24028905f855d.png)
弹性模量的测量实验报告一、拉伸法测量弹性模量 1、实验目的(1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。
2、实验原理(1)、杨氏模量及其测量方法本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸长的形变(称拉伸形变)。
设有一长度为L ,截面积为S 的均匀金属丝,沿长度方向受一外力后金属丝伸长δL 。
单位横截面积上的垂直作用力F /S 成为正应力,金属丝的相对伸长δL /L 称为线应变。
实验结果指出,在弹性形变范围内,正应力与线应变成正比,即LLE SF δ= 这个规律称为胡克定律,其中LL SF E //δ=称为材料的弹性模量。
它表征材料本身的性质,E 越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力也越大,E 的单位为Pa(1Pa = 1N/m 2; 1GPa = 109Pa)。
本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D ,则可以进一步把E 写成:LD FLE δπ24=测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量δL ,即可求出E 。
钢丝长度L 用钢尺测量,钢丝直径D 用螺旋测微计测量,力F 由砝码的重力F = mg 求出。
实验的主要问题是测准δL 。
δL 一般很小,约10−1mm 数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。
为了使测量的δL 更准确些,采用测量多个δL 的方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录伸长位置。
通过数据处理求出δL 。
(2)、逐差法处理数据 如果用上述方法测量10 次得到相应的伸长位置y1,y2,...,y10,如何处理数据,算出钢丝的伸长量δL呢? 我们可以由相邻伸长位置的差值求出9 个δL,然后取平均,则从上式可以看出中间各y i都消去了,只剩下y10 −y1 9,用这样的方法处理数据,中间各次测量结果均未起作用。
拉伸法测_实验报告
![拉伸法测_实验报告](https://img.taocdn.com/s3/m/999ff6148f9951e79b89680203d8ce2f0166651e.png)
一、实验目的1. 掌握拉伸法测定材料弹性模量的原理和方法。
2. 了解实验过程中误差的来源及处理方法。
3. 培养学生严谨的科学态度和实验操作技能。
二、实验原理弹性模量(E)是衡量材料弹性变形能力的重要物理量。
根据胡克定律,在弹性范围内,应力(σ)与应变(ε)成正比,即σ = Eε。
其中,E为材料的弹性模量,σ为应力,ε为应变。
本实验采用拉伸法测定材料的弹性模量。
实验中,通过测量材料在拉伸过程中受到的拉力(F)和对应的伸长量(ΔL),以及材料的初始长度(L0)和截面积(S0),根据公式 E = (FΔL) / (S0ΔL0) 计算出材料的弹性模量。
三、实验仪器与材料1. 实验仪器:- 拉伸试验机:用于施加拉力,测量材料的伸长量。
- 螺旋测微计:用于测量材料的截面积。
- 米尺:用于测量材料的初始长度。
- 光杠杆:用于放大测量微小伸长量。
- 标尺:用于读取光杠杆放大后的伸长量。
2. 实验材料:- 标准金属丝:用于测定弹性模量。
四、实验步骤1. 将金属丝固定在拉伸试验机的夹具上,确保金属丝与拉伸方向一致。
2. 使用螺旋测微计测量金属丝的初始截面积(S0)。
3. 使用米尺测量金属丝的初始长度(L0)。
4. 将金属丝的一端固定在光杠杆的支架上,另一端固定在标尺上。
5. 调整光杠杆,使光杠杆与标尺垂直。
6. 在金属丝的另一端施加拉力,逐渐增加拉力,同时观察光杠杆的偏转角度。
7. 当光杠杆偏转角度达到一定值时,停止增加拉力,保持拉力不变。
8. 记录光杠杆偏转角度和对应的伸长量。
9. 重复上述步骤,至少进行三次实验,以减小误差。
10. 根据实验数据,计算金属丝的弹性模量。
五、实验数据与处理1. 记录实验数据,包括金属丝的初始截面积(S0)、初始长度(L0)、拉力(F)、伸长量(ΔL)和光杠杆偏转角度。
2. 根据公式 E = (FΔL) / (S0ΔL0) 计算出金属丝的弹性模量。
3. 分析实验数据,判断实验结果的可靠性。
杨氏弹性模量的测定实验报告
![杨氏弹性模量的测定实验报告](https://img.taocdn.com/s3/m/a74023de970590c69ec3d5bbfd0a79563c1ed480.png)
杨氏弹性模量的测定实验报告一、实验目的1、学习用拉伸法测定金属丝的杨氏弹性模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
设金属丝的原长为$L$,横截面积为$S$,在外力$F$ 的作用下伸长量为$\Delta L$,根据胡克定律,在弹性限度内,应力($F/S$)与应变($\Delta L/L$)成正比,其比例系数即为杨氏弹性模量$E$,数学表达式为:$E =\frac{F \cdot L}{S \cdot \Delta L}$2、光杠杆原理光杠杆装置由一个平面镜及固定在其一端的三足支架组成,三足尖构成等腰三角形。
当金属丝伸长时,光杠杆的后足随之下降,平面镜绕前足转动一个微小角度$\theta$,从而使反射光线偏转一个较大的角度$2\theta$。
通过望远镜和标尺可以测量出标尺像的位移$n$,设光杠杆前后足间距为$b$,镜面到标尺的距离为$D$,则有:$\Delta L =\frac{n \cdot b}{2D}$将上式代入杨氏弹性模量的表达式,可得:$E =\frac{8FLD}{S\pi d^2 n b}$其中,$d$ 为金属丝的直径。
三、实验仪器杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器(1)调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
(2)将光杠杆放在平台上,使平面镜与平台垂直,三足尖位于同一水平面,且三足尖与平台的接触点构成等边三角形。
(3)调节望远镜,使其与光杠杆平面镜等高,且望远镜光轴与平面镜中心等高。
然后通过望远镜目镜看清十字叉丝,再将望远镜对准平面镜,调节目镜和物镜,直至能在望远镜中看到清晰的标尺像。
(4)调节标尺的位置,使其零刻度线与望远镜中十字叉丝的横线重合。
拉伸法和动力学法测量弹性模量-实验报告
![拉伸法和动力学法测量弹性模量-实验报告](https://img.taocdn.com/s3/m/2ee8cf87680203d8ce2f2418.png)
拉伸法和动力学法测量弹性模量实验报告双33A组----20070102 - -实验日期:2008年12月17日第一部分拉伸法测弹性模量1.1实验目的(1)学习用拉伸法测量弹性模量的方法; (2)掌握螺旋测微计和读数显微镜的使用; (3)学习用逐差法处理数据。
1.2实验原理1.2.1弹性模量及其测量方法本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸 长的形变(称拉伸形变)。
设有一长度为,截面积为的均匀金属丝,沿长度方向受一外力后金属 丝伸长 。
单位横截面积上的垂直作用力 /成为正应力,金属丝的相对伸长 /称为线应变。
实 验结果指出,在弹性形变范围内,正应力与线应变成正比,即=该规律称为胡克定律。
式中比例系数/ =/称为材料的弹性模量。
它表征材料本身的性质,越大的材料,要使他发生一定的相对形变所需 的单位横截面积上的作用力也越大。
一些常用材料的值见表 1。
的单位为Pa (1Pa = 1N/m 2; 1GPa = 109Pa )。
表 1 一些常用材料的弹性模量材料名称 钢 铁 铜 铝 铅 玻璃 橡胶 /GPa196~216113~15773~127约 70约 17约 55约 0.0078本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为,则可以进一步把写成:4=2测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力,测出 钢丝相应的伸长量 ,即可求出。
钢丝长度用钢尺测量,钢丝直径用螺旋测微计测量,力由砝 一般很小,约10−1mm数量级,在本实验中用 码的重力 =求出。
实验的主要问题是测准 。
读数显微镜测量(也可利用光杠杆法或其他方法测量)。
为了使测量的 更准确些,采用测量多个 的方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记 录伸长位置。
通过数据处理求出 。
1.2.2逐差法处理数据如果用上述方法测量 10次得到相应的伸长位置 1, 2,… , 10,如何处理数据,算出钢丝的伸长量 呢?我们可以由相邻伸长位置的差值求出 9个 ,然后取平均,则2 − 1+3 − 29+⋯+ 10 −9=从上式可以看出中间各都消去了,只剩下 10 − 9,用这样的方法处理数据,中间各次测量 1结果均未起作用。
大连理工大学大物实验 拉伸法测弹性模量 实验报告
![大连理工大学大物实验 拉伸法测弹性模量 实验报告](https://img.taocdn.com/s3/m/beea12202af90242a895e5f7.png)
2. 测量 打开弹性模量拉伸仪, 在金属丝上加载拉力(通过显示屏读数) 当拉力达到 10.00kg 时, 记下望远镜中标尺的刻度值 n1, 然后以每次 1.00kg 增加拉力并记录数据, 直到 25.00kg 止。 用钢尺单次测量钢丝上下夹头之间的距离得到钢丝长度 l。 用卡尺测量或者直接获得光杠杆常数 b。 用望远镜的测距丝和标尺值, 结合公式计算出尺镜距离 B。 用螺旋测微器在不同位置测量钢丝直径 8 次(注意螺旋测微器的零点修正)
根据上式转换, 当金属丝受力 Fi 时, 对应标尺读数为 ni, 则有
ni
8lB F n D 2bE i 0
可见 F 和 n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量 E。
P.S. 用望远镜和标尺测量间距 B: 已知量: 分划板视距丝间距 p, 望远镜焦距 f、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数 N1、N2, 读数差为Δ N。 在几何关系上忽略数量级差别大的量 后, 可以得到
n n1 n0 。 Δ n 与 l 呈正比关系, 且根据小量
忽略及图中的相似几何关系, 可以得到
l
b n 2B
(b 称为光杠杆常数)
将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到
E
8FlB D 2bn
(式中 B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。 )
mm mm
D 的最终值
D= 0.796±0.005
尺镜距离 B N1= N2= NΔ =N2-N1= Δ i= Δ N 的最终值= 44.8 63.8 19.0 0.5 19.0±0.5 950.0 B=950.0±0.5 mm mm mm mm mm mm mm 光杠杆常数 b= 84.0±0.5 mm
弹性模量的测量实验报告.doc
![弹性模量的测量实验报告.doc](https://img.taocdn.com/s3/m/a3611f6476232f60ddccda38376baf1ffc4fe36f.png)
弹性模量的测量实验报告.doc实验目的:通过实验了解弹性模量的测量方法,掌握弹性模量的计算和影响因素。
实验原理:弹性模量是材料的重要力学性质之一,表示材料在受外力作用下变形产生的应力与应变关系的比值。
常见的弹性模量有杨氏模量、剪切模量、体积弹性模量等。
此处介绍杨氏模量的测量方法。
实验仪器:材料拉伸试验机、游标卡尺、电子天平、直尺、计算器等。
实验物料:棉线、钢丝、铜线、铝线等不同材质的丝线。
实验过程:1. 将不同材质的丝线分别装入拉伸试验机的样品夹具中,同时取出一段数量适当的丝线,用游标卡尺测量其直径,记录数据。
2. 启动试验机,调整张力,开始拉伸,当丝线断裂时停止拉伸,并记录拉伸主体的长度。
3. 根据拉伸主体长度的增长和直径的减小(由于横截面积的减少)计算应变ε,根据试验机上显示的应力值F计算应力σ=F/A,其中A为丝线横截面积。
4. 根据应力与应变的比值,即弹性模量公式E=σ/ε,计算杨氏弹性模量E。
5. 对于每种材质的丝线,进行重复实验,取平均值作为该材料的弹性模量。
实验结果:丝线直径d(mm)长度L(mm)应变ε 弹性应力σ(Pa)杨氏弹性模量E(Pa)棉线0.56 217 0.087 27.45×10^60.56 220 0.084 28.57×10^60.55 225 0.086 27.91×10^6平均值:28.31×10^6钢丝0.52 45 0.020 368.42×10^60.54 48 0.021 423.63×10^60.53 46 0.020 405.66×10^6平均值:399.57×10^6铜线0.7 85 0.053 97.00×10^60.71 90 0.051 101.53×10^60.72 92 0.052 103.91×10^6平均值:100.48×10^6铝线1.2 115 0.039 98.56×10^61.1 110 0.039 95.63×10^61.3 120 0.040 98.00×10^6平均值:97.73×10^6实验结论:通过本次实验,我们了解了弹性模量的测量方法和计算公式,掌握了不同材质对弹性模量的影响。
静态拉伸法测弹性模量实验报告
![静态拉伸法测弹性模量实验报告](https://img.taocdn.com/s3/m/f0b5c77b6c85ec3a87c2c5fe.png)
静态拉伸法测弹性模量实验报告弹性模量(亦称杨氏模量)是固体材料的一个重要物理参数,它标志着材料对于拉伸或压缩形变的抵抗能力。
作为测定金属材料弹性模量的一个传统方法,静态拉伸法在一起合理配置、误差分析和长度的放大测量等方面有着普遍意义,但这种方法拉伸试验荷载大,加载速度慢,存在弛豫过程,对于脆性材料和不同温度条件下的测量难以实现。
实验原理及仪器胡克定律指出,对于有拉伸压缩形变的弹性形体,在弹性范围内,应力F 与应变L∆成正比,即式中比例系数E 称为材料的弹性模量,它是描写材料自身弹性的物理量.改写上式则有、(1)可见,只要测量外力F 、材料(本实验用金属丝)的长度L 和截面积S ,以及金属丝的长度变化量L ∆,就可以计算出弹性模量E 。
其中,F 、S 和L 都是比较容易测得的,唯有L ∆很小,用一般的量具不易准确测量。
本实验采用光杠杆镜尺组进行长度微小变化量的测量,这是一种非接触式的长度放大测量的方法。
本实验采用的主要实验仪器有: 弹性模量仪(如图1)、光杠杆镜尺组(如图2)、螺旋测微器、米尺、砝码等。
图1 弹性模量测量装置图2 光杠杆 图3 光杠杆放大原理仪器调节好后,金属丝未伸长前,在望远镜中可看到由平面镜反射的标尺的像,将望远镜的细叉丝对准标尺的刻度,读出读数为R 0;将砝码加在砝码托上后,金属丝被拉长,光杠杆镜面向后倾斜了α角.根据光的反射定律可知,此时在望远镜中细叉丝对准的是镜面反射后的标尺上的刻度R 1,其对应的入射光和反射光的夹角为2α。
设N=R 1-R 2,K 为光杠杆的前后足之间的垂直距离,D 为光杠杆镜面到标尺之间的距离,考虑到,角很小,所以有可得∆ (2)将式(2)代入式(1)即得拉伸法测定金属丝弹性模量的计算公式E (3)式中d 为金属丝的直径.实验步骤1.1 调整弹性模量仪① 调节三脚底座上的调节螺丝,使立柱铅直。
② 将光杠杆放在平台上,两前足放在平台前面的横槽内,后足放在夹子B 上,注意后足不要与金属丝相碰。
用拉伸法测金属丝的杨氏弹性模量实验报告示范
![用拉伸法测金属丝的杨氏弹性模量实验报告示范](https://img.taocdn.com/s3/m/77e71283f242336c1fb95eba.png)
实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据.二.实验原理长为l ,截面积为S 的金属丝,在外力F 的作用下伸长了l ∆,称ll SF Y //∆=为杨氏模量(如图1)。
设钢丝直径为d ,即截面积42/d S π=,则24ld lFY ∆=π。
伸长量l ∆比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量l ∆(如图2).由几何光学的原理可知,n L bn n L b l ∆⋅=-≈∆220)(, nb d FlL Y ∆=∴28π 。
图1 图2三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。
四.实验步骤1. 调整杨氏模量测定仪 2.测量钢丝直径 3.调整光杠杆光学系统 4.测量钢丝负荷后的伸长量(1) 砝码盘上预加2个砝码.记录此时望远镜十字叉丝水平线对准标尺的刻度值0n 。
(2) 依次增加1个砝码,记录相应的望远镜读数''',,721n ,n n . (3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数'''''''',,,0167n n ,n n 。
(4) 计算同一负荷下两次标尺读数('i n 和''i n )的平均值2/)('''i i i n n n +=。
(5) 用隔项逐差法计算n ∆.5. 用钢卷尺单次测量标尺到平面镜距离L 和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b 。
6.进行数据分析和不确定度评定,报道杨氏模量值.五.数据记录及处理1.多次测量钢丝直径d表1 用千分卡测量钢丝直径d (仪器误差取0.004mm )测量部位 上中下平均测量方向 纵向横向纵向横向纵向横向)(mm d0。
2.1拉伸法测弹性模量
![2.1拉伸法测弹性模量](https://img.taocdn.com/s3/m/54ae17936bec0975f465e2f6.png)
清华大学实验报告系别:航天航空学院班号:航04班姓名:张大曦(同组姓名:) 作实验日期:2011年9月28日教师评定:实验2.1拉伸法测弹性模量一、 实验目的(1)学习用拉伸法测量弹性模量的方法; (2)掌握螺旋测微计和读数显微镜的使用; (3)学习用逐差法处理数据。
二、实验原理1.弹性模量及其测量方法弹性形变范围内,正应力与线应变成正比,即F L E S Lδ= 式中的比例系数//F SE L Lδ=称作材料的弹性模量利用本实验中直接测量的数据,可将上式进一步写为24FLE D Lπδ=测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F ,测出钢丝相应的伸长量L δ,即可求出E 。
2.逐差法处理数据为了充分利用实验中获得的数据,利用下式计算L δ,()()()617210555y y y y y y L δ-+-++-=⨯该方法称为逐差法,可以减小测量的随机误差和测量仪器带来的误差。
三、实验仪器包括支架、读数显微镜、底座、钢尺和螺旋测微计(分别用来测量钢丝长度和直径)。
四、实验步骤与注意事项(1)调整钢丝竖直。
(2)调节读数显微镜。
先粗调再细调。
(3)测量。
测量钢丝长度L 及其伸长量L δ。
再用螺旋测微计在钢丝的不同地方测量其直径D ,测6次,并在测量前后记录螺旋测微计的零点d 各3次。
五、 数据表格及数据处理1. 测量钢丝长度L 及其伸长量L δ仪器编号;钢丝长度L=mm 。
利用测量值i l 与平均值l 及标准偏差公式l S =得到:l S == mml 的仪器误差:=∆仪ll 的不确定度:l ∆= mm5l L δ=,进一步求出L δ及其不确定度l δ∆:0.2654mm 5lL δ== 0.03951580.0079mm 55l l δ∆∆=== ()0.26540.0079mm l L δδ∴+∆=+2. 测定钢丝直径D测定螺旋测微计的零点d 测量前____,___,____ 测量后____,____,____平均值=d mm钢丝的平均直径=D mm0.2310.0070.224mm D D d =-=-=利用测量值i D 与平均值D 及标准偏差公式D S =得到:D S ==0.001414mm =0.004mm ∆≈ 仪D 0.004243∴∆===3. 总不确定度计算由计算公式推导出E 的相对不确定度的公式E E ∆=实验室给出0.5%FF∆=,3mm L ∆≈,其余的D ∆、L δ∆项按上述数据处理过程所得值代入,计算出EE∆=0.04853= 24FLE D Lπδ= ()31123340.29.899910 1.8710Pa 0.224100.265410E π---⨯⨯⨯⨯∴==⨯⨯⨯⨯11110.047640.04853 1.87100.09110Pa E E ∴∆=⨯=⨯⨯=⨯()111.870.0910Pa E ∴=±⨯结论:拉伸法可以测量钢丝的弹性模量,由于实验仪器的精密程度有限,所得的弹性模量的不确定度较大。
用拉伸法测金属丝的杨氏弹性模量实验报告示范.doc
![用拉伸法测金属丝的杨氏弹性模量实验报告示范.doc](https://img.taocdn.com/s3/m/4706e58087c24028905fc338.png)
实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据。
二.实验原理长为l ,截面积为S 的金属丝,在外力F 的作用下伸长了l ∆,称l l SF Y //∆=为杨氏模量(如图1)。
设钢丝直径为d ,即截面积42/d S π=,则24ld lF Y ∆=π。
伸长量l ∆比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量l ∆(如图2)。
由几何光学的原理可知,n L bn n L b l ∆⋅=-≈∆220)(, nb d FlL Y ∆=∴28π 。
图1 图2三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。
四.实验步骤1. 调整杨氏模量测定仪 2.测量钢丝直径 3.调整光杠杆光学系统 4.测量钢丝负荷后的伸长量(1) 砝码盘上预加2个砝码。
记录此时望远镜十字叉丝水平线对准标尺的刻度值0n 。
(2) 依次增加1个砝码,记录相应的望远镜读数''',,721n ,n n 。
(3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数'''''''',,,0167n n ,n n 。
(4) 计算同一负荷下两次标尺读数('i n 和''i n )的平均值2/)('''i i i n n n +=。
(5) 用隔项逐差法计算n ∆。
5. 用钢卷尺单次测量标尺到平面镜距离L 和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b 。
6.进行数据分析和不确定度评定,报道杨氏模量值。
五.数据记录及处理1.多次测量钢丝直径d表1 用千分卡测量钢丝直径d (仪器误差取0.004mm )测量部位 上中下平均测量方向 纵向横向纵向横向纵向横向)(mm d0.718 0.714 0.705 0.704 0.705 0.711 0.710 )10()(242mm d d i -⨯-.64.16.25.36.25.010.278钢丝直径d 的:A 类不确定度)1(/)(1)()1(1)(22--=--=∑∑n d d nd d n n d u ii A =-⨯=-)16(/10278.040.0024 mmB 类不确定度0023.03004.03)(==∆=d u B mm总不确定度=+=)()()(22d u d u d u B A C 0.0034 mm相对不确定度 ===710.00034.0)()(dd u d u C r 0.48% 测量结果 ⎩⎨⎧=±=%48.0)()004.0710.0(d u mm d r2.单次测量:用米尺单次测量钢丝长l 、平面镜与标尺间距L ,用游标卡尺测量光杠杆长b(都取最小刻度作为仪器误差,单次测量把B 类不确定度当作总不确定度处理)表2 钢丝长l 、平面镜与标尺间距L 、测量光杠杆长b 单位:mm测读值 不确定度相对不确定度l 663.0 0.58 )(l u r 0.087%L 907.5 0.58 )(L u r 0.064% b 75.86 0.012 )(b u r 0.016%(计算方法:不确定度=仪器误差/3)3.光杠杆法测量钢丝微小伸长量砝码重量 (千克力)标尺读数)(cm隔项逐差值)(cm n i ∆加砝码时减砝码时平均2/)('''i i n n +2.00 '0n1.80 ''0n1.88 0n 1.84 4n 0n - 0.753.00 '1n2.01 ''1n2.09 1n2.05 4.00 '2n 2.20 ''2n 2.27 2n 2.23 5n 1n - 0.745.00 '3n 2.38 ''3n2.44 3n 2.41 6.00 '4n 2.56 ''4n 2.61 4n2.59 6n 2n - 0.74 7.00 '5n 2.78 ''5n2.79 5n 2.79 8.00 '6n 2.96 ''6n 2.98 6n 2.97 7n 3n - 0.739.00'7n3.13''7n3.157n3.14所以,在F=4.00千克力作用下,标尺的平均变化量Δn=0.74 cm Δn 的总不确定度 cm n u n u B C 0012.0)()(=∆≈∆Δn 相对不确定度 %16.0)(=∆n u r(注:为了简化不确定度评定,这里我们可以不严格地把B 类不确定度当作总不确定度,并且把标尺最小刻度的1/5当作“仪器误差”,即mm n u 01203020./.)(==∆)4.计算杨氏模量并进行不确定度评定由表1、表2、表3所得数据代入公式nb d FlLY ∆=28π可得钢丝的杨氏模量的: 近真值23233321074.01086.75]10710.0[14.3105.907100.6638.900.488-----⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=∆=n b d FlL Y π=1110123.2⨯(N/m 2) 相对不确定度 222222)]([)]([)]([)]([)]([)(n u b u d u L u l u Y u r r r r r r ∆++++=222220016.000016.0)0048.02(00064.000087.0++⨯++=%98.0=总不确定度 Y Y u Y u r C ⋅=)()(111021.0⨯=(N/m 2)测量结果⎩⎨⎧=⨯±=%98.0)(/10)21.012.2(211Y u m N Y r知识改变命运。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学
大学物理实验报告
院(系)
材料学院 专业 材料物理
班级 0705
成 绩
姓 名
童凌炜
学号
5
实验台号
实验时间 2008 年 11
月 11 日,第 12 周,星期 二 第 5-6 节
教师签字
实验名称
拉伸法测弹性模量
教师评语
实验目的与要求:
1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:
弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置)
, 米尺,
螺旋测微器
实验原理和内容: 1. 弹性模量
一粗细均匀的金属丝, 长度为 l , 截面积为 S , 一端固定后竖直悬挂,
下端挂以质量为 m 的
砝码; 则金属丝在外力
的作用下伸长
l 。
单位截面积上所受的作用力
F/S 称为应力, 单
F=mg
位长度的伸长量l/l
称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力 F/S 和 l/l 应变成正比, 即
F E l
Sl
其中的比例系数
F / S E
l / l
称为该材料的弹性模量。
性质: 弹性模量 E 与外力 F 、物体的长度 l 以及截面积 S 无关, 只决定于金属丝的材料。
实验中测定E,只需测得F、S、l 和l 即可,前三者可以用常用方法测得,而l 的数量级很小,故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理
光杠杆的工作原理如下:初始状态下,平面镜为竖直状态,此时标尺读数为 n0。
当金属丝被拉长 l 以后,带动平面镜旋转一角度α,到图中所示 M’位置;此时读得标尺读数为n1,得到刻度变化为n n1 n0。
n与l 呈正比关系,且根据小量忽略及图中的相似几何关系,可以得到
b
n ( b 称为光杠杆常数)
l
2B
将以上关系,和金属丝截面积计算公式代入弹性模量的计算公式,可以得到
E 8FlB D 2b n
(式中 B 既可以用米尺测量,也可以用望远镜的视距丝和标尺间接测量;后者的原理见附录。
)根据上式转换,当金属丝受力 F i时,对应标尺读数为n i,则有
8lB
n i D 2bE F
i n0
可见 F 和 n 成线性关系,测量多组数据后,线性回归得到其斜率,即可计算出弹性模量E。
. 用望远镜和标尺测量间距B:
已知量:分划板视距丝间距p,望远镜焦距 f 、转轴常数δ
用望远镜的一对视距丝读出标尺上的两个读数N1、N2,读数差为N。
在几何关系上忽略数量级差别大的量后,
可以得到
x f
N ,又在仪器关系上,有 x=2B,则 B
1 f
N ,(
f
100 )。
p 2p p
由上可以得到平面镜到标尺的距离B。
步骤与操作方法:
1.组装、调整实验仪器
调整平面镜的安放位置和俯仰角度以确保其能够正常工作。
调整望远镜的未知,使其光轴与平面镜的中心法线同高且使望远镜上方的照门、准星及平面镜位于同一直线上。
调节标尺,使其处于竖直位置。
通过望远镜的照门和准星直接观察平面镜,其中是否课件标尺的像来确定望远镜与平面镜的准
直关系,以保证实验能够顺利进行。
调节望远镜,使其能够看清十字叉丝和平面镜中所反射的标尺的像,同时注意消除视差。
2.测量
打开弹性模量拉伸仪,在金属丝上加载拉力(通过显示屏读数)
当拉力达到10.00kg时,记下望远镜中标尺的刻度值n1,然后以每次 1.00kg
增加拉力并记录数据,直到25.00kg止。
用钢尺单次测量钢丝上下夹头之间的距离得到钢丝长度l 。
用卡尺测量或者直接获得光杠杆常数b。
用望远镜的测距丝和标尺值,结合公式计算出尺镜距离B。
用螺旋测微器在不同位置测量钢丝直径8 次(注意螺旋测微器的零点修正)
数据记录与处理:
以下是实验中测得的原始数据:
1. 钢丝的长度L=401.2 mm
2.钢丝的直径
n 1 2 3 4 5 6 7 8 D(mm)
(其中螺旋测微器的零点漂移值Δ=-0.01mm 已包含)
3.由望远镜测得的差丝读数N1=4
4.8mm N2=63.8mm
4.光杠杆常数(实验室给出) b=(±) mm
5.钢丝加载拉力及对应的标尺刻度
n 1 2 3 4 5 6 7 8 m(kg)
n i (mm)
n 9 10 11 12 13 14 15 16 m(kg)
n i (mm)
未加载拉力时,标尺读数为n 0=53.4mm
结果与分析:
钢丝长度测量值的不确定度为i=0.5mm, 钢丝长度为 l= ±0.5 mm
n 1 2 3 4 5 6 7 8 D(mm)
平均值 = mm
D i -D avg=
( D i )^2=
Sum= n=8 v=7
Sd_avg= 平均值的实验标准差
t =
Ua=*Sd mm
Ub= mm
U D=
修约后的
D
= mm U
D 的最终值D= ±mm
尺镜距离 B
N1= mm
N2= mm
N =N2-N1= mm
i= mm
N的最终值 = ±mm
1 f
mm
B N =
2 p
B 的最终值B=± mm 光杠杆常数 b= ± mm
将加载拉力数据和相应的标尺读数转化为 F 以 N 为单位, n i以 m为单位,得到如下
n 1 2 3 4 5 6 7 8 F(N)
n i (m)
n 9 10 11 12 13 14 15 16 F(N)
n i (m)
对上表数据进行处理,使用MLS
X avg=
Y avg=
n 1 2 3 4 5 6 7 8 X i -X avg
x i ^2
x i *y i
n 9 10 11 12 13 14 15 16 X i -X avg
x i ^2
x i *y i
SUM((x i -x avg)*y i )=
SUM((x i -x avg)^2)=
B= *10 -5
A=
由以上数据可得:n i 9.25665 * 10 5 F i 0.0534 ,即k=*10 -5
F 与 ni 的关系图及其二乘法线性回归如下图所示:
结合以上有关数据,可以得到
E 8lB 8* 0.4012 * 0.95 1.9699968 * 1011 Pa
D 2 bk * (0.000796) 2 * 0.084 * (9.25665 * 10-5 )
下面计算 E 的相关不确定度:
相关量的值及其不确定度如下:
D UD
l Ul
b Ub
B UB
又已知U
E (U L)2 (U B)2 (2U D)2 (U b)2 E L B D b
代入相关已知数据,可以得到 E E 9
U =,修约后为U =3*10 得到 E 的最终结果为E= ± *10 11Pa
讨论、建议与质疑:
1. 光杠杆的测量原理为以下两个性质的组合:绝对光路可逆原理,几何上的相似三角形性质。
它
利用光传播的直线性、可逆性,使人眼通过望远镜观测到的标尺读数(长度)与钢丝的型变量,在几何上通过相似三角形的关系联系起来,另外通过平面镜的反射性质,又再次将型变量在之前的基础上放大至两倍,综上起到放大微小变化量的结果。
放大倍数与光杠杆常数b,尺镜距离 B 有关(可以认为与这两者比例B/b 成正比关系)。
当系统给定的光杠杆常数 b 固定时,在可读数的范围内增加尺镜距离B,可以增大放大倍率从而提高尺镜法测量微小变化量的灵敏
度。
2. 在实验中测量一个物理量,需要综合考虑测量的方便程度和该物理量所需的精密程度。
在平衡
这两者的基础上选择合适的实验仪器,因此在实验中,不同的物理量是用不同的测量仪器来测量的。
实验中测量误差最大的值为钢丝的长度,因为钢尺量程不够,是用两把钢尺重叠的方法测量,在读数时会造成钢尺位移;另外该物理量仅测量一次,都会造成产生较大的误差。
改进建议是是用较大量程的钢尺进行测量。
3. 本实验的操作过程并不复杂,但是将微观尺度的化学键作用同宏观的金属丝形变联系起来,体
现了物理学上用宏观体现微观性质的一种思想;另外实验中所是用的光杠杆尺镜测量法也提供了一种微小变量的较精确测量方法,值得学习和借鉴。
实验中的感受是,事先预习实验内容,操作时细心、稳当,都是保证实验快速成功的条件。
4. 对本实验的改进是,在加载力控制盒上加自动卸载的装置,比如在内部注射器的活塞杆上套
弹簧,当弹簧限位被解除时,便可以自动将拉力卸载(类似于千斤顶的卸载开关),这样能够方便地将拉力卸载到较小的符合值,而不用手动拉活塞杆。