1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答
《一元一次不等式》5
数学不等式应用题
数学不等式应用题1.某工厂生产的产品每件售价为80元,成本为50元。
设生产x件产品的利润不低于1000元,求x的取值范围。
2.一次知识竞赛共有20道题。
每一题答对得10分,答错或不答都扣5分。
小明得分要超过90分,他至少要答对多少道题?3.某班有若干学生住宿,若每间住4人,则有20人没宿舍住;若每间住8人,则有一间宿舍不空也不满,求宿舍间数。
4.用若干辆载重量为8吨的汽车运一批货物,若每辆车只装4吨,则剩下20吨货物;若每辆车装满8吨,则最后一辆车不满也不空。
问有多少辆车?5.小宏准备用50元钱买甲、乙两种饮料共10瓶。
已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料?6.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排20场比赛,设比赛组织者应邀请x个队参赛,求x的取值范围。
7.某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
现有甲、乙两种机器供选择,其中甲机器每台7万元,乙机器每台5万元。
经过预算,本次购买机器资金为38万元,设购买甲机器x台,求x的取值范围。
8.某种商品的进价为每件180元,零售价为每件220元,为了适应市场竞争,商店按零售价的九折降价并让利40元销售,仍可获利10%,设商品按原零售价销售x件,求x的取值范围。
9.一群女生住若干间宿舍,每间住4人,剩19人无房住;每间住6人,有一间宿舍住不满,求可能有多少间宿舍?10.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩。
已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,要使总收入不低于15.6万元,则最多安排多少人种甲种蔬菜?11.某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售。
设至少销售x辆自行车才能使利润超过5000元,求x的取值范围。
12.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
(完整版)不等式练习及答案汇总
一.选择题(共2小题)1.若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a2.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是.4.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).6.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B 种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.8.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?9.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.10.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?12.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?13.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案与试题解析一.选择题(共2小题)1.(2010春•邹城市校级期末)若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.2.(2013春•蚌埠期中)若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x ≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.4.(2016春•谷城县期末)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.6.(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.7.(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.8.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【分析】(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;(3)分别计算出相应方案,比较即可.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.9.(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.10.(2015•淄博模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.11.(2012•绥化)在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?【分析】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【解答】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所.则,解得由①的a≤3,由②得a≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.12.(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.13.(2016•宿州二模)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a的值为8,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)=12800,解得:a=8,故采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.。
人教版初一数学下册1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答
学生独立完成.
通过练习巩固本节课所学的解决实际问题的过程和方法.
布置作业
巩固落实本节课所学知识,了解学生的掌握情况,调整教学安排.
课题
9.2.2实际问题与一元一次不等式
教学目标
1.能将实际问题转化为数学问题,分类讨论数量关系建立不等式进行求解.
2.经历将实际问题转化为数学问题进行讨论求解,再将数学问题转化为实际问题进行解答的过程,体会建模思想和分类讨论思想的应用,积累利用一元一次不等式解决问题的经验.
3.通过利用一元一次不等式解决实际问题,强化使用数学解决实际问题的意识,从而乐于接触、观察、思考生活中的数学信息积累学习经验.
从学生已有的经验出发,将文字信息翻译为代数式,培养学生阅读的方法.通过回答问题,提高清晰流畅地表达自己的想法的能力.
分析问题
思考:
(1)选甲还是乙的决定性因素是哪个?
(2)设哪个量为未知数x?
(3)x有哪些关键值?
逐句阅读,画出重点词,并试着将关键句整理为图、式、表格等.
设购物原价累计为x元
教师根据学生的回答进行必要的总结、板书.引导学生采用表格等方式条例清晰地整理信息.
实际问题
例题:甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物划算?
学生先自己逐句阅读,并用铅笔画出自己认为重点的词句.再请学生逐句分析,说明自己得到的结论.
湘教版数学八年级上册第4章4.3一元一次不等式的应用同步练习题(含答案)
第4章4.3一元一次不等式的应用同步练习题(含答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.x与5的和的一半是非负数用不等式可以表示为()A. B. C. D.2.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是( )A. -3<b<-2B. -3<b≤-2C. -3≤b≤-2D. -3≤b<-23.某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至少要答对()道题.A. 12B. 13C. 14D. 154.如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A. 112B. 121C. 134D. 1435.两条纸带,较长的一条长23 cm,较短的一条长15 cm.把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是( )A. 6 cmB. 7 cmC. 8 cmD. 9 cm6.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()A. 3支笔B. 4支笔C. 5支笔D. 6支笔7.某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A. 6折B. 7折C. 8折D. 9折8.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本()本.A. 7B. 6C. 5D. 49.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A. 11道B. 12道C. 13道D. 14道10.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤二、填空题(共8题;共24分)11.某药品说明书上标明药品保存的温度是(10±4) ℃,设该药品合适的保存温度为t ℃,则t的取值范围是________.12.一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,甲同学答对25道题,答错5道题,则甲同学得________分;若得分不低于60分者获奖,则获奖者至少应答对________道题.13.某校男子100m跑的记录是12s,在今年的校田径运动会上,肖华的100m跑成绩是ts,打破了该校男子100m跑的记录。
9.2.2 一元一次不等式的应用 分层作业(解析版)
人教版初中数学七年级下册9.2.2 一元一次不等式的应用同步练习夯实基础篇一、单选题:1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小澜得分要超过90分,他至少要答对的题数为( )A.12道B.13道C.14道D.15道2.某种出租车的收费标准是:起步价5元(行驶距离不超过3km,只需付5元车费);超过3km以后,每增加1km,加收1.2元(不足1km按1km计).小明乘这种出租车从甲地到乙地共支付车费11元.设从甲地到乙地的车程为x km,则x的最大值是( )A.11B.8C.7D.5【答案】B【分析】根据题意和题目中的数据,可以列出相应的不等式,然后求解即可.【详解】解:由题意可得,5+(x-3)×1.2≤11,解得x≤8,∴x 的最大值是8,故选:B .【点睛】本题考查一元一次不等式的应用,解答本题的关键是明确题意,列出相应的不等式.3.某品牌洗地机的进价为2000元,商店以2400元的价格出售.元旦期间,商店为让利于顾客,计划以利润率不低于10%的价格降价出售,则该洗地机最多可降价多少元?若设洗地机可降价x 元,则可列不等式为( )A .2400200010%2000x --³B .2400200010%2000x --£C .2400200010%2400x --³D .2400200010%2400x --£4.某种笔记本原售价是每本7元,凡一次购买3本或以上可享受优惠价格,第1种:3本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本是( )A .7本B .8本C .9本D .10本【答案】D【分析】设购买x 本笔记本,根据题意得出第1种所需费用:()37370.7x ´+-´´,第2种所需费用:0.87x ´,利用第1种比第2种更优惠,列出不等式求解即可.【详解】解:设购买x 本笔记本,由题意可知,要使第1种比第2种更优惠,则:()37370.70.87x x ´+-´´<´,解得:9x >,∴最少购买10本.故选D .【点睛】本题主要考查的是一元一次不等式的实际应用,正确理解题意,列出一元一次不等式是解题的关键.5.云南保山吾悦广场,位于保山市隆阳区永昌路与拱北路交汇处,这个广场属于全国连锁的百货广场,这里入驻了很多品牌商品,这些商品种类多样,包含了人们衣食往行,方便了大家的生活.某种商品进价为800元,标价1200元,由于疫情的影响,商店准备打折促销,但要保证利润率不低于20%,则至多可以打( )A .6折B .7折C .8折D .9折6.某图书馆阅览室出售会员卡,每张会员卡60元,只限本人使用,凭会员卡购入场券每张1元,不凭会员卡购入场券每张3元,在什么情况下,购会员卡比不购会员卡更合算( )A .购票少于30次B .购票多于30次C .购票少于20次D .购票多于20次【答案】B【分析】设购票x 次,用含x 的代数式表示出两种情况下的费用,列出不等式,即可求解.【详解】解:设购票x 次,则凭会员卡购入场券需()60x +元,不凭会员卡购入场券需3x 元,603x x +<,解得30x >,即购票多于30次时,购会员卡比不购会员卡更合算.故选B .【点睛】本题考查一元一次不等式的实际应用,解题的关键是根据题意列出不等式.7.斑马线前“车让人”,反映了城市的文明程度,但行人一般都会在红灯亮起前通过马路,某人行横道全长24米,小明以1.2m/s 的速度过该人行横道,行至13处时,9秒倒计时灯亮了,小明要在红灯亮起前通过马路,他的速度至少要提高到原来的()A.1.1倍B.1.4倍C.1.5倍D.1.6倍二、填空题:8.今年植树节时,某同学栽种了一棵树,此树的树围(树干的周长)为10cm,已知以后此树树围平均每年增长3cm,若生长x年后此树树围超过90cm,则x满足的不等式为___________.【答案】10390+>x【分析】直接利用生长年数310´+大于90,进而得出答案.【详解】解:根据题意可得:10390+>.x故答案为:10390+>.x【点睛】本题主要考查了由实际问题抽象出一元一次不等式,解题的关键是正确表示树围增加的长度.9.如图1,一个容量为600cm3的杯子中装有300cm3的水,将四颗相同的玻璃球放入这个杯子中,结果水没有满,如图2,设每颗玻璃球的体积为x cm3,根据题意可列不等式为______.x+<【答案】4300600【分析】设每颗玻璃球的体积为x cm3,根据不等关系式:4颗玻璃球的体积+水的体积小于杯子的容积,列出不等式即可.【详解】解:设每颗玻璃球的体积为x cm 3,根据题意得:4300600x +<.故答案为:4300600x +<.【点睛】本题主要考查了列不等式,根据题意找出题目中的不等关系,是解题的关键.10.三个连续奇数的和不大于27,则有________组这样的正奇数.【答案】4【分析】设三个数中最小的数为x ,则另外两个数分别为(2)x +,(4)x +,根据三个数的和不大于27,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再结合x 为正奇数,即可得出这样的正奇数一共有4组.【详解】解:设三个数中最小的数为x ,则另外两个数分别为(2)x +,(4)x +,依题意得:2427x x x ++++…,解得:7x …,又x Q 为正奇数,x \可以取1,3,5,7,\这样的正奇数一共有4组.故答案为:4.【点睛】本题考查了一元一次不等式的应用,解题的关键是根据各数量之间的关系,正确列出一元一次不等式.11.某业主贷款22000元购进一台机器,生产某种产品.已知产品的成本每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每月能生产、销售2000个产品,问至少 _____个月后能赚回这台机器的贷款.【答案】5【分析】设x 个月后能赚回这台机器的贷款,利用总利润=每个的利润×每月的产量×时间,结合总利润不少于这台机器的贷款,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设x 个月后能赚回这台机器的贷款,依题意得:(8-5-8×10%)×2000x ≥22000,解得:x ≥5,∴至少5个月后能赚回这台机器的贷款.故答案为:5.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.12.某种出租车的收费标准是起步价8元(即距离不超过3km,都付8元车费),超过3km以后,每增加1km,加收1.2元(不足1km按1km计),若某人乘这种出租车从甲地到乙地经过的路程是x km,共付车费14元,那么x的最大值是________.【答案】8【分析】由车费=起步价+1.2×超出3km路程结合共付车费14元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.【详解】解:依题意,得:8+1.2(x-3)≤14,解得:x≤8.∴x的最大值是8,故答案为8.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.北京2022冬(残)奥会吉祥物“冰墩墩”和“雪容融”受到人们的普遍喜爱,某电商以200元/件的价格购进一批“冰墩墩”和“雪容融”玩具套装礼品,标价320元/件出售,“双十一”搞打折促销,为了保证利润率不低于20%,则每件套装礼品最多可打______折.14.一张试卷共20道题,做对一题得5分,做错或不做一题扣3分,小辛做了全部试题,若要成绩及格(注:60分及以上成绩为及格),那么小辛至少要做对______道题.【答案】15【分析】设小辛做对x 道题,根据共有20道选择题,对于每道题答对了得5分,做错或不做扣3分,小辛若想考试成绩及格,可列不等式求解.【详解】解:设小辛要做对x 道题,依题意有()532060x x --³,解得:15x ³.故小辛至少要做对15道题.故答案为:15.【点睛】本题考查一元一次不等式的应用,设出做对的,剩下的就是不做或做错的,根据考试成绩及格(60分及以上)这个不等量关系可列出不等式求解.三、解答题:15.某俱乐部举行篮球联赛,组委会制定的赛制规则是:每个队都要比赛12场,每场比赛只分胜、负,胜1场积2分,负1场积1分,按积分高低确定出线名额.目前雄鹰队的战绩是4胜2负,蓝狮队的战绩是4胜5负.根据组委会赛制规则可预测,这两个队完成所有比赛后,积分高的队伍可以出线,问雄鹰队在剩下的比赛中至少需胜多少场可确保出线?【答案】雄鹰队在剩下的比赛中至少需胜4场可确保出线.【分析】设雄鹰队在剩下的比赛中至少需胜x 场可确保出线,则输掉的比赛有()6x -场,由题意可建立不等式()2610>19x x +-+,再解不等式取其最小整数解即可.【详解】解:由目前雄鹰队的战绩是4胜2负,蓝狮队的战绩是4胜5负.若蓝狮队剩下的3场比赛都获得了胜利,则7胜5负,得27+51=19´´(分),雄鹰队的战绩是4胜2负,已获得422110´+´=(分),设雄鹰队在剩下的比赛中至少需胜x 场可确保出线,则输掉的比赛有()6x -场,则()2610>19x x +-+,解得:>3x ,∵x 为正整数,∴x 的最小值为:4,答:雄鹰队在剩下的比赛中至少需胜4场可确保出线.【点睛】本题考查的是一元一次不等式的应用,不等式的整数解的应用,理解题意,确定不等关系是解本题的关键.16.美美服装厂接到订单,需要在六月份生产某种款式的连衣裙2000条,已知每名工人每天能生产10条,服装厂安排5名工人加工10天后,又从兄弟厂借调若干工人一起参与加工,这才在规定期限内超额完成任务,问至少需借调多少名工人?【答案】至少需借调3名工人【分析】根据题意,设借调x 名工人,可得:5×10×10+(30-10)×10(x +5)≥2000,结合一元一次不等式的性质计算,即可得到答案.【详解】设借调x 名工人,根据题意得:()()5101030101052000x ´´+-´+³,解得: 2.5x ³,x Q 为整数,x \最小取3,∴至少需借调3名工人.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,列出一元一次不等式.17.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择,经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元,(1)求甲、乙两型机器每台各多少万元?(2)如果该工厂买机器的预算资金不相过34万元,那么你认为该工厂至多购买甲型机器多少台?【答案】(1)甲机器每台7万元,乙机器每台5万元(2)该工厂至多购买甲型机器2台【分析】(1)设甲机器每台x 万元,乙机器每台y 万元,根据题意,列出二元一次方程组,解方程组即可求解;(2)设该工厂购买甲型机器m 台,则购买乙型机器()6m -台,根据题意,列出一元一次不等式,解不等式即可求解.【详解】(1)解:设甲机器每台x 万元,乙机器每台y 万元,根据题意得:32312x y x y +=ìí-=î,解得:75x y =ìí=î,答:甲机器每台7万元,乙机器每台5万元.(2)解:设该工厂购买甲型机器m 台,则购买乙型机器()6m -台,根据题意得:()75634m m +-£,解得:2m £,答:该工厂至多购买甲型机器2台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,根据题意列出方程组与不等式是解题的关键.能力提升篇一、单选题:1.小茗要从石室联中到春熙路IFS 国际金融中心,两地相距1.7千米,已知他步行的平均速度为90米/分钟,跑步的平均速度为210米/分钟,若他要在不超过12分钟的时间内到达,那么他至少需要跑步多少分钟?设他要跑步的时间为x 分钟,则列出的不等式为( )A .()2109012 1.7x x +-³B .()2109012 1.7x x +-£C .()21090121700x x +-³D .()21090121700x x +-£【答案】C【分析】根据跑步的路程加上步行的路程大于等于两地距离列不等式即可.【详解】解:根据题意列不等式为:()21090121700x x +-³,故选:C .【点睛】本题考查了由实际问题抽象出一元一次不等式,找出题目中的数量关系是解此题的关键.2.用长为 40 m 的铁丝围成如图所示的图形,一边靠墙,墙的长度 30AC =m ,要使靠墙的一边长不小于 25 m ,那么与墙垂直的一边长 x (m )的取值范围为( )A .05x ££B .103x ³C .1003x ££D .1053x ££3.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10B.9C.8D.7【答案】B【分析】根据15名工人前期的工作量+12名工人后期的工作量<2160,列出不等式进行解答即可.【详解】设原计划m天完成,开工x天后3人外出培训,则有15am=2160,得到am=144,由题意得15ax+12(a+2)(m-x)<2160,即:ax+4am+8m-8x<720,∵am=144,∴将其代入得:ax+576+8m-8x<720,即:ax+8m-8x<144,∴ax+8m-8x<am,∴8(m-x)<a(m-x),∵m>x,∴m-x>0,∴a>8,∴a至少为9,故选B.【点睛】本题考查了一元一次不等式的应用,有一定的难度,解题的关键在于灵活掌握设而不求的解题技巧.二、填空题:4.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过300元后,超出的部分按90%收费;在乙商场累计购物超过200元后,超出的部分按95%收费.设顾客预计累计购物x 元(300x >).若顾客到甲商场购物花费少,则x 的取值范围是______.【答案】400x >【分析】分别用含x 的代数式表示出两个商场购物的花费,然后结合顾客到甲商场的花费少列出不等式求解即可【详解】解:由题意得:()()30090%30020095%200x x +×-<+×-,∴3000.92702000.95190x x +-<+-,∴400x >,故答案为:400x >.【点睛】本题主要考查了一元一次不等式的应用,正确理解题意列出不等式求解是解题的关键.5.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多降___________元.【答案】36【分析】设降x 元,列出不等式解不等式求出x 的范围,从而得到x 的最大值即可.【详解】解:设降x 元,根据题意得12080805%x-³´﹣,解得36x £.所以最多可降36元.故答案为:36.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.6.一艘轮船从某江上游的A 地匀速驶到下游的B 地用了10小时,从B 地匀速返回A 地用了不到12小时,这段江水流速为3km/h ,设轮船在静水里的往返速度为hm/h v ,且此速度一直保持不变,请列出符合题意的一元一次不等式_______.【答案】10(v +3)≤12(v -3)【分析】根据顺水航行10小时的路程≤12小时逆水航行的路程即可列出不等式.【详解】解:∵这段江水流速为3km/h ,设轮船在静水里的往返速度为hm/h v ,且此速度一直保持不变,∴船在顺水中的速度为(v +3)km/h ,船在逆水中的速度为(v -3)km/h ,∵轮船从某江上游的A 地匀速驶到下游的B 地用了10小时,从B 地匀速返回A 地用了不到12小时,∴可列方程10(v +3)≤12(v -3),故答案为:10(v +3)≤12(v -3).【点睛】本题考查了一元一次不等式,能根据题目中的条件找到不等关系是列不等式的关键.三、解答题:7.某网店在“618购物节”前准备从厂家选购相同数量的A 、B 两种商品,已知B 种商品每件进价比A 种商品每件进价少20元,购进A 种商品需要1200元,购进B 种商品需要1000元.(1)求A 、B 两种商品每件的进价分别是多少元;(2)若A 种商品的售价为每件145元,B 种商品的售价为每件120元,该网店准备购进A 、B 两种商品共40件,且这两种商品的全部售出后总利润不少于920元,则B 种商品最多可购进多少件?【答案】(1)甲、乙两种商品每件的进价分别是120元、100元;(2)乙种商品最多可购进16件.【分析】(1)根据购进B 种商品比购进A 种商品一共少多少元,可以得出B 种商品多少件,总钱数除件数,即可得到结果;(2)设该网店购进乙种商品m 件,则购进甲种商品(40)m -件,根据题意列出不等式,求出解集即可得到结果.【详解】(1)解:根据题意,购进B 种商品比购进A 种商品一共少12001000200-=元,B 种商品每件进价比A 种商品每件进价少20元,所以2002010¸=(件),B 商品的进价:100010100¸=(元);A 商品的进价:10020120+=(元);答:甲、乙两种商品每件的进价分别是120元、100元;(2)解:设该网店购进乙种商品m 件,则购进甲种商品(40)m -件,列不等式:(145120)(40)(120100)920m m --+-³,解得:16m £,答:乙种商品最多可购进16件.【点睛】本题考查了一元一次不等式的应用,掌握一元一次不等式的应用是关键.8.甲、乙两家商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超过50元的部分按95%收费.某顾客购买x 元的该商品.(1)当050x <£时,请直接回答该顾客在甲、乙两家商场购物花费的关系;(2)当50100x <£时,到哪家商场购物花费少?少花多少钱?(用含x 的代数式表示)(3)当100x >时,到哪家商场购物花费少?【答案】(1)当累计购物不超过50元时,在甲乙两商场的花费一样(2)到乙商场购买,少花()0.05 2.5x -元(3)累计消费大于100元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元时,在甲乙商场花费一样【分析】设累计购物x 元,分别表示出在甲乙两商场的花费,列不等式,分情况讨论,求出最合适的消费方案.【详解】(1)当累计购物不超过50元时,在甲乙两商场的花费一样;(2)当累计消费超过50元而不超过100元时,在乙商场享受优惠,在甲商场不享受优惠,因此应该到乙商场购买;少花()()500.95500.05 2.5[]x x x -+-=-元钱.(3)当累计消费超过100元时,设累计消费x 元(0)10x >,甲商场消费为:()1001000.9x +-´元,在乙商场消费为:()50500.95x +-´元,当()()1001000.950500.95x x +-´>+-´,解得:150x <,当()()1001000.950500.95x x +-´<+-´,解得:150x >,当()()1001000.950500.95x x +-´=+-´,解得:150x =,综上所述,当累计消费大于100元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元时,在甲乙商场花费一样.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,将现实生活中的事件与数学思想联系起来,列出不等式关系式即可求解.注意此题分类讨论的数学思想.。
七下第9章 不等式与不等式组2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)
人教新版七年级下册《第9章不等式与不等式组》2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)试题数:25,总分:01.(单选题,0分)下列式子:① 3>0; ② 4x+5>0; ③ x <3; ④ x 2+x ; ⑤ x≠-4; ⑥ x+2>x+1,其中不等式有( )个A.3B.4C.5D.62.(单选题,0分)下列说法不一定成立的是( )A.若a >b ,则a+c >b+cB.若a+c >b+c ,则a >bC.若a >b ,则ac 2>bc 2D.若ac 2>bc 2,则a >b3.(单选题,0分)若关于x 的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是( )A.x≤2B.x >1C.1≤x <2D.1<x≤2 4.(单选题,0分)已知关于x 的不等式组 {x ≤2x >a有解,则a 的取值不可能是( ) A.0B.1C.2D.-25.(单选题,0分)已知(m-4)x |m-3|+2>6是关于x 的一元一次不等式,则m 的值为( )B.2C.4或2D.不确定6.(单选题,0分)若关于x,y的方程组{2x+y=4x+2y=−3m+2的解满足x-y>-32,则m的最小整数解为()A.-3B.-2C.-1D.07.(单选题,0分)关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-28.(单选题,0分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20-x.根据题意得()A.10x-5(20-x)≥120B.10x-5(20-x)≤120C.10x-5(20-x)>120D.10x-5(20-x)<1209.(单选题,0分)已知关于x的不等式组{2a+3x>03a−2x≥0恰有3个整数解,则a的取值范围是()A. 23≤a≤32B. 43≤a≤32C. 43<a≤32D. 43≤a<3210.(单选题,0分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()B.4种C.3种D.2种11.(填空题,0分)不等式(m-2)x >2-m 的解集为x <-1,则m 的取值范围是___ .12.(填空题,0分)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是 ___ .13.(填空题,0分)若不等式3x-m≤0的正整数解是1,2,3,则m 的取值范围是___ .14.(填空题,0分)若关于x的不等式组 {x+223≥2−x x <m 的所有整数解的和是-9,则m 的取值范围是 ___ .15.(填空题,0分)我们定义 |a b c d| =ad-bc ,例如 |2345| =2×5-3×4=10-12=-2,若x ,y 均为整数,且满足1< |1x y 4| <3,则x+y 的值是 ___ . 16.(问答题,0分)解不等式: 2x−13 ≤ 3x+24 -1,并把解集表示在数轴上.17.(问答题,0分)解不等式 4x−13 -x >1,并在数轴上表示解集.18.(问答题,0分)解不等式组 {x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.19.(问答题,0分)解不等式组: {4x >2x −6x−13≤x+19 ,并把解集在数轴上表示出来.20.(问答题,0分)已知关于x 、y 的方程组 {x −y =32x +y =6a的解满足不等式x+y <3,求实数a 的取值范围.21.(问答题,0分)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A 、B 两种型号的净水器,下表是近两周的销售情况:(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.(问答题,0分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?23.(问答题,0分)已知关于x 、y 的方程组 {3x −y =2a −5x +2y =3a +3的解都为正数. (1)求a 的取值范围;(2)已知a+b=4,且b >0,z=2a-3b ,求z 的取值范围.24.(问答题,0分)(经典题)已知关于x 的不等式组 {x −a ≥03−2x >−1的整数解共有5个,求a 的取值范围.25.(问答题,0分)已知不等式组 {2x −a <1x −2b >3 的解集为-1<x <1,求(a+1)(b-1)的值.人教新版七年级下册《第9章不等式与不等式组》2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)参考答案与试题解析试题数:25,总分:01.(单选题,0分)下列式子:① 3>0;② 4x+5>0;③ x<3;④ x2+x;⑤ x≠-4;⑥ x+2>x+1,其中不等式有()个A.3B.4C.5D.6【正确答案】:C【解析】:根据不等式定义可得答案.【解答】:解:① 3>0;② 4x+5>0;③ x<3;⑤ x≠-4;⑥ x+2>x+1是不等式,共5个,故选:C.【点评】:此题主要考查了不等式定义,关键是掌握用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.2.(单选题,0分)下列说法不一定成立的是()A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【正确答案】:C【解析】:根据不等式的性质进行判断.【解答】:解:A 、在不等式a >b 的两边同时加上c ,不等式仍成立,即a+c >b+c ,不符合题意;B 、在不等式a+c >b+c 的两边同时减去c ,不等式仍成立,即a >b ,不符合题意;C 、当c=0时,若a >b ,则不等式ac 2>bc 2不成立,符合题意;D 、在不等式ac 2>bc 2的两边同时除以不为0的c 2,该不等式仍成立,即a >b ,不符合题意. 故选:C .【点评】:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(单选题,0分)若关于x 的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是( )A.x≤2B.x >1C.1≤x <2D.1<x≤2【正确答案】:D 【解析】:根据数轴表示出解集即可.【解答】:解:根据题意得:不等式组的解集为1<x≤2.故选:D .【点评】:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(单选题,0分)已知关于x 的不等式组 {x ≤2x >a有解,则a 的取值不可能是( ) A.0B.1D.-2【正确答案】:C【解析】:根据关于x 的不等式组 {x ≤2x >a有解,可得:a <2,再根据有理数大小比较的方法,判断出a 的取值不可能是多少即可.【解答】:解:∵关于x 的不等式组 {x ≤2x >a有解, ∴a <2,∵0<2,1<2,-2<2,∴a 的取值可能是0、1或-2,不可能是2.故选:C .【点评】:此题主要考查了不等式的解集问题,要熟练掌握,解答此题的关键是要明确:不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内.5.(单选题,0分)已知(m-4)x |m-3|+2>6是关于x 的一元一次不等式,则m 的值为( )A.4B.2C.4或2D.不确定【正确答案】:B【解析】:根据一元一次不等式的定义,|m-3|=1,m-4≠0,分别进行求解即可.【解答】:解:根据题意|m-3|=1,m-4≠0,所以m-3=±1,m≠4,解得m=2.故选:B .【点评】:本题考查一元一次不等式的定义和绝对值.解题的关键是明确一元一次不等式的定义中的未知数的最高次数为1次,还要注意未知数的系数不能是0.6.(单选题,0分)若关于x ,y 的方程组 {2x +y =4x +2y =−3m +2 的解满足x-y >- 32 ,则m 的最小整数解为( )B.-2C.-1D.0【正确答案】:C【解析】:方程组中的两个方程相减得出x-y=3m+2,根据已知得出不等式,求出不等式的解集即可.【解答】:解:{2x+y=4①x+2y=−3m+2②,① - ② 得:x-y=3m+2,∵关于x,y的方程组{2x+y=4x+2y=−3m+2的解满足x-y>-32,∴3m+2>- 32,解得:m>- 76,∴m的最小整数解为-1,故选:C.【点评】:本题考查了解一元一次不等式和解二元一次方程组、二元一次方程组的解、一元一次不等式的整数解等知识点,能得出关于m的不等式是解此题的关键.7.(单选题,0分)关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-2【正确答案】:D【解析】:表示出已知不等式的解集,根据负整数解只有-1,-2,确定出b的范围即可.【解答】:解:不等式x-b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴-3≤b<-2故选:D.【点评】:此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.8.(单选题,0分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20-x.根据题意得()A.10x-5(20-x)≥120B.10x-5(20-x)≤120C.10x-5(20-x)>120D.10x-5(20-x)<120【正确答案】:C【解析】:小明答对题的得分:10x;小明答错题的得分:-5(20-x).不等关系:小明得分要超过120分.【解答】:解:根据题意,得10x-5(20-x)>120.故选:C.【点评】:此题要特别注意:答错或不答都扣5分.至少即大于或等于.9.(单选题,0分)已知关于x的不等式组{2a+3x>03a−2x≥0恰有3个整数解,则a的取值范围是()A. 23≤a≤32B. 43≤a≤32C. 43<a≤32D. 43≤a<32【正确答案】:B【解析】:先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】:解:由于不等式组有解,则−2a3<x≤3a2,必定有整数解0,∵ |3a2|>|−2a3|,∴三个整数解不可能是-2,-1,0.若三个整数解为-1,0,1,则不等式组 {−2≤−2a3<−11≤3a2<2 无解; 若三个整数解为0,1,2,则 {2≤32a <3−1≤−23a <0 ; 解得 43≤a ≤32. 故选:B .【点评】:解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.(单选题,0分)小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A.5种 B.4种 C.3种 D.2种【正确答案】:C【解析】:设小明购买了A 种玩具x 件,则购买的B 种玩具为 10−x2件,根据题意列出不等式组进行解答便可.【解答】:解:设小明购买了A 种玩具x 件,则购买的B 种玩具为 10−x2件,根据题意得, {x ≥110−x2≥110−x2<x , 解得,3 13 <x≤8, ∵x 为整数,10−x2 也为整数, ∴x=4或6或8, ∴有3种购买方案. 故选:C .【点评】:本题主要考查了一元一次不等式组的应用题,正确表示出购买B种玩具的数量和正确列出不等式组是解决本题的关键所在.11.(填空题,0分)不等式(m-2)x>2-m的解集为x<-1,则m的取值范围是___ .【正确答案】:[1]m<2【解析】:根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.【解答】:解:不等式(m-2)x>2-m的解集为x<-1,∴m-2<0,m<2,故答案为:m<2.【点评】:本题考查了不等式的解集,由不等号方向改变,得出未知数的系数小于0.12.(填空题,0分)关于x的不等式3x-a≤0,只有两个正整数解,则a的取值范围是 ___ .【正确答案】:[1]6≤a<9【解析】:解不等式得x≤ a3,由于只有两个正整数解,即1,2,故可判断a3的取值范围,求出a的取值范围.【解答】:解:原不等式解得x≤ a3,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤ a3<3,解得6≤a<9.故答案为:6≤a<9.【点评】:本题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.13.(填空题,0分)若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是___ .【正确答案】:[1]9≤m<12【解析】:先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】:解:不等式3x-m≤0的解集是x≤ m3 , ∵正整数解是1,2,3,∴m 的取值范围是3≤ m 3<4即9≤m <12. 故答案为:9≤m <12.【点评】:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 14.(填空题,0分)若关于x 的不等式组 {x+223≥2−xx <m的所有整数解的和是-9,则m 的取值范围是 ___ .【正确答案】:[1]-2<m≤-1或1<m≤2【解析】:先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【解答】:解: {x+223≥2−x①x <m②∵解不等式 ① 得:x≥-4,又∵不等式组的所有整数解得和为-9,∴-4+(-3)+(-2)=-9或(-4)+(-3)+(-2)+(-1)+0+1=-9, ∴-2<m≤-1或1<m≤2,故答案为:-2<m≤-1或1<m≤2.【点评】:本题考查了解一元一次不等式组,不等式组的整数解等知识点,能得出关于m 的不等式组是解此题的关键.15.(填空题,0分)我们定义 |a bc d| =ad-bc ,例如 |2345| =2×5-3×4=10-12=-2,若x ,y 均为整数,且满足1< |1xy 4| <3,则x+y 的值是 ___ .【正确答案】:[1]±3【解析】:先根据题意列出不等式,根据x 的取值范围及x 为整数求出x 的值,再把x 的值代入求出y 的值即可.【解答】:解:由题意得,1<1×4-xy <3,即1<4-xy <3, ∴ {xy <3xy >1,∵x、y均为整数,∴xy为整数,∴xy=2,∴x=±1时,y=±2;x=±2时,y=±1;∴x+y=2+1=3或x+y=-2-1=-3.故答案为:±3【点评】:此题比较简单,解答此题的关键是根据题意列出不等式,根据x,y均为整数求出x、y的值即可.16.(问答题,0分)解不等式:2x−13≤ 3x+24-1,并把解集表示在数轴上.【正确答案】:【解析】:先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】:解:去分母得,4(2x-1)≤3(3x+2)-12,去括号得,8x-4≤9x+6-12,移项得,8x-9x≤6-12+4,合并同类项得,-x≤-2,把x的系数化为1得,x≥2.在数轴上表示为:.【点评】:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.17.(问答题,0分)解不等式4x−13-x>1,并在数轴上表示解集.【正确答案】:【解析】:根据解一元一次不等式基本步骤:去分母、移项、合并同类项可得.【解答】:解:4x-1-3x>3,4x-3x>3+1,x>4,将不等式的解集表示在数轴上如下:【点评】:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.(问答题,0分)解不等式组{x−3(x−2)≥42x−15<x+12,并将它的解集在数轴上表示出来.【正确答案】:【解析】:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.【解答】:解:由① 得:-2x≥-2,即x≤1,由② 得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【点评】:本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.19.(问答题,0分)解不等式组: {4x >2x −6x−13≤x+19 ,并把解集在数轴上表示出来.【正确答案】:【解析】:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】:解: {4x >2x −6①x−13≤x+19②∵解不等式 ① 得:x >-3, 解不等式 ② 得:x≤2, ∴不等式组的解集为-3<x≤2,在数轴上表示不等式组的解集为:.【点评】:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.20.(问答题,0分)已知关于x 、y 的方程组 {x −y =32x +y =6a 的解满足不等式x+y <3,求实数a 的取值范围.【正确答案】:【解析】:先解方程组,求得x 、y 的值,再根据x+y <3,解不等式即可.【解答】:解: {x −y =3①2x +y =6a②,① + ② 得,3x=6a+3, 解得x=2a+1,将x=2a+1代入 ① 得,y=2a-2, ∵x+y <3, ∴2a+1+2a -2<3, 即4a <4, a <1.【点评】:本题是一元一次不等式和二元一次方程组的综合题,是中档题,难度适中. 21.(问答题,0分)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A 、B 两种型号的净水器,下表是近两周的销售情况:(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【正确答案】:【解析】:(1)设A 、B 两种型号净水器的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的净水器收入18000元,4台A 型号10台B 型号的净水器收入31000元,列方程组求解;(2)设采购A 种型号净水器a 台,则采购B 种型号净水器(30-a )台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a 的值,符合(2)的条件,可知能实现目标.【解答】:解:(1)设A 、B 两种净水器的销售单价分别为x 元、y 元, 依题意得: {3x +5y =180004x +10y =31000,解得:{x=2500y=2100.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30-a)台.依题意得:2000a+1700(30-a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500-2000)a+(2100-1700)(30-a)=12800,解得:a=8,答:采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.【点评】:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.22.(问答题,0分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【正确答案】:【解析】:(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:① 1辆甲种客车和3辆乙种客车共需租金1240元,② 3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【解答】:解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有{x+3y=12403x+2y=1760,解得 {x =400y =280.故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元; (2)方法1:租用甲种客车6辆,租用乙客车2辆是最节省的租车费用, 400×6+280×2 =2400+560 =2960(元).方法2:设租用甲种客车x 辆,依题意有 45x+30(8-x )≥330, 解得x≥6,租用甲种客车6辆,租用乙客车2辆的租车费用为: 400×6+280×2 =2400+560 =2960(元);租用甲种客车7辆,租用乙客车1辆的租车费用为: 400×7+280 =2800+280 =3080(元); 2960<3080,故最节省的租车费用是2960元.【点评】:本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.23.(问答题,0分)已知关于x 、y 的方程组 {3x −y =2a −5x +2y =3a +3 的解都为正数.(1)求a 的取值范围;(2)已知a+b=4,且b >0,z=2a-3b ,求z 的取值范围.【正确答案】:【解析】:(1)根据二元一次方程组的解法即可求出x 与y 的表达式,从而可求出a 的范围. (2)根据(1)问可求出b 的范围,将z 化为8-5b ,从而可求出z 的范围.【解答】:解:(1)∵ {3x −y =2a −5x +2y =3a +3∴ {x =a −1y =a +2由于该方程组的解都是正数, ∴ {a −1>0a +2>0 ∴a >1(2)∵a+b=4, ∴a=4-b , ∴ {b >04−b >1 解得:0<b <3, ∴z=2(4-b )-3b=8-5b ∴-7<8-5b <8, ∴-7<z <8【点评】:本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法以及不等式组的解法,本题属于中等题型.24.(问答题,0分)(经典题)已知关于x 的不等式组 {x −a ≥03−2x >−1 的整数解共有5个,求a 的取值范围.【正确答案】:【解析】:首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【解答】:解:由原不等式得a≤x <2,其整数解必为1,0,-1,-2,-3故-4<a≤-3.【点评】:正确解出不等式组的解集,正确确定a 的范围,是解答本题的关键.25.(问答题,0分)已知不等式组 {2x −a <1x −2b >3 的解集为-1<x <1,求(a+1)(b-1)的值.【正确答案】:【解析】:解出不等式组的解集,与已知解集-1<x <1比较,可以求出a ,b 的值,然后求(a+1)(b-1)的值.【解答】:解:由2x-a <1得:x <1+a 2 由x-2b >3得:x >3+2b∴不等式组的解集为:3+2b <x <1+a 2 又∵-1<x <1∴ {3+2b =−11+a 2=1∴ {a =1b =−2, ∴(a+1)(b-1)=(1+1)(-2-1)=-6.【点评】:本题是已知不等式组的解集,求不等式中其余未知数的问题.可以先将其余未知数当作已知处理,求出解集与已知解集比较,进而求得其余未知数.。
初一新课第10讲(解不等式)
负数 ,不等号的方向_____ 除以)同一个_____ 改变 。 a b ac<bc (或 ) a>b,c<0 那么_______________ 如果_________, c c
不等式的性质
比较不等式与等式的基本性质
关系式
变形
等式
不等式
仍成立 仍成立
两边都加上(或减去) 仍成立 同一个整式 两边都乘以(或除以) 仍成立 同一个正数 两边都乘以(或除以) 仍成立 同一个负数
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
该不等式解集在数轴表示如图所示,该不等式 的正整数解为1.
通过本课时的学习,需要我们掌握: 1.一元一次不等式的概念; 2.一元一次不等式的解法与一元一次方程的解法类似,
(1)去分母;(2)去括号;(3)移项;(4)合并同类项;
(5)化系数为1(有时不等号的方向会改变哦!)
?
不等号的方向改变才成立
不等式的性质
8.设a>b,用“>”或“<”号填空:
> b+ 2; (1)a+2____
> b- 3; (2)a-3____
(3)-4a____ < - 4 b;
a b (4) ____ ; > 2 2
(5)2a-5____2 > b - 5;
(6)-3.5b+1____ < -3.5a+1.
不等式的性质
(3) 6 >2
> 2× 5 , 6×5 ____
6 ×(-5)____2 < ×(-5),
> 2÷ 5 , 6÷5 ____ < ÷ (-5) 6 ÷ (-5)____2
-2÷2____3 < ÷2, -2÷ (-4)____3 > ÷ ( -4)
(4)-2< 3
七年级数学不等式与不等式组-有答案有解析
分卷I分卷I 注释1、如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0 B.a+b<0 C.(b-1)(a+1)>0 D.(b-1)(a-1)>0C解:a、b两点在数轴上的位置可知:-1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵-1<a<0,b>1,∴b-1>0,a+1>0,a-1<0故C正确,D错误.故选C.2、据扬子晚报报道,2012年5月7日南京市最高气温是33℃,最低气温是22℃,则当天南京市气温t (℃)的变化范围可用不等式表示为()A.t≥22 B.t≤22 C.22<t<33 D.22≤t≤33D用不等号可以将两个解析式连接起来所成的式子.解:∵2012年5月7日南京市最高气温是33℃,最低气温是22℃,∴22≤t≤33.故选:D.3、实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<B先由数轴观察a、b、c的大小关系,然后根据不等式的基本性质对各项作出正确判断��解:由数轴可以看出a<b<0<c.A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴>,故选项错误.故选B.4、四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如图所示,则他们的体重大小关系是()A.P>R>S>QB. Q>S>P>RC. S>P>Q>RD. S>P>R>QD由三个图分别可以得到,而Q+S>Q+P,代入第三个式子得到P+R>Q+P,所以R>Q.所以它们的大小关系为S>P>R>Q.解:观察前两幅图易发现S>P>R,再观察第一幅和第三幅图可以发现R>Q.故选D.5、下列不等式组的解集,在数轴上表示为如图所示的是()A.B.C.D.D分别解出各个不等式组,进行检验就可以.解:由A得,∴不等式组无解;由B得,∴不等式组的解集为x<﹣2;由C得,∴不等式组无解;由D得,∴不等式组的解集为﹣1<x≤2.故选D.6、若a<c<0<b,则abc与0的大小关系是()A. abc<0 B. abc=0 C.abc>0 D.无法确定C根据有理数乘法法则:两数相乘,同号得正可得ac>0.再根据不等式是性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,解答此题.解:∵a<c<0<b,∴ac>0(同号两数相乘得正),∴abc>0 (不等式两边乘以同一个正数,不等号的方向不变).故选C.7、甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃B根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.解:设温度为x℃,根据题意可知解得3≤x≤5.故选B.8、下列数中是不等式x>50的解的有()76,73,79,80,74.9,75.1,90,60A.5个B.6C.7个D.8个A先求出不等式的解集,在取值范围内对76,73,79,80,74.9,75.1,90,60进行判断.解:不等式x>50的解集是x>75;所以76,79,80,75.1,90是不等式的解.故选A.9、某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为.50+0.3x≤1200至多意思是小于或等于.本题满足的不等关系为:制版费+单张印刷费×数量≤1200.解:根据题意,得50+0.3x≤1200.10、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.10n﹣5(20﹣n)>90根据答对题的得分:10n;答错题的得分:﹣5(20﹣n),得出不等关系:得分要超过90分.解:根据题意,得10n﹣5(20﹣n)>90.故答案为:10n﹣5(20﹣n)>90.11、如图是测量一物体体积的过程:步骤一:将300ml的水装进一个容量为480ml的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没满;步骤三:将同样的玻璃球再加两颗放入水中,结果水满溢出.根据以上过程推测一颗玻璃球的体积范围____.36<x<60关键描述语:(1)将三个相同的玻璃球放入水中,结果水没满,即三个玻璃球的体积小于未装水的杯子的体积;(2)将同样的玻璃球再加两颗放入水中,结果水满溢出,即五个玻璃球的体积大于未装水的杯子的体积.解:设一个玻璃球的体积为x,依题意得:解得:36<x<60即一颗玻璃球的体积范围为:36<x<60.12、假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金____元.3520若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,但有一辆不能坐满.只租甲种客车正好坐满,这种方式一定最贵.因而两种客车用共租8辆.两种客车的载客量大于360,根据这个��等关系,就可以求出两种客车各自的数量,进而求出租金.解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8﹣x辆,则40x+50(8﹣x)≥360解得:x≤4整数解为1、2、3、4.汽车的租金W=400x+480(8﹣x)即W=﹣80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.13、某初级中学八年级(1)班若干名同学星期天去公园游览,公园售票窗口标明票价:每人10元,团体票25人以上(含25人)8折优惠,他们经过核算,买团体票比买单人票便宜,则他们至少有_____人.21本题可设至少有x人.则买团体票需要的钱数是:25×0.8×10,买单人票需要的钱数是:10x,根据买团体票比买单人票便宜,就可以列出不等式,解出x的取值.解:设至少有x人.则25×0.8×10<10xx>20因此他们至少有21人.14、为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.解:(1)根据题意得:a=22.5÷15=1.5;b=(50﹣20×1.5)÷(30﹣20)=2;(2)根据题意列不等式组得:60≤20×1.5+2(x﹣20)≤90,解得:35≤x≤50,即该用户六月份的用水量x的取值范围为35≤x≤50(1)根据某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元,分别求出a和b 即可;(2)根据“该用户六月份的水费支出不少于60元,但不超过90元”列一元一次不等式组求解即可.15、筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.解:(1)∵720÷6=120,∴光明厂平均毎天要生产120套单人课桌椅.(2)设x人生产桌子,则(84﹣x)人生产椅子,解得:60≤x≤60故x=60,∴84﹣x=24,∴60人生产桌子,则24人生产椅子.(1)用720套单人课桌椅÷6天完成这项生产任务=毎天要生产单人课桌椅的套数,(2)找到关键描述语:①生产桌子的5人一组.每组每天可生产12张,②生产椅子的4人一组,每组每天可生产24把,③至少提前1天完成这项生产任务,进而找到所求的量的关系,列出不等式组求解.16、某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少问题?(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?解:(1)设小明答对了x道题.依题意得5x﹣3(20﹣x)=68.解得x=16.答:小明答对了16道题.(2)设小亮答对了y道题.依题意得因此不等式组的解集为16≤y≤18.∵y是正整数,∴y=17或18.答:小亮答对了17道题或18道题.(1)设小明答对了x道题,则有20﹣x道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x的方程,解方程即可求解;(2)小亮答对了y道题,则有20﹣y道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于y的不等式组,从而求得y的范围,再根据y是非负整数即可求解.17、某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?解:设某游客一年中进入该公园x次,依题意得不等式组:,解①得:x>10,解②得:x>25,∴不等式组的解集是:x>25.答:某游客一年进入该公园至少超过25次时,购买A类年票合算.由于购买A年票首先要花100元,以后就不用再花钱了,那么可让另外两种种购票方式所花的费用大于等于100,可得出不等式组,然后根据得到的自变量的取值范围,判断除至少超过多少次,购买A才合算.18、上海某宾馆客房部有三人普通间和二人普通间,每间收费标准如表所示.客房普通间(元/天)三人间 240二人间 200世博会期间,一个由50名女工组成的旅游团人住该宾馆,她们都选择了三人普通间和二人普通间,且每间正好都住满.设该旅游团人住三人普通间有x间.(1)该旅游团人住的二人普通间有____间(用含x的代数式表示);(2)该旅游团要求一天的住宿费必须少于4500元,且入住的三人普通间不多于二人普通间.若客房部能满足该旅游团的要求,那么该客房部有哪几种安排方案?解:(1)由题意可得,住在二人间的人数为:(50﹣3x),又∵二人间也正好住满,故可得二人间有:;解得8<x≤l0,∵x为整数,∴x=9或x=10,当x=9时,=(不为整数,舍去);当x=10时,=10.答:客房部只有一种安排方案:三人普通间10间,二人普通间10间.(1)求出住在二人间的人数,然后即可得出二人间的个数;(2)根据要求一天的住宿费必须少于4500元,及入住的三人普通间不多于二人普通间,分别列出不等式,联立求解即可.19、已知三个一元一次不等式:2x>4,2x≥x﹣1,x﹣3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是:(2)解:.(2)解:解不等式组①,得x>2,解不等式组②,得x≥﹣1,∴不等式组的解集为x>2,.(1)直接写出即可;(2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.20、某校科技小组为参加央视《百科探秘》栏目的我爱机器人论坛,设计制作了由四个机器人进行舞蹈表演的节目.如图是四个机器人A、B、C、D在6×8在网格(每个小正方形的边长为1米)中表演前的位置,每个机器人由1名小组成员操控,按如图所示的程序同时同样运动,每一步都踩在格点上,步距不小于1米,小于2米.(1)求机器人A完成一次程序走过的路程长;(2)若要使输入点A,输出的点是D点所在的位置,请修改程序;(3)由于机器人能量有限,每个机器人走过的路程长不超过100米,在已知程序下,若每跨一步用时0.5秒,机器人完成舞蹈节目最多要进行几次程序(可用计算器计算)?用时大约几分钟以内?解:(1)由程序可知,机器人A完成一次程序走过的路程为+1+1=2+;(2)程序可修改为(如右图)(3)设机器人完成舞蹈节目要进行x次程序,依题意得,(2+)x≤100,即3.4<100,解得x<29,∴机器人完成舞蹈节目最多要进行29次程序,∵每跨一步用时0.5秒,∴机器人完成舞蹈节目应在0.5×3×29×≈0.73分钟.(1)根据机器人的步距和输入的程序分别求得每一步所走的距离,然后相加即可得到A完成一次程序走过的路程是多少;(2)根据其步距和A与D之间的距离设计程序即可,但本题答案不唯一;(3)设机器人完成舞蹈节目要进行x次程序,然后根据其所走路程最长不能大于100米列出有关的不等式,从中找到最大的整数值即可.。
列不等式(组)方程解应用题(教师)
列方程解应用题(一元一次方程不等式)1、(2013•呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?考点:一元一次不等式的应用.分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x 道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则:10x﹣5(20﹣x)>90解得x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.2、(2013•黔西南州)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,根据,购买一块A 型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.解答:解:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,5x+4(x﹣20)=820,x=100,x﹣20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60﹣m=39;当m=22时,60﹣m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.点评:本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.3、(2013•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:计算题.分析:(1)设长跳绳的单价是x元,短跳绳的单价为y元,根据长跳绳的单价比短跳绳单价的两倍多4元;购买2条长跳绳与购买5条短跳绳的费用相同,可得出方程组,解出即可;(2)设学校购买a条长跳绳,购买资金不超过2000元,短跳绳的条数不超过长跳绳的6倍,可得出不等式组,解出即可.解答:解:(1)设长跳绳的单价是x元,短跳绳的单价为y元.由题意得:.解得:.所以长跳绳单价是20元,短跳绳的单价是8元.(2)设学校购买a条长跳绳,由题意得:.解得:.∵a为正整数,∴a的整数值为29,3,31,32,33.所以学校共有5种购买方案可供选择.点评:本题考查了一元一次不等式及二元一次方程组的应用,解答本题的关键仔细审题,设出未知数,找到其中的等量关系和不等关系.4、(2013年临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?解析:(1)设购买A 型学习用品x 件,则B 型学习用品为(1000)x -. ……(1分)根据题意,得2030(1000)26000x x +-=………………(2分)解方程,得x =400.则10001000400600x -=-=.答:购买A 型学习用品400件,购买B 型学习用品600件. ………………………(4分)(2)设最多购买B 型学习用品x 件,则购买A 型学习用品为(1000)x -件. 根据题意,得20(1000)+3028000x x -≤……………………(6分)解不等式,得800x ≤.答:最多购买B 型学习用品800件. ……………………(7分)5、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋 价格甲 乙进价(元/双) m m ﹣20售价(元/双)240 160 已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?考点: 一次函数的应用;分式方程的应用;一元一次不等式组的应用.分析: (1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x 双,表示出乙种运动鞋(200﹣x )双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W ,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.解答: 解:(1)依题意得,=, 整理得,3000(m ﹣20)=2400m ,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.点评:本题考查了一次函数的应用,分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,(3)要根据一次项系数的情况分情况讨论.6、(2013•恩施州)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1)设甲商品的进价为x元,乙商品的进价为y元,就有x=y,3x+y=200,由这两个方程构成方程组求出其解既可以;(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,根据不少于6710元且不超过6810元购进这两种商品100的货款建立不等式,求出其值就可以得出进货方案,设利润为W元,根据利润=售价﹣进价建立解析式就可以求出结论.解答:解:设甲商品的进价为x元,乙商品的进价为y元,由题意,得,解得:.答:商品的进价为40元,乙商品的进价为80元;(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,由题意,得,解得:29≤m≤32∵m为整数,∴m=30,31,32,故有三种进货方案:方案1,甲种商品30件,乙商品70件,方案2,甲种商品31件,乙商品69件,方案3,甲种商品32件,乙商品68件,设利润为W元,由题意,得W=40m+50(100﹣m),=﹣10m+5000∵k=﹣10<0,∴W随m的增大而减小,∴m=30时,W最大=4700.点评:本题考查了列二元依稀方程组解实际问题的运用,列一元一次不等式组解实际问题的运用,方案设计的运用,一次函数的性质的运用,在解答时求出利润的解析式是关键.7、(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.解答:解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得:.∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z<∵z≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆.点评:此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.8、(2013•泸州)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?考点:一元一次不等式组的应用.分析:(1)设组建中型两类图书角x个、小型两类图书角(30﹣x)个,由于组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.若组建一个中型图书角的费用是860本,组建一个小型图书角的费用是570本,因此可以列出不等式组,解不等式组然后去整数即可求解.(2)根据(1)求出的数,分别计算出每种方案的费用即可.解答:解:(1)设组建中型图书角x个,则组建小型图书角为(30﹣x)个.由题意,得,化简得,解这个不等式组,得18≤x≤20.由于x只能取整数,∴x的取值是18,19,20.当x=18时,30﹣x=12;当x=19时,30﹣x=11;当x=20时,30﹣x=10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个.(2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元);方案三的费用是:860×20+570×10=22900(元).故方案一费用最低,最低费用是22320元.点评:此题主要考查了一元一次不等式组和一次函数在实际生活中的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系列出不等式组解决问题,同时也利用了一次函数.9、(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?考点:分式方程的应用;一元一次不等式的应用.分析:①先设乙工厂每天可加工生产x顶帐蓬,则甲工厂每天可加工生产1.5x顶帐蓬,根据加工生产240顶帐蓬甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;②设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.解答:解:①设乙工厂每天可加工生产x顶帐蓬,则甲工厂每天可加工生产1.5x顶帐蓬,根据题意得:﹣=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐蓬;②设甲工厂加工生产y天,根据题意得:3y+2.4×≤60,解得:y≥10,则至少应安排甲工厂加工生产10天.点评:此题考查了分式方程的应用和一元一次不等式的应用,读懂题意,找出题目中的数量关系,列出方程和不等式,注意分式方程要检验.10、(2013•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)先设购进甲,乙两种钢笔每支各需a元和b元,根据购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元列出方程组,求出a,b的值即可;(2)先设购进甲钢笔x支,乙钢笔y支,根据题意列出5x+10y=1000和不等式组6y≤x≤8y,把方程代入不等式组即可得出20≤y≤25,求出y的值即可;(3)先设利润为W元,得出W=2x+3y=400﹣y,根据一次函数的性质求出最大值.解答:解:(1)设购进甲,乙两种钢笔每支各需a元和b元,根据题意得:,解得:,答:购进甲,乙两种钢笔每支各需5元和10元;(2)设购进甲钢笔x支,乙钢笔y支,根据题意可得:,解得:20≤y≤25,∵x,y为整数,∴y=20,21,22,23,24,25共六种方案,∵5x=1000﹣10y>0,∴0<y<100,∴该文具店共有6种进货方案;(3)设利润为W元,则W=2x+3y,∵5x+10y=1000,∴x=200﹣2y,∴代入上式得:W=400﹣y,∵W随着y的增大而减小,∴当y=20时,W有最大值,最大值为W=400﹣20=380(元).点评:本题考查了二元一次方程组和不等式组的应用以及一次函数的应用,解题的关键是读懂题意,找出之间的数量关系,列出相应的方程,主要考查学生的理解能力和计算能力,有一定的难度.11、(2013•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?考点:二元一次方程组的应用;一元一次不等式的应用.分析:(1)首先设该校的大寝室每间住x人,小寝室每间住y人,根据关键语句“高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满”列出方程组即可;(2)设大寝室a间,则小寝室(80﹣a)间,由题意可得a≤80,再根据关键语句“高一新生中有不少于630名女生将入住寝室80间”可得不等式8a+6(80﹣a)≥630,解不等式组即可.解答:解:(1)设该校的大寝室每间住x人,小寝室每间住y人,由题意得:,解得:,答:该校的大寝室每间住8人,小寝室每间住6人;(2)设大寝室a间,则小寝室(80﹣a)间,由题意得:,解得:80≥a≥75,①a=75时,80﹣75=5,②a=76时,80﹣a=4,③a=77时,80﹣a=3,④a=78时,80﹣a=2,⑤a=79时,80﹣a=1,⑥a=80时,80﹣a=0.故共有6种安排住宿的方案.点评:此题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程和不等式.12、(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A 型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案.考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设A型电脑购进x台,则B型电脑购进(40﹣x)台,根据总进价不超过105700元和销售额不低于123200元建立不等式组,求出其解即可;(2)根据利润等于售价﹣进价的数量关系分别表示出购买A型电脑的利润和B型电脑的利润就求其和就可以得出结论;(3)设再次购买A型电脑a台,B型电脑b台,帐篷c顶,a≥2,b≥2,c≥1,且a、b、c为整数,根据条件建立方程运用讨论法求出其解即可.解答:解:(1)设A型电脑购进x台,则B型电脑购进(40﹣x)台,由题意,得,解得:21≤x≤24,∵x为整数,∴x=21,22,23,24∴有4种购买方案:方案1:购A型电脑21台,B型电脑19台;方案2:购A型电脑22台,B型电脑18台;方案3:购A型电脑23台,B型电脑17台;方案4:购A型电脑24台,B型电脑16台;(2)由题意,得y=(3000﹣2500)x+(3200﹣2800)(40﹣x),=500x+16000﹣400x,=100x+16000.∵k=100>0,∴y随x的增大而增大,∴x=24时,y最大=18400元.(3)设再次购买A型电脑a台,B型电脑b台,帐篷c顶,由题意,得2500a+2800b+500c=18400,c=.∵a≥2,b≥2,c≥1,且a、b、c为整数,∴184﹣25a﹣28b>0,且是5的倍数.且c随a、b的增大而减小.当a=2,b=2时,184﹣25a﹣28b=78,舍去;当a=2,b=3时,184﹣25a﹣28b=50,故c=10;当a=3,b=2时,184﹣25a﹣28b=53,舍去;当a=3,b=3时,184﹣25a﹣28b=25,故c=5;当a=3,b=4时,184﹣25a﹣28b=﹣2,舍去,当a=4,b=3时,184﹣25a﹣28b=0,舍去.∴有2种购买方案:方案1:购A型电脑2台,B型电脑3台,帐篷10顶,方案2:购A型电脑3台,B型电脑3台,帐篷5顶.点评:本题考查了列不等式组解实际问题的运用,一次函数的解析式的性质的运用,方案设计的运用,不定方程的解法的运用,分类讨论思想的运用,解答时求出解析式是解答本题的关键,巧解一元三次不定方程是解答本题的难点.13、(2013年南京)某商场促销方案规定:商场内所有商品案标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额。
中田乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
中田乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()A. ∠1=∠2B. ∠2=∠4C. ∠3=∠4D. ∠1+∠4=180°【答案】D【考点】平行线的判定【解析】【解答】A选项,错误,所以不符合题意;B选项,∠2与∠4不是同位角,错误,所以不符合题意;C选项,∠3与∠4不是同位角,错误,所以不符合题意;D选项,因为∠1+∠4=180°,所以a∥b,正确,符合题意;故答案为:D。
【分析】根据判断直线平行的几个判定定理即可进行判别:同位角相同,两直线平行;同旁内角互补,两直线平行内错角相等,两直线平行。
2、(2分)如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则()A. 9<x<10B. 10<x<11C. 11<x<12D. 12<x<13【答案】C【考点】一元一次不等式组的应用,一元一次方程的实际应用-几何问题【解析】【解答】解:根据题意得:x+3.6=15,解得:x=11.4 ;故答案为:C【分析】根据数轴上两点间的距离得出原点右边的线段长度+原点左边的线段长度=15,列出方程,求解得出x 的值,从而得出答案。
3、(2分)下列说法中,不正确的个数有().①所有的正数都是整数. ②一定是正数. ③无限小数一定是无理数.④没有平方根. ⑤不是正数的数一定是负数. ⑥带根号的一定是无理数.A. 3个B. 4个C. 5个D. 6个【答案】D【考点】平方根,实数及其分类,有理数及其分类,无理数的认识【解析】【解答】解:①如是正数,但不是整数,故①说法错误.②当a=0时,,不是正数,故②说法错误.③无限小数包括无限循环小数和无限不循环小数,其中无限循环小数是有理数,无限不循环小数是无理数,故③说法错误.④的结果是正数,有平方根,故④说法错误.⑤0既不是正数,也不是负数,故⑤说法错误.⑥带根号且开不尽的数一定是无理数,故⑥说法错误.故不正确的说法有6个.故答案为:D.【分析】本题主要考查有理数和无理数的相关定义,熟记以下几点:(1)实数包括有理数和无理数;(2)有理数包括正数(正整数和正分数)、0和负数(负整数、负分数);(3)无理数:无限不循环小数;(4)小数分为:有限小数和无限小数(无限不循环小数,无限循环小数);(5)无限循环小数是有理数,无限不循环小数是无理数.4、(2分)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a 的值之和是()A. ﹣3B. ﹣2C. ﹣D.【答案】B【考点】解分式方程,解一元一次不等式组【解析】【解答】解:解得,∵不等式组无解,∴a≤1,解方程﹣=﹣1得x= ,∵x= 为整数,a≤1,∴a=﹣3或1,∴所有满足条件的a的值之和是﹣2,故答案为:B【分析】根据题意由不等式组无解,得到a的取值范围;找出最简公分母,分式方程两边都乘以最简公分母,求出分式方程的解,根据分式方程有整数解,求出a的值,得到所有满足条件的a的值之和.5、(2分)下列运算正确的是()A. =±3B. (﹣2)3=8C. ﹣22=﹣4D. ﹣|﹣3|=3【答案】C【考点】绝对值及有理数的绝对值,算术平方根,实数的运算,有理数的乘方【解析】【解答】解:A、原式=2 ,不符合题意;B、原式=﹣8,不符合题意;C、原式=﹣4,符合题意;D、原式=﹣3,不符合题意,故答案为:C.【分析】做这种类型的选择题,我们只能把每个选项一个一个排除选择。
2022年春人教版七年级数学下册第9章《不等式与不等式组》测试卷(带答案)
《不等式与不等式组》测试卷满分100分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分)1.下列为一元一次不等式的是()A.x+y>5B.+3<2C.﹣x=3D.+≥12.甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.2℃~3℃B.2℃~8℃C.3℃~6℃D.6℃~8℃3.若x﹣3<0,则()A.x﹣2>0B.2x>﹣1C.2x<3D.18﹣3x>0 4.如果不等式组的解集是x>5,则a的取值范围是()A.a≥5B.a≤5C.a=5D.a<55.在数轴上表示不等式﹣2≤x<4,正确的是()A.B.C.D.6.已知点P(1+m,3)在第二象限,则m的取值范围是()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣17.若关于x的不等式3x﹣2m≥0的负整数解为﹣1,﹣2,则m的取值范围是()A.﹣6≤m<﹣B.﹣6<m≤﹣C.﹣≤m<﹣3D.﹣<m≤﹣3 8.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折9.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1 10.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为()A.10x+5(20﹣x)>90B.10x+5(20﹣x)<90C.10x﹣5(20﹣x)>90D.10x﹣5(20﹣x)<90二.填空题(共8小题,满分24分)11.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为克.12.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).13.不等式3x﹣6>0的解集为.14.用不等式表示“x的5倍不大于3”为:.15.如图,数轴上所表示的关于x的不等式是.16.不等式组的解集是x>4,那么m的取值范围是.17.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为.18.不等式1﹣4x≥x﹣8的非负整数解为.三.解答题(共7小题,满分46分)19.(5分)解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)20.(6分)设a为不超过1的正整数,b为与2之间的整数,求的值.21.(6分)解不等式+1≥,并把它的解集在数轴上表示出来.22.(7分)如果关于x的方程x+2+m=0的解也是不等式组的一个解,求m 的取值范围.23.(7分)解不等式组:并将解集在数轴上表示.24.(7分)若不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,求a的值.25.(8分)某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?答案一.选择题(共10小题)1.下列为一元一次不等式的是()A.x+y>5B.+3<2C.﹣x=3D.+≥1【解答】解:A、含有2个未知数,故A不符合题意;B、未知数在分母位置,故B不符合题意;C、是一元一次方程,故C不符合题意;D、是一元一次不等式,故D符合题意.故选:D.2.甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.2℃~3℃B.2℃~8℃C.3℃~6℃D.6℃~8℃【解答】解:∵甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,∴将这两种蔬菜放在一起同时保鲜,适宜的温度是3℃~6℃,故选:C.3.若x﹣3<0,则()A.x﹣2>0B.2x>﹣1C.2x<3D.18﹣3x>0【解答】解:A、若x﹣3<0,则x﹣2<1,故此选项错误;B、若x﹣3<0,则2x<6,故此选项错误;C、若x﹣3<0,则2x<6,故此选项错误;D、若x﹣3<0,则9﹣3x>0,所以18﹣3x>0,此选项正确.故选:D.4.如果不等式组的解集是x>5,则a的取值范围是()A.a≥5B.a≤5C.a=5D.a<5【解答】解:∵不等式组的解集是x>5,∴a≤5,故选:B.5.在数轴上表示不等式﹣2≤x<4,正确的是()A.B.C.D.【解答】解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.6.已知点P(1+m,3)在第二象限,则m的取值范围是()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣1【解答】解:点P(1+m,3)在第二象限,则1+m<0,解可得m<﹣1.故选:A.7.若关于x的不等式3x﹣2m≥0的负整数解为﹣1,﹣2,则m的取值范围是()A.﹣6≤m<﹣B.﹣6<m≤﹣C.﹣≤m<﹣3D.﹣<m≤﹣3【解答】解:不等式3x﹣2m≥0,解得:x≥m,∵不等式的负整数解只有﹣1,﹣2,∴﹣3<m≤﹣2,∴﹣<m≤﹣3.故选:D.8.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折【解答】解:设打x折,根据题意得120•﹣80≥80×5%,解得x≥7.所以最低可打七折.故选:B.9.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1【解答】解:解不等式x+5≥1得x≥﹣4,解不等式>,得:x<﹣1,则不等式组的解集为﹣4≤x<﹣1,故选:B.10.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为()A.10x+5(20﹣x)>90B.10x+5(20﹣x)<90C.10x﹣5(20﹣x)>90D.10x﹣5(20﹣x)<90【解答】解:由题意可列出的不等式为10x﹣5(20﹣x)>90,故选:C.二.填空题(共8小题)11.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为不少于1.5克.【解答】解:∵某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,∴蛋白质含量的最小值=300×0.5%=1.5克,∴白质的含量不少于1.5克.故答案是:不少于1.512.若a<b,则﹣5a>﹣5b(填“>”“<”或“=”).【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.13.不等式3x﹣6>0的解集为x>2.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.14.用不等式表示“x的5倍不大于3”为:5x≤3.【解答】解:x的5倍表示为5x,不大于3表示为5x≤3,故答案为:5x≤3.15.如图,数轴上所表示的关于x的不等式是x≤2.【解答】解:一元一次不等式的解集是2左边的部分(包含2),因而解集是x≤2.故答案为:x≤2.16.不等式组的解集是x>4,那么m的取值范围是m≤4.【解答】解:∵﹣x+2<x﹣6,解之得x>4,而x>m,并且不等式组解集为x>4,∴m≤4.17.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为4.【解答】解:∵(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,∴|m|﹣3=1,m+4≠0,解得:m=4,故答案为:418.不等式1﹣4x≥x﹣8的非负整数解为1、0.【解答】解:∵1﹣4x≥x﹣8,∴﹣4x﹣x≥﹣8﹣1,﹣5x≥﹣9,x≤,则该不等式的非负整数解为1和0,故答案为:1、0.三.解答题(共7小题)19.解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)【解答】解:5x﹣2>3x+3,2x>5,∴.20.设a为不超过1的正整数,b为与2之间的整数,求的值.【解答】解:∵a为不超过1的正整数,b为与2之间的整数,∴a=1,b=1或2,∴=1或.21.解不等式+1≥,并把它的解集在数轴上表示出来.【解答】解:去分母,得2(1+2x)+6≥3(1+x)去括号得,2+4x+6≥3+3x,再移项、合并同类项得,x≥﹣5.在数轴上表示为:.22.如果关于x的方程x+2+m=0的解也是不等式组的一个解,求m的取值范围.【解答】解:不等式组整理得:,解得:x≤﹣2,由x+2+m=0,得到x=﹣2﹣m,可得﹣2﹣m≤﹣2,解得:m≥0.23.解不等式组:并将解集在数轴上表示.【解答】解:,解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.24.若不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,求a的值.【解答】解:解不等式3(x﹣2)+5<4(x﹣1)+6,去括号,得:3x﹣6+5<4x﹣4+6,移项,得3x﹣4x<﹣4+6+6﹣5,合并同类项,得﹣x<3,系数化成1得:x>﹣3.则最小的整数解是﹣2.把x=﹣2代入2x﹣ax=3得:﹣4+2a=3,解得:a=.25.某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?【解答】解:(1)设每个篮球、足球的价格分别是x元,y元,根据题意得:,解得:,答:每个篮球、足球的价格分别是70元,80元;(2)设购买了篮球m个,根据题意得:70m≤80(60﹣m),解得:m≤32,∴m最多取32,答:最多可购买篮球32个.。
人教版七年级数学下册第九章第二节一元一次不等式考试习题(含答案) (53)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某个不等式的解集在数轴上如图所示,这个不等式可以是()A.2x-1≤3 B.2x-1<3 C.2x-1≥3 D.2x-1>3【答案】A【解析】分析:先根据数轴上不等式解集的表示方法得出该不等式组的解集,再对四个选项进行逐一分析即可.x ,故本选项正确;详解:A、此不等式组的解集为:2B、此不等式组的解集为x<2,故本选项错误;C、此不等式组的解集为:x≥2,故本选项错误;D、此不等式组的解集为x>2,故本选项错误.故选A.点睛:用数轴表示不等式的解集时,当不等号是“≥”时,分界点用实心圆点,方向向右,当不等号是“≤”时,分界点用实心圆点,方向向左,当不等号是“>”时,分界点用空心圆圈,方向向右,当不等号是“<”时,分界点用空心圆圈,方向向左.22.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5000 B.10000 C.15000 D.20000【答案】B【解析】分析:设预计平均每年行驶x公里,根据已知条件分别列出两种汽车10年的用车成本,再根据“选择油电混动汽车的成本不高于选择普通汽车的成本”列出不等式进行解答即可.详解:设平均每年行驶的公里数至少为x公里,根据题意得:174800+31100x×10≤159800+46100x×10,解得:x≥10000,即预计平均每年行驶的公里数至少为10000公里.故选B.点睛:本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语句,弄清各数量间的关系,列出不等式;同时注意每百公里燃油成本是31元,不是一公里是31元.23.某单位为一中学捐赠了一批新桌椅,学校组织七年级300名学生搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A .80B .100C .120D .200【答案】C【解析】分析:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据总人数列不等式求解可得. 详解:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据题意,得:2x +2x ⩽300, 解得:x ⩽120,∴最多可搬桌椅120套,故选:C.点睛:本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.24.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20-x. 根据题意得:( )A .10x-5(20-x)≥120B .10x-5(20-x)≤120C .10x-5(20-x)> 120D .10x-5(20-x)<120【解析】分析:小明答对题的得分:10x;小明答错题的得分:-5(20-x).不等关系:小明得分要超过120分.详解:根据题意,得10x-5(20-x)>120.故选C.点睛:此题要特别注意:答错或不答都扣5分.至少即大于或等于.25.把不等式2x﹣3≤﹣5 的解集在数轴上表示,正确的是()A.B.C.D.【答案】C【解析】分析:根据解一元一次不等式基本步骤:移项、合并同类项化简可得.详解:移项,得:2x≤-5+3,合并同类项,得:2x≤-2,∴x≤-1故选:C.点睛:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.26.不等式1-2x<5-1x的负整数解有()2A.1个B.2个C.3个D.4个【解析】【分析】按去分母、去括号、移项、合并同类项、系数化为1的步骤求出不等式的解集后按要求求出整数解即可.【详解】2(1-2x)<10-x,2-4x<10-x,-4x+x<10-2,-3x<8,x>-22,3所以不等式的负整数解有-1、-2,共2个,故选B.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤及注意事项是关键.27.海安市核心价值观知识竞赛中共20道选择题,答对一题得10分,满分200分,答错或不答扣5分,总得分不少于80分者就通过预赛而进入决赛,若想通过预赛,那么至少答对()A.10道题B.12道题C.14道题D.16道题【答案】B【解析】【分析】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80,解不等式可得.【详解】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80去括号:10x-100+5x≥80∴15x≥180解得:x≥12因此选手至少要答对12道故选:B【点睛】本题考核知识点:列不等式解应用题.解题关键点:根据不等关系列出不等式.28.不等式组221xx-≤⎧⎨-<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】分析:先解不等式①,再解不等式②,然后按照含等号的取实心,不含等号的取空心,大于向右,小于向左,在数轴上标出.详解:解不等式①可得:2x≥-,解不等式②可得:3x<,在数轴上表示为:故选D.点睛:本题主要考查解不等式组,并在数轴上正确表示不等式组的解集,解决本题的关键是要熟练掌握解不等式的方法和在数轴上表示不等式解集.29.下列不等式中,解集不同的是().A.5x>10与3x>6 B.6x-9<3x+6 与x<5C.x<-2与-14x>28 D.x-7<2x+8与x>15【答案】D【解析】【分析】分别求出每个选项中每一个不等式的解集,比较即可得.【详解】A.不等式5x>10的解集是x>2,3x>6的解集是x>2,相同,故不符合题意;B. 6x-9<3x+6 的解集是x<5,与x<5相同,故不符合题意;C. x<-2,-14x>28的解集是x<-2,相同,故不符合题意;D. x-7<2x+8的解集是x>-15,与x>15不相同,故符合题意,故选D.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的一般步骤是解题的关键.30.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.【答案】A【解析】分析:首先移项,再合并同类项,把x的系数化为1可得到不等式的解集,再把解集在数轴上表示出来即可.详解:移项得:3x﹣x≥2,合并同类项得:2x≥2,把x的系数化为1得:x≥1,在数轴上表示为:.故选A.点睛:本题主要考查了解一元一次不等式,以及用数轴表示不等式的解集,关键是掌握:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.。
横寨乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
横寨乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)小明只带2元和5元两种面值的人民币,他买一件学习用品要支付23元,则付款的方式有()A.1种B.2种C.3种D.4种【答案】B【考点】二元一次方程的应用【解析】【解答】解:设用了2元x张,5元y张,则2x+5y=23,2x=23-5y,x= ,∵x,y均为正整数,∴或.即付款方式有2种:(1)2元9张,5元1张;(2)2元4张,5元3张.故答案为:B.【分析】设用了2元x张,5元y张,根据学习用品的费用=23元,列方程,再求出方程的正整数解。
2、(2分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A. 10道题B. 12道题C. 13道题D. 16道题【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设她至少要答对x道题,则答错或不答(20﹣x)道.由题意,得10x﹣5(20﹣x)>90,解得:x>.∵x为整数,∴x至少为13.故答案为:C【分析】先设出她答对的题数,即可表示她的得分情况,再根据“得分要超过90分”即得分大于90即可列一元一次不等式,解不等式即可求得答题的最少数目.3、(2分)边长为2的正方形的面积为a,边长为b的立方体的体积为27,则a-b的值为()A. 29B. 7C. 1D. -2【答案】C【考点】立方根及开立方【解析】【解答】∵边长为2的正方形的面积为a,∴a=22=4,∵边长为b的立方体的体积为27,∴b3=27,∴b=3,∴a-b=1,故答案为:C.【分析】根据正方形的面积=边长的平方和算术平方根的意义可求解;根据立方体的体积=边长的立方和立方根的意义可求解。
4、(2分)下列说法中:①-1的平方根是±1;②(-1)2的平方根是±1;③实数按性质分类分为正实数,0和负实数;④-2是-8的立方根;其中正确的个数是()A. 0B. 1C. 2D. 3【答案】D【考点】平方根,立方根及开立方,实数及其分类【解析】【解答】解:①-1没有平方根,因此①错误;②(-1)2=1,(-1)2的平方根是±1,因此②正确;③实数按性质分类分为正实数,0和负实数,因此③正确;④-2是-8的立方根,因此④正确正确的有②④③故答案为:D【分析】根据平方根,立方根的性质,及实数的分类,对各选项逐一判断即可。
栖霞乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
栖霞乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A. 10道题B. 12道题C. 13道题D. 16道题【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设她至少要答对x道题,则答错或不答(20﹣x)道.由题意,得10x﹣5(20﹣x)>90,解得:x>.∵x为整数,∴x至少为13.故答案为:C【分析】先设出她答对的题数,即可表示她的得分情况,再根据“得分要超过90分”即得分大于90即可列一元一次不等式,解不等式即可求得答题的最少数目.2、(2分)不等式x<-2的解集在数轴上表示为()A.B.C.D.【答案】D【考点】不等式的解及解集【解析】【解答】解:A、数轴上表达的解集是:,不符合题意;B、数轴上表达的解集是:,不符合题意;C、数轴上表达的解集是:,不符合题意;D、数轴上表达的解集是:,符合题意.故答案为:D.【分析】满足x<-2 的点都在-2的左边,不包括-2本身,应用“<”表示。
3、(2分)下列计算不正确的是()A. |-3|=3B.C.D. 【答案】D【考点】实数的运算【解析】【解答】A、|-3|=3,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意.故答案为:D.【分析】(1)由绝对值的性质可得原式=3;(2)由平方的意义可得原式=;(3)根据有理数的加法法则可得原式=-;(4)由算术平方根的意义可得原式=2.4、(2分)如图是“百姓热线电话”一周内接到的热线电话情况统计图,其中关于环境保护问题的电话70个,本周“百姓热线电话”共接热线电话()个.A. 180B. 190C. 200【答案】C【考点】扇形统计图【解析】【解答】解:70÷35%=200(个),故答案为:C.【分析】由统计图知,环境保护问题的电话占本周内接到的热线电话量的35%,根据求一个数的百分之几是多少,把本周内接到的热线电话量看作单位“1”,求单位“1”用除法计算.5、(2分)下列说法中正确的是()A.y=3是不等式y+4<5的解B.y=3是不等式3y<11的解集C.不等式3y<11的解集是y=3D.y=2是不等式3y≥6的解【答案】D【考点】不等式的解及解集【解析】【解答】解:A. 代入不等式得:不是不等式的解.故A不符合题意.B. 不等式的解集是:故B不符合题意.C.不等式的解集是:故C不符合题意.D. 是不等式的解.故D符合题意.故答案为:D.【分析】先解出每个选项中的不等式的解集,根据不等式的解的定义,就能得到使不等式成立的未知数的值,即可作出判断6、(2分)在图1、2、3、4、5中,∠1和∠2是同位角的有()A. (1)(2)(3)B. (2)(3)(4)C. (2)(3)(5)D. (1)(2)(5)【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:(1)(2)(5)都是同位角;(3)不是三线所形成的角,(4)不在直线的同一侧.故答案为:D.【分析】此题考查了同位角的概念,两条直线被第三条直线所截形成的角中,同位角是指两个角都在第三条直线的同旁,在被截的两条直线同侧的位置的角,呈“F”型,即可得出答案。
初三数学方程组与不等式组试题答案及解析
初三数学方程组与不等式组试题答案及解析1.方程的解是_______________.【答案】【解析】两边平方,将无理方程转化为一元二次方程,再开平方.解:方程两边平方,得x2-9=16,移项,得x2=25,解得x=±5,经检验x=±5符合题意.故答案为:±5.本题考查了解无理方程的解法.无理方程最常用的方法是两边平方法及换元法,本题用了平方法.2.方程的根是.【答案】【解析】分析:首先把方程两边同时平方,然后解一元一次方程即可求解,最后注意检验.解:∵=2,∴2x-1=4,∴,当时,2x-1>0,故原方程的解为:.故答案为:.3.(8分)先化简,再求值:,其中满足【答案】x 2【解析】本题考查因式分解及代数式的化简.由,此处又得,解得或(舍)故原式的值为4.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、大砝码皆为1克,且图(三)是将糖果与砝码放在等臂天平上的两种情形。
判断下列哪一种情形是正确的?【答案】D【解析】【考点】一元一次不等式组的应用.分析:根据图示可知1个糖果的质量>5克,3个糖果的质量<16克,依此求出1个糖果的质量取值范围,再在4个选项中找出情形正确的.解:设1个糖果的质量为x克.则解得5<x<.则10<2x<;15<3x<16;20<4x<.故只有选项D正确.故选D.5.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为,则满足的方程是()A.B.C.D.【答案】B【解析】设跌停后的价格为1,则原价为,跌停后第一次上涨价格为(1+x)元,第二次涨价后价格为(1﹣x)2元,根据题意找出等量关系:第二次涨价后的价格=原价,由此等量关系列出方程为:故选B.【考点】一元二次方程的应用(增长率).6.(本小题满分8分)(1)解不等式组:;(2)解方程:.【答案】(1);(2)x=2.【解析】(1)求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.因此分别解出两不等式的解集即可求出其公共解;(2)本题考查了解分式方程.①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.公分母为(x-1)(x+1),去分母,转化为整式方程求解,结果要检验.试题解析:解:(1)由得,(1分)由得,(2分)∴原不等式组的解是. (4分)(2)去分母,得,(1分)去括号,得. (2分)整理得2x=4,解得x=2,(3分)经检验,x=2是原方程的解. (4分)【考点】1.一元一次不等式组的解法;2.分式方程的解法.7.方程x2-1 = 6x 化为一般形式是.【答案】x2-6x -1 = 0.【解析】通过移项化为一般形式即可.【考点】一元二次方程的一般形式.8.解方程(本小题6分)(1)(2)2-4+2=0【答案】(1)x=,x=-(2)x=2+,x=2-.【解析】(1)用直接开平方法解即可;(2)用配方法解即可.试题解析:解:(1)∴x=,x=-(2)∴x=2+,x=2-.【考点】一元二次方程的解法.9.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36B.48(1+x)2=36C.36(1﹣x)2="48"D.36(1+x)2=48【答案】D【解析】设每月的平均增长率为x,二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48.故选D【考点】一元二次方程解增长率问题10.(本题满分12分)计算(1)解不等式组:.(2)解方程组:【答案】(1)1≤x<3;(2)【解析】(1)分别解两个不等式,然后求它们的公共解集;(2)利用加减消元法直接解方程组.试题解析:(1)由 得,由 得x<3所以1≤x<3(2)由 +‚得3x=9 ,得x=3,把x=3带入 得y="-1"所以【考点】解不等式,解二元一次方程组11.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.B.C.D.【答案】A.【解析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.试题解析:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:故选A.【考点】由实际问题抽象出分式方程.12.解不等式组:【答案】x ≥3【解析】分别确定两个不等式的解集,然后确定公共部分即可.试题解析:解不等式①得 x >-2解不等式②得x ≥3∴原不等式组的解集是x ≥3【考点】解不等式组.13.(8分)(2015•佛山)某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【答案】(1)七年级(1)班有49人、七年级(2)班有53人;(2)196元,106元.【解析】(1)设七年级(1)班有x人、七年级(2)班有y人,根据如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元建立方程组求出其解即可;(2)用一张票节省的费用×该班人数即可求解.试题解析:解:(1)设七年级(1)班有x人、七年级(2)班有y人,由题意,得,解得:.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(12﹣10)×53=106元.【考点】一元一次方程的应用14.(4分)命题“关于x的一元二次方程,必有实数解.”是假命题.则在下列选项中,可以作为反例的是()A.b=﹣3B.b=﹣2C.b=﹣1D.b=2【答案】C.【解析】∵方程,必有实数解,∴△=,解得:b≤﹣2或b≥2,则命题“关于x的一元二次方程,必有实数解.”是假命题.则在下列选项中,可以作为反例的是b=﹣1,故选C.【考点】1.命题与定理;2.根的判别式.15.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.B.C.D.【答案】A.【解析】设原计划每亩平均产量x万千克,由题意得:,故选A.【考点】由实际问题抽象出分式方程.16.某商品原价100元,连续两次涨价后,售价为144元.若平均增长率为x,则x= .【答案】20%.【解析】根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.试题解析:依题意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).【考点】一元二次方程的应用.17.(5分)已知实数a,b是方程的两根,求的值.【答案】﹣3.【解析】由根与系数的关系得到,,再利用完全平方公式变形得到,然后利用整体代入的方法进行计算.试题解析:∵实数a,b是方程的两根,∴,,∴===﹣3.【考点】根与系数的关系.18.(3分)一元二次方程的两根为,,则的值是()A.4B.﹣4C.3D.﹣3【答案】D.【解析】.故选D.【考点】根与系数的关系.19.(3分)(2015•锦州)制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为.【答案】.【解析】设小芳每小时做x个零件,则小明每小时做(x+20)个零件,根据题目中的等量关系“小明做220个零件用的时间=小芳做180个零件所用的时间”,可列方程.【考点】分式方程的应用.20.(10分)某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分,3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.(1)甲队必答题答对答错各多少题?(2)抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队拉拉队队员小黄说:“我们甲队输了!”,小汪说:“小黄的话不一定对!”,请你举一例说明“小黄的话”有何不对.【答案】(1)甲队答对18道题,则甲队答错或不答的有2道题;(2)举例见试题解析.【解析】(1)设甲队答对x道题,则甲队答错或不答的有(20﹣x)道题,根据题意列方程,解之即可;(2)甲队现在得分:190分,乙队得分:185分,有以下三种情况,甲队可获胜:①若第2题甲队抢答正确:则甲得分:190+20=210分,第3题甲队不抢答,不管乙队抢答是否正确,则乙队最多得分:185+20=205分,甲队获胜;③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题甲队抢答正确,则甲队最后得分:170+20=190分,乙队得分185,甲队获胜;④若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.试题解析:(1)设甲队答对x道题,则甲队答错或不答的有(20﹣x)道题,由题意,得:10x﹣5(20﹣x)=170,解得:x=18.∴甲队答错或不答的有2道题.答:甲队答对18道题,则甲队答错或不答的有2道题;(2)甲队现在得分:170+20=190分,乙队得分:19×10-5=185分,有以下三种情况,甲队可获胜:①若第2题甲队抢答正确:则甲得分:190+20=210分,第3题甲队不抢答,不管乙队抢答是否正确,则乙队最多得分:185+20=205分,甲队获胜;③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题甲队抢答正确,则甲队最后得分:170+20=190分,乙队得分185,甲队获胜;④若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.【考点】1.一元一次方程的应用;2.分类讨论;3.综合题.21.分式方程的解是.【答案】x=2.【解析】观察可得最简公分母是(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程的两边同乘(x+3),得5=x+3,解得x=2.检验:把x=2代入(x+3)=5≠0.所以原方程的解为:x=2.【考点】解分式方程.22.(7分)已知关于x的一元二次方程.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为,,且满足,求实数的值.【答案】(1)m≤4;(2)m=﹣12.【解析】(1)若一元二次方程有两实数根,则根的判别式△=≥0,求出m的取值范围;(2)根据根与系数的关系得到,,再由,求出,,由即可得到结论.试题解析:(1)∵方程有实数根,∴△==≥0,∴m≤4;(2)∵,,∴,,∴.【考点】1.根的判别式;2.根与系数的关系.23.(3分)不等式组的解集为.【答案】﹣1<x≤3.【解析】,由①得x>﹣1,由②得x≤3.故原不等式组的解集为﹣1<x≤3.故答案为:﹣1<x≤3.【考点】解一元一次不等式组.24.一元二次方程x2-3x-5=0的根的情况是()A.有两个相等的实数根B.没有实数根C.无法确定是否有实数根D.有两个不相等的实数根【答案】D.【解析】∵一元二次方程x2-3x-5=0,∴△=9-4(-5)=29>0,∴方程有两个不相等实数根,故选D.【考点】根的判别式.25.解不等式:x-1>3x-2,其解集为.【答案】x<2.【解析】x-1>3x-2,5x-2>6x-4,5x-6x>-4+2,-x>-2,x<2.【考点】解一元一次不等式.26.为了让山更绿、水更清,确保到实现全省森林覆盖率达到63%的目标,已知2013年全省森林覆盖率为6005%,设从2013年起全省森林覆盖率的年平均增长率为x,则可列方程()A.60.05(1+2x)="63%"B.60.05(1+3x)=63C.60.05(1+x)2="63%"D.60.05%(1+x)2=63%【答案】D.【解析】 2014年全市森林覆盖率为60.05%×(1+x),全市森林覆盖率为60.05%×(1+x)×(1+x)=60.05%×(1+x)2,可列方程为60.05%×(1+x)2=63%,故选D.【考点】由实际问题抽象出一元二次方程.27.已知a>b.若c是任意实数,则下列不等式中总是成立的是()A.a-c<b-c B.a+c>b+cC.ac<bc D.ac>bc【答案】B.【解析】∵不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,∴若c是任意实数,ac<bc、ac>bc不总是成立;∵a>b,∴a+c>b+c对任意的实数c总是成立,a-c<b-c对任意的实数c都不成立.故选B.【考点】不等式的性质.28.用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2="16"B.(x+5)2=34C.(x﹣5)2="16"D.(x+5)2=25【答案】A【解析】根据题意可以先移项,再配方(方程两边都加上一次项系数的一半的平方),即x2+10x+9=0,x2+10x=﹣9,x2+10x+52=﹣9+52,(x+5)2=16.故选A.【考点】解一元二次方程-配方法29.文具店某种笔记本的优惠销售方式为:(1)求该笔记本的标价是多少元/个?(2)今有两个班的学习委员要为本班的部分同学购买这种笔记本,若分别购买,两个班共付笔记本费246元,若合在一起作为一个人购买,两个班共付笔记本费212元.求这两个班的学习委员要购买这种笔记本各多少个?【答案】(1)5元/个;(2) 15个和38个【解析】(1)根据图表中按标价的9折出售为4.5元,即可求出标价;(2)设这两个班的学习委员分别要购买这种笔记本x个和y个,用212分别除以5、4.5、4,确定x+y=53,然后分类列方程组求解.试题解析:解:(1)4.5÷0.9=5,笔记本的标价是5元/个;(2)设这两个班的学习委员分别要购买这种笔记本x个和y个,由题意得,①当x<20,20<y<50时,,解得:;②当x<20,y>50时,,解得:,(x大于20,y小于51,舍去)③当y>50,20<x<50时,,解得,不合题意,舍去.综上所述,即这两个班的学习委员分别要购买这种笔记本15个和38个.【考点】二元一次方程组的应用30.网购悄然盛行,我国2012年网购交易额为1.26万亿人民币,2014年我国网购交易额达到了2.8万亿人民币.如果设2013年、2014年网购交易额的平均增长率为x,则依题意可得关于x的一元二次方程为 .【答案】1.26(1+x)2=2.8.【解析】设平均增长率为x,根据题意可列出方程为:1.26(1+x)2=2.8.【考点】由实际问题抽象出一元二次方程.31.如图,是测量一物体体积的过程:(1ml=1cm3)步骤一:将300ml的水装进一个容量为500ml的杯子中;步骤二:将四颗相同的玻璃球放入水中,结果水没有满;步骤三:再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下【答案】D.【解析】设玻璃球的体积为x,则,解得40<x<50.故一颗玻璃球的体积在40cm3以上,50cm3以下.故选D.【考点】一元一次不等式组的应用.32.计算(1)化简:(2)解不等式组:.【答案】(1),(2)﹣2≤x≤.【解析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.试题解析:(1)原式==;(2),由①得:x≥﹣2,由②得:x≤,则不等式组的解集为﹣2≤x≤.【考点】1.分式的混合运算;2.解一元一次不等式组.33.已知关于x的一元二次方程m2x2+2(m﹣1)x+1=0有实数根.(1)求实数m的范围;(2)由(1),该方程的两根能否互为相反数?请证明你的结论.【答案】m≤且m≠0;【解析】(1)根据一元二次方程的定义及根的判别式的意义得到m2≠0,且△≥0,即[2(m﹣1)]2﹣4m2≥0,解不等式组即可得到m≤且m≠0;(2)由根与系数的关系求出方程的两根互为相反数时m的值,如果m的值在(1)中所求实数m的范围内,那么该方程的两根能够互为相反数;否则不能互为相反数.试题解析:解:(1)∵关于x的一元二次方程m2x2+2(m﹣1)x+1=0有实数根,∴m2≠0,且△≥0,即[2(m﹣1)]2﹣4m2≥0,4m2﹣8m+4﹣4m2≥0,∴m≤且m≠0;(2)如果方程的两根互为相反数,那么﹣=0,解得m=1,∵m≤且m≠0时,方程有实数根,而1>,∴该方程的两根不能互为相反数.【考点】根的判别式;根与系数的关系34.某药品经过两次降价,每瓶零售价由180元降为100元.已知两次降价的百分率相同,设每次降价的进分率为x,根据题意列方程正确的是().A.180(1+x)2=100B.180(1﹣x2)=100C.180(1﹣2x)=100D.180(1﹣x)2=100【答案】D.【解析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是180(1﹣x),第二次后的价格是180(1﹣x)2,据此即可列方程180(1﹣x)2=100.故选:D.【考点】由实际问题抽象出一元二次方程.35.已知一元二次方程的两根之和为7,两根之积为12,则这个方程为_________________。
枣巷渔业乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
枣巷渔业乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A. 10道题B. 12道题C. 13道题D. 16道题【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设她至少要答对x道题,则答错或不答(20﹣x)道.由题意,得10x﹣5(20﹣x)>90,解得:x>.∵x为整数,∴x至少为13.故答案为:C【分析】先设出她答对的题数,即可表示她的得分情况,再根据“得分要超过90分”即得分大于90即可列一元一次不等式,解不等式即可求得答题的最少数目.2、(2分)下列各数:,0,0.2121121112,,其中无理数的个数是()A. 4个B. 3个C. 2个D. 1个【答案】D【考点】无理数的认识【解析】【解答】,0,0.2121121112,中无理数有,共计1个.故答案为:D.【分析】根据无理数的定义开方开不尽的数和无限不循环小数是无理数,判断即可.3、(2分)下列方程组是二元一次方程组的是()A.B.C.D.【答案】D【考点】二元一次方程组的定义【解析】【解答】解:A、是二元二次方程组,故A不符合题意;B、是分式方程组,故B不符合题意;C、是二元二次方程组,故C不符合题意;D、是二元一次方程组,故D符合题意;故答案为:D.【分析】根据二元一次方程组的定义:方程组中含有两个未知数,且未知数的最高次数是2的整式方程,再对关系逐一判断,可得出答案。
4、(2分)下列是二元一次方程的是()A. B. C. D.【答案】D【考点】二元一次方程的定义【解析】【解答】A、等号右边这一项的次数是2,是二元二次方程,故A错误;B、含一个未知数,是一元一次方程,故B错误;C、分母中含有未知数,是分式方程,故C错误;D、是二元一次方程,故D正确;故选:D.【分析】根据二元一次方程的定义:含有两个未知数;且含未知数项的最高次数是1;是整式方程;根据三个条件,对各选项逐一判断即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综上, 当0 x 40或x 50时,选B券; 当40 x 50时,选A券; 当x 50时,两券一样.
例题
甲、乙两商场以同样价格出售同样的 商品,并且又各自推出不同的优惠方案: 在甲商场累计购物超过100元后,超出 100元的部分按90%收费;在乙商场累计 购物超过50元后, 超出 50元的部分按95% 收费.你到哪个商场购物划算?
分析:三种情况进行讨论 (1)什么情况下,到甲商场购物花费少? (2) 什么情况下,到乙商场购物花费少? (3)什么情况下,两商场花费一样?
(1)若在甲超市花费少,则
1 0 0 0 .( 9x 1 0 0 ) 500.95 ( x50) . 得 x 15.0
(2)若在乙超市花费少,则
(2)当 乙商场划算.
时,
审 设 找列 解 验 答
实际问题
数学问题
小结
(1)本节课突出体现了什么数学思想? (2)本节课解决实际问题的过程中你
最关注哪一步,为什么?
练习
1.某次知识竞赛共有20道题,每一题答对得 10分,答错或不答都扣5分,小明得分要超过90 分,他至少要答对___ _道题.
2.学校需要刻录一批电脑光盘, 若到电脑公 司刻录,每张需8元(包括空白光盘费); 若学校 自己刻录,除租用刻录机需120元外,每张还需 成本4元,问刻录这批光盘到电脑公司刻录费用 省,还是自己刻录省?请说明理由.
B券
0.8 x
8折
(本券仅限用一次,不可与其它优惠同时使用)
2017.4.27--2017.4.29
(1)当 0x40 时 ,选 B 券 划 算 (2)当 x≥ 40 时 ,比 较 x10和 0.8x的 大 小
①若 x 1 0 0 . 8 x 解 得 x 50
②若 x 1 0 0 . 8 x 解 得 x 50
1 0 0 0 .( 9x 1 0 0 ) 500.95 ( x50) . 得 x 150.
(3)若在两超市花费一样,则
1 0 0 0 .( 9x 1 0 0 ) 500.95 ( x50) . 得 x 150 .
审 设 找列 解 验 答
综上,
(1)当
时,
甲商场划算.
9.2.2 实际问题与一元一次不等式
石首市笔架山中学 张新华
(满40元可用)
A券
10元
(本券仅限用一次,不可与其它优惠同时使用)
你买了原价是30元的商品, 用哪张券划算呢?为什么?
B券
8折
(本券仅限用一次,不可与其它优惠同时使用)
2017.4.27--2017.4.29
(满40元可用)
A券
10元
(本券仅限用一次,不可与其它优惠同时使用)
你买了原价是40元的商品, 用哪张券划算呢?为什么?
B券
8折
(本券仅限用一次,不可与其它优惠同时使用)
2017.4.27--2017.4.29
A券
x 10
(满40元可用)
10元
(本券仅限用一次,不可与其它优惠同时使用)
你买了原价是x元的商品,用 哪张券划算呢?为什么?
一样
50x100 x
500.95(x50) 乙
x 100 1000.9(x100) 500.95(x50) ?
审 设找列解
当 x 1 0 0 时 , 到 哪 家 划 算 ? 甲 : 1000.9(x100) 乙 : 500.95(x50)
如果累计购物超过100元,在哪家商场花费少呢?
审
甲、乙两商场以同样价格出售同样的 商品,并且又各自推出不同的优惠方案:
在甲商场累计购物超过100元后,超 出100元的部分按90%收费;
在乙商场累计购物超过 50 元后,超 出 50元的部分按95%收费.
你到哪个商场购物划算?
审设
设 购 物 原 价 累 计 x元
原价
甲
乙
ቤተ መጻሕፍቲ ባይዱ
0x50
x
x
哪家 少