浙江省温州市瑞安市六校联盟2019-2020学年九年级上学期期末数学试题(word无答案)

合集下载

2019-2020学年浙江省温州市九年级(上)期末数学试卷(解析版)

2019-2020学年浙江省温州市九年级(上)期末数学试卷(解析版)

2019-2020学年浙江省温州市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分):1.已知O 的半径为4cm ,点P 在O 上,则OP 的长为( )A .1cmB .2cmC .4cmD .8cm 2.已知23a b =,则a b a +的值为( ) A .52 B .53 C .32 D .233.抛物线223y x x =-+ 的对称轴为( )A .直线1x =-B .直线2x =-C .直线1x =D .直线2x =4.如图,在O 中,点M 是AB 的中点,连结MO 并延长,交O 于点N ,连结BN ,若140AOB ∠=︒,则N ∠的度数为( )A .70︒B .40︒C .35︒D .20︒5.在一个不透明的口袋里装有2个白球,3个黑球和3个红球,它们除颜色外其余都相同,现随机从袋里摸出1个球,则摸出白球的概率是( )A .12B .38C .13D .146.如图, 四边形ABCD 是O 的内接四边形, 若3D B ∠=∠,则B ∠的度数为( )A .30︒B .36︒C .45︒D .60︒7.已知点(2,)A a -,(1,)B b ,(3,)C c 是抛物线222y x x =-+上的三点,则a ,b ,c 的大小关系为( )A .a c b >>B .b a c >>C .c a b >>D .b c a >>8.如图,正六边形ABCDEF 的边长为2,现将它沿AB 方向平移1个单位,得到正六边形A B C D E F '''''',则阴影部分A BCDE F '''的面积是( )A .B .CD .2+9.如图,在Rt ABC ∆中,20A ∠=︒,6AC =,将ABC ∆绕直角顶点C 按顺时针方向旋转得到△A B C '',当点B '第一次落在AB 边上时,点A 经过的路径长(即AA '的长)为( )A .23πB .43πC .2πD .73π 10.如图,点A 为x 轴上一点,点B 的坐标为(,)a b ,以OA ,AB 为边构造OABC ,过点O ,C ,B 的抛物线与x 轴交于点D ,连结CD ,交边AB 于点E ,若AE BE =,则点C 的横坐标为( )A .a b -B .2bC .3aD .4a 二、填空题(共8小题,每小题3分,共24分):11.如图,直线////AB CD EF ,已知3AC =,4CE =, 3.6BD =,则DF 的长为 .12.某工厂从一批保温杯中随机抽取1000个进行质量检测,结果有980个保温杯质量合格,那么可以估计这批保温杯的合格率约为 .13.请写出一个开口向上,且其图象经过原点的抛物线的解析式 .14.已知扇形的圆心角为45︒,半径为3cm ,则该扇形的面积为 2cm .15.如图,点P 是ABC ∆的重心,过点P 作//DE AB 交BC 于点D ,交AC 于点E ,若AB 的长度为6,则DE 的长度为 .16.一根排水管的截面如图所示,已知水面宽40AB cm =,水的最大深度为8cm ,则排水管的半径为 cm .17.函数28(y ax ax a =-为常数,且0)a >在自变量x 的值满足23x 剟时,其对应的函数值y的最大值为3-,则a 的值为 .18.如图是一个摩天轮,它共有8个座舱,依次标为1~8号,摩天轮中心O 的离地高度为50米,摩天轮中心到各座舱中心均相距25米,在运行过程中,当1号舱比3号舱高5米时,1号舱的离地高度为 米.三、解答题(共6小题,共46分):19.有三张分别标有数字2,5,9的卡片,它们的背面都相同.现将它们背面朝上,从中任意抽出一张卡片,不放回,再从剩余的两张卡片里任意抽出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求两张卡片的数字之和为偶数的概率.20.如图,在所给的方格纸中,每个小正方形边长都是1,ABC ∆是格点三角形(顶点在方格顶点处).(1)在图1画格点△111A B C ,使△111A B C 与ABC ∆相似,相似比为2:1.(2)在图2画格点△222A B C ,使△222A B C 与ABC ∆相似,面积比为2:1.21.如图,抛物线223y x x =--与x 轴交于A ,B 两点(A 在B 的左侧),顶点为C .(1)求A ,B 两点的坐标;(2)若将该抛物线向上平移t 个单位后,它与x 轴恰好只有一个交点,求t 的值.22.如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,过A ,C ,D 三点的圆交BA 的延长线于点E,连接EC.(1)求证:90∠=︒;E(2)若6BC=,求AE的长.AB=,1023.创客联盟的队员想用3D打印完成一幅边长为4米的正方形作品ABCD,设计图案如图所示(四周阴影是四个全等的矩形,用材料甲打印;中心区是正方形A B C D'''',用材料乙打印).在打印厚度保持相同的情况下,两种材料的消耗成本如下表设矩形的较短边AH的长为x米,打印材料的总费用为y元.(1)A D''的长为米(用含x的代数式表示);(2)求y关于x的函数解析式;(3)当中心区的边长不小于3时,预备材料的购买资金700元够用吗?请利用函数的增减性来说明理由.24.如图,在平面直角坐标系中,(3,4)A,(5,0)B,连结AO,AB.点C是线段AO上的动点(不与A,O重合),连结BC,以BC为直径作H,交x轴于点D,交AB于点E,连结CD,CE,过E作EF x⊥轴于F,交BC于G.(1)AO的长为,AB的长为(直接写出答案)(2)求证:ACE BEF∽;∆∆(3)若圆心H落在EF上,求BC的长;(4)若CEG∆是以CG为腰的等腰三角形,求点C的坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分):1.已知O 的半径为4cm ,点P 在O 上,则OP 的长为( )A .1cmB .2cmC .4cmD .8cm【解答】解:点P 在O 上,4OP cm ∴=.故选:C .2.已知23a b =,则a b a +的值为( ) A .52 B .53C .32D .23 【解答】解:23a b =, ∴23522a b a ++==, 故选:A .3.抛物线223y x x =-+ 的对称轴为( )A .直线1x =-B .直线2x =-C .直线1x =D .直线2x =【解答】解: 2223(1)2y x x x =-+=-+,∴对称轴为1x =,故选:C .4.如图,在O 中,点M 是AB 的中点,连结MO 并延长,交O 于点N ,连结BN ,若140AOB ∠=︒,则N ∠的度数为( )A .70︒B .40︒C .35︒D .20︒【解答】解:点M 是AB 的中点,∴AM BM =,140AOB ∠=︒,1702BOM AOB ∴∠=∠=︒, 1352N BOM ∴∠=∠=︒, 故选:C .5.在一个不透明的口袋里装有2个白球,3个黑球和3个红球,它们除颜色外其余都相同,现随机从袋里摸出1个球,则摸出白球的概率是( )A .12B .38C .13D .14【解答】解:口袋里装有2个白球,3个黑球和3个红球,∴口袋里共有8个球,∴摸出白球的概率是2184=; 故选:D .6.如图, 四边形ABCD 是O 的内接四边形, 若3D B ∠=∠,则B ∠的度数为( )A .30︒B .36︒C .45︒D .60︒ 【解答】解:四边形ABCD 是O 的内接四边形,180B D ∴∠+∠=︒,3D B ∠=∠,4180B ∴∠=︒,解得:45B ∠=︒,故选:C .7.已知点(2,)A a -,(1,)B b ,(3,)C c 是抛物线222y x x =-+上的三点,则a ,b ,c 的大小关系为( )A .a c b >>B .b a c >>C .c a b >>D .b c a >>【解答】解:抛物线2222(1)1y x x x =-+=-+,∴该抛物线的对称轴是直线1x =,当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,点(2,)A a -,(1,)B b ,(3,)C c 是抛物线222y x x =-+上的三点,1(2)3--=,110-=,312-=,a cb ∴>>,故选:A .8.如图,正六边形ABCDEF 的边长为2,现将它沿AB 方向平移1个单位,得到正六边形A B C D E F '''''',则阴影部分A BCDE F '''的面积是( )A .B .CD .2+【解答】解:连接A E '',BD ,过F '作F H A E '⊥''于H ,则四边形A E DB ''是矩形,正六边形ABCDEF 的边长为2,120A F E ∠'''=︒,30F A E ∴∠'''=︒,1F H ∴'=,A H '=,A E ∴''=,将它沿AB 方向平移1个单位,1A B ∴'=,∴阴影部分A BCDE F '''的面积12112A F E BCD A E DB S S S '''∆''=++=⨯⨯+⨯=矩形, 故选:B .9.如图,在Rt ABC∆中,20A∠=︒,6AC=,将ABC∆绕直角顶点C按顺时针方向旋转得到△A B C'',当点B'第一次落在AB边上时,点A经过的路径长(即AA'的长)为( )A.23πB.43πC.2πD.73π【解答】解:90ACB∠=︒,20A∠=︒,70B∴∠=︒,将ABC∆绕直角顶点C按顺时针方向旋转得到△A B C'',BC B C∴=',70BB C B∴∠'=∠=︒,40BCB∴∠'=︒,40ACA∴∠'=︒,∴点A经过的路径长40641803ππ⨯==,故选:B.10.如图,点A为x轴上一点,点B的坐标为(,)a b,以OA,AB为边构造OABC,过点O,C,B的抛物线与x轴交于点D,连结CD,交边AB于点E,若AE BE=,则点C的横坐标为()A .a b -B .2bC .3aD .4a 【解答】解:四边形OABC 为平行四边形,//BC OA ∴,BC OA =,设(,)C t b ,则BC a t =-,//BC AD ,EBC EAD ∴∠=∠,在EBC ∆和EAD ∆中BEC AED EB EAEBC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()EBC EAD ASA ∴∆≅∆,BC AD a t ∴==-,∴点A 为OD 的中点,∴抛物线的对称轴为直线x a t =-,()a t t a a t ∴--=--,13t a ∴=. 故选:C .二、填空题(共8小题,每小题3分,共24分):11.如图,直线////AB CD EF ,已知3AC =,4CE =, 3.6BD =,则DF 的长为 4.8 .【解答】解:直线////AB CD EF ,∴AC BD CE DF=, 即3 3.64DF =, 解得: 4.8DF =,故答案为:4.812.某工厂从一批保温杯中随机抽取1000个进行质量检测,结果有980个保温杯质量合格,那么可以估计这批保温杯的合格率约为 98% .【解答】解:这批保温杯的合格率9801000100%98%=÷⨯=.故答案为:98%.13.请写出一个开口向上,且其图象经过原点的抛物线的解析式 2y x x =+ .【解答】解:设抛物线解析式为2y ax bx c =++,抛物线开中向上, 0a ∴>,故可取1a =,抛物线过原点,0c ∴=,对称没有限制,∴可取1b =,故答案为:2y x x =+.14.已知扇形的圆心角为45︒,半径为3cm ,则该扇形的面积为 8 2. 【解答】解:2224539()3603608n r s cm πππ===, 故答案为98π. 15.如图,点P 是ABC ∆的重心,过点P 作//DE AB 交BC 于点D ,交AC 于点E ,若AB 的长度为6,则DE 的长度为 4 .【解答】解:连接CP 并延长交AB 于F ,由重心的性质得,:2:1CP PF =.//DE AB ,::2:1CD DB CP PF ∴==,:2:3CD CB ∴=, ∴23DE CD AB CB ==, 6AB =,4DE ∴=,故答案为:4.16.一根排水管的截面如图所示,已知水面宽40AB cm =,水的最大深度为8cm ,则排水管的半径为 29 cm .【解答】解:过点O 作OD AB ⊥,交AB 于点E ,40AB cm =,11402022BE AB cm ∴==⨯=, 在Rt OBE ∆中,8OE OB =-,222OB OE BE ∴=+,即22220(8)OB OB =+-,29OB cm ∴=;故答案为:2917.函数28(y ax ax a =-为常数,且0)a >在自变量x 的值满足23x 剟时,其对应的函数值y的最大值为3-,则a 的值为4 . 【解答】解:228(4)16y ax ax a x a =-=--,∴函数28(y ax ax a =-为常数,且0)a >的大致函数图象如图所示,在自变量x 的值满足23x 剟时,其对应的函数值y 的最大值为3-, ∴当2x =时,3y =-最大值,即4163a a -=-,解得14a =. 故答案是:14.18.如图是一个摩天轮,它共有8个座舱,依次标为1~8号,摩天轮中心O 的离地高度为50米,摩天轮中心到各座舱中心均相距25米,在运行过程中,当1号舱比3号舱高5米时,1号舱的离地高度为 20 米.【解答】解:如图所示:作BA 、CD 分别垂直于摩天轮水平的直径,A 、D 为垂足,则90BAO ODC ∠=∠=︒,90AOB B ∠+∠=︒,由题意得:90BOC ∠=︒,25OB OC ==,5AB CD =+,90AOB COD ∴∠+∠=︒,B OCD ∴∠=∠,在AOB ∆和DCO ∆中,BAO ODC B OCD OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOB DCO AAS ∴∆≅∆,OA CD ∴=,AB OD =,设OA x =,则5AB x =+,在Rt AOB ∆中,由勾股定理得:222(5)25x x ++=,解得:15x =,15520AB ∴=+=(米),即号舱的离地高度为20米;故答案为:20.三、解答题(共6小题,共46分):19.有三张分别标有数字2,5,9的卡片,它们的背面都相同.现将它们背面朝上,从中任意抽出一张卡片,不放回,再从剩余的两张卡片里任意抽出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求两张卡片的数字之和为偶数的概率.【解答】解:(1)根据题意画图如下:共有6种等可能的结果数;(2)共有6种等可能的结果数,抽取的两张卡片的数字之和为偶数的有2种情况,∴两张卡片的数字之和为偶数的概率是:13. 20.如图,在所给的方格纸中,每个小正方形边长都是1,ABC ∆是格点三角形(顶点在方格顶点处).(1)在图1画格点△111A B C ,使△111A B C 与ABC ∆相似,相似比为2:1.(2)在图2画格点△222A B C ,使△222A B C 与ABC ∆相似,面积比为2:1.【解答】解:(1)如图所示:△111A B C 即为所求:(2)如图所示:△222A B C 即为所求:21.如图,抛物线223y x x =--与x 轴交于A ,B 两点(A 在B 的左侧),顶点为C .(1)求A ,B 两点的坐标;(2)若将该抛物线向上平移t 个单位后,它与x 轴恰好只有一个交点,求t 的值.【解答】解:(1)当0y =时,2230x x --=,解得13x =,21x =-,所以A 点坐标为(1,0)-,B 点坐标为(3,0);(2)抛物线223y x x =--向上平移t 个单位后所得抛物线解析式为223y x x t =--+, 则△2(2)4(3)0t =---+=,解得4t =.22.如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,过A ,C ,D 三点的圆交BA 的延长线于点E ,连接EC .(1)求证:90E ∠=︒;(2)若6AB =,10BC =,求AE 的长.【解答】解:(1)如图,连接AD ,AB AC =,D 是BC 中点,AD BC ∴⊥,即90ADC ADB ∠=∠=︒,∴点A ,C ,D 在以AC 为直径的圆上,90E ∴∠=︒;(2)10BC =, 152BD BC ∴==, B B ∠=∠,90ADB E ∠=∠=︒,BAD BCE ∴∆∆∽, ∴BA BD BC BE =,即65106AE=+, 解得:73AE =. 23.创客联盟的队员想用3D 打印完成一幅边长为4米的正方形作品ABCD ,设计图案如图所示(四周阴影是四个全等的矩形,用材料甲打印;中心区是正方形A B C D '''',用材料乙打印).在打印厚度保持相同的情况下,两种材料的消耗成本如下表设矩形的较短边AH 的长为x 米,打印材料的总费用为y 元. (1)A D ''的长为 42x - 米(用含x 的代数式表示);(2)求y 关于x 的函数解析式;(3)当中心区的边长不小于3时,预备材料的购买资金700元够用吗?请利用函数的增减性来说明理由.【解答】解:(1)AH GD x ='=,4AD =,42A D x ∴''=-; 故答案为:42x -;(2)y 关于x 的函数解析式为:22604(4)30(42)120480480y x x x x x =⨯⨯-+⨯-=-++;(3)当中心区的边长不小于3米时,423x ∴-…,解得:0.5x …,2120480480y x x =-++,1200a =-<,22b a-=, ∴当0.5x …时,y 随x 增大而增大, 所以当12x =时,690700y =<, 所以当中心区的边长不小于3米时,预备材料的购买资金700元够用.24.如图,在平面直角坐标系中,(3,4)A ,(5,0)B ,连结AO ,AB .点C 是线段AO 上的动点(不与A,O重合),连结BC,以BC为直径作H,交x轴于点D,交AB于点E,连结CD,CE,过E作EF x⊥轴于F,交BC于G.(1)AO的长为5,AB的长为(直接写出答案)(2)求证:ACE BEF∽;∆∆(3)若圆心H落在EF上,求BC的长;(4)若CEG∆是以CG为腰的等腰三角形,求点C的坐标.【解答】解:(1)(3,4)A,(5,0)B.∴=,5OA5OB=,AB==.故答案为:5;.(2)如图1中,==,5OA OB∴∠=∠,A EBFBC是直径,∴∠=∠=︒,BEC AEC90EF OB⊥,∴∠=︒,90EFBAEC EFB∴∠=∠=︒,90∴∆∆∽.ACE BEF(3)如图2中,当GC GE=时,点G与点H重合,∴==,GE GB GCGEB EBG∴∠=∠,∠+∠=︒,90GEB ABO∴∠+∠=︒,EBG ABO90=,OA OB∴∠=∠,A OBA∴∠+∠=︒,90A EBG∴∠=︒,90ACB∴⊥,BC AOOC OB AOB∴=∠=,cos3BC∴===;4(4)①如图2中,当GC GE=时,点G与点H重合,∴==,GE GB GCGEB EBG∴∠=∠,∠+∠=︒,90GEB ABO∴∠+∠=︒,EBG ABO90=,OA OBA OBA ∴∠=∠,90A EBG ∴∠+∠=︒,90ACB ∴∠=︒,BC AO ∴⊥,cos 3OC OB AOB ∴=∠=,9(5C ∴,12)5. ②如图3中,当CE CG =时,作AK OB ⊥于K .设4CD k =,3OD k =.CE CG =,CEG CGE BGF ∴∠=∠=∠,90CEG BEF ∠+∠=︒,90BGF CBD ∠+∠=︒, CBD BEF ∴∠=∠,EF OB ⊥,AK PB ⊥,//EF AK ∴,BEF BAK ∴∠=∠,CBD BAK ∴∠=∠,90CDB AKB ∠=∠=︒,CBD BAK ∴∆∆∽, ∴CD BD BK AK =, ∴45324k k -=, 511k ∴=,15(11C ,20)11.。

2019-2020学年浙江省温州市九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省温州市九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省温州市九年级(上)期末数学试卷一、选择题(共10小题).1.(3分)已知O 的半径为5cm ,点P 在O 上,则OP 的长为( )A .4cmB .5cmC .8cmD .10cm 2.(3分)若52x y =,则x y y -的值为( ) A .52 B .25 C .32 D .35- 3.(3分)将抛物线22y x =-向上平移1个单位后所得新抛物线的表达式为( )A .21y x =-B .23y x =-C .2(1)2y x =+-D .2(1)2y x =--4.(3分)如图,在56⨯的方格纸中,画有格点EFG ∆,下列选项中的格点,与E ,G 两点构成的三角形中和EFG ∆相似的是( )A .点AB .点BC .点CD .点D5.(3分)某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( )A .0.1B .0.2C .0.3D .0.66.(3分)如图,ACB ∠是O 的圆周角,若O 的半径为10,45ACB ∠=︒,则扇形AOB 的面积为( )A .5πB .12.5πC .20πD .25π7.(3分)已知点(3,)A a -,(2,)B b -,(1,)C c 均在抛物线23(2)y x k =++上,则a ,b ,c 的大小关系是( )A .c a b <<B .a c b <<C .b a c <<D .b c a <<8.(3分)如图,AD 是O 的直径,以A 为圆心,弦AB 为半径画弧交O 于点C ,连结BC交AD 于点E ,若3DE =,8BC =,则O 的半径长为( )A .256B .5C .163D .2539.(3分)有一等腰三角形纸片ABC ,AB AC =,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )A .甲B .乙C .丙D .丁10.(3分)如图,抛物线2()5y x m =-++交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为( )A .52B .114C .3D .134二、填空题(本题有8个小题,每小题3分,共24分)11.(3分)抛物线29y x =-与y 轴的交点坐标为 .12.(3分)如图,是用卡钳测量容器内径的示意图.量得卡钳上A ,D 两端点的距离为4cm ,25AO DO OC OB ==,则容器的内径BC 的长为 cm .13.(3分)如图,已知AB 是半圆O 的直径,20BAC ∠=︒,D 是弧AC 上任意一点,则D ∠的度数是 .14.(3分)如图,ABC ∆绕点A 逆时针旋转得到△AB C '',点C 在AB '上,点C 的对应点C '在BC 的延长线上,若80BAC '∠=︒,则B ∠= 度.15.(3分)如图,正五边形ABCDE 内接于O ,若O 的半径为10,则AB 的长为 .16.(3分)如图,在ABC ∆中,90ABC ∠=︒,6AB =,4BC =,P 是ABC ∆的重心,连结BP ,CP ,则BPC ∆的面积为 .17.(3分)已知二次函数243y x x =-+,当5a x a +时,函数y 的最小值为1-,则a 的取值范围是18.(3分)如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是BD 的中点,连结AC 交BD 于点E ,连结AD ,若4BE DE =,6CE =,则AB 的长为 .三、解答题(本题有6小题,共46分,解答需写出必要的文字说明、演算步骤或证明过程)19.(6分)甲乙两人参加一个幸运挑战活动,活动规则是:一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.甲从布袋中摸出一个球,记下颜色后放回,搅匀,乙再摸出一个球,若颜色相同,则挑战成功.(1)用列表法或树状图法,表示所有可能出现的结果.(2)求两人挑战成功的概率.20.(6分)我们把端点都在格点上的线段叫做格点线段.如图,在77⨯的方格纸中,有一格点线段AB ,按要求画图.(1)在图1中画一条格点线段CD 将AB 平分.(2)在图2中画一条格点线段EF .将AB 分为1:3.21.(6分)如图,在平面直角坐标系中,抛物线2122y x x a =-++交x 轴于点A ,B ,交y 轴于点C ,点A 的横坐标为2-.(1)求抛物线的对称轴和函数表达式.(2)连结BC 线段,BC 上有一点D ,过点D 作x 轴的平行线交抛物线于点E ,F ,若6EF =,求点D 的坐标.22.(8分)如图,四边形ABCD内接于O,点E在CB的延长线上,BA平分EBD∠,AE AB=.(1)求证:AC AD=.(2)当32AEEB=,6AD=时,求CD的长.23.(8分)总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利1y元,乙店每件衬衫降价b元时,一天可盈利2y元.(1)当5a=时,求1y的值.(2)求2y关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?24.(12分)如图,在矩形ABCD中,6AB=,8BC=,点E,F分别在边BC,AB上,2AF BE==,连结DE,DF.动点M在EF上从点E向终点F匀速运动,同时,动点N 在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动.(1)求EF的长.(2)设CN x=,求y关于x的函数表达式,并写出自变量x的取值范围.=,EM y(3)连结MN,当MN与DEF∆的一边平行时,求CN的长.参考答案一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.(3分)已知O 的半径为5cm ,点P 在O 上,则OP 的长为( )A .4cmB .5cmC .8cmD .10cm 解:点P 在O 上,5OP r cm ∴==, 故选:B .2.(3分)若52x y =,则x y y -的值为( ) A .52 B .25 C .32 D .35- 解:52x y =, ∴531122x y x y y -=-=-=. 故选:C .3.(3分)将抛物线22y x =-向上平移1个单位后所得新抛物线的表达式为( )A .21y x =-B .23y x =-C .2(1)2y x =+-D .2(1)2y x =-- 解:将抛物线22y x =-向上平移1个单位后所得新抛物线的表达式为221y x =-+,即21y x =-.故选:A .4.(3分)如图,在56⨯的方格纸中,画有格点EFG ∆,下列选项中的格点,与E ,G 两点构成的三角形中和EFG ∆相似的是( )A .点AB .点BC .点CD .点D解:观察图形可得EFG ∆中,直角边的比为12FG EF =, 观各选项,51225EG DG ==,只有D 选项三角形符合,与所给图形的三角形相似. 故选:D .5.(3分)某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( )A .0.1B .0.2C .0.3D .0.6解:共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.1∴张抽奖券中奖的概率是1020300.6100++=, 故选:D .6.(3分)如图,ACB ∠是O 的圆周角,若O 的半径为10,45ACB ∠=︒,则扇形AOB 的面积为( )A .5πB .12.5πC .20πD .25π解:45ACB ∠=︒,90AOB ∴∠=︒, 半径为10,∴扇形AOB 的面积为:2901025360ππ⨯=, 故选:D .7.(3分)已知点(3,)A a -,(2,)B b -,(1,)C c 均在抛物线23(2)y x k =++上,则a ,b ,c 的大小关系是( )A .c a b <<B .a c b <<C .b a c <<D .b c a << 解:函数的对称轴为:2x =-,30a =>,故开口向上,1x =比3x =-离对称轴远,故c 最大,b 为函数最小值,故选:C .8.(3分)如图,AD 是O 的直径,以A 为圆心,弦AB 为半径画弧交O 于点C ,连结BC 交AD 于点E ,若3DE =,8BC =,则O 的半径长为( )A .256B .5C .163D .253 解:由作法得AC AB =,∴AB AC =,ADB ABE ∴∠=∠,AB 为直径,AD BC ∴⊥,142BE CE BC ∴===,90BEA BED ∠=∠=︒, 而BDE ABE ∠=∠,Rt ABE Rt BDE ∴∆∆∽,::BE DE AE BE ∴=,即4:3:4AE =,163AE ∴=, 1625333AD AE DE ∴=+=+=, O ∴的半径长为256. 故选:A .9.(3分)有一等腰三角形纸片ABC ,AB AC =,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )A .甲B .乙C .丙D .丁 解:AD BC ⊥,AB AC =,527BD CD ∴==+=,213AD =+=, 1217322ABD ACD S S ∆∆∴==⨯⨯=//EF AD , EBF ABD ∴∆∆∽,∴2525()749ABD S S ∆==甲, 7514S ∴=甲, 2175362147S ∴=-=乙, 同理224()39ACD S S ∆==丙, 429S ∴=丙, 2142952918S ∴=-=丁, 95751814>, ∴面积最大的是丁,故选:D .10.(3分)如图,抛物线2()5y x m =-++交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C,则点C的纵坐标为()A.52B.114C.3D.134解:将抛物线2()5y x m=-++向右平移3个单位后得到2(3)5y x m=-+-+,根据题意得:22()5(3)5y x my x m⎧=-++⎨=-+-+⎩,解得:32114x my⎧=-⎪⎪⎨⎪=⎪⎩,∴交点C的坐标为3(2m-,11)4,故选:B.二、填空题(本题有8个小题,每小题3分,共24分)11.(3分)抛物线29y x=-与y轴的交点坐标为(0,9)-.解:令0x=,299y x=-=-,故答案为:(0,9)-12.(3分)如图,是用卡钳测量容器内径的示意图.量得卡钳上A,D两端点的距离为4cm,25AO DOOC OB==,则容器的内径BC的长为10cm.解:如图,连接AD,BC,25AO DO OC OB ==,AOD BOC ∠=∠, AOD BOC ∴∆∆∽,∴25AD AO BC CO ==, 又4AD cm =,5102BC AD cm ∴==. 故答案是:10cm .13.(3分)如图,已知AB 是半圆O 的直径,20BAC ∠=︒,D 是弧AC 上任意一点,则D ∠的度数是 110︒ .解:AB 是半圆O 的直径90ACB ∴∠=︒902070ABC ∴∠=︒-︒=︒18070110D ∴∠=︒-︒=︒故答案是:110︒.14.(3分)如图,ABC ∆绕点A 逆时针旋转得到△AB C '',点C 在AB '上,点C 的对应点C '在BC 的延长线上,若80BAC '∠=︒,则B ∠= 30 度.解:ABC ∆绕点A 逆时针旋转得到△AB C '',C AB CAB ∴∠''=∠,AC AC '=,80BAC '∠=︒,1402C AB CAB C AB ∴∠''=∠=∠'=︒, 70ACC ∴∠'=︒,30B ACC CAB ∴∠=∠'-∠=︒,故答案为:30.15.(3分)如图,正五边形ABCDE 内接于O ,若O 的半径为10,则AB 的长为 4π .解:如图所示:连接OA 、OB .O 为正五边形ABCDE 的外接圆,O 的半径为5,360725AOB ︒∴∠==︒, ∴AB 的长为:72104180ππ⨯=. 故答案为4π.16.(3分)如图,在ABC ∆中,90ABC ∠=︒,6AB =,4BC =,P 是ABC ∆的重心,连结BP ,CP ,则BPC ∆的面积为 4 .解:ABC ∆的面积11641222S AB BC =⨯=⨯⨯=, 延长BP 交AC 于点E ,则E 是AC 的中点,且23BP BE =(证明见备注),BEC ∆的面积162S ==,23BP BE =, 则BPC ∆的面积23BEC =∆的面积4=, 故答案为4.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:ABC ∆,E 、F 是AB ,AC 的中点.EC 、FB 交于G .求证:12EG CG = 证明:过E 作//EH BF 交AC 于H . AE BE =,//EH BF ,12AH HF AF ∴==, 又AF CF =,12HF CF ∴=, 1:2HF CF ∴=, //EH BF ,1::2EG CG HF CF ∴==, 12EG CG ∴=. 17.(3分)已知二次函数243y x x =-+,当5a x a +时,函数y 的最小值为1-,则a 的取值范围是 32a -解:二次函数2243(2)1y x x x =-+=--,∴对称轴为直线2x =,当25a a <<+时,则在5a x a +范围内,2x =时有最小值1-,当2a 时,则在5a x a +范围内,x a =时有最小值1-,2431a a ∴-+=-,解得2a =,当52a +时,则在5a x a +范围内,5x a =+时有最小值1-,2(5)4(5)31a a ∴+-++=-,解得3a =-,a ∴的取值范围是32a -,故答案为32a -.18.(3分)如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是BD 的中点,连结AC 交BD 于点E ,连结AD ,若4BE DE =,6CE =,则AB 的长为 410 .解:如图,连接OC 交BD 于K .CD BC =,OC BD ∴⊥,4BE DE =,∴可以假设DE k =.4BE k =,则 2.5DK BK k ==, 1.5EK k =,AB 是直径,90ADK DKC ACB ∴∠=∠=∠=︒,//AD CK ∴,::AE EC DE EK ∴=,:6:1.5AE k k ∴=,4AE ∴=,ECK EBC ∆∆∽,2EC EK EB∴=,36 1.54k k∴=⨯,k>,6k∴=,229636215BC BE EC∴=-=-=,222210(215)410AB AC BC∴=+=+=.故答案为410.三、解答题(本题有6小题,共46分,解答需写出必要的文字说明、演算步骤或证明过程)19.(6分)甲乙两人参加一个幸运挑战活动,活动规则是:一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.甲从布袋中摸出一个球,记下颜色后放回,搅匀,乙再摸出一个球,若颜色相同,则挑战成功.(1)用列表法或树状图法,表示所有可能出现的结果.(2)求两人挑战成功的概率.解:(1)用列表法表示所有可能出现的结果如下:(2)共有9种等可能出现的结果,其中颜色相同的有5种,()5 9P∴=颜色相同,答:获胜的概率为59.20.(6分)我们把端点都在格点上的线段叫做格点线段.如图,在77⨯的方格纸中,有一格点线段AB,按要求画图.(1)在图1中画一条格点线段CD将AB平分.(2)在图2中画一条格点线段EF.将AB分为1:3.解:(1)如图,线段CD 即为所求.(2)如图,线段EF 即为所求,注意有两种情形.21.(6分)如图,在平面直角坐标系中,抛物线2122y x x a =-++交x 轴于点A ,B ,交y 轴于点C ,点A 的横坐标为2-.(1)求抛物线的对称轴和函数表达式.(2)连结BC 线段,BC 上有一点D ,过点D 作x 轴的平行线交抛物线于点E ,F ,若6EF =,求点D 的坐标.解:(1)A 点的横坐标为2-,(2,0)A ∴-,点A 在抛物线2122y x x a =-++上, 240a ∴--+=,解得:6a =,∴函数的解析式为:21262y x x =-++, ∴对称轴为22122()2b x a =-=-=⨯-;(2)(2,0)A -,对称轴为2x =,∴点B 的坐标为(6,0),∴直线BC 的解析式为6y x =-+,点D 在BC 上,∴设点D 的坐标为(,6)m m -+,∴点E 和点F 的纵坐标为6m -+,212662y x x m ∴=-++=-+,解得:2x =±2(2EF ∴=--=6EF =,6∴=,解得: 2.5m =,∴点D 的坐标为(2.5,3.5).22.(8分)如图,四边形ABCD内接于O,点E在CB的延长线上,BA平分EBD∠,AE AB=.(1)求证:AC AD=.(2)当32AEEB=,6AD=时,求CD的长.【解答】(1)证明:BA平分EBD∠,ABE ABD∴∠=∠,ABE ADC∠=∠,ABD ACD∠=∠,ACD ADC∴∠=∠,AC AD∴=;(2)解:AE AB=,E ABE∴∠=∠,E ABE ACD ADC∴∠=∠=∠=∠,ABE ACD∴∆∆∽,∴32AE ADBE CD==,226433CD AD∴==⨯=.23.(8分)总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a 元时,一天可盈利1y 元,乙店每件衬衫降价b 元时,一天可盈利2y 元.(1)当5a =时,求1y 的值.(2)求2y 关于b 的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?解:(1)由题意可得,1(40)(202)y a a =-+,当5a =时,1(405)(2025)1050y =-⨯+⨯=,即当5a =时,1y 的值是1050;(2)由题意可得,22(30)(322)228960y b b b b =-+=-++,即2y 关于b 的函数表达式为22228960y b b =-++;(3)设两家下降的价格都为x 元,两家的盈利和为w 元,222(40)(202)(228960)48817604(11)2244w x x x x x x x =-++-++=-++=--+, ∴当11x =时,w 取得最大值,此时2244w =,答:每件衬衫下降11元时,两家分店一天的盈利和最大,最大是2244元.24.(12分)如图,在矩形ABCD 中,6AB =,8BC =,点E ,F 分别在边BC ,AB 上,2AF BE ==,连结DE ,DF .动点M 在EF 上从点E 向终点F 匀速运动,同时,动点N 在射线CD 上从点C 沿CD 方向匀速运动,当点M 运动到EF 的中点时,点N 恰好与点D 重合,点M 到达终点时,M ,N 同时停止运动.(1)求EF 的长.(2)设CN x =,EM y =,求y 关于x 的函数表达式,并写出自变量x 的取值范围.(3)连结MN ,当MN 与DEF ∆的一边平行时,求CN 的长.解:(1)四边形ABCD是矩形,90B∴∠=︒,6AB CD==,8AD BC==,2AF BE==,624BF∴=-=,22224225EF BF BE∴=+=+=.(2)由题意:12EF EM CD CN=,∴56yx=5(012)6y x x∴=.(3)如图31-中,延长FE交DC的延长线于H.EFB EHC∆∆∽,∴EF BE BF EH EC CH ==, ∴25246EH CH ==, 65EH ∴=,12CH =, 当//MN DF 时,HM HN HF BD =, ∴65121885yx ++=, 56y x =, 解得125x =,这种情形不存在.如图32-中,当//MN DE 时,EH DH EM DN=,∴65186x =-, 5y x =, 解得12x =,综上所述,满足条件的CN 的值为125或12.。

2019-2020学年浙教版九年级上期末考试数学试卷及答案解析

2019-2020学年浙教版九年级上期末考试数学试卷及答案解析

2019-2020学年浙教版九年级上期末考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列抛物线中,与y轴交点坐标为(0,3)的是()A.y=(x﹣3)2B.y=x2﹣3C.y=2x2﹣3x D.y=x2﹣2x+3 2.如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度可能是()A.60°B.90°C.120°D.180°3.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.有两辆车按1,2编号,方方和成成两人可以任意选坐一辆车.则两人同坐1号车的概率为()A.B.C.D.6.已知点(﹣2,y1),(,y2),(,y3)在函数y=﹣(x﹣1)2的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,已知在△ABC中,AB=14,BC=12,AC=10,D是AC上一点,过点D画一条直线l,把△ABC分成两部分,使其中的一个三角形与△ABC相似,这样的直线有几条()A.2B.3C.3或4D.48.甲、乙两人同时从A地出发,步行15km到B地,甲比乙每小时多走1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走xkm,则可列出的方程为()A.B.C.D.9.已知反比例函数的图象经过点P(4,﹣1),则该反比例函数的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.(5分)醴陵市农科站在相同条件下经试验发现蚕豆种子的发芽率为97.5%,请估计醴陵地区1000斤蚕豆种子中不能发芽的大约有斤.12.(5分)若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.(5分)如图,隧道的截面是抛物线型,抛物线的解析式为y=﹣2+4.隧道是单行道(车从正中间通过),为安全考虑,车顶与隧道顶部的垂直距离不少于0.5m,若货运汽车的宽为2米,则车安全通过隧道的限高为米.。

2019-2020浙江温州瑞安集云实验学校九年级上数学期末 试题答案

2019-2020浙江温州瑞安集云实验学校九年级上数学期末 试题答案

2019学年第一学期九年级数学期末检测试卷(参考答案)一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)三、解答题(本题有8小题,共80分) 17.(本题10分)(1)√12+(π−2019)0−(√3+1)2=2√3+1-4-2√3 (3分) =-3 (2分) (2)x−12=2x+33解:3x -3=4x+6 X=-9(5分)18. (1)在平行四边形ABCD 中,AD//BC,AD=BC,∵AE=CF, ∴DE//BF,DE=BF∴四边形BEDF 是平行四边形∴BE=DF (4分) (2)∵AD=DF ,∠ADF=40° ∴∠DAF=∠AFD=70°,∵AD//BC∴∠AFB=∠FAD=70°(4分)19、(1)(5分)1-234(1,4)(-2,4)(3,4)-5(1,-5)(-2,-5)(3,-5)6(1,6)(-2,6)(3,6)(2)P=49(3分)20.每种情况分对得3分。

21.(1)连结DE,∵∠C=90°,∴AD为直径, ∴DE⊥AB,∵AD=BD,∴AE=BE (三线合一) (5分)(2)设BD=x,∵∠B=∠B,∠C=∠DEB=90°∴△ABC∽△DBE∴BDAB =BEAC∴4√5=2√5x+3得x=5.∴AD=BD=5,∴AC=4 (4分) 22.(本题共10分)(1)把A (0,3).B (6,3)代入c bx x y ++-=2.⎩⎨⎧==∴36c b . (3分) (2)设P(m,−m 2+6m +3) ∵∠P=∠B,∠AHP=∠OAB=90° ∴△ABO ∽△HPA∴HP AB =AHAO∴−m 2+6m6=m3 得m=4.∴P(4,11) (3分)(3)当△APH 的面积是四边形AOQH 的面积的2倍时,2(AO+HQ )=PH ∴2(3+6−m 2)=−m 2+6m ,得:m 1=4,m 2=3, (3分) ∴P(4,11) 或P(3,12 ) (1分) 23.(本题共12分)解:(1)五边形ABCDE 的面积为 115 (m ²) ;(2分) (2)由题意可以得:PQ=(10-2x) ,MQ= (3+x) (2分)y=(10-2x)(x+3)=−2x 2+4x +30 (2分)(3)设总造价为w (万元) W=115×0.1+0.4(−2x 2+4x +30) w =−0.8x 2+1.6x +23.5(4分)当x=1时w 最大值=24.3,答总造价的最大值为24.3万元。

2019-2020学年浙教版九年级数学上册期末综合检测试卷(有答案)

2019-2020学年浙教版九年级数学上册期末综合检测试卷(有答案)
则任意摸出一张卡片,摸到黑色卡片的概率是 =0.08;
(2)盒子里蓝色卡片的个数是:50﹣12﹣16﹣4=18.
27.【答案】解:(1)每次游戏可能出现的所有结果列表如下:
表格中共有9种等可能的结果,
则数字之积为3的倍数的有五种,
其概率为 ;数字之积为5的倍数的有三种,
其概率为 = .
(2)这个游戏对双方不公平.
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
3.抛物线y=3x2, y=-3x2, y= x2+3共有的性质是()
A.开口向上 B.对称轴是y轴 C.都有最高点 D.y随x值的增大而增大
4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()
A.k>- B.k>- 且k≠0 C.k≥- D.k≥- 且k≠0
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴ ,即 = .
(2)当∠B+∠EGC=180°时, = 成立.
证明:∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°,
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的 ,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.
14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.

2019-2020学年浙江省温州市瑞安市六校联盟九年级(上)期中数学试卷(解析版)

2019-2020学年浙江省温州市瑞安市六校联盟九年级(上)期中数学试卷(解析版)

2019-2020学年浙江省温州市瑞安市六校联盟九年级(上)期中数学试卷一、选择题(本题共有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选,多选,错选,均不得分)1.(4分)已知=,则的值为()A.B.C.D.2.(4分)已知,A,B,C是⊙O上的三点,∠BOC=100°,则∠BAC的度数为()A.30°B.45°C.50°D.60°3.(4分)下列命题为真命题的是()A.三点确定一个圆B.度数相等的弧相等C.相等的圆心角所对的弧相等D.90°的圆周角所对的弦是直径4.(4分)某校食堂每天中午为学生提供A、B两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为()A.B.C.D.5.(4分)如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是()A.35°B.55°C.65°D.70°6.(4分)将抛物线y=3x2先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣27.(4分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.8.(4分)已知二次函数y=x2﹣6x+1,关于该函数在﹣1≤x≤4的取值范围内,下列说法正确的是()A.有最大值8,最小值﹣8B.有最大值8,最小值﹣7C.有最大值﹣7,最小值﹣8D.有最大值1,最小值﹣79.(4分)如图,在边长为2的正方形ABCD中,点E是边CD的中点,以A为圆心,AB为半径作弧,交BE于点F.记图中分割部分的面积为S1,S2,则S1﹣S2的值为()A.4﹣πB.2π﹣4C.6﹣2πD.π﹣310.(4分)如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC、BC为直径作半圆,其中M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是()A.17B.18C.19D.20二、填空题(本题共有6小题,每小题5分,共30分)11.(5分)已知扇形的圆心角为120°,弧长为6π,则它的半径为.12.(5分)已知线段a=2,b=8,则a,b的比例中项是.13.(5分)一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有个白球.14.(5分)已知二次函数y=ax2+bx﹣3自变量x的部分取值和对应函数值y如下表:则在实数范围内能使得y﹣5>0成立的x取值范围是.15.(5分)现在很多家庭都使用折叠型西餐桌来节省空间,两边翻开后成圆形桌面(如图1).餐桌两边AB和CD平行且相等(如图2),小华用皮带尺量出AC=2米,AB=1米,那么桌面翻成圆桌后,桌子面积会增加平方米.(结果保留π)16.(5分)小林家的洗手盘台面上有一瓶洗手液(如图1).当手按住顶部A下压如图2位置时,洗手液瞬间从喷口B流出路线呈抛物线经过C与E两点.瓶子上部分是由弧和弧组成,其圆心分别为D,C.下部分的是矩形CGHD的视图,GH=10cm,点E 到台面GH的距离为14cm,点B距台面的距离为16cm,且B,D,H三点共线.若手心距DH的水平距离为2cm去接洗手液时,则手心距水平台面的高度为cm.三、解答题(本题有8小题,第17,18,19,20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)如图,△ABC分别交⊙O于点A,B,D,E,且CA=CB.求证:AD=BE.18.(8分)如图,在8×8的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出∠ADC,使得∠ADC=∠ABC,且点D为格点.(2)在图2中画出∠CEB,使得∠CEB=2∠CAB,且点E为格点.19.(8分)一项答题竞猜活动,在6个式样、大小都相同的箱子中有且只有一个箱子里藏有礼物.参与选手将回答5道题目,每答对一道题,主持人就从6个箱子中去掉一个空箱子.而选手一旦答错,即取消后面的答题资格,从剩下的箱子中选取一个箱子.(1)一个选手答对了4道题,求他选中藏有礼物的箱子的概率;(2)已知一个选手选中藏有礼物的箱子的概率为,则他答对了几道题?20.(8分)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.21.(10分)如图,抛物线y =﹣(x ﹣k )2+经过点D (﹣1,0),与x 轴正半轴交于点E ,与y 轴交于点C ,过点C 作CB ∥x 轴交抛物线于点B .连接BD 交y 轴于点F . (1)求点E 的坐标. (2)求△CFB 的面积.22.(12分)如图,在⊙O 中,弦AB ⊥弦CD 于点E ,弦AG ⊥弦BC 于点F ,AG 与CD 相交于点M .(1)求证:=;(2)若弧=80°,⊙O 的半径为6,求+的弧长和.23.(12分)一网店经营一种玩具,购进时的单价是30元.根据市场调查表明:当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该玩具的销售单价为x 元(x >40),请你分别用x 的代数式来表示销售量y 件和销售该玩具获得利润w 元,并把结果填写在表格中:(2)若该网店要获得了10000元销售利润,求该玩具销售单价x 应定为多少元? (3)若该网店要完成不少于550件的销售任务,求网店销售该品牌玩具获得的最大利润是多少?24.(14分)如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连结CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.2019-2020学年浙江省温州市瑞安市六校联盟九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选,多选,错选,均不得分)1.(4分)已知=,则的值为()A.B.C.D.【分析】直接利用已知表示出a,b的值,进而得出答案.【解答】解:∵=,∴设a=3x,b=2x,故==.故选:C.【点评】此题主要考查了比例的性质,正确用同一未知数表示出各数是解题关键.2.(4分)已知,A,B,C是⊙O上的三点,∠BOC=100°,则∠BAC的度数为()A.30°B.45°C.50°D.60°【分析】根据圆周角定理即可得到结论.【解答】解:∵A,B,C是⊙O上的三点,∠BOC=100°,∴∠BAC=BOC=100°=50°,故选:C.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.3.(4分)下列命题为真命题的是()A.三点确定一个圆B.度数相等的弧相等C.相等的圆心角所对的弧相等D.90°的圆周角所对的弦是直径【分析】根据过三点的圆、等弧的概念、圆心角和圆周角定理判断即可.【解答】解:A、不在同一直线上的三点确定一个圆,是假命题;B、度数相等的弧不一定相等,是假命题;C、在同圆或等圆中,相等的圆心角所对的弧相等是假命题;D、90°的圆周角所对的弦是直径,是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.(4分)某校食堂每天中午为学生提供A、B两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为()A.B.C.D.【分析】画出树状图得出所有等可能的情况数,再找出甲乙两人选择同款套餐的情况数,然后根据概率公式求解即可.【解答】解:根据题意画图如下:所有等可能的情况有4种,其中甲乙两人选择同款套餐的有2种,则甲乙两人选择同款套餐的概率为:=;故选:A.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.5.(4分)如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是()A.35°B.55°C.65°D.70°【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠OAB的度数.【解答】解:∵∠D=35°,∴∠AOB=2∠D=2×35°=70°,∵AO=OB,∴∠OAB=∠OBA=(180°﹣70°)=55°,故选:B.【点评】本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.(4分)将抛物线y=3x2先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=3x2先向左平移一个单位得到解析式:y=3(x+1)2,再向上平移2个单位得到抛物线的解析式为:y=3(x+1)2+2.故选:A.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.7.(4分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.8.(4分)已知二次函数y=x2﹣6x+1,关于该函数在﹣1≤x≤4的取值范围内,下列说法正确的是()A.有最大值8,最小值﹣8B.有最大值8,最小值﹣7C.有最大值﹣7,最小值﹣8D.有最大值1,最小值﹣7【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【解答】解:∵y=x2﹣6x+1=(x﹣3)2﹣8,∴在﹣1≤x≤4的取值范围内,当x=3时,有最小值﹣8,当x=﹣1时,有最大值为y=16﹣8=8.故选:A.【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.9.(4分)如图,在边长为2的正方形ABCD中,点E是边CD的中点,以A为圆心,AB为半径作弧,交BE于点F.记图中分割部分的面积为S1,S2,则S1﹣S2的值为()A.4﹣πB.2π﹣4C.6﹣2πD.π﹣3【分析】根据正方形的性质和扇形以及三角形的面积公式即可得到结论.【解答】解:∵四边形ABCD 是正方形, ∴AB =CD =BC =2, ∵点E 是边CD 的中点,∴CE =CD =1,∴S 1﹣S 2=S △BCE ﹣(S 正方形ABCD ﹣S扇形ABD )=×2×1﹣(2×2﹣)=π﹣3, 故选:D .【点评】本题考查了扇形面积的计算,正方形的性质,三角形面积的计算,正确的识别图形是解题的关键.10.(4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC 、BC 为直径作半圆,其中M ,N 分别是AC 、BC 为直径作半圆弧的中点,,的中点分别是P ,Q .若MP +NQ =7,AC +BC =26,则AB 的长是( )A .17B .18C .19D .20【分析】连接OP ,OQ ,根据M ,N 分别是AC 、BC 为直径作半圆弧的中点,,的中点分别是P ,Q .得到OP ⊥AC ,OQ ⊥BC ,从而得到H 、I 是AC 、BC 的中点,利用中位线定理得到OH +OI =(AC +BC )=13和PH +QI =6,从而利用AB =OP +OQ =OH +OI +PH +QI 求解.【解答】解:连接OP ,OQ ,分别交AC ,BC 于H ,I ,∵M ,N 分别是AC 、BC 为直径作半圆弧的中点,,的中点分别是P ,Q ,∴OP ⊥AC ,OQ ⊥BC ,由对称性可知:H ,P ,M 三点共线,I ,Q ,N 三点共线, ∴H 、I 是AC 、BC 的中点,∴OH +OI =(AC +BC )=13,∵MH +NI =AC +BC =13,MP +NQ =7, ∴PH +QI =13﹣7=6,∴AB=OP+OQ=OH+OI+PH+QI=13+6=19,故选:C.【点评】本题考查了中位线定理的应用,解题的关键是正确作出辅助线,题目中还考查了垂径定理和轴对称的知识,有难度.二、填空题(本题共有6小题,每小题5分,共30分)11.(5分)已知扇形的圆心角为120°,弧长为6π,则它的半径为9.【分析】根据弧长的公式l=,计算即可.【解答】解:设扇形的半径为R,由题意得,=6π,解得,R=9,故答案为:9.【点评】本题考查的是弧长的计算,掌握弧长公式:l=是解题的关键.12.(5分)已知线段a=2,b=8,则a,b的比例中项是4.【分析】设线段a,b的比例中项为c,根据比例中项的定义可知,c2=ab,代入数据可直接求得c的值,注意两条线段的比例中项为正数.【解答】解:设线段a,b的比例中项为c,∵c是长度分别为2、8的两条线段的比例中项,∴c2=ab=2×8,即c2=16,∴c=4(负数舍去).故答案为:4.【点评】本题主要考查了线段的比.根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.13.(5分)一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有9个白球.【分析】设口袋中白球有x个,根据摸到红球的次数占总次数的频率可估计摸到红球的概率列出方程,解之可得.【解答】解:设口袋中白球有x个,根据题意,得:=,解得x=9,经检验x=9是分式方程的解,∴口袋中大约有9个白球,故答案为:9.【点评】此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(5分)已知二次函数y=ax2+bx﹣3自变量x的部分取值和对应函数值y如下表:则在实数范围内能使得y﹣5>0成立的x取值范围是x<﹣2或x>4.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=5的自变量x的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣2时,y=5,∴x=4时,y=5,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣5>0成立的x取值范围是x<﹣2或x>4故答案为:x<﹣2或x>4.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.15.(5分)现在很多家庭都使用折叠型西餐桌来节省空间,两边翻开后成圆形桌面(如图1).餐桌两边AB 和CD 平行且相等(如图2),小华用皮带尺量出AC =2米,AB =1米,那么桌面翻成圆桌后,桌子面积会增加平方米.(结果保留π)【分析】首先将圆形补全,设圆心为O ,连接DO ,过点O 作OE ⊥AD 于点E ,进而得出AD ,EO 的长以及∠1,∠AOD 的度数,进而得出S 弓形AD 面积=S扇形AOD﹣S △AOD 求出即可.【解答】解:将圆形补全,设圆心为O ,连接DO ,过点O 作OE ⊥AD 于点E , 由题意可得出:∠DAB =∠ABC =90°, ∵AC =2米,AB =1米, ∴∠ACB =30°,∵餐桌两边AB 和CD 平行且相等, ∴∠C =∠1=30°,∴EO =AO =m ,∴AE =×=,∴AD =,∵∠1=∠D =30°, ∴∠AOD =120°, ∴S 弓形AD 面积 =S 扇形AOD ﹣S △AOD=﹣××,=﹣,∴桌面翻成圆桌后,桌子面积会增加(﹣)平方米.故答案为:﹣.【点评】此题主要考查了勾股定理以及扇形面积计算以及三角形面积求法等知识,熟练掌握特殊角的三角函数关系是解题关键.16.(5分)小林家的洗手盘台面上有一瓶洗手液(如图1).当手按住顶部A下压如图2位置时,洗手液瞬间从喷口B流出路线呈抛物线经过C与E两点.瓶子上部分是由弧和弧组成,其圆心分别为D,C.下部分的是矩形CGHD的视图,GH=10cm,点E 到台面GH的距离为14cm,点B距台面的距离为16cm,且B,D,H三点共线.若手心距DH的水平距离为2cm去接洗手液时,则手心距水平台面的高度为11cm.【分析】根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.【解答】解:如图:∵CD=DE=10,根据题意,得C(﹣5,8),E(﹣3,14),B(5,16).设抛物线解析式为y=ax2+bx+c,因为抛物线经过C、E、B三点,∴解得所以抛物线解析式为y=﹣x2+x+.当x=7时,y=11.∴Q(7,11)所以手心距水平台面的高度为11cm.故答案为11.【点评】本题考查了二次函数的应用,解决本题的关键是准确进行计算.三、解答题(本题有8小题,第17,18,19,20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)如图,△ABC分别交⊙O于点A,B,D,E,且CA=CB.求证:AD=BE.【分析】根据等腰三角形的性质得到∠A=∠B,根据圆心角、弧、弦的关系定理证明结论.【解答】证明:∵AC=BC,∴∠A=∠B,∴=,∴﹣=﹣,即=,∴AD=BE.【点评】本题考查的是圆心角、弧、弦的关系、等腰三角形的性质,掌握圆心角、弧、弦的关系定理是解题的关键.18.(8分)如图,在8×8的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出∠ADC,使得∠ADC=∠ABC,且点D为格点.(2)在图2中画出∠CEB,使得∠CEB=2∠CAB,且点E为格点.【分析】(1)构造全等三角形解决问题即可.(2)利用圆周角定理解决问题即可.【解答】解:(1)如图点D,D′,D″即为所求.(2)如图点E,E′即为所求.【点评】本题考查作图﹣应用与设计,全等三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(8分)一项答题竞猜活动,在6个式样、大小都相同的箱子中有且只有一个箱子里藏有礼物.参与选手将回答5道题目,每答对一道题,主持人就从6个箱子中去掉一个空箱子.而选手一旦答错,即取消后面的答题资格,从剩下的箱子中选取一个箱子.(1)一个选手答对了4道题,求他选中藏有礼物的箱子的概率;(2)已知一个选手选中藏有礼物的箱子的概率为,则他答对了几道题?【分析】(1)求得剩下的箱子数,用概率公式求得概率即可;(2)根据概率求得箱子的总数,然后求得答对的题目即可.【解答】解:(1)∵共6个箱子,答对了4道取走4个箱子,∴还剩2个箱子,∴一个选手答对了4道题,求他选中藏有礼物的箱子的概率;(2)∵一个选手选中藏有礼物的箱子的概率为,∴他从5个箱子中选择一个箱子,∴则他答对了1道题;【点评】考查了概率公式,解题的关键是仔细读题并读懂题意,难度中等.20.(8分)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.【分析】连接AC,根据已知条件利用等角对等边可以得到CF=BF;作CG⊥AD于点G,先利用HL判定Rt△BCE≌Rt△DCG,推出BE=DG,根据边之间的关系可求得BE的值,再根据相似三角形的判定得到△BCE∽△BAC,根据相似三角形的对应边成比例,可得到BC2=BE•AB,这样便求得BC的值,注意负值要舍去.【解答】(1)证明:连接AC,如图∵C是弧BD的中点∴∠BDC=∠DBC(1分)又∵∠BDC=∠BAC在△ABC中,∠ACB=90°,CE⊥AB∴∠BCE=∠BAC∠BCE=∠DBC(3分)∴CF=BF;(4分)(2)解:解法一:作CG⊥AD于点G,∵C是弧BD的中点∴∠CAG=∠BAC,即AC是∠BAD的角平分线.(5分)∴CE=CG,AE=AG(6分)在Rt△BCE与Rt△DCG中,CE=CG,CB=CD∴Rt△BCE≌Rt△DCG(HL)∴BE=DG(7分)∴AE=AB﹣BE=AG=AD+DG即6﹣BE=2+DG∴2BE=4,即BE=2(8分)又∵△BCE∽△BAC∴BC2=BE•AB=12(9分)BC=±2(舍去负值)∴BC=2.(10分)解法二:∵AB是⊙O的直径,CE⊥AB ∴∠BEF=∠ADB=90°,(5分在Rt△ADB与Rt△FEB中,∵∠ABD=∠FBE∴△ADB∽△FEB,则,即,∴BF=3EF(6分)又∵BF=CF,∴CF=3EF利用勾股定理得:(7分)又∵△EBC∽△ECA则,则CE2=AE•BE(8分)∴(CF+EF)2=(6﹣BE)•BE即(3EF+EF)2=(6﹣2EF)•2EF∴EF=(9分)∴BC=.(10分)【点评】此题主要考查学生对圆周角的定理,相似三角形的判定,全等三角形的判定等知识点的综合运用能力.21.(10分)如图,抛物线y=﹣(x﹣k)2+经过点D(﹣1,0),与x轴正半轴交于点E,与y轴交于点C,过点C作CB∥x轴交抛物线于点B.连接BD交y轴于点F.(1)求点E的坐标.(2)求△CFB的面积.【分析】(1)把点D(﹣1,0)代入y=﹣(x﹣k)2+,求k=1,令y=0 有,解得x1=﹣1,x2=3,即可求解;(2)求出BD的解析式:,OF=CF=,△CFB的面积=.【解答】解:(1)把点D(﹣1,0)代入y=﹣(x﹣k)2+,解得:k=1;令y=0 有,解得x1=﹣1(舍去),x2=3,∴点E(3,0);(2)点B的坐标为:(2,),点D(﹣1,0),将点B、D的坐标代入一次函数表达式并解得:直线BD的解析式为:,OF=,CF=,△CFB的面积=.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.22.(12分)如图,在⊙O中,弦AB⊥弦CD于点E,弦AG⊥弦BC于点F,AG与CD 相交于点M.(1)求证:=;(2)若弧=80°,⊙O的半径为6,求+的弧长和.【分析】(1)根据直角三角形的性质、同角的余角相等得到∠DCB=∠GAB,根据圆周角定理证明结论;(2)根据三角形的外角性质得到∠ACD+∠CAG=40°,根据弧长公式计算即可.【解答】(1)证明:∵AB⊥CD,AG⊥BC,∴∠DCB+∠B=90°,∠GAB+∠B=90°,∴∠DCB=∠GAB,∴;(2)∵的度数是80°,∴∠B=40°,∴∠DCB=50°,∴∠GMC=40°,∴∠ACD+∠CAG=40°,∴+的弧长和==.【点评】本题考查的是弧长的计算、圆周角定理,掌握弧长公式是解题的关键.23.(12分)一网店经营一种玩具,购进时的单价是30元.根据市场调查表明:当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y 件和销售该玩具获得利润w元,并把结果填写在表格中:(2)若该网店要获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)若该网店要完成不少于550件的销售任务,求网店销售该品牌玩具获得的最大利润是多少?【分析】(1)销售量等于600减去10(x﹣40),化简即可;(2)由题意得出1000﹣10x≥550,从而得x的一个范围,将利润函数w=﹣10x2+1300x ﹣30000写成顶点式,利用二次函数的性质可得答案.【解答】解:(1)销售量y=600﹣10(x﹣40)=1000﹣10x;销售该玩具获得利润w=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000,如下表:故答案为:1000﹣10x;﹣10x2+1300x﹣30000.(2)根据题意得出:﹣10x2+1300x﹣30000=10000,解得:x1=50,x2=80,答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)∵1000﹣10x≥550解得:40<x≤45,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,对称轴是直线x=65,∴当40<x≤45时,w随x增大而增大.∴当x=45时,w最大值=8250,答:商场销售该品牌玩具获得的最大利润为8250元.【点评】本题考查了二次函数在实际问题中的应用,会根据题意正确列式并明确二次函数的相关性质,是解题的关键24.(14分)如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连结CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.【分析】(1)连结CD.根据圆周角定理解决问题即可.(2)①分三种情形:如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,分别求解即可解决问题.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.证明△ADE≌△CDF(SAS),推出AE=CF,S△ADE =S△CDF,由DC平分∠ACB,DM⊥AC,DN⊥BC,推出DM=DN,可得四边形DMCN是正方形,推出DM=CM=CN=DN,因为====,所以可以假设DN=3k,EC=4k,则AC=BC=6k,AE=CF=2k,再利用三角形的面积公式计算机可解决问题.(3)连接OD,OQ,作ER⊥AB,OH⊥AB,FK⊥AB.想办法证明△ODQ是等腰直角三角形即可解决问题.【解答】(1)证明:连结CD.在Rt△ABC中,∵AC=CB,∴∠A=∠B=45°,∵CD=DB,∴∠DCB=∠B=45°,∵∠DEF=∠DCB,∴∠DEF=∠B.(2)解:①如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,∵∠EDF=∠CDB=90°,∴∠EDH=∠BDF=67.5°,∴∠BFD=180°﹣45°﹣67.5°=67.5°,∴∠BDF=∠BFD,∴BD=BF,∵AC=BC=4,∠ACB=90°,∴AB==4,∴BD=BF=2,∴CF=4﹣2.如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,CF=0.综上所述,满足条件的CF的值为0或2或4﹣2.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.∵CA =CB ,AD =DB ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,CD =DA =DB∴DE =DF ,∵∠ADC =∠EDF =90°,∴∠ADE =∠CDF ,∴△ADE ≌△CDF (SAS ),∴AE =CF ,S △ADE =S △CDF ,∵DC 平分∠ACB ,DM ⊥AC ,DN ⊥BC ,∴DM =DN ,可得四边形DMCN 是正方形,∴DM =CM =CN =DN ,∵====,∴可以假设DN =3k ,EC =4k ,则AC =BC =6k ,AE =CF =2k ,∴==.(3)证明:连接OD ,OQ ,作ER ⊥AB ,OH ⊥AB ,FK ⊥AB .∵ER∥OH∥FK,EO=OF,∴RH=HK∴OH=(ER+FK),∵ER=AE,FK=FB,∴OH=(AE+BF)=EF=OE=OQ,∴∠OQD=∠ODQ=45°,∴∠QOD=90°,∴∠QCD=45°.【点评】本题属于圆综合题,考查了等腰直角三角形的性质,圆周角定理,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于则有压轴题.。

2019—2020年最新浙教版九年级数学上学期期末考试检测题及答案解析.doc

2019—2020年最新浙教版九年级数学上学期期末考试检测题及答案解析.doc

第一学期九年级期末模拟检测数学试题卷一、选择题(共10小题,每小题4分,满分40分)1.若,则的值为()A.B.C.D.2.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y13.⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.50° B.80° C.90° D.100°5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.6.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.8.如图,⊙O是△ABC的外接圆,BC的中垂线与相交于D点,若∠B=74°,∠C=46°,则的度数为()A.23° B.28° C.30° D.37°9.如图1,一个电子蜘蛛从点A出发匀速爬行,它先沿线段AB爬到点B,再沿半圆经过点M爬到点C.如果准备在M、N、P、Q四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x,电子蜘蛛与记录仪之间的距离为y,表示y与x函数关系的图象如图2所示,那么记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q10.甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,知情者介绍说:“M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大”.根据该知情者提供的信息,我们可以推出三对夫妇分别是()A.甲﹣M,乙﹣N,丙﹣P B.甲﹣M,乙﹣P,丙﹣NC.甲﹣N,乙﹣P,丙﹣M D.甲﹣P,乙﹣N,丙﹣M二、填空题(共6小题,每小题5分,满分30分)11.(5分)已知线段a=3,b=27,则a,b的比例中项线段长等于.12.(5分)在A地与B地之间共有4条行走的道路,甲、乙两人分别从A,B 两地同时出发,相向而行.如果他们都任意选择一条道路行走,那么他们在途中相遇的概率是.13.(5分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.14.(5分)如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为m.15.(5分)九(3)班同学作了关于私家车乘坐人数的统计,在100辆私家车中,统计结果如表:根据以上结果,估计调查一辆私家车而它载有超过2名乘客的概率为.16.(5分)如图,把数字1,2,3,…,9分别填入图中的9个圈内,要求△ABC和△DEF的每条边上三个圈内的数字之和等于18,给出符合要求的填法.三、解答题(共8小题,满分80分)17.(8分)计算:3tan30°+cos245°﹣2sin60°.18.(8分)如图,在离铁塔150m的A处,用测倾仪测得塔顶的仰角为30°12′,测倾仪高AD为1.52m,求铁塔高BC(精确到0.1m).(参考数据:sin30°12′=0.5030,cos30°12′=0.8643,tan30°12′=0.5820)19.(8分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,若有2个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.20.(8分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1)问△ABC是否为等边三角形?为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,求⊙O的半径长.21.(10分)某书店销售儿童书刊,一天可售出20套,每套盈利40元,为了扩大销售,增加盈利,尽快减少库存,书店决定采取降价措施,若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求y关于x的函数解析式(化为一般形式);(2)当每套书降价多少元时,书店可获最大利润?最大利润为多少?22.(12分)如图1,有两个分别涂有黄色和蓝色的Rt△ABC和Rt△A′B′C′,其中∠C=∠C′=90°,∠A=60°,∠A′=45°.思考:能否分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.(1)如图2,作直线CD,C′D,分别交AB于点D,交A′B′于点D′,∠BCD=45°,∠B′C′D′=30°,问△BCD与△B′C′D′、△ACD与△A′C′D′是否相似?并选择其中相似的一对三角形,说明理由.(2)如图3,作直线AD,B′D′,分别交BC于点D,交A′C′于点D′,若△ACD 与△B′C′D′、△ABD与△A′B′D′均相似,求∠CAD,∠C′B′D′的度数(直接写出答案)23.(12分)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知抛物线①:y=﹣2x2+4x+3与②:y=2x2+4x﹣1,请判断抛物线①与抛物线②是否关联,并说明理由;(2)将抛物线C1:y=﹣2x2+4x+3沿x轴翻折,再向右平移m(m>0)个单位,得到抛物线C2,若抛物线C1与C2关联,求m的值;(3)点A为抛物线C1:y=﹣2x2+4x+3的顶点,点B为抛物线C1关联的抛物线的顶点(点B位于x轴的下方),是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在x轴上?若存在,求出C点的坐标;若不存在,请说明理由.24.(14分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D为边BC 的中点,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)当DP⊥AB时,求CQ的长;(2)当BP=2,求CQ的长;(3)连结AD,若AD平分∠PDQ,求DP,DQ的长.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.若,则的值为()A.B.C.D.【考点】比例的性质.【分析】用b表示a,代入求解即可.【解答】解:∵=,∴a=b,即==.故选A.【点评】本题主要考查了简单的比例问题,能够熟练掌握.2.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【考点】二次函数图象上点的坐标特征.【分析】求出抛物线的对称轴,结合开口方向画出草图,根据对称性解答问题.【解答】解:抛物线y=﹣2x2﹣8x+m的对称轴为x=﹣2,且开口向下,x=﹣2时取得最大值.∵﹣4<﹣1,且﹣4到﹣2的距离大于﹣1到﹣2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.【点评】此题考查了二次函数的性质,通常根据开口方向、对称轴,结合草图即可判断函数值的大小.3.⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm【考点】垂径定理.【分析】根据垂径定理,先求出弦长的一半,再利用勾股定理即可求出.【解答】解:如图∵AE=AB=4cm∴OA===5cm.故选B.【点评】本题主要考查半弦、半径、弦心距所构成直角三角形的计算,利用勾股定理求解.4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.50° B.80° C.90° D.100°【考点】三角形的外接圆与外心;三角形内角和定理;圆周角定理.【分析】由⊙O是△ABC的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【解答】解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)【考点】二次函数的性质.【分析】根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M的横坐标一定为3,从而选出答案.【解答】解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选B.【点评】本题考查了二次函数的性质,解答本题的关键是掌握二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴是x=h.7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【考点】平行线分线段成比例.【分析】根据AH=2,HB=1求出AB的长,根据平行线分线段成比例定理得到=,计算得到答案.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.【点评】本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系列出比例式是解题的关键.8.如图,⊙O是△ABC的外接圆,BC的中垂线与相交于D点,若∠B=74°,∠C=46°,则的度数为()A.23° B.28° C.30° D.37°【考点】三角形的外接圆与外心;线段垂直平分线的性质;圆心角、弧、弦的关系.【分析】首先连接OB,OC,AO,设DO交BC于点E,由∠B=74°,∠C=46°,即可求得∠BAC的度数,又由△ABC的边BC的垂直平分线与△ABC的外接圆相交于点D,根据圆周角定理,即可求得∠AOB与∠BOE的度数,继而求得答案.【解答】解:如图,连接OB,OC,AO,设DO交BC于点E,∵OD是△ABC的边BC的垂直平分线,∴∠BOE=∠BOC,∵∠BAC=∠BOC,∴∠BOE=∠BAC,∵∠ABC=74°,∠ACB=46°,∴∠BOE=∠BAC=180°﹣∠ABC﹣∠ACB=60°,∴∠BOD=180°﹣∠BOE=180°﹣60°=120°,∵∠AOB=2∠ACB=92°,∴的度数为:92°,∴的度数为:120°﹣92°=28°.故选:B.【点评】此题考查了圆周角定理以及线段垂直平分线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图1,一个电子蜘蛛从点A出发匀速爬行,它先沿线段AB爬到点B,再沿半圆经过点M爬到点C.如果准备在M、N、P、Q四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x,电子蜘蛛与记录仪之间的距离为y,表示y与x函数关系的图象如图2所示,那么记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q【考点】动点问题的函数图象.【分析】根据函数的增减性:不同的观察点获得的函数图象的增减性不同,可得答案.【解答】解:A、从A点到M点y随x而减小一直减小到0,故A不符合题意;B、从A到B点y随x的增大而减小,从B到C点y的值不变,故B不符合题意;C、从A到AB的中点y随x的增大而减小,从AB的中点到M点y随x的增大而增大,从M点到C点y随x的增大而减小,故C符合题意;D、从A到M点y随x的增大而增大,从M点到C点y随x的增大而减小,故D不符合题意;故选:C.【点评】本题考查了动点问题的函数图象,利用观察点与动点P之间距离的变化关系得出函数的增减性是解题关键.10.甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,知情者介绍说:“M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大”.根据该知情者提供的信息,我们可以推出三对夫妇分别是()A.甲﹣M,乙﹣N,丙﹣P B.甲﹣M,乙﹣P,丙﹣NC.甲﹣N,乙﹣P,丙﹣M D.甲﹣P,乙﹣N,丙﹣M【考点】推理与论证.【分析】根据已知M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大,即可得出M的丈夫一定不是乙,进而得出P的丈夫以及甲的丈夫进而求出即可.【解答】解:∵甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,且M的丈夫是乙的好友,并在三位先生中最年轻,∴M的丈夫一定不是乙,一定是甲或丙,∵丙的年龄比P的丈夫大,∴P与丙一定不是夫妻,且M的丈夫一定是甲,则P的丈夫是乙,N的丈夫是丙.故选:B.【点评】此题主要考查了推理与论证,根据题意得出M与P的丈夫是解题关键.二、填空题(共6小题,每小题5分,满分30分)11.已知线段a=3,b=27,则a,b的比例中项线段长等于9 .【考点】比例线段.【分析】根据比例中项的定义直接列式求值,问题即可解决.【解答】解:设a、b的比例中项为x,∵a=4,b=8,∴=,∴a,b的比例中项线段长等于9,故答案为:9.【点评】本题主要考查了比例线段.根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.12.在A地与B地之间共有4条行走的道路,甲、乙两人分别从A,B两地同时出发,相向而行.如果他们都任意选择一条道路行走,那么他们在途中相遇的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有16种等可能的结果数,再找出选择一条道路的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中选择一条道路的结果数为4,所以他们在途中相遇的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.13.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.14.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为 1.5 m.【考点】相似三角形的应用.【分析】因为光线是平行的,所以在题中有一组相似三角形,根据对应边成比例,列方程即可解答.【解答】解:∵BE∥AD,∴△CBE∽△CAD,∴EC:CD=BC:AC,∴1.2:3=1:AC,∴AC=2.5m,∴AB=AC﹣BC=1.5m.故答案为:1.5.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出窗户的高.15.九(3)班同学作了关于私家车乘坐人数的统计,在100辆私家车中,统计结果如表:根据以上结果,估计调查一辆私家车而它载有超过2名乘客的概率为.【考点】列表法与树状图法. 【分析】先利用表中数据计算出一辆私家车载有超过2名乘客的频率,然后利用频率估计概率求解.【解答】解: =,估计调查一辆私家车而它载有超过2名乘客的概率为. 故答案为.【点评】本题考查了列表法与树状图法,利用频率估计概率是求实际生活中某事件概率的常用方法.16.如图,把数字1,2,3,…,9分别填入图中的9个圈内,要求△ABC 和△DEF 的每条边上三个圈内的数字之和等于18,给出符合要求的填法.【考点】规律型:图形的变化类.【分析】把填入A ,B ,C 三处圈内的三个数之和记为x ;D ,E ,F 三处圈内的三个数之和记为y ;其余三个圈所填的数位之和为z .结合图形和已知条件得到方程组,进而求得y=24,再进一步分析即可.【解答】解:把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.显然有x+y+z=1+2+…+9=45①,图中六条边,每条边上三个圈中之数的和为18,所以有z+3y+2x=6×18=108②,②﹣①,得x+2y=108﹣45=63③,把AB,BC,CA每一边上三个圈中的数的和相加,则可得2x+y=3×18=54④,联立③,④,解得x=15,y=24,继而解之z=6.在1,2,3,…,9中三个数之和为24的仅为7,8,9,所以在D,E,F三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中的数一旦确定,根据题目要求,其余六个圈内的数也随之确定,符合要求的填法之一如图:.【点评】此题考查数字的变化类,解题要特别注意三角形的顶点的数字的重复使用,能够根据各边的数字之和列方程组求解.三、解答题(共8小题,满分80分)17.计算:3tan30°+cos 245°﹣2sin60°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×+()2﹣2×=+﹣=.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.如图,在离铁塔150m 的A 处,用测倾仪测得塔顶的仰角为30°12′,测倾仪高AD 为1.52m ,求铁塔高BC (精确到0.1m ).(参考数据:sin30°12′=0.5030,cos30°12′=0.8643,tan30°12′=0.5820)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点A 作AE ⊥BC ,E 为垂足,再由锐角三角函数的定义求出BE 的长,由BC=BE+CE 即可得出结论.【解答】解:过点A 作AE ⊥BC ,E 为垂足,在△ABE 中,∵tan30°12′==,∴BE=150×tan30°12′≈87.30,∴BC=BE+CE=87.30+1.52≈88.8(m).答:铁塔的高BC约为88.8m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,若有2个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.【考点】利用频率估计概率;列表法与树状图法.【分析】(1)利用频率估计概率,则摸到绿球的概率为0.25,根据概率公式得到=0.25,然后解方程即可;(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的球颜色不同的结果数,然后根据概率公式求解.【解答】解:(1)利用频率估计概率得到摸到绿球的概率为0.25,则=0.25,解得n=2,故答案为2;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的球的颜色不同的结果共有10 种,所以两次摸出的球颜色不同的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1)问△ABC是否为等边三角形?为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,求⊙O的半径长.【考点】圆周角定理;等边三角形的判定与性质;垂径定理.【分析】(1)先根据圆周角定理得出∠ABC的度数,再直接根据三角形的内角和定理进行解答即可;(2)连接OB,由等边三角形的性质可知,∠OBD=30°,根据BC=8利用直角三角形的性质即可得出结论.【解答】解:(1)△ABC是等边三角形:理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣60°=60°,∴△ABC是等边三角形;(2)解:如图,连接OB,∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OE=,OB=,【点评】本题考查了圆周角定理、等边三角形的判定,垂径定理,解直角三角形等知识,将各知识点有机结合,旨在考查同学们的综合应用能力.21.(10分)(2015秋•绍兴期末)某书店销售儿童书刊,一天可售出20套,每套盈利40元,为了扩大销售,增加盈利,尽快减少库存,书店决定采取降价措施,若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求y关于x的函数解析式(化为一般形式);(2)当每套书降价多少元时,书店可获最大利润?最大利润为多少?【考点】二次函数的应用.【分析】(1)根据题意设出每天降价x元以后,准确表示出每天书刊的销售量,列出利润y关于降价x的函数关系式(2)运用配方法求出二次函数最值.【解答】解:(1)设每套书降价x元时,所获利润为y元,则每天可出售(20+2x)套.由题意得:y=(40﹣x)(20+2x)=﹣2x2+80x﹣20x+800=﹣2x2+60x+800.(2)y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∵﹣2<0,∴当x=15时,y取得最大值1250;即当将价15元时,该书店可获得最大利润,最大利润为1250元.【点评】此题考查了二次函数及一元二次方程在现实生活中的应用问题;解题的关键是准确列出二次函数解析式,灵活运用函数的性质解题.22.(12分)(2015秋•绍兴期末)如图1,有两个分别涂有黄色和蓝色的Rt △ABC和Rt△A′B′C′,其中∠C=∠C′=90°,∠A=60°,∠A′=45°.思考:能否分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.(1)如图2,作直线CD,C′D,分别交AB于点D,交A′B′于点D′,∠BCD=45°,∠B′C′D′=30°,问△BCD与△B′C′D′、△ACD与△A′C′D′是否相似?并选择其中相似的一对三角形,说明理由.(2)如图3,作直线AD,B′D′,分别交BC于点D,交A′C′于点D′,若△ACD 与△B′C′D′、△ABD与△A′B′D′均相似,求∠CAD,∠C′B′D′的度数(直接写出答案)【考点】相似形综合题.【分析】思考:在图1中,可以分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.根据相似三角形的判定方法即可证明.(1)如图2中,△BCD与△B′C′D′、△ACD与△A′C′D′相似,理由同上.(2)如图3中,当∠CAD=∠C′B′D′=15°时,△ACD与△B′C′D′、△ABD与△A′B′D′均相似.【解答】解:思考:在图1中,可以分别作一条直线分割这两个三角形,使△ABC 所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.作CD平分∠ACB交AB于D,作∠A′C′D′=60°JIAO A′B′于D′.则△ACD∽△C′A′D′,△BCD∽△C′B′D′.理由:∵∠A=∠A′C′D′=60°,∠ACD=∠A′=45°,∴△ACD∽△C′A′D′,∵∠B=∠B′C′D′,∠BCD=∠B′,∴△BCD∽△C′B′D′.(1)如图2中,△BCD与△B′C′D′、△ACD与△A′C′D′相似,理由同上.(2)如图3中,当∠CAD=∠C′B′D′=15°时,△ACD与△B′C′D′、△ABD与△A′B′D′均相似.理由:∵∠C=∠C′=90°,∠CAD=∠C′B′D′=15°,∴△ACD∽△B′C′D′,∵∠B=∠A′B′D′=30°,∠DAB=∠A′=45°,∴△BAD∽△B′A′D′.【点评】本题考查相似三角形的判定和性质、直角三角形的性质,解题的关键是灵活运用相似三角形的判定方法,学会取特殊角解决问题,属于中考常考题型.23.(12分)(2015秋•绍兴期末)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知抛物线①:y=﹣2x2+4x+3与②:y=2x2+4x﹣1,请判断抛物线①与抛物线②是否关联,并说明理由;(2)将抛物线C1:y=﹣2x2+4x+3沿x轴翻折,再向右平移m(m>0)个单位,得到抛物线C2,若抛物线C1与C2关联,求m的值;(3)点A为抛物线C1:y=﹣2x2+4x+3的顶点,点B为抛物线C1关联的抛物线的顶点(点B位于x轴的下方),是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在x轴上?若存在,求出C点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据两抛物线的关联依次判断即可;(2)根据两抛物线关联的定义直接列式得出结论;(3)分当点C位于AD左侧和当点C位于AD右侧,借助关联的意义设出点C坐标,表示出点B坐标代入抛物线解析式即可求出点C坐标.【解答】解:(1)由①知,y=﹣2(x﹣1)2+5,∴抛物线①:y=﹣2x2+4x+3的顶点坐标为(1,5),把x=1代入抛物线②:y=2x2+4x﹣1,得y=5,∴抛物线①的顶点在抛物线②上,又由②y=2(x+1)2﹣3,∴抛物线②的顶点坐标为(﹣1,﹣3),把x=﹣1代入抛物线①中,得,y=﹣3,∴抛物线②的顶点在抛物线①上,∴抛物线①与抛物线②关联.(2)抛物线y=﹣2x2+4x+3沿x轴翻折后抛物线为y=2x2﹣4x﹣3,即:y=2(x﹣1)2﹣5,设平移后的抛物线解析式为y=2(x﹣1﹣m)2﹣5,把x=1,y=5代入得2(1﹣1﹣m)2﹣5=5,∴m=±,∵m>0,∴m=,(3)①当点C位于AD左侧时,过点A作AD⊥x轴于D,过点B作BE⊥x轴于E,如图1,∴△ACD≌△CBE,∴CE=AD,BE=CD设C(c,0),∵点B在x轴下方,∴点B的纵坐标为c﹣1;Ⅰ、当点C在x轴负半轴上时,即:c<0,∴B(c+5,c﹣1),把B(c+5,c﹣1),代入y=﹣2(x﹣1)2+5中得,2c2+17c+26=0,∴c=﹣2或c=﹣,∴C(﹣2,0)或(﹣,0),Ⅱ、当点C在x轴正半轴上时,即:0<c<1把B(5﹣c,c﹣1),代入y=﹣2(x﹣1)2+5中得,2c2﹣15c+26=0,∴c=(不符合题意,舍),②当点C位于AD右侧时,设C(c,0),同①的方法得出B(c﹣5,1﹣c),将B(c﹣5,1﹣c)代入y=﹣2(x﹣1)2+5中得,2c2﹣25c+68=0,∴c=4或c=,∴C(4,0)或(,0),即:点C的坐标为:(﹣2,0)或(﹣,0)或(4,0)或(,0).【点评】此题是二次函数综合题,主要考查了新定义,全等三角形的判定和性质,解一元二次方程,分类讨论的思想,理解两抛物线关联是解本题的关键.24.(14分)(2015秋•绍兴期末)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D为边BC的中点,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)当DP⊥AB时,求CQ的长;(2)当BP=2,求CQ的长;(3)连结AD,若AD平分∠PDQ,求DP,DQ的长.【考点】相似形综合题.【分析】(1)首先证明DQ∥AB,根据平行线等分线段定理即可解决问题.(2)分两种情形①如图2中,当点P在线段AB上时,作DM⊥AB,DN⊥AC,垂足分别为M、N,由△PDM∽△QDN,得==,推出QN=PM,推出PM=BM﹣PB=3﹣2=1,推出QN=即可解决问题.②如图3中,当点P在AB的延长线上时,根据PM=5,QN=,CQ=QN+CN计算即可.(3)如图4中,作AM⊥DP于M,AN⊥DQ于N.首先证明四边形AMDN是正方形,由APM≌△AQN,推出PM=NQ,推出PD+DQ=(PM+MD)+(DN﹣QN)=2DM=AD=5,由(2)可知PD:QD=4:3,由此即可计算.【解答】解:(1)如图1中,∵DP⊥AB,DQ⊥DP,∴DQ∥AB,∵BD=DC,∴CQ=AQ=4.(2)①如图2中,当点P在线段AB上时,作DM⊥AB,DN⊥AC,垂足分别为M、N,则四边形AMDN是矩形,DM、DN分别是△ABC的中位线,DM=4,DN=3,∵∠PDQ=∠MDN=90°,∴∠PDM=∠QDN,∵∠DNQ∠DMP=90°,∴△PDM∽△QDN,∴==,∴QN=PM,∵PM=BM﹣PB=3﹣2=1,∴QN=,∴CQ=QN+CN=+4=.②如图3中,当点P在AB的延长线上时,PM=5,QN=,CQ=QN+CN=4+=,综上所述,当BP=2,求CQ的长为或.(3)如图4中,作AM⊥DP于M,AN⊥DQ于N.∵AD平分∠PDQ,∴AM=AN,∵∠AMD=∠AND=∠MDN=90°,∴四边形AMDN是矩形,∵AM=AN,∴四边形AMDN是正方形,∴∠MAN=90°,DM=DN,∵∠BAC=∠MAN=90°,∴∠PAM=∠NAQ,∴△APM≌△AQN,∴PM=NQ,∵AB=6,AC=8,∴BC===10,AD=5,∵PD+DQ=(PM+MD)+(DN﹣QN)=2DM=AD=5。

浙江省温州市瑞安市2020-2021学年九年级上学期期末数学试题及参考答案

浙江省温州市瑞安市2020-2021学年九年级上学期期末数学试题及参考答案
17.(1)计算: .
(2)先化简,再求值: ,其中 .
18.一个不透明的布袋里装有2个红球,1个白球,它们除颜色外其余都相同.
(1)摸出1个球,记下颜色后不放回,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表).
(2)现再将 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为 ,求 的值.
【详解】
解:如图所示,建立以AB为x轴,以AD为y轴的直角坐标系,过点G作GQ⊥AD交AE于Q,
∵AD=2,DE=5,DF=1,∴D(0,2),E(0,7),F(0,3),
24.如图,平面直角坐标系中, 的边 在 轴上, ,点 的坐标为 , 为射线 上一点, 过点 , , ,交 轴正半轴于点 ,连结 , , .
(1)求证: ∽ .
(2)若点 的坐标为 ,求 的长.
(3)在点 的运动过程中,当 为等腰三角形时,求 的半径.
参考答案
1.D
【分析】
根据点在圆内,点到圆心的距离小于圆的半径进行判断.
三、解答题
16.如图1是某校园运动场主席台及遮阳棚,其侧面结构示意图如图2所示.主席台(矩形 )高 米,直杆 米,斜拉杆 , 起稳固作用,点 处装有一射灯.遮阳棚边缘曲线 可近似看成抛物线的一部分, 为抛物线的最高点且位于主席台边缘 的正上方,若点 , , 在同一直线上,且 米, 米, ,则射灯 离地面的高度为______米.
故选:B.
【点睛】
本题考查了二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
5.C
【分析】
根据计算公式直接套用求解即可.
【详解】
根据题意,得

故选C.
【点睛】
本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.

{3套试卷汇总}2019年温州市九年级上学期数学期末质量检测试题

{3套试卷汇总}2019年温州市九年级上学期数学期末质量检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点B 、D 、C 是⊙O 上的点,∠BDC=130°,则∠BOC 是( )A .100°B .110°C .120°D .130°【答案】A 【分析】首先在优弧BC 上取点E ,连接BE ,CE ,由点B 、D 、C 是⊙O 上的点,∠BDC=130°,即可求得∠E 的度数,然后由圆周角定理,即可求得答案.【详解】解:在优弧BC 上取点E ,连接BE ,CE ,如图所示:∵∠BDC=130°,∴∠E=180°-∠BDC=50°,∴∠BOC=2∠E=100°.故选A .【点睛】此题考查了圆周角定理以及圆的内接四边形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2.如图.已知O 的半径为3,8OA =,点P 为O 上一动点.以PA 为边作等边PAM ∆,则线段OM 的长的最大值为( )A .9B .11C .12D .14【答案】B 【分析】以OP 为边向下作等边△POH ,连接AH ,根据等边三角形的性质通过“边角边”证明△HPA ≌△OPM ,则AH=OM ,然后根据AH ≤OH+AO 即可得解.【详解】解:如图,以OP为边向下作等边△POH,连接AH,∵△POH,△PAM都是等边三角形,∴PH=PO,PA=PM,∠PHO=∠APM=60°,∴∠HPA=∠OPM,∴△HPA≌△OPM(SAS),∴AH=OM,∵AH≤OH+AO,即AH≤11,∴AH的最大值为11,则OM的最大值为11.故选B.【点睛】本题主要考查等边三角形的性质,全等三角形的判定与性质等,解此题的关键在于熟练掌握其知识点,难点在于作辅助线构造等边三角形.3.△ABC中,∠C=90°,内切圆与AB相切于点D,AD=2,BD=3,则△ABC的面积为()A.3 B.6 C.12 D.无法确定【答案】B【分析】易证得四边形OECF是正方形,然后由切线长定理可得AC=2+r,BC=3+r,AB=5,根据勾股定理列方程即可求得答案.【详解】如图,设⊙O分别与边BC、CA相切于点E、F,连接OE,OF,∵⊙O分别与边AB、BC、CA相切于点D、E、F,∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,∴∠OEC=∠OFC=90°,∵∠C=90°,∴四边形OECF是矩形,∵OE=OF ,∴四边形OECF 是正方形,设EC=FC=r ,∴AC=AF+FC=2+r ,BC=BE+EC=3+r ,AB=AD+BD=2+3=5,在Rt △ABC 中,2AB =2BC +2AC ,∴25=()23r ++()22r +,∴2560r r +-=,即160r r -+=,解得:1r =或6r =-(舍去).∴⊙O 的半径r 为1, ∴()()ABC 113121622S BC AC =⨯=⨯++=. 故选:B【点睛】 本题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.4.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,AB AD =2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC =B .2EC AC = C .12DE BC =D .2AC AE= 【答案】D【分析】只要证明AC AB AE AD=,即可解决问题. 【详解】解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定; 12DE BC = D. 2AC AB AE AD==,可得DE//BC ,故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是()A.24πB.33πC.56πD.42π【答案】D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故选:D.【点睛】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.6.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.【答案】D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.7.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A.2πcm B.4πcm C.6πcm D.8πcm【答案】B【解析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长.【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切,∴OC ⊥AB ,∵OA=6,OC=3,∴OA=2OC ,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB 的长=1206180π⨯⨯ =4π, 故选B .【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.8.一元二次方程x 2+4x =﹣3用配方法变形正确的是( )A .(x ﹣2)2=1B .(x+2)2=1C .(x ﹣2)2=﹣1D .(x+2)2=﹣1 【答案】B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:∵x 2+4x =﹣3,∴x 2+4x+4=1,∴(x+2)2=1,故选:B .【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.9.下列一元二次方程中,有两个不相等的实数根的方程是( )A .210x x -+=B .240x +=C .2210x x ++=D .2410x x -+= 【答案】D【分析】根据根的判别式△=b 2-4ac 的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用.【详解】解:A.∵△=b2-4ac=1-4×1×1=-3<0,∴此方程没有实数根,故本选项错误;B.240x+=变形为24x=-∴此方程有没有实数根,故本选项错误;C.∵△=b2-4ac=22-4×1×1=0,∴此方程有两个相等的实数根,故本选项错误;D.∵△=b2-4ac=42-4×1×1=12,∴此方程有两个不相等的实数根,故本选项正确.故选:D.【点睛】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.10.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→AB→B O的路径以每秒1cm 的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A.B.C.D.【答案】C【解析】在半径AO上运动时,s=OP1=t1;在弧BA上运动时,s=OP1=4;在BO上运动时,s=OP1=(4π+4-t)1,s也是t是二次函数;即可得出答案.【详解】解:利用图象可得出:当点P在半径AO上运动时,s=OP1=t1;在弧AB上运动时,s=OP1=4;在OB上运动时,s=OP1=(1π+4-t)1.结合图像可知C选项正确故选:C.【点睛】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.11.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是10【答案】B【解析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=15(1+2+3+4+5)=3,方差=15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.12.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误..的是( )A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE【答案】D【解析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D 错误.【详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.二、填空题(本题包括8个小题)13.若点M(-1,y1),N(1,y2),P(72, y3 )都在抛物线y=-mx2 +4mx+m2 +1(m>0)上,则y1、y2、y3大小关系为_____(用“>”连接).【答案】y1<y3<y1【分析】利用图像法即可解决问题.【详解】y=-mx1 +4mx+m1 +1(m>0),对称轴为x = 422m m -=-, 观察二次函数的图象可知:y 1<y 3<y 1.故答案为:y 1<y 3<y 1.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.14.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点C 在第一象限内,且在正方形网格的格点上,若()31P ,是钝角ABC ∆的外心,则C 的坐标为__________.【答案】()4,3或()1,2【解析】由图可知P 到点A ,B 的距离为5,在第一象限内找到点P 的距离为5的点即可.【详解】解:由图可知P 到点A ,B 的距离为5,在第一象限内找到点P 的距离为5的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为()4,3或()1,2.【点睛】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C 点. 15.如图,将Rt △ABC 绕着顶点A 逆时针旋转使得点C 落在AB 上的C′处,点B 落在B′处,联结BB′,如果AC =4,AB =5,那么BB′=_____.10【分析】根据旋转的性质和勾股定理,在Rt △BC′B′中,求出BC′,B′C′即可解决问题.【详解】解:在Rt △ABC 中,∵AC =4,AB =5,∠C =90°,∴BC 22AB AC -2254-3,∵AC =AC′=4,BC =B′C′=3,∴BC′=AB =AC′=5﹣4=1,∵∠BC′B′=90°,∴BB′22BC BC '''+2213+10, 10.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质和利用勾股定理解直角三角形是解决此题的关键. 16.分解因式:4x 3﹣9x =_____.【答案】x (2x+3)(2x ﹣3)【分析】先提取公因式x ,再利用平方差公式分解因式即可.【详解】原式=x (4x 2﹣9)=x (2x+3)(2x ﹣3),故答案为:x (2x+3)(2x ﹣3)【点睛】本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.已知,点A(-4,y 1),B(12,y 2)在二次函数y =-x 2+2x+c 的图象上,则y 1与y 2的大小关系为________. 【答案】<【分析】由题意可先求二次函数y =-x 2+2x+c 的对称轴为2122b xa ,根据点A 关于x=1的对称点即可判断y 1与y 2的大小关系.【详解】解:二次函数y=-x 2+2x+c 的对称轴为x=1,∵a=-1<0,∴二次函数的值,在x=1左侧为增加,在x=1右侧减小,∵-4<12<1,∴点A、点B均在对称轴的左侧,∴y1<y2故答案为:<.【点睛】本题主要考查的是二次函数的增减性,注意掌握当a<0时,函数图象从左至右先增加后减小.18.已知23xy=,则x yx y-=+__________.【答案】15-【分析】根据比例的性质,由23xy=得,x=23y,再将其代入所求式子可得出结果.【详解】解:由23xy=得,x=23y,所以213253y yx yx y y y--==-++.故答案为:15-.【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键,较简单.三、解答题(本题包括8个小题)19.如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.【答案】(1)线段OD的长为1.(2)存在,DE保持不变.DE=.【解析】试题分析:(1)如图(1),根据垂径定理可得BD=BC,然后只需运用勾股定理即可求出线段OD 的长;(2)连接AB,如图(2),用勾股定理可求出AB的长,根据垂径定理可得D和E分别是线段BC和AC的中点,根据三角形中位线定理就可得到DE=AB,DE保持不变;解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==1,即线段OD的长为1.(2)存在,DE保持不变.理由:连接AB,如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=,∴DE保持不变.考点:垂径定理;三角形中位线定理.20.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线;(2)若CD=25,BP=1,求⊙O的半径.【答案】(1)见解析;(2)1【分析】(1)由圆周角定理得出∠ABC=∠ADC,由已知得出∠ADC=∠AFB,证出CD∥BF,得出AB⊥BF,即可得出结论;(2)设⊙O的半径为r,连接OD.由垂径定理得出PD=PC=12CD=5,得出OP=r-1在Rt△OPD中,由勾股定理得出方程,解方程即可.【详解】解:(1)证明:∵弧AC=弧AC,∴∠ABC=∠ADC,∵∠AFB=∠ABC,∴∠ADC=∠AFB,∴CD∥BF,∵CD⊥AB,∴AB⊥BF,∵AB是圆的直径,∴直线BF是⊙O的切线;(2)解:设⊙O的半径为r,连接OD.如图所示:∵AB⊥BF,CD=25,∴PD=PC=12CD=5,∵BP=1,∴OP=r﹣1在Rt△OPD中,由勾股定理得:r2 =(r﹣1)2+(5)2解得:r=1.即⊙O的半径为1.【点睛】本题考查切线的判定、勾股定理、圆周角定理、垂径定理以及勾股定理和平行线的判定与性质等知识,解题的关键熟练掌握圆周角定理和垂径定理.21.LED 显示屏(LED display )是一种平板显示器,可以显示计算机生成的动态图文画面.如图1是屏幕显示的一个88⨯正三角形网格的示意图,其中每个小正三角形的边长均为l.位于AD 中点处的输入光点P 按图2的程序移动.(1)请在图1中画出光点P 经过的路径:(2)求光点P 经过的路径总长.【答案】(1)见解析;(2)4π【分析】(1)根据要求画出图形即可;(2)光点P 经过的路径总长为圆的周长,利用圆的周长公式计算即可.【详解】解(1)光点P 经过的路径如图所示,(2)光点P 经过的路径总长224ππ=⨯=【点睛】本题主要考查了旋转变换作图,以及圆的周长公式.根据题意画出图形是解题的关键.22.如图,已知⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,且BD=BC ,延长AD 到E ,且有∠EBD=∠CAB .⑴求证:BE是⊙O的切线;⑵若BC=3,AC=5,求圆的直径AD的长.【答案】(1)详见解析;(2)1【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OM,再用勾股定理求出半径r,最后得到直径的长.【详解】解:⑴证明:连接OB,CD,OB、CD交于点M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直径,∴∠ABD=∠ACD =90°,又∠EBD=∠CAB, ∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半径,∴BE是⊙O的切线.⑵∵ OB∥AC, OA=OD,AC=5,.∴ OM=2.5 ,BM=OB-2.5,OB⊥CD设⊙O的半径为r,则在Rt△OMD中:MD2=r2-2.52;在Rt△BMD中:MD2=BD2-(r-2.5)2 ,BD=BC3∴r1=3 ,r2=-0.5(舍).∴圆的直径AD 的长是1.【点睛】此题是切线的判定,主要考查了圆周角的性质,切线的判定,勾股定理等,解本题的关键是作出辅助线. 23.如图,二次函数2y x bx c =-++的图像经过()0,3M ,()2,5N --两点.(1)求该函数的解析式;(2)若该二次函数图像与x 轴交于A 、B 两点,求ABM ∆的面积;(3)若点P 在二次函数图像的对称轴上,当MNP ∆周长最短时,求点P 的坐标.【答案】(1)2y x 2x 3=-++;(2)6;(3)()1,1P【解析】(1)将M,N 两点代入2y x bx c =-++求出b,c 值,即可确定表达式;(2)令y=0求x 的值,即可确定A 、B 两点的坐标,求线段AB 长,由三角形面积公式求解.(3)求出抛物线的对称轴,确定M 关于对称轴的对称点G 的坐标,直线NG 与对称轴的交点即为所求P 点,利用一次函数求出P 点坐标.【详解】解:将点()0,3M ,()2,5N --代入2y x bx c =-++中得, 3425c b c =⎧⎨--+=-⎩ , 解得,23b c =⎧⎨=⎩, ∴y 与x 之间的函数关系式为2y x 2x 3=-++;(2)如图,当y=0时,2230x x -++=,∴x 1=3,x 2= -1,∴A(-1,0),B(3,0),∴AB=4,∴S △ABM =14362⨯⨯= . 即ABM ∆的面积是6.(3)如图,抛物线的对称轴为直线2122bx a , 点()0,3M 关于直线x=1的对称点坐标为G(2,3),∴PM=PG,连MG 交抛物线对称轴于点P ,此时NP+PM=NP+PG 最小,即MNP ∆周长最短.设直线NG 的表达式为y=mx+n,将N(-2,-5),G(2,3)代入得,2523m n m n -+=-⎧⎨+=⎩, 解得,21m n =⎧⎨=-⎩, ∴y=2m-1,∴P 点坐标为(1,1).【点睛】本题考查抛物线与图形的综合题,涉及待定系数法求解析式,图象的交点问题,利用对称性解决线段和的最小值问题,利用函数观点解决图形问题是解答此题的关键.如图,二次函数y=-x ²+bx+c 的图像经过M(0,3),N(-2,-5)两点.24.如图所示,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等但面积相等的三角形是 (只需要填一个三角形);(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC 面积相等的概率.【答案】(1)△DFG 或△DHF ;(2)1 2.【分析】(1)、根据“同(等)底同(等)高的三角形面积相等”进行解答;(2)、画树状图求概率.【详解】(1)、ABC 的面积为:134=62⨯⨯, 只有△DFG 或△DHF 的面积也为6且不与△ABC 全等,∴与△ABC 不全等但面积相等的三角形是:△DFG 或△DHF ;(2)、画树状图如图所示:由树状图可知共有6种等可能结果, 其中与△ABC 面积相等的有3种,即△DHF ,△DGF ,△EGF , 所以所画三角形与△ABC 面积相等的概率P=3162= 答:所画三角形与△ABC 面积相等的概率为12. 【点睛】本题综合考查了三角形的面积和概率.25.如图,Rt ABC △中,90ABC ∠=︒,以AB 为直径作半圆O 交AC 与点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆O 的切线;(2)若30BAC ∠=︒,2DE =,求AD 的长.【答案】(1)见解析;(2)1.【分析】(1)连接OD ,OE ,BD ,证△OBE ≌△ODE (SSS ),得∠ODE=∠ABC=90°;(2)证△DEC 为等边三角形,得DC=DE=2.【详解】(1)证明:连接OD ,OE ,BD ,∵AB 为圆O 的直径,∴∠ADB=∠BDC=90°,在Rt △BDC 中,E 为斜边BC 的中点,∴DE=BE ,在△OBE 和△ODE 中,OB OD OE OE BE DE =⎧⎪=⎨⎪=⎩,∴△OBE ≌△ODE (SSS ),∴∠ODE=∠ABC=90°,则DE 为圆O 的切线;(2)在Rt △ABC 中,∠BAC=30°,∴BC= 12AC , ∵BC=2DE=4,∴AC=8,又∵∠C=10°,DE=CE ,∴△DEC 为等边三角形,即DC=DE=2,则AD=AC-DC=1.【点睛】考核知识点:切线的判定和性质.26.如图,平面直角坐标系中,一次函数y =﹣x+b 的图象与反比例函数y =﹣4x在第二象限内的图象相交于点A ,与x 轴的负半轴交于点B ,与y 轴的负半轴交于点C .(1)求∠BCO的度数;(2)若y轴上一点M的纵坐标是4,且AM=BM,求点A的坐标;(3)在(2)的条件下,若点P在y轴上,点Q是平面直角坐标系中的一点,当以点A、M、P、Q为顶点的四边形是菱形时,请直接写出点Q的坐标.【答案】(1)∠BCO=45°;(2)A(﹣4,1);(3)点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,316)或(4,1).【分析】(1)证明△OBC是等腰直角三角形即可解决问题;(2)如图1中,作MN⊥AB于N.根据一次函数求出交点N的坐标,用b表示点A坐标,再利用待定系数法即可解决问题;(3)分两种情形:①当菱形以AM为边时,②当AM为菱形的对角线时,分别求解即可.【详解】(1)∵一次函数y=﹣x+b的图象交x轴于B,交y轴于C,则B(b,0),C(0,b),∴OB=OC=﹣b,∵∠BOC=90°∴△OBC是等腰直角三角形,∴∠BCO=45°.(2)如图1中,作MN⊥AB于N,∵M(0,4),MN⊥AC,直线AC的解析式为:y=﹣x+b,∴直线MN的解析式为:y=x+4,联立4y xy x b=+⎧⎨=-+⎩,解得:4242bxby-⎧=⎪⎪⎨+⎪=⎪⎩,∴N(42b-,42b+),∵MA=MB,MN⊥AB,∴NA=BN,设A(m,n),则有4 2204 22 mbbn b+-⎧=⎪⎪⎨++⎪=⎪⎩,解得:44mn b=-⎧⎨=+⎩,∴A(﹣4,b+4),∵点A在y=﹣4x上,∴﹣4(b+4)=﹣4,∴b=﹣3,∴A(﹣4,1);(3)如图2中,由(2)可知A(﹣4,1),M(0,4),∴AM=2234+=5,当菱形以AM为边时,AQ=AQ′=5,AQ∥OM,可得Q(﹣4,﹣4),Q′(﹣4,6),当A,Q关于y轴对称时,也满足条件,此时Q(4,1),当AM为菱形的对角线时,设P″(0,b),则有(4﹣b)2=42+(b﹣1)2,∴b=﹣16.∴AQ″=MP″=256,∴Q″(﹣4,316),综上所述,满足条件的点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,316)或(4,1).【点睛】本题主要考查反比例函数与一次函数的综合以及菱形的性质定理,根据题意添加辅助线画出图形,数形结合,式是解题的关键.27.某校九年级(2)班A、B、C、D四位同学参加了校篮球队选拔.(1)若从这四人中随杋选取一人,恰好选中B参加校篮球队的概率是______;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B、C两位同学参加校篮球队的概率.【答案】(1)14;(2)P(BC两位同学参加篮球队)16=【分析】(1)根据概率公式Pmn=(n次试验中,事件A出现m次)计算即可(2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)()1P B4=恰好选中B参加校篮球队的概率是14.(2)列表格如下:∴P(BC两位同学参加篮球队)21 126 ==【点睛】本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数2y ax bx c =++的图象如右图所示,那么一次函数y bx a =-的图象大致是( )A .B .C .D .【答案】D【分析】可先根据二次函数的图象判断a 、b 的符号,再判断一次函数图象与实际是否相符,判断正误.【详解】解:由二次函数图象,得出a >0,02b a->,b <0, A 、由一次函数图象,得a <0,b >0,故A 错误;B 、由一次函数图象,得a >0,b >0,故B 错误;C 、由一次函数图象,得a <0,b <0,故C 错误;D 、由一次函数图象,得a >0,b <0,故D 正确.故选:D .【点睛】本题考查了二次函数图象,应该熟记一次函数y=kx+b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.2.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【答案】A 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.某水库大坝的横断面是梯形,坝内一斜坡的坡度3i = )A .30°B .45°C .60°D .90° 【答案】A【分析】根据坡度可以求得该坡角的正切值,根据正切值即可求得坡角的角度. 【详解】∵坡度为1:3i = ∴333tan α==, ∵3303tan ︒=,且α为锐角, ∴30α=︒.故选:A .【点睛】本题考查了坡度的定义,考查了特殊角的三角函数值,考查了三角函数值在直角三角形中的应用. 4.化简24·a a 的结果是( )A .8aB .6aC .4aD .2a 【答案】B【解析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】a 2•a 4=a 2+4=a 1.故选:B.5.如图,AB 是O 的直径,1BC =,,C D 是圆周上的点,且30CDB ∠=︒,则图中阴影部分的面积为( )A .362π-B .332π- C .3124π- D .364π- 【答案】D【分析】连接OC ,过点C 作CE ⊥OB 于点E,根据圆周角定理得出260BOC CDB ∠=∠=︒,则有BOC 是等边三角形,然后利用=S BOC BOC S S -阴影扇形求解即可.【详解】连接OC ,过点C 作CE ⊥OB 于点E30CDB ∠=︒260BOC CDB ∴∠=∠=︒OC OB =∴BOC 是等边三角形1OC OB BC ∴===3sin 60CE OC ∴=︒= 2601133=S 136026BOCBOC S Sππ∴-=-⨯=-阴影扇形 故选:D .【点睛】 本题主要考查圆周角定理及扇形的面积公式,掌握圆周角定理及扇形的面积公式是解题的关键. 6.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .【答案】B【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 7.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A .5B .6C .7D .10【答案】C 【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7, 故选C8.反比例函数y =k x 图象经过A (1,2),B (n ,﹣2)两点,则n =( ) A .1B .3C .﹣1D .﹣3【答案】C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n ,然后解方程即可.【详解】解:∵反比例函数y=kx图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些小球除颜色外都相同,其中有红球3个,黄球2个,蓝球若干,已知随机摸出一个球是红球的概率是13,则随机摸出一个球是蓝球的概率是()A.23B.13C.29D.49【答案】D【分析】先求出口袋中蓝球的个数,再根据概率公式求出摸出一个球是蓝球的概率即可.【详解】设口袋中蓝球的个数有x个,根据题意得:3 32x ++=13,解得:x=4,则随机摸出一个球是蓝球的概率是4432++=49;故选:D.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2= 13x2(x≥0)的图象于B,C两点,过点C作y轴的平行线交y1=x2(x≥0)的图象于点D,直线DE∥AC交y2=13x2(x≥0)的图象于点E,则DEAB=()A.33B.1 C.22D.3﹣3【答案】D【分析】设点A的纵坐标为b, 可得点B的坐标为b,b), 同理可得点C的坐标为3b,b),D 点坐标(3b ,3b ),E 点坐标(3b ,3b),可得DE AB的值. 【详解】解:设点A 的纵坐标为b, 因为点B 在21y x =的图象上, 所以其横坐标满足2x =b, 根据图象可知点B 的坐标为(b ,b), 同理可得点C 的坐标为(3b ,b),∴所以点D 的横坐标为3b ,因为点D 在21y x =的图象上, 故可得y=2(3)b =3b ,所以点E 的纵坐标为3b,因为点E 在2213y x =的图象上, ∴213x =3b , 因为点E 在第一象限, 可得E 点坐标为(3b ,3b),故DE=33b b -=(33)b -,AB=b所以DE AB=33- 故选D.【点睛】本题主要考查二次函数的图象与性质.11.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC ,若AD =4,AB =6,BC =12,则DE 等于( )A .4B .6C .8D .10【答案】C 【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质可得出AD DE AB BC =,再代入AD =4,AB =6,BC =12即可求出DE 的长.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD DE AB BC =,即4612DE =, ∴DE =1.故选:C .【点睛】此题考查相似三角形的判定及性质,平行于三角形一边的直线与三角形的两边相交,所截出的三角形与原三角形相似,故而依次得到线段成比例,得到线段的长.12.在阳光的照射下,一块三角板的投影不会是()A.线段B.与原三角形全等的三角形C.变形的三角形D.点【答案】D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.二、填空题(本题包括8个小题)13.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.【答案】100(1+x)2=1.【详解】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为1元,列出关于x的方程100(1+x)2=1.考点:一元二次方程的应用.14.若关于x的方程x2-kx+9=0(k为常数)有两个相等的实数根,则k=_____.【答案】±1【分析】根据方程x2-kx+9=0有两个相等的实数根,所以根的判别式△=b2-4ac=0,即k2-4×1×9=0,然后解方程即可.【详解】∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2-4×1×9=0,解得k=±1.故答案为±1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且⊙O的半径长为1,则BC+AB的值______.。

2019-2020学年浙江省温州市人教版九年级(上)期末数学试卷 解析版

2019-2020学年浙江省温州市人教版九年级(上)期末数学试卷  解析版

2019-2020学年浙江省温州市九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选错选均不给分)1.(3分)下列选项中的事件,属于随机事件的是()A.在一个只装有黑球的袋中,摸出红球B.两个正数相加,和是正数C.一打开电视机,正在播新闻D.在一个只装有黑球的袋中,摸出黑球2.(3分)抛物线y=x2﹣9与y轴的交点坐标是()A.(﹣9,0)B.(0,﹣9)C.(3,0)D.(0,3)3.(3分)如图,在2×3的方格中,画有格点△ABC,下列选项的方格中所画格点三角形(阴影部分)与△ABC相似的是()A.B.C.D.4.(3分)如图,在△ABC中,∠C=90°,AB=5,AC=4,D,E分别是AC,AB的中点,若作半径为2的⊙D,则下列选项中的点在⊙D外的是()A.点A B.点B C.点C D.点E5.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC.若AD=3BD,△ADE的周长为3,则△ABC的周长为()A .4B .6C .9D .126.(3分)如图,在3×3的方格中,已有两个小正方形被涂黑,若在其余空白小正方形中任选一个涂黑,则所得图案是一个轴对称图形的概率是( )A .17B .27C .37D .47 7.(3分)已知点A (﹣2,a ),B (﹣1,b ),C (3,c )均在抛物线y =﹣2(x +1)2+3上,则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .a <b <c8.(3分)如图,圆上有两点A ,B ,连接AB ,分别以A ,B 为圆心,AB 的长为半径画弧,两弧相交于点C ,D ,CD 交AB 于点E ,交AB̂于点F .若EF =1,AB =6,则该圆的半径长是( )A .4B .5C .6D .109.(3分)如图,P 是矩形ABCD 内一点,连结P 与矩形ABCD 各顶点,矩形EFGH 各顶点分别在边AP ,BP ,CP ,DP 上,已知AE =2EP ,EF ∥AB ,图中两块阴影部分的面积和为S .则矩形ABCD 的面积为( )A.4S B.6S C.12S D.18S10.(3分)如图,在坐标系网格中,过点B的抛物线顶点为A,且点A,B,C,D,E,F,O都在格点上,则该抛物线还经过下列选项中的()A.点C B.点D C.点E D.点F二、填空题(本题有8个小题,每小题3分,共24分)11.(3分)已知xy =43,则x−yy=.12.(3分)将抛物线y=x2+2向上平移1个单位后所得新抛物线的表达式为.13.(3分)如图,AB∥CD∥EF,点E,F分别在线段AD,BC上,已知BF=4,CF=6,AE=5,则DE的长为.14.(3分)如图,在一个半径为3的圆中,若圆周角∠ABC为30°,则AĈ的长为.15.(3分)如图,AB是半圆O的直径,点D,E在半圆上,∠DOE=100°,点C在DÊ上,连接CD,CE,则∠DCE等于度.16.(3分)如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为.17.(3分)如图1,G为△ABC纸片的重心,DG∥AC交BC于点D,连结BG,剪去△BGD 纸片,剩余部分纸片如图2所示,若原△ABC纸片面积为5,则图2纸片的面积为.18.(3分)如图,四边形ABDC内接于半圆O,AB为直径,AD平分∠CAB,AB﹣AC=4,AD=3√7,作DE⊥AB于点E,则BE的长为,AC的长为.三、解答题(本题有6小题,共46分,解答需写出必要的文字说明、演算步骤或证明过程)19.(6分)有4张卡片,正面分别写上1,2,3,4,它们的背面都相同.现将它们背面朝上,先从中任意摸出一张,卡片不放回,再任意摸出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求摸出的两张卡片上的数之和大于5的概率.20.(6分)如图,△ABC内接于⊙O,请用直尺和圆规按要求作图(保留作图痕迹).(1)在图1中画出一个圆心角,所作角的度数是∠ACB的2倍.(2)在图2中画出一个圆周角,所作角的度数是∠ACB的2倍.21.(6分)已知抛物线y=x2﹣4x+a+1.(1)若抛物线经过点(3,5),求该抛物线的表达式.(2)若该抛物线与x轴有且只有一个交点,求a的值.22.(8分)如图,在Rt△ABC中,∠B=90°,BC>AB,在BC边上取点D,使AB=BD,构造正方形ABDE,DE交AC于点F,作EG⊥AC交AC于点G,BC于点H.(1)求证:△AEF≌△EDH.(2)若AB=3,DH=2DF,求BC的长.23.(8分)小张准备给长方形客厅铺设瓷砖,已知客厅长AB=8m,宽BC=6m,现将其划分成一个长方形EFGH区域I和环形区域Ⅱ,区域Ⅰ用甲、乙瓷砖铺设,其中甲瓷砖铺设成的是两个全等的菱形图案,区域Ⅱ用丙瓷砖铺设,如图所示,已知N是GH中点,点M在边HE上,HN=3HM,设HM=x(m).(1)用含x的代数式表示以下数量.铺设甲瓷砖的面积为m2.铺设丙瓷砖的面积为m2.(2)若甲、乙、丙瓷砖单价分别为300元/m2,200元/m2,100元/m2,且EF≥FG+2,铺设好整个客厅,三种瓷砖总价至少需要多少钱?24.(12分)如图,在矩形BCD中,AB=3,AD=8,O为AD中点,P是线段AO上一动点,以O为圆心,OP为半径作⊙O分别交BO及BO延长线于点E,F,延长AE交BC 于点H.(1)当OP=2时,求BH的长.(2)当AH交⊙O于另一点G时,连接FG,DF,作DM⊥BF于点M,求证:△EFG ∽△FDM.(3)连结HO,当△EHO是直角三角形时,求OP的长.2018-2019学年浙江省温州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选错选均不给分)1.(3分)下列选项中的事件,属于随机事件的是()A.在一个只装有黑球的袋中,摸出红球B.两个正数相加,和是正数C.一打开电视机,正在播新闻D.在一个只装有黑球的袋中,摸出黑球【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、在一个只装有黑球的袋中,摸出红球是不可能事件,错误;B、两个正数相加,和是正数是必然事件,错误;C、一打开电视机,正在播新闻是随机事件,正确;D、在一个只装有黑球的袋中,摸出黑球是必然事件,错误;故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(3分)抛物线y=x2﹣9与y轴的交点坐标是()A.(﹣9,0)B.(0,﹣9)C.(3,0)D.(0,3)【分析】令x=0,求出y的值,然后写出交点坐标即可.【解答】解:x=0时,y=﹣9,所以,抛物线与y轴的交点坐标为(0,﹣9).故选:B.【点评】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象与坐标轴的交点的求解方法是解题的关键.3.(3分)如图,在2×3的方格中,画有格点△ABC,下列选项的方格中所画格点三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】利用两组对应边的比相等且夹角对应相等的两个三角形相似对各选项进行判断.【解答】解:∠ACB=90°,AC=2,BC=1,AC:BC=2,A选项中,三条线段的长为√2,2√2,√10,因为(√2)2+(2√2)2=(√10)2,此三角形为直角三角形,长直角边与短直角边的比为2,所以A选项的方格中所画格点三角形(阴影部分)与△ABC相似;而B选项中长直角边与短直角边的比为3,C、D选项中的两直角边的比为1:1.故选:A.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.4.(3分)如图,在△ABC中,∠C=90°,AB=5,AC=4,D,E分别是AC,AB的中点,若作半径为2的⊙D,则下列选项中的点在⊙D外的是()A.点A B.点B C.点C D.点E【分析】分别求出AD、CD、BD、ED的长,根据点与圆的位置关系的判断方法进行判断即可.【解答】解:∵∠C=90°,AB=5,AC=4,∴BC=3,∵且点D,E分别是AC,AB的中点,∴CD =AD =2,BE =AE =52,DE =12BC =32,∴BD =√22+32=√13,∵半径为2,∴点B 在⊙C 外,∴点E 在⊙C 内,∴点A ,C 在⊙C 上,故选:B .【点评】本题考查的是点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内.5.(3分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .若AD =3BD ,△ADE 的周长为3,则△ABC 的周长为( )A .4B .6C .9D .12【分析】证明△ADE ∽△ABC ,根据相似三角形的周长比等于相似比计算即可.【解答】解:∵AD =3BD ,∴AD AB =34, ∵DE ∥BC ,∴△ADE ∽△ABC ,∴△ADE 的周长△ABC 的周长=34, ∵△ADE 的周长为3,∴△ABC 的周长=4,故选:A .【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的周长比等于相似比是解题的关键.6.(3分)如图,在3×3的方格中,已有两个小正方形被涂黑,若在其余空白小正方形中任选一个涂黑,则所得图案是一个轴对称图形的概率是( )A .17B .27C .37D .47 【分析】在7个空白处分别涂黑,再根据轴对称图形的对应进行判断,然后根据概率公式求解.【解答】解:在其余空白小正方形中任选一个涂黑,则所得图案是一个轴对称图形的概率=37.故选:C .【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.也考查了轴对称图形.7.(3分)已知点A (﹣2,a ),B (﹣1,b ),C (3,c )均在抛物线y =﹣2(x +1)2+3上,则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .a <b <c 【分析】根据二次函数的性质得到抛物线y =﹣2(x +1)2+3的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值a 、b 、c 的大小.【解答】解:∵抛物线y =﹣2(x +1)2+3的开口向下,对称轴为直线x =﹣1,而B (﹣1,b )直线x =﹣1上,C (3,c )点离直线x =﹣1最远,A (﹣2,a )离直线x =﹣1的距离较近,∴c <a <b .故选:C .【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.(3分)如图,圆上有两点A ,B ,连接AB ,分别以A ,B 为圆心,AB 的长为半径画弧,两弧相交于点C ,D ,CD 交AB 于点E ,交AB̂于点F .若EF =1,AB =6,则该圆的半径长是( )A .4B .5C .6D .10【分析】先根据作图知AB ⊥CD ,再根据垂径定理知AE =BE =12AB =3,设该圆的半径为r ,根据r 2=(r ﹣1)2+32求解可得. 【解答】解:由作图知AB ⊥CD 且AB 平分CD , ∴AE =BE =12AB =3, 设该圆的半径为r , 则r 2=(r ﹣1)2+32,解得:r =5,即该圆的半径长是5, 故选:B .【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的尺规作图和垂径定理及勾股定理等知识点.9.(3分)如图,P 是矩形ABCD 内一点,连结P 与矩形ABCD 各顶点,矩形EFGH 各顶点分别在边AP ,BP ,CP ,DP 上,已知AE =2EP ,EF ∥AB ,图中两块阴影部分的面积和为S .则矩形ABCD 的面积为( )A .4SB .6SC .12SD .18S【分析】根据矩形的性质得到∠DAB =∠HEF =90°,根据平行线的性质得到∠PEF =∠P AB ,求得∠PEH =∠P AD ,推出EH ∥AD ,同理,FG ∥BC ,根据相似三角形的性质得到S △PEH S △PAD=(PE PA)2=19,同理,S △PFG S △PBC=19,于是得到结论.【解答】解:∵AE =2EP , ∴PE PA=13,∵四边形ABCD 与四边形EFGH 是矩形, ∴∠DAB =∠HEF =90°, ∵EF ∥AB , ∴∠PEF =∠P AB , ∴∠PEH =∠P AD , ∴EH ∥AD , 同理,FG ∥BC , ∵EF ∥AB , ∴△PEF ∽△P AB , ∴PEPA =PFPB =13,∴S △PEH S △PAD=(PE PA)2=19,同理,S △PFG S △PBC=19,∵S △P AD +S △PBC =12S 矩形ABCD , ∴S =19(S △P AD +S △PBC )=19×12S 矩形ABCD, ∴矩形ABCD 的面积=18S . 故选:D .【点评】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.10.(3分)如图,在坐标系网格中,过点B 的抛物线顶点为A ,且点A ,B ,C ,D ,E ,F ,O 都在格点上,则该抛物线还经过下列选项中的( )A .点CB .点DC .点ED .点F【分析】根据二次函数的性质和图象,可以解答本题. 【解答】解:由图象可得, 该抛物线经过点A 、B 、F , 故选:D .【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题有8个小题,每小题3分,共24分) 11.(3分)已知xy=43,则x−y y =13.【分析】由xy=43,得x =43y ,再代入所求的式子化简即可.【解答】解:x y=43,得x =43y ,把x =43y ,代入x−y y=13.故答案为:13.【点评】考查了比例的性质,找出x 、y 的关系,代入所求式进行约分.12.(3分)将抛物线y =x 2+2向上平移1个单位后所得新抛物线的表达式为 y =x 2+3 . 【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:将抛物线y =x 2+2向上平移1个单位后所得新抛物线的表达式为y =x 2+2+1,即y =x 2+3. 故答案是:y =x 2+3.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.13.(3分)如图,AB ∥CD ∥EF ,点E ,F 分别在线段AD ,BC 上,已知BF =4,CF =6,AE =5,则DE 的长为152.【分析】三条平行线截两条直线,所得的对应线段成比例.依据平行线分线段成比例定理可得结论.【解答】解:∵AB ∥CD ∥EF , ∴AE DE=BF CF,即5DE=46,∴DE =152, 故答案为:152.【点评】本题主要考查了平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例.14.(3分)如图,在一个半径为3的圆中,若圆周角∠ABC 为30°,则AĈ的长为 π .【分析】连接OA ,OC ,根据圆周角定理求出∠AOC ,利用弧长公式计算,得到答案. 【解答】解:连接OA ,OC ,由圆周角定理得,∠AOC =2∠ABC =60°, ∴AC ̂的长=60π×3180=π, 故答案为:π.【点评】本题考查的是弧长的计算,圆周角定理,掌握弧长公式是解题的关键. 15.(3分)如图,AB 是半圆O 的直径,点D ,E 在半圆上,∠DOE =100°,点C 在DE ̂上,连接CD ,CE ,则∠DCE 等于 130 度.【分析】补全⊙O ,在⊙O 上AB 的下方取一点M ,连接DM ,EM .根据圆周角定理,圆内接四边形的性质即可解决问题.【解答】解:补全⊙O,在⊙O上AB的下方取一点M,连接DM,EM.∵∠M=12∠DOE=50°,∠M+∠DCE=180°,∴∠DCE=130°,故答案为130【点评】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.16.(3分)如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为144°.【分析】根据多边形的内角和,可求出∠BAE=∠AED=∠F AM=∠AMH= 180×(5−2)5=108°,即可求出∠EAM的度数,根据旋转的性质,可得x的最小值.【解答】解:∵五边形ABCDE,AFGHM是正五边形∴∠BAE=∠AED=∠F AM=∠AMH=180×(5−2)5=108°,∴∠AEM=∠AME=72°,∴∠EAM=180°﹣72°﹣72°=36°,∵正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,顺时针旋转最小需144°,逆时针旋转最小需216°,∴x的最小值为36+108=144°故答案为:144°【点评】本题考查了旋转的性质,多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.17.(3分)如图1,G为△ABC纸片的重心,DG∥AC交BC于点D,连结BG,剪去△BGD纸片,剩余部分纸片如图2所示,若原△ABC纸片面积为5,则图2纸片的面积为359.【分析】连接AG,延长AG交BD于E,如图1,设△DGE的面积为S,利用三角形重心的性质得到BE=CE,AG=2EG,根据平行线分线段成比例定理得到ED:DC=EG:AG=1:2,根据三角形的面积公式得到S△DGC=2S,最后表示出S△ABC=18S,即18S=5,解得S=5 18,然后计算图2纸片的面积.【解答】解:连接AG,延长AG交BD于E,如图1,设△DGE的面积为S,∵G为△ABC纸片的重心,∴BE=CE,AG=2EG,∵DG∥AC,∴ED:DC=EG:AG=1:2,∴S△DGC=2S△DEG=2S,∴S△BEG=S△CEG=3S,∴S△ABG=2S△BEG=6S,∵S△ABE=3S+6S=9S,∴S△ABC=2S△ABE=18S,即18S=5,解得S=5 18,∴S△BDG=4S=10 9,∴图2纸片的面积=5−109=359.故答案为359.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点.重心到顶点的距离与重心到对边中点的距离之比为2:1. 也考查了三角形面积公式.18.(3分)如图,四边形ABDC 内接于半圆O ,AB 为直径,AD 平分∠CAB ,AB ﹣AC =4,AD =3√7,作DE ⊥AB 于点E ,则BE 的长为 2 ,AC 的长为 5 .【分析】如图,作DF ⊥AC 交AC 的延长线于F .由Rt △DFC ≌Rt △DEB (HL ),推出CF =BE ,由Rt △ADF ≌Rt △ADE (HL ),推出AF =AE ,由AB ﹣AC =AE +EB ﹣(AF ﹣CF )=2BE =4,推出BE =2,由△ADE ∽△ABD ,推出AD AB=AE AD,可得AD 2=AE •AB ,设AE =x ,由此构建方程即可解决问题.【解答】解:如图,作DF ⊥AC 交AC 的延长线于F .∵AD 平分∠CAB ,DF ⊥AC ,DE ⊥AB , ∴DE =DF , ∵∠DAC =∠DAB , ∴CD ̂=BD ̂, ∴CD =DB ,∵∠F =∠DEB =90°, ∴Rt △DFC ≌Rt △DEB (HL ),∴CF =BE ,∵∠F =∠AED =90°,AD =AD .DF =DE , ∴Rt △ADF ≌Rt △ADE (HL ), ∴AF =AE ,∵AB ﹣AC =AE +EB ﹣(AF ﹣CF )=2BE =4, ∴BE =2, ∵AB 是直径, ∴∠ADB =90°,∵∠DAE =∠BAD ,∠AED =∠ADB =90°, ∴△ADE ∽△ABD , ∴AD AB=AE AD,∴AD 2=AE •AB ,设AE =x , 则有:63=x (x +2), 解得x =7或﹣9(舍弃), ∴AE =7, ∴AB =AE +BE =9, ∵AB ﹣AC =4, ∴AC =5, 故答案为2,5.【点评】本题考查圆周角定理,角平分线的性质定理,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.三、解答题(本题有6小题,共46分,解答需写出必要的文字说明、演算步骤或证明过程) 19.(6分)有4张卡片,正面分别写上1,2,3,4,它们的背面都相同.现将它们背面朝上,先从中任意摸出一张,卡片不放回,再任意摸出一张. (1)请用树状图或列表法表示出所有可能的结果. (2)求摸出的两张卡片上的数之和大于5的概率.【分析】(1)首先根据题意画出树状图,得出所有等可能的结果数;(2)根据(1)得出所有等可能的结果数和两张卡片的数字之和大于5的情况数,再利用概率公式求解即可求得答案.【解答】解:(1)根据题意画图如下:共有12种等情况数;(2)根据(1)可得:共有12种等情况数,摸出的两张卡片上的数之和大于5的有4种,则摸出的两张卡片上的数之和大于5的概率是412=1 3.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.20.(6分)如图,△ABC内接于⊙O,请用直尺和圆规按要求作图(保留作图痕迹).(1)在图1中画出一个圆心角,所作角的度数是∠ACB的2倍.(2)在图2中画出一个圆周角,所作角的度数是∠ACB的2倍.【分析】(1)根据同圆中,同弧所对圆心角等于圆周角的2倍连接OA=OB即可得;(2)作直线BO,再过点A作BO的垂线,交⊙O于点D,连接CD,则∠ACD即为所求.【解答】解:(1)如图1,∠AOB=2∠ACB;(2)如图2,∠ACD=2∠ACB.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角、弧、弦的关系及过直线外一点作已知直线的垂线的尺规作图.21.(6分)已知抛物线y=x2﹣4x+a+1.(1)若抛物线经过点(3,5),求该抛物线的表达式.(2)若该抛物线与x轴有且只有一个交点,求a的值.【分析】(1)利用待定系数法确定函数解析式;(2)利用抛物线与一元二次方程的关系以及根的判别式解答.【解答】解:(1)把(3,5)代入y=x2﹣4x+a+1,得32﹣4×3+a+1=5,解得a=7,故该抛物线解析式是y=x2﹣4x+8;(2)∵抛物线y=x2﹣4x+a+1与x轴有且只有一个交点,∴△=(﹣4)2﹣4(a+1)=0,解得a=3.【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征以及待定系数法确定函数解析式,难度不大.22.(8分)如图,在Rt△ABC中,∠B=90°,BC>AB,在BC边上取点D,使AB=BD,构造正方形ABDE,DE交AC于点F,作EG⊥AC交AC于点G,BC于点H.(1)求证:△AEF≌△EDH.(2)若AB=3,DH=2DF,求BC的长.【分析】(1)根据ASA证明:△AEF≌△EDH;(2)设DF=x,则DH=2x,根据正方形的性质得:AB∥DF,得△DFC∽△BAC,列比例式可得DC的长,可得结论.【解答】证明:(1)∵四边形ABDE是正方形,∴AE =DE ,∠AED =∠EDH =90°,∵EG ⊥AC ,∴∠AGE =90°,∴∠GAE +∠AEG =∠AEG +∠DEH =90°,∴∠GAE =∠DEH ,在△AEF 和△EDH 中,∵{∠GAE =∠DEH AE =ED ∠AEF =∠EDH,∴△AEF ≌△EDH (ASA );(2)设DF =x ,则DH =2x ,∵△AEF ≌△EDH .∴EF =DH =2x ,∴ED =EF +DF =3x =AB ,∵四边形ABDE 是正方形,∴AB ∥DF ,∴△DFC ∽△BAC ,∴DF AB =DC BC =x 3x ,∵BD =3,∴DC =32,∴BC =BD +CD =3+32=4.5.【点评】本题考查了三角形全等的性质和判定、正方形的性质、三角形相似的判定和性质等知识,熟练掌握三角形全等的判定是关键.23.(8分)小张准备给长方形客厅铺设瓷砖,已知客厅长AB =8m ,宽BC =6m ,现将其划分成一个长方形EFGH 区域I 和环形区域Ⅱ,区域Ⅰ用甲、乙瓷砖铺设,其中甲瓷砖铺设成的是两个全等的菱形图案,区域Ⅱ用丙瓷砖铺设,如图所示,已知N 是GH 中点,点M 在边HE 上,HN =3HM ,设HM =x (m ).(1)用含x 的代数式表示以下数量.铺设甲瓷砖的面积为 12x 2 m 2.铺设丙瓷砖的面积为 48﹣24x 2 m 2.(2)若甲、乙、丙瓷砖单价分别为300元/m2,200元/m2,100元/m2,且EF≥FG+2,铺设好整个客厅,三种瓷砖总价至少需要多少钱?【分析】(1)由HM=x(m)得出HN=3x(m),则EF=GH=6x(m),再根据菱形的面积、三角形的面积、矩形的面积计算方法即可得出结果;(2)由已知条件EF≥FG+2,得出x≥1,求出三种瓷砖总价,即可得出结果.【解答】解:(1)设HM=x(m),则HN=3x(m),根据题意得:EF=GH=6x(m),FG=4x(m),∴铺设甲瓷砖的面积为2×12×6x×2x=12x2(m2),铺设乙瓷砖的面积为8×12×3x×x=12x2(m2),∴铺设丙瓷砖的面积为8×6﹣12x2﹣12x2=48﹣24x2(m2);故答案为12x2,48﹣24x2;(2)∵EF≥FG+2,∴6x≥4x+2,解得:x≥1,∴铺设好整个客厅,三种瓷砖总价为300×12x2+200×12x2+100(48﹣24x2)=3600x2+4800≥3600+4800=8400(元),即铺设好整个客厅,三种瓷砖总价至少需要8400元.【点评】本题考查了菱形、矩形的性质,菱形、矩形和三角形面积的计算以及列代数式;熟练掌握菱形和矩形的性质,列出各种瓷砖的面积是解题关键.24.(12分)如图,在矩形BCD中,AB=3,AD=8,O为AD中点,P是线段AO上一动点,以O为圆心,OP为半径作⊙O分别交BO及BO延长线于点E,F,延长AE交BC 于点H.(1)当OP=2时,求BH的长.(2)当AH 交⊙O 于另一点G 时,连接FG ,DF ,作DM ⊥BF 于点M ,求证:△EFG ∽△FDM .(3)连结HO ,当△EHO 是直角三角形时,求OP 的长.【分析】(1)在Rt △ABO 中,利用勾股定理求出OB ,由BH ∥OA ,推出BH OA =BE EO ,由此即可解决问题;(2)利用两角对应相等两三角形相似即可证明;(3)分两种情形画出图形分别求解即可;【解答】解:(1)如图1中,∵四边形ABCD 是矩形,∴∠BAD =90°,AD ∥BC ,∵AB =3,AO =OD =4,∴OB =√32+42=5,∵OP =OE =2,∴BE =3,∵BH ∥OA ,∴BH OA =BE EO , ∴BH 4=32,∴BH =6.(2)如图2中,∵EF 是直径,∴∠EGF =90°,∵OA =OD ,∠AOE =∠DOF ,OE =OF ,∴△AOE ≌△DOF (SAS ),∴∠EAO =∠ODF ,∴AH ∥DF ,∴∠DFG =∠EGF =90°,∵DM ⊥BF ,∴∠DMF =∠EGF =90°,∵∠GFE +∠DFM =90°,∠DFM +∠FDM =90°,∴∠EFG =∠FDM ,∴△EFG ∽△FDM .(3)如图3﹣1中,当∠HEO =90°时,∵12•AB •AO =12•OB •AE ,∴AE =125, ∴OE =2−AE 2=165, ∴OP =OE =165.如图3﹣2中,当∠EOH =90°时,∵BC ∥AD ,∴∠BOA =∠OBH ,∵∠BAO =∠BOH =90°,∴△ABO ∽△OHB ,∴OB BH =OA OB , ∴5BH=45,∴BH =254, ∵OA ∥BH , ∴OE EB =OA BH =4254=1625,∴OE =1641•OB =8041,∴OP =OE =8041,综上所述,OP 的值为165或8041.【点评】本题属于圆综合题,考查了矩形的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

2019-2020浙江温州瑞安集云实验学校九年级上数学 期末试题

2019-2020浙江温州瑞安集云实验学校九年级上数学 期末试题

B.120°
C. 90°
D. 60°
4.将抛物线 y = 2 2先向右平移 1 个单位,再向上平移 3 个单位后所得抛物线的解析式为
( ▲)
A.y = 2 튠 ఉ 2 C.y = 2 ఉ 2
B.y = 2 튠 ఉ 2 튠 D.y = 2 ఉ 2 튠
5.如图 A 是某公园的进口,B,C,D 是三个不同的出口,小明从 A 处进入公园,那么从 B,C,D
17.(10 分)(1)计算 ఉ2 튠 20ఉ9 0 튠 (
(2)解方程:
튠ఉ 2
=
2
2
ఉ)
18.(8 分)如图所示□ABCD 中,E,F 分别是边 AD,BC 上的点,且 AE=CF, (1)求证:BE=DF (2)连结 AF,若 AD=DF,∠ADF=40°,求∠AFB 的度数。
19.(8 分)在甲口袋中有三个球分别标有数码 1,-2,3;在乙口袋中也有三个球分别标有数 码 4,-5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一 个球,并记下数码,小林从乙口袋中任取一个球,并记下数码; (1)用树状图或列表法表示所有可能的结果; (2)求所抽取的两个球数码的乘积为负数的概率。
那么可以估计这批灯泡的合格率约为___▲_______.
12.已知两个相似三角形△ABC 与△DEF 的相似比为 3,则△ABC 与△DEF 的面积之比为▲ 。
13.一个小球从水平面开始竖直向上发射,小球的高度 h(m)关于运动时间 t(s)的函数表达式
为 h=at2+bt,其图象如图所示.若小球在发射后第 2s 与第 6s 时的高度相等,则小球从发
三个出口中恰好在 C 出口出来的概率为( ▲ )

2019-2020学年浙江省温州市瑞安市集云实验学校等五校九年级(上)期末数学试卷 含解析

2019-2020学年浙江省温州市瑞安市集云实验学校等五校九年级(上)期末数学试卷 含解析

2019-2020学年九年级(上)期末数学试卷一、选择题1.抛物线y=x2+2x+3与y轴的交点为()A.(0,2)B.(2,0)C.(0,3)D.(3,0)2.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合()A.90°B.135°C.180°D.270°3.已知一个扇形的半径为3,弧长为2π,那么它所对的圆心角度数为()A.240°B.120°C.90°D.60°4.若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A.y=2(x+5)2﹣1 B.y=2(x+5)2+1C.y=2(x﹣1)2+3 D.y=2(x+1)2﹣35.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.B.C.D.6.已知点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x上的三点,则a,b,c 的大小关系为()A.b>c>a B.b>a>c C.c>a>b D.a>c>b7.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.8.“双11”前,小明的妈妈花了120元钱在淘宝上购买了一批室内拖鞋,在“双11”大减价期间她发现回款的拖鞋单价每双降了5元,于是又花了100元钱购买了一批回款室内拖鞋,且比上次还多了2双.若设拖鞋原价每双为x元,则可以列出方程为()A.B.C.D.9.反比例函数y=,y=图象如图所示,点A在y=图象上,连接OA交y=图象于点B,则AB:BO的比为()A.1:2 B.2:3 C.4:5 D.4:910.如图矩形ABCD中,E是CD延长线上一点,连结BE交AD于点F,连结CF,已知AB=1,BC=2,若△ABF与△CEF的面积相等,则DE的长为()A.1 B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.某灯具厂从一批LED灯泡中随机抽取100个进行质量检测,结果有99个灯泡质量合格,那么可以估计这批灯泡的合格率约为.12.已知两个相似三角形△ABC与△DEF的相似比为3.则△ABC与△DEF的面积之比为.13.一个小球从水平面开始竖直向上发射,小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示.若小球在发射后第2s与第6s时的高度相等,则小球从发射到回到水平面共需时间(s).14.某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN=m.15.已知 Rt△ACB中,∠ACB=90°,AB﹣BC=2,AC=4,以三边分别向外作三个正方形,连接DE,FG,HI,得到六边形DEFGHI,则六边形DEFGHI的面积为.16.如图,以AD为直径作⊙O,点B为半圆弧的中点,连接AB,以如图所示的AD,AB为邻边作平行四边形ABCD,连结AC交⊙O于点E,连结BE并延长交CD于F.若AD=6,则DF=.三、解答题(本题有8小题,共80分)17.(1)计算:+(π﹣2019)0﹣(+1)2(2)解方程:18.如图所示平行四边形ABCD中,EF分别是边AD,BC上的点,且AE=CF.(1)求证:BE=DF;(2)连结AF,若AD=DF,∠ADF=40°,求∠AFB的度数.19.在甲口袋中有三个球分别标有数码1,﹣2,3;在乙口袋中也有三个球分别标有数码4,﹣5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一个球,并记下数码,小林从乙口袋中任取一个球,并记下数码.(1)用树状图或列表法表示所有可能的结果;(2)求所抽取的两个球数码的乘积为负数的概率.20.如图Rt△ABC与 Rt△DEF中,∠A=∠D=90°,∠B=40°,∠E=20°,用一条过顶点的线段将 Rt△ABC分割成两个三角形,再用另一条过顶点的线段将 Rt△DEF也分割成两个三角形;所分割成的四个三角形恰好是两对相似三角形.(要求:1.用三种不同的方法;2.在图中标出相应的锐角度数.)21.如图,Rt△ABC中,∠C=90°,在BC上取一点D使AD=BD,连结AD,作△ACD的外接圆⊙O,交AB于点E.(1)求证:AE=BE;(2)若CD=3,AB=4,求AC的长.22.如图直角坐标系中,△ABO,O为坐标原点,A(0,3),B(6,3),二次函数y=﹣x2+bx+c的图象经过点A,B,点P为抛物线上AB上方的一个点,连结PA,作PQ⊥AB垂足为H,交OB于点Q.(1)求b,c的值;(2)当∠APQ=∠B时,求点P的坐标;(3)当△APH面积是四边形AOQH面积的2倍时,求点P的坐标.23.如图一个五边形的空地ABCDE,AB∥CD,BC∥DE,∠C=90°,已知AB=4(m),BC =10(m),CD=14(m),DE=5(m),准备在五边形中设计一个矩形的休闲亭MNPQ,剩下部分设计绿植.设计要求NP∥CD,PQ∥BC,矩形MNPQ到五边形ABCDE三边AB,BC,CD的距离相等,都等于x(m),延长QM交AE与H,MH=1(m).(1)五边形ABCDE的面积为(m2);(2)设矩形MNPQ的面积为y(m2),求y关于x的函数关系式;(3)若矩形MNPQ休闲亭的造价为每平方米0.5万元,剩下部分绿植的造价为每平方米0.1万元,求总造价的最大值.24.如图 Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC 于点D,与AC的另一个交点E,连接DE.(1)当时,①若=130°,求∠C的度数;②求证AB=AP;(2)当AB=15,BC=20时①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为.(直接写出结果)参考答案一、选择题(本题有10小题,每小题4分,共40分每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.抛物线y=x2+2x+3与y轴的交点为()A.(0,2)B.(2,0)C.(0,3)D.(3,0)解:把x=0代入y=x2+2x+3,求得y=3,∴抛物线y=x2+2x+3,与y轴的交点坐标为(0,3).故选:C.2.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合()A.90°B.135°C.180°D.270°解:图案可以被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90度的整数倍,就可以与自身重合,故选:B.3.已知一个扇形的半径为3,弧长为2π,那么它所对的圆心角度数为()A.240°B.120°C.90°D.60°解:设扇形的圆心角为n°,∵扇形的半径为3,弧长为2π,∴2π=,解得:n=120,即圆心角是120°,故选:B.4.若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A.y=2(x+5)2﹣1 B.y=2(x+5)2+1C.y=2(x﹣1)2+3 D.y=2(x+1)2﹣3解:函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到y=2(x﹣1)2+3.故选:C.5.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.B.C.D.解:∵小明从A处进入公园,那么从B,C,D三个出口出来共有3种等可能结果,其中从C出口出来是其中一种结果,∴恰好在C出口出来的概率为,故选:B.6.已知点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x上的三点,则a,b,c 的大小关系为()A.b>c>a B.b>a>c C.c>a>b D.a>c>b解:∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴该抛物线的对称轴是直线x=2,当x>2时,y随x的增大而增大,当x<2时,y随x 的增大而减小,∵点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x的三点,∵2﹣(﹣2)=4,2﹣2=0,4﹣2=2,∴a>c>b,故选:D.7.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.解:根据题意得:AC==,AB==,BC=1,∴BC:AB:AC=1::,A、三边之比为1::,选项A符合题意;B、三边之比::3,选项B不符合题意;C、三边之比为2::,选项C不符合题意;D、三边之比为::4,选项D不符合题意.故选:A.8.“双11”前,小明的妈妈花了120元钱在淘宝上购买了一批室内拖鞋,在“双11”大减价期间她发现回款的拖鞋单价每双降了5元,于是又花了100元钱购买了一批回款室内拖鞋,且比上次还多了2双.若设拖鞋原价每双为x元,则可以列出方程为()A.B.C.D.解:设拖鞋原价每双为x元,则“双11”大减价期间该款拖鞋价格每双为(x﹣5)元,依题意,得:=﹣2.故选:D.9.反比例函数y=,y=图象如图所示,点A在y=图象上,连接OA交y=图象于点B,则AB:BO的比为()A.1:2 B.2:3 C.4:5 D.4:9解:作AM⊥x轴于M,BN⊥x轴于N,∵点A在y=图象上,连接OA交y=图象于点B,∴S△AOM=×9=,S△BOC==2,∵AM∥BN,∴=()2=,∴=,∴=,即=,故选:A.10.如图矩形ABCD中,E是CD延长线上一点,连结BE交AD于点F,连结CF,已知AB=1,BC=2,若△ABF与△CEF的面积相等,则DE的长为()A.1 B.C.D.解:设DE=x.∵DF∥BC,∴△EFD∽△EBC,∴=,∴=,∴DF=,AF=2﹣=,∵△ABF与△CEF的面积相等,∴•AF•AB=•EC•DF,∴×1=×x+1,∴解得x=或(舍弃),故选:D.二、填空题(本题有6小题,每小题5分,共30分)11.某灯具厂从一批LED灯泡中随机抽取100个进行质量检测,结果有99个灯泡质量合格,那么可以估计这批灯泡的合格率约为99% .解:这批LED灯泡的合格率=99÷100×100%=99%.故答案为:99%.12.已知两个相似三角形△ABC与△DEF的相似比为3.则△ABC与△DEF的面积之比为9 .解:∵△ABC与△DEF的相似比为3,∴△ABC与△DEF的面积之比为9.故答案为9.13.一个小球从水平面开始竖直向上发射,小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示.若小球在发射后第2s与第6s时的高度相等,则小球从发射到回到水平面共需时间8 (s).解:由题意可知:小球在发射后第2s与第6s时的高度相等,则函数h=at2+bt的对称轴t==4,故小球从发射到回到水平面共需时间8秒,故答案是:8.14.某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN=10 m.解:设CD于AB交于G,与MN交于H,∵CD=18m,AE=10m,AB=24m,HD=17m,∴CG=8m,AG=12m,CH=1m,设圆拱的半径为r,在Rt△AOG中,OA2=OG2+AG2,∴r2=(r﹣8)+122,解得r=13,∴OC=13m,∴OH=13﹣1=12m,在Rt△MOH中,OM2=OH2+MH2,∴132=122+MH2,解得MH2=25,∴MH=5m,∴MN=10m,故答案为10.15.已知 Rt△ACB中,∠ACB=90°,AB﹣BC=2,AC=4,以三边分别向外作三个正方形,连接DE,FG,HI,得到六边形DEFGHI,则六边形DEFGHI的面积为74 .解:如图,作DJ⊥EA交EA的延长线于J.∵∠DAC=∠JAB=90°,∴∠DAJ=∠CAB,∵AD=AB,∠J=∠ACB=90,∴△ADJ≌△ABC(AAS),∴DJ=BC,∵S△ABD=•AE•DJ,S△ABC=•AC•BC,AE=AB,∴S△AED=S△ABC,同理可证S△ABC=S△BFG,∵AB﹣BC=2,AC=4,∴可以假设BC=x,则AB=x+2,∴(x+2)2=x2+42解得x=3,∴AC=4,BC=3,AB=5,∴六边形DEFGHI的面积=4××3×4+4×4+3×3+5×5=74,故答案为74.16.如图,以AD为直径作⊙O,点B为半圆弧的中点,连接AB,以如图所示的AD,AB 为邻边作平行四边形ABCD,连结AC交⊙O于点E,连结BE并延长交CD于F.若AD=6,则DF=.解:如图,连接BD交AC于O,连接DE,作FM⊥AC于M,FN⊥DE于N.∵=,∴AB=BD,∵AD是直径,∴∠ABD=∠AED=90°,∴∠BAD=∠BDA=∠AEB=45°,∵∠AEB=∠CEF=45°,∠CED=90°,∴∠FED=∠FEC=45°,∵FM⊥EC.FN⊥ED,∴FM=FN,∴===,∵四边形ABCD是平行四边形,∴OB=OD,AB∥CD,∴∠BAO=∠DCE,∴tan∠DCE=tan∠ABO===,∴DF:CF=DE+CE=1:2,∴AD=6,△ABD是等腰直角三角形,∴AB=BD=CD=3,∴DF=CD=故答案为.三、解答题(本题有8小题,共80分)17.(1)计算:+(π﹣2019)0﹣(+1)2(2)解方程:解:(1)原式=2+1﹣(3+2+1)=2+1﹣4﹣2=﹣3;(2)去分母得3(x﹣1)=2(2x+3),去括号得3x﹣3=4x+6,移项得3x﹣4x=9,合并的得﹣x=9,系数化为1得x=﹣9.18.如图所示平行四边形ABCD中,EF分别是边AD,BC上的点,且AE=CF.(1)求证:BE=DF;(2)连结AF,若AD=DF,∠ADF=40°,求∠AFB的度数.【解答】(1)证明:在平行四边形ABCD中,AD∥BC,AD=BC,∵AE=CF,∴DE∥BF,DE=BF∴四边形BEDF是平行四边形∴BE=DF.(2)∵AD=DF,∠ADF=40°∴∠DAF=∠AFD=70°∵AD∥BC∴∠AFB=∠FAD=70°.19.在甲口袋中有三个球分别标有数码1,﹣2,3;在乙口袋中也有三个球分别标有数码4,﹣5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一个球,并记下数码,小林从乙口袋中任取一个球,并记下数码.(1)用树状图或列表法表示所有可能的结果;(2)求所抽取的两个球数码的乘积为负数的概率.解:(1)列表如下:(2)由表可知,共有9种等可能结果,其中所抽取的两个球数码的乘积为负数的由4种结果,∴所抽取的两个球数码的乘积为负数的概率为.20.如图Rt△ABC与 Rt△DEF中,∠A=∠D=90°,∠B=40°,∠E=20°,用一条过顶点的线段将 Rt△ABC分割成两个三角形,再用另一条过顶点的线段将 Rt△DEF也分割成两个三角形;所分割成的四个三角形恰好是两对相似三角形.(要求:1.用三种不同的方法;2.在图中标出相应的锐角度数.)解:方法一:方法二:方法三:方法四:方法五:21.如图,Rt△ABC中,∠C=90°,在BC上取一点D使AD=BD,连结AD,作△ACD的外接圆⊙O,交AB于点E.(1)求证:AE=BE;(2)若CD=3,AB=4,求AC的长.解:(1)证明:连结DE,∵∠C=90°,∴AD为直径,∴DE⊥AB,∵AD=BD,∴AE=BE;(2)设BD=x,∵∠B=∠B,∠C=∠DEB=90°∴△ABC~△DBE,∴,∴,∴x=5.∴AD=BD=5,∴AC==4.22.如图直角坐标系中,△ABO,O为坐标原点,A(0,3),B(6,3),二次函数y=﹣x2+bx+c的图象经过点A,B,点P为抛物线上AB上方的一个点,连结PA,作PQ⊥AB垂足为H,交OB于点Q.(1)求b,c的值;(2)当∠APQ=∠B时,求点P的坐标;(3)当△APH面积是四边形AOQH面积的2倍时,求点P的坐标.解:(1)把A(0,3),B(6,3)代入y=﹣x2+bx+c并解得:;(2)设P(m,﹣m2+6m+3)∵∠P=∠B,∠AHP=∠OAB=90°,∴△ABO~△HPA,∴,∴,解得m=4.∴P(4,11)(3)当△APH的面积是四边形AOQH的面积的2倍时,则2(AO+HQ)=PH∴,得:m1=4,m2=3,∴P(4,11)或P(3,12)23.如图一个五边形的空地ABCDE,AB∥CD,BC∥DE,∠C=90°,已知AB=4(m),BC =10(m),CD=14(m),DE=5(m),准备在五边形中设计一个矩形的休闲亭MNPQ,剩下部分设计绿植.设计要求NP∥CD,PQ∥BC,矩形MNPQ到五边形ABCDE三边AB,BC,CD的距离相等,都等于x(m),延长QM交AE与H,MH=1(m).(1)五边形ABCDE的面积为115 (m2);(2)设矩形MNPQ的面积为y(m2),求y关于x的函数关系式;(3)若矩形MNPQ休闲亭的造价为每平方米0.5万元,剩下部分绿植的造价为每平方米0.1万元,求总造价的最大值.解:(1)五边形ABCDE的面积为=5×14+(4+14)(10﹣5)=70+45=115(m2);故答案为:115;(2)由题意可以得:PQ=(10﹣2x),MQ=(3+x),∴y=(10﹣2x)(x+3)=﹣2x2+4x+30,(3)设总造价为w(万元),由题意得,w=115×0.1+0.4(﹣2x2+4x+30)w=﹣0.8x2+1.6x+23.5,当x=1时,w最大值=24.3,答:总造价的最大值为24.3万元.24.如图 Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC 于点D,与AC的另一个交点E,连接DE.(1)当时,①若=130°,求∠C的度数;②求证AB=AP;(2)当AB=15,BC=20时①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为7<CP<12.5 .(直接写出结果)【解答】(1)①解:连接BE,如图1所示:∵BP是直径,∴∠BEC=90°,∵=130°,∴=50°,∵=,∴=100°,∴∠CBE=50°,∴∠C=40°;②证明:∵=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(2)解:①由AB=15,BC=20,由勾股定理得:AC===25,∵AB•BC=AC•BE,即×15×20=×25×BE∴BE=12,连接DP,如图1﹣1所示:∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴=,∴CP===CD,△BDE是等腰三角形,分三种情况:当BD=BE时,BD=BE=12,∴CD=BC﹣BD=20﹣12=8,∴CP=CD=×8=10;当BD=ED时,可知点D是Rt△CBE斜边的中线,∴CD=BC=10,∴CP=CD=×10=;当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,如图1﹣2所示:AE===9,∴CE=AC﹣AE=25﹣9=16,CH=BC﹣BH=20﹣BH,∵EH∥AB,∴=,即=,解得:BH=,∴BD=2BH=,∴CD=BC﹣BD=20﹣=,∴CP=CD=×=7;综上所述,△BDE是等腰三角形,符合条件的CP的长为10或或7;②当点Q落在∠CPH的边PH上时,CP最小,如图2所示:连接OD、OQ、OE、QE、BE,由对称的性质得:DE垂直平分OQ,∴OD=QD,OE=QE,∵OD=OE,∴OD=OE=QD=QE,∴四边形ODQE是菱形,∴PQ∥OE,∵PB为直径,∴∠PDB=90°,∴PD⊥BC,∵∠ABC=90°,∴AB⊥BC,∴PD∥AB,∴DE∥AB,∵OB=OP,∴OE为△ABP中位线,∴PE=AE=9,∴PC=AC﹣PE﹣AE=25﹣9﹣9=7;当点Q落在∠CPH的边PC上时,CP最大,如图3所示:连接OD、OQ、OE、QD,同理得:四边形ODQE是菱形,∴OD∥QE,连接DF,∵∠DBC=90°,∴DF是直径,∴D、O、F三点共线,∴DF∥AQ,∴∠OFB=∠A,∵OB=OF,∴∠OFB=∠OBF=∠A,∴PA=PB,∵∠OBF+∠CBP=∠A+∠C=90°,∴∠CBP=∠C,∴PB=PC=PA,∴PC=AC=12.5,∴7<CP<12.5,故答案为:7<CP<12.5.。

2019-2020学年第一学期九年级瑞安六校第一次联考试数学卷(含答案)

2019-2020学年第一学期九年级瑞安六校第一次联考试数学卷(含答案)

23.(本题 12 分)某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政 府给该企业补偿(补偿额=(批发价﹣生产成本价)×销售量).大学生小明投资销售本 市企业生产的一种新型节能灯,调查发现,每月销售量 y(件)与销售单价 x(元)之间 的关系近似满足一次函数:y=﹣10x+500.已知这种节能灯批发价为每件 12 元,设它的 生产成本价为每件 m 元(m<12) (1)当 m=10 时. ①若第一个月的销售单价定为 20 元,则第一个月政府要给该企业补偿多少元? ②设所获得的利润为 w(元),当销售单价定为多少元时,每月可获得最大利润? (2)物价部门规定,这种节能灯的销售单价不得超过 30 元.今年三月小明获得赢利, 此时政府给该企业补偿了 920 元,若 m,x 都是正整数,求 m 的值.
16.
,

三、解答题(本大题有 8 小题,共 80 分)
17.(本小题满分 8 分)
解:(1)
2
求从袋中摸出一个球是红球的概率 P=

……3 分
3
(2) 树状图
… ……………6 分
∴ P(两次摸出的球颜色相同)= …………………8 分
18.(本小题满分 8 分) (1)点 C 的坐标为 (2,-1) . …………1 分 坐标系正确 …………………………………3 分 (2)画出过 A、B、C 三点的圆.………………6 分
C,点 A 在 x 轴负半轴上,且 OA= OB,抛物线 y=ax2+bx+4 经过
A,B,C 三点. (1)求抛物线的解析式;
(2)点 P 是第一象限内抛物线上的动点,设点 P 的横坐标为 m,过点 P 作 PD⊥BC,垂足 为 D,用含 m 的代数式表示线段 PD 的长,并求出线段 PD 的最大值. 22. (本题 10 分).现种植 A、B、C 三种树苗一共 480 棵,安排 80 名工人一天正好完成, 已知每名工人只植一种树苗,且每名工人每天可植 A 种树苗 8 棵;或植 B 种树苗 6 棵, 或植 C 种树苗 5 棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示. 设种植 A 种树苗的工人为 x 名,种植 B 种树苗的工人为 y 名. (1)求 y 与 x 之间的函数关系式; (2)若种植的总成本为 5600 元,从植树工人中随机采访一名 工人,求采访到种植 C 种树苗工人的概率.

【40套试卷合集】浙江省温州市名校2019-2020学年数学九上期末模拟试卷含答案

【40套试卷合集】浙江省温州市名校2019-2020学年数学九上期末模拟试卷含答案

2019-2020学年九上数学期末模拟试卷含答案(考试时间120分钟 满分120分)学校 班级 姓名 考号一、选择题(共8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的. 1. 下列图形是中心对称图形的是A. B.D.2. 已知⊙O 1和⊙O 2的半径分别为4cm 和2cm ,圆心距O 1O 2为6cm ,则这两个圆的位置关系是 A .外离B .外切C .相交D .内切3. 如图,已知△ABC 中,AB= AC ,∠ABC=70°,点I 是△ABC 的内心, 则∠BIC 的度数为A. 40°B. 70°C. 110°D. 140° 4. 抛物线1)2(2+-=x y 是由抛物线2x y =平移得到的,下列对于 抛物线2x y =的平移过程叙述正确的是 A .先向右平移2个单位,再向上平移1个单位B .先向右平移2个单位,再向下平移1个单位 (第3题图)C .先向左平移2个单位,再向上平移1个单位D .先向左平移2个单位,再向下平移1个单位5. 如图,⊙O 的半径OC 垂直于弦AB , D 是优弧AB 上的一点 (不与点A 、B 重合),若∠AOC=50°,则∠CDB 等于A .25°B .30°C .40°D .50° (第5题图)6. 如图是一个照相机成像的示意图,如果底片AB 宽40mm ,焦距是60mm ,所拍摄的2m 外的 景物的宽CD 为A .12mB .3mC .23m D .34m (第6题图) 7. △ABC 在平面直角坐标系中的位置如图所示, 其中A(1, 2),B(1, 1),C(3, 1),将△ABC 绕原点O 顺时针旋转90后得到△'''C B A ,则点A 旋转到点'A 所经过的路线长为A .π25B .π45 C .π25D .(第7题图) 8. 如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,P 是斜边AB 上一动点(不与点A 、B 重合),PQ ⊥AB 交△ABC 的直角边于 点Q ,设AP 为x ,△APQ 的面积为y ,则下列图象中,能表示 y 关于x 的函数关系的图象大致是A. B. C. D. 二、填空题(共4个小题,每小题4分,共16分)9. 如图,△ABC 为等边三角形,D 是△ABC 内一点,且AD =3,将△ABD 绕点A 旋转到△ACE 的位置,连接DE ,则DE 的长为 .(第9题图)(第11题图)10. 如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若该圆的半径为1,扇形的圆心角等于60°,则这个扇形的半径R 的值是 .11. 如图,梯形ABCD 中,AD ∥BC ,∠C=90°,AB=AD=4,BC=6,以点A 为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则这个扇形的面积是 .12. 古希腊著名的毕达哥拉斯学派把1,3,6,10 ,… 这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②). 如果规定11a =,23a =,36a =,410a =,…;11b =,24b =,39b =,416b =,…;1112y a b =+,2222y a b =+,3332y a b =+,4442y a b =+,…,那么,按此规定,=6y ,n y = (用含n 的式子表示,n 为正整数).三、解答题(共13个小题,共72 分) 13.(本小题满分5分)计算:︒-︒+︒30cos 245sin 60tan 2.y 5Ox14916图②图①10631y O14.(本小题满分5分)如图,已知4=AC ,求AB 和BC 的长.15.(本小题满分5分)如图,□ABCD 中,点E 在BA 的延长线上, 连接CE ,与AD 相交于点F. (1)求证:△EBC ∽△CDF ;(2)若BC =8,CD =3,AE =1,求AF 的长.16.(本小题满分4分)如图,在平面直角坐标系中,△ABC 和△'''C B A 是以 坐标原点O 为位似中心的位似图形,且点B (3,1), B′(6,2).(1)若点A (25,3),则A′的坐标为 ;(2)若△ABC 的面积为m ,则△A ′B ′C ′的面积= .17.(本小题满分5分)二次函数2y ax bx c =++的部分图象如图所示,其中图象与 x 轴交于点A (-1,0),与y 轴交于点C (0,-5),且经过点 D (3,-8).(1)求此二次函数的解析式;(2)将此二次函数的解析式写成2()y a x h k =-+的形式,并直接写出此二次函数图象的顶点坐标以及它与x 轴的另一个交点B 的坐标.18. (本小题满分5分)经过18个月的精心酝酿和290多万首都市民投票参与,,“北京精神”表述语“爱国、创新、包容、厚德”正式向社会发布. 为了更好地宣传“北京精神”,小明同学参加了由街道组织的百姓宣讲小分队,利用周末时间到周边社区发放宣传材料. 第一周发放宣传材料300份,第三周发放宣传材料363份. 求发放宣传材料份数的周平均增长率.19. (本小题满分5分)如图,CD 与AB 是⊙O 内两条相交的弦,且AB 为⊙O 的直径, CE ⊥AB 于点E ,CE=5,连接AC 、BD. (1)若135sin =D ,则cosA= ;(2)在(1)的条件下,求BE 的长.A20. (本小题满分5分)小红在学习了教科书上相关内容后自制了一个测角仪(图①),并尝试用它来测量校园内一座教学楼CD 的高度(如图②).她先在A 处测得楼顶C 的仰角=α30°,再向楼的方向直行10米到达B 处,又测得楼顶C 的仰角=β60°,若小红的目高(眼睛到地面的高度)AE 为1.60米,请你帮助她计算出这座教学楼CD 的高度(结果精确到0.1米,参考数据:41.12≈,73.13≈,24.25≈).图① 图②21.(本小题满分5分)已知抛物线4)1(21-+++=m x m x y 与x(1)求m 的值; (2)画出这条抛物线;(2)若直线b kx y +=2过点B P (-2m ,-3m ),根据图象回答:当x 取什么值时,1y ≥2y .22. (本小题满分6分)某超市销售一款进价为50元/调查发现:以60元/个的价格销售,平均每周销售书包100个;若每个书包的销售价格每提高1元,则平均每周少销售书包2个.(1)求该超市这款书包平均每周的销售量y (个)与销售价x (元/个)之间的函数关系式; (2)求该超市这款书包平均每周的销售利润w (元)与销售价x (元/个)之间的函数关系式; (3)当每个书包的销售价为多少元时,该超市这款书包平均每周的销售利润最大?最大利润是多少元?23.(本小题满分6分)如图,在△ABC 中,∠ACB=90°,O 为BC 边上一点, 以O 为圆心,OB 为半径作半圆与AB 边和BC 边分别 交于点D 、点E ,连接CD ,且CD=CA ,BD=56, tan ∠ADC=2.(1)求证:CD 是半圆O 的切线;BC A(3)求AD 的长.24. (本小题满分8分)已知,在△ABC 中,∠BAC=90°,AB=AC ,BC=22,点D 、E 在BC 边上(均不与点B 、C 重合,点D 始终在点E 左侧),且∠DAE =45°.(1)请在图①中找出两对相似但不全等的三角形,写在横线上 , ; (2)设BE =m ,CD =n ,求m 与n 的函数关系式,并写出自变量n 的取值范围; (3)如图②,当BE =CD 时,求DE 的长;(4)求证:无论BE 与CD 是否相等,都有DE 2=BD 2+CE 2.图① 图② 备用图25.(本小题满分8分)已知抛物线y =ax 2+bx +6与x 轴交于A 、B 两点(点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,且OB=21OC ,tan ∠ACO=61,顶点为D .(2)求直线CD 与x 轴的交点E 的坐标.(3)在此抛物线上是否存在一点F ,使得以点A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(4)若点M (2,y )是此抛物线上一点,点N 是直线AM 上方的抛物线上一动点,当点N 运动到什么位置时,四边形ABMN 的面积S 最大? 请求出此时S 的最大值和点N 的坐标.(5)点P 为此抛物线对称轴上一动点,若以点P 为圆心的圆与(4)中的直线AM 及x 轴同时相切,则此时点P 的坐标为 .备用图① 备用图②数学试卷 参考答案及评分标准一、选择题(共8个小题,每小题4分,共32分)题号12345678答案D B C A A D A C二、填空题(共4个小题,每小题4分,共16分) 9. 3 10. 6 11.π4 12. 78,n n +22(每空2分)三、解答题(共13个小题,共72 分) 13.(本小题满分5分)解: 2322232⨯-⎪⎪⎭⎫ ⎝⎛+=原式,……………………………………………3分 21=. ……………………………………………………………………5分14.(本小题满分5分) 解:作CD ⊥AB 于点D , 在Rt △ACD 中,∵∠A =30°, ∴∠ACD =90°-∠A =60°,221==AC CD , 32cos =⋅=A AC AD . ……………………………………………………………3分在Rt △CDB 中,∵∠DCB =∠ACB -∠ACD =45°, ∴2==CD BD ,2245sin =︒=CDBC . …………………………………………………………………4分∴322+=+=BD AD AB .…………………………………………………………5分15.(本小题满分5分)(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD.∴△EAF ∽△EBC ,△EAF ∽△CDF. ……………………………………………2分 ∴△EBC ∽△CDF. …………………………………………………………………3分(2)解:∵△EAF ∽△EBC ,∴BC AF EB EA =,即8311AF=+. 解得2=AF . …………………………………………………………………………5分16. (本小题满分4分)(1)(5,6);…………………………………………………………………………………2分(2) 4m. ……………………………………………………………………………………4分17. (本小题满分5分) 解:(1)由题意,有⎪⎩⎪⎨⎧-=++-==+-.839,5,0c b a c c b a 解得 ⎪⎩⎪⎨⎧-=-==.5,4,1c b a ∴此二次函数的解析式为542--=x x y . …………………………………2分(2)9)2(2--=x y ,顶点坐标为(2,-9),B (5,0). …………………………5分18. (本小题满分5分)解:设发放宣传材料份数的周平均增长率为x ,由题意,有.363)1(3002=+x …………………………………………………………………3分 解得 1.01=x ,1.22-=x . …………………………………………………………4分 ∵1.2-=x <0,不符合题意,舍去,∴%101.0==x . ……………………………………………………………………5分 答:这两次发放材料数的平均增长率为10%.19. (本小题满分5分) (1)1312. …………………………………………………………………………………2分 (2)解:如图,连接BC.∵AB 为⊙O 的直径,∴∠ACB =90°. ∴由(1)知AC =13, 12=AE ,1312cos =A . 在Rt △ACB 中,ABACA =cos ,∴12169=AB . ………………………………………………………………………4分 ∴1225=-=AE AB BE . …………………………………………………………5分20.(本小题满分5分)解:∵=α30°,=β60°,∴∠ECF =αβ-=30°. ∴10==EF CF .在Rt △CFG 中,.35cos =⋅=βCF CG ……………………………………………3分 ∴3.106.135≈+=+=GD CG CD . ………………………………………………5分 答:这座教学楼的高度约为10.3米.A21.(本小题满分5分) 解:(1)由题意,有121-=+-m ,解得m =1. ……………………………………………………………2分(2)如图1;…………………3分图1图2(3)如图2,x ≤-2或x ≥1. ……………………………………………………………5分22.(本小题满分6分)解:(1)由题意,有 )60(2100--=x y ,即2202+-=x y ;………………………………………………………………………2分 (2)由题意,有 )2202)(50(+--=x x w ,即1100032022-+-=x x w ;…………………………………………………………4分(3)∵抛物线1100032022-+-=x x w 的开口向下,在对称轴80=x 的左侧,w 随x 的增大而增大. 由题意可知7060≤≤x ,………………………………………………………………5分 ∴当70=x 时,w 最大为1600. ………………………………………………………6分 因此,当每个书包的销售价为70元时,该超市可以获得每周销售的最大利润1600元.23.(本小题满分6分) (1)证明:如图,连接OD ,∵OD =OB ,∴∠1=∠2. ∵CA =CD ,∴∠ADC =∠A. 在△ABC 中,∵∠ACB =90°,∴∠A +∠1=90°. ∴∠ADC +∠2=90°. ∴∠CDO =90°. ∵OD 为半圆O 的半径,∴CD 为半圆O 的切线. ………………………………………………………………2分 (2)解:如图,连接DE.BPA∵BE 为半圆O 的直径, ∴∠EDB =90°. ∴∠1+∠3=90°. ∴∠ADC =∠3. ∴23tan ==∠EDBD. ∴53=ED . ∴1522=+=DE BD EB . ………………………………………………………4分(3)解:作CF ⊥AD 于点F ,∴AF =DF.设x DF =,∵2tan =∠ADC ,∴CF =2x. ∵∠1+∠FCB =90°, ∴ADC FCB ∠=∠. ∴2tan =∠FCB . ∴FB =4x. ∴BD =3 x =56. 解得52=x .∴A D =2D F =2x =54. ……………………………………………………………6分24.(本小题满分8分)解:(1)△ADE ∽△BAE ,△ADE ∽△CDA ,△BAE ∽△CDA ;(写出任意两对即可) (2)∵∠BAC =90°,AB =AC ,BC =22,由(1)知 △BAE ∽△CDA , ∴CABECD BA =. ∴22m n =. ∴nm 4= (222<<n ). ……………………………………4分(3)由(2)只BE·CD =4,∴BE =CD =2.∴BD =BC -CD =222-.∴DE =BE -BD =224-.………………………………………………………5分 (4)如图,依题意,可以将△AEC 绕点A 顺时针旋转90°至△AFB 的位置,则FB =CE ,AF =AE ,∠1=∠2, ∴∠FBD =90°.∴22222CE BD FB BD DF +=+=. (6)∵∠3+∠1=∠3+∠2=45°, ∴∠FAD =∠DAE. 又∵AD =AD ,AF =AE , ∴△AFD ≌△AED.∴DE =DF. ………………………………………………………………………7分 ∴222CE BD DE +=. …………………………………………………………8分25.(本小题满分8分)解:(1)根据题意,得C (0,6).在Rt △AOC 中,61tan =∠ACO ,OC =6, ∴OA =1. ∴A (-1,0). ……………………………………………………………1分 (2)∵OC OB 21=,∴OB =3. ∴B (3,0). 由题意,得 ⎩⎨⎧=++=+-.0639,06b a b a 解得⎩⎨⎧=-=.4,2b a ∴6422++-=x x y .∴D (1,8). ……………………………………………………………………2分 可求得直线CD 的解析式为62+=x y .∴E (-3,0). ……………………………………………………………………3分 (3)假设存在以点A 、C 、F 、E 为顶点的平行四边形,则F 1(2,6),F 2(-2,6),F 3(-4,-6).经验证,只有点(2,6)在抛物线6422++-=x x y 上,∴F (2,6). ………………………………………………………………………4分(4)如图,作NQ ∥y 轴交AM 于点Q ,设N (m, 6422++-m m ).当x =2时,y =6,∴M (2,6). 可求得直线AM 的解析式为22+=x y . ∴Q (m ,2m +2).∴NQ =422)22(64222++-=+-++-m m m m m . ∵AMN ABM S S S ∆∆+=,其中126421=⨯⨯=∆ABM S , ∴当AMN S ∆最大时,S 值最大. ∵MNQ ANQ AMN S S S ∆∆∆+=)422(3212++-⨯⨯=m m , 6332++-=m m ,427)21(32+--=m .∴当21=m 时,AMN S ∆的最大值为427. ∴S 的最大值为475.……………………………………………………………………6分 当21=m 时,2156422=++-m m . ∴N (21,215). ……………………………………………………………………7分 (5)P 1(1,15-),P 2(1,15--). …………………………………………8分说明:写成P 1(1,154+),P 2(1,154--)不扣分.2019-2020学年九上数学期末模拟试卷含答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠07.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC=.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为米.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:.16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①;②.三、解答题(本题共68分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:3tan30°﹣cos245°+﹣2sin60°.18.(5分)用配方法求二次函数y=x2﹣10x+3的顶点坐标.19.(5分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.20.(5分)小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果;(2)这个游戏公平吗?请说明理由.21.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)22.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是.23.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.24.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.25.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F 是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.26.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P关于直线y=t的对称点为点Q,若点Q 落在△OBC的内部,求t的取值范围.27.(7分)在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.(1)当点P在线段AC上时,如图1.①依题意补全图1;②若EQ=BP,则∠PBE的度数为,并证明;(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)28.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若PQ为某个等腰三角形的腰,且该等腰三角形的底边与x轴平行,则称该等腰三角形为点P,Q的“相关等腰三角形”.下图为点P,Q的“相关等腰三角形”的示意图.(1)已知点A的坐标为(0,1),点B的坐标为,则点A,B的“相关等腰三角形”的顶角为°;(2)若点C的坐标为,点D在直线y=4上,且C,D的“相关等腰三角形”为等边三角形,求直线CD的表达式;(3)⊙O的半径为,点N在双曲线y=﹣上.若在⊙O上存在一点M,使得点M、N的“相关等腰三角形”为直角三角形,直接写出点N的横坐标x N的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】根据比例的性质,可得答案.【解答】解:A、由比例的性质,得4x=3y与3x=4y不一致,故A不符合题意;B、由比例的性质,得xy=12与3x=4y不一致,故B不符合题意;C、由比例的性质,得4x=3y与3x=4y不一致,故C不符合题意;D、由比例的性质,得3x=4y与3x=4y一致,故D符合题意;故选:D.【点评】本题考查了比例的性质,利用比例的性质是解题关键.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.【分析】本题需先根据已知条件,得出BC的长,再根据正切公式即可求出答案.【解答】解:∵∠C=90°,AB=,AC=2,∴BC=1,∴tanA==.故选:A.【点评】本题主要考查了锐角三角函数的定义,在解题时要根据在直角三角形中,正切等于对边比邻边这个公式计算是本题的关键.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°【分析】根据圆周角定理求出∠AOD即可解决问题.【解答】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点评】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故选:B.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.【分析】由a>0,b<0,c<0,推出﹣>0,可知抛物线的图象开口向上,对称轴在y轴的右边,交y 轴于负半轴,由此即可判断.【解答】解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.【点评】本题考查二次函数的图象,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠0【分析】由抛物线与坐标轴有三个交点可得出:方程x2+2x+m=0有两个不相等的实数根,且m≠0,利用根的判别式△>0可求出m的取值范围,此题得解.【解答】解:∵二次函数y=x2+2x+m的图象与坐标轴有3个交点,∴方程x2+2x+m=0有两个不相等的实数根,且m≠0,∴△=22﹣4m>0,∴m<1.∴m<1且m≠0.故选:D.【点评】本题考查了抛物线与x轴的交点以及根的判别式,利用根的判别式△>0找出关于m的一元一次不等式是解题的关键.7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为6(图中的阴影部分),得出AA′=2,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=2,∴A(1,1),B(4,2),过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,1), ∴AC=4﹣1=3,∵曲线段AB 扫过的面积为6(图中的阴影部分), ∴AC•AA′=3AA′=6, ∴AA′=2,即将函数y=(x ﹣2)2+1的图象沿y 轴向上平移2个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x ﹣2)2+3. 故选:B .【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.8.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【分析】当点N 在AD 上时,可得前半段函数图象为开口向上的抛物线的一部分;当点N 在DC 上时,MN 长度不变,可得后半段函数图象为一条线段.【解答】解:设∠A=α,点M 运动的速度为a ,则AM=at , 当点N 在AD 上时,MN=tanα×AM=tanα•at ,此时S=×at ×tanα•at=tanα×a 2t 2,∴前半段函数图象为开口向上的抛物线的一部分, 当点N 在DC 上时,MN 长度不变,此时S=×at ×MN=a ×MN ×t , ∴后半段函数图象为一条线段, 故选:C .【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答.【解答】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,所以这两个相似三角形的面积比为4:9;故答案为:4:9.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC=1.【分析】只要证明△ADE∽△ACB,推出=,求出AE即可解决问题;【解答】解;∵∠A=∠A,∠ADE=∠C,∴△ADE∽△ACB,∴=,∴=,∴AE=3,∴EC=AC﹣AE=4﹣3=1,故答案为1.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.【分析】由题意可知C、D是弧AB的三等分点,通过平移可把阴影部分都集中到一个小扇形中,可发现阴影部分正好是扇形AOB的,先求出扇形AOB的面积再求阴影部分的面积或者直接求圆心角是20度,半径是3的扇形的面积皆可.【解答】解:S扇形OAB=,S阴影=S扇形OAB=×π=π.故答案为:【点评】此题考查扇形的面积问题,通过平移的知识把小块的阴影部分集中成一个规则的图形﹣﹣扇形,再求算扇形的面积即可.利用平移或割补把不规则图形变成规则图形求面积是常用的方法.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为 2.5米.【分析】由坡度的概念得出=,根据AB=3可得AC的长度.【解答】解:根据题意知=,∵AB=3,∴=,解得:AC=2.5,故答案为:2.5.【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题,解题的关键是熟练掌握坡度的定义.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5.【分析】根据一次函数与反比例函数交点纵坐标,结合图象确定出所求x的范围即可.【解答】解:根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,故答案为:﹣2<x<﹣0.5【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,弄清数形结合思想是解本题的关键.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于5.【分析】连接CD,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD,求出圆的半径的长,再利用勾股定理列式进行计算即可得解.【解答】解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,求出圆的半径的长是解题的关键.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【分析】根据对应点C与点F的位置,结合两三角形在格结构中的位置解答.【解答】解:△ABC向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°即可得到△DEF,所以,过程为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.故答案为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【点评】本题考查了几何变换的类型,平移、旋转,准确识图是解题的关键.16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①平行线分线段成比例定理;②等底共高.【分析】根据平行线分线段成比例定理和等底共高求解可得.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知,故答案为:①平行线分线段成比例定理;②等底共高.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握平行线分线段成比例定理和等底共高的两三角形面积关系.三、解答题(本题共68分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:3tan30°﹣cos245°+﹣2sin60°.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=3×﹣()2+﹣2×=﹣+2﹣=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.(5分)用配方法求二次函数y=x2﹣10x+3的顶点坐标.【分析】把解析式化为顶点式即可.【解答】解:∵y=x2﹣10x+3=(x﹣5)2﹣22,∴二次函数的顶点坐标为(5,﹣22).【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.19.(5分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.【分析】先根据sinA=知c==6,再根据勾股定理求解可得.【解答】解:如图,∵a=2,sin,∴c===6,则b===4.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握正弦函数的定义及勾股定理.20.(5分)小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果;(2)这个游戏公平吗?请说明理由.【分析】(1)根据题意画出树状图,即可解决问题;(2)根据树状图,利用概率公式即可求得小红获胜的概率,由概率相等,即可判定这个游戏公平;【解答】解:(1)树状图如右:则小红获胜的概率:=,小丁获胜的概率:=,所以这个游戏比较公平.【点评】本题考查的是用列表法与树状图法求事件的概率,解题的关键是学会正确画出树状图,判断游戏。

浙江省温州市瑞安市六校联盟2019-2020学年九年级(上)期末数学试卷(含解析)

浙江省温州市瑞安市六校联盟2019-2020学年九年级(上)期末数学试卷(含解析)

2019-2020学年浙江省温州市瑞安市六校联盟九年级(上)期末数学试卷一、选择题:(每题4分,共40分)1.(4分)若3a=5b,则a:b=()A.6:5B.5:3C.5:8D.8:52.(4分)一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球3.(4分)已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断4.(4分)若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x﹣2)2+1B.y=5(x+2)2+1C.y=5(x﹣2)2﹣1D.y=5(x+2)2﹣15.(4分)如图,在▱ABCD中,F为BC的中点,延长AD至E,使DE:AD=1:3,连接FF交DC于点G,则DG:CG=()A.1:2B.2:3C.3:4D.2:56.(4分)点A(﹣3,y1),B(0,y2),C(3,y3)是二次函数y=﹣(x+2)2+m图象上的两点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1=y3<y2C.y3<y2<y1D.y1<y3<y2 7.(4分)如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为()A.6B.13C.D.8.(4分)二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是()A.±2B.2C.±2.5D.2.59.(4分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′∥AB,A'C′与AB 交于点E,则A′E的长为()A.3B.3.2C.3.5D.3.610.(4分)如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD=8,以CD为直径作⊙P交AB于点E,F.动点C从点O向终点A的运动过程中,线段EF长的变化情况为()A.一直不变B.一直变大C.先变小再变大D.先变大再变小二、填空题:(每题5分,共30分)11.(5分)有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.12.(5分)已知扇形的面积为3πcm2,半径为3cm,则此扇形的圆心角为度.13.(5分)如图,四边形ABCD内接于⊙O,连结AC,若∠BAC=35°,∠ACB=40°,则∠ADC=°.14.(5分)如图,在△ABC中,AC=4,BC=6,CD平分∠ACB交AB于D,DE∥BC交AC于E,则DE的长为.15.(5分)如图,C,D是抛物线y=(x+1)2﹣5上两点,抛物线的顶点为E,CD∥x 轴,四边形ABCD为正方形,AB边经过点E,则正方形ABCD的边长为.16.(5分)图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙).图乙中,点E、F、G、H分别为矩形AB、BC、CD、DA 的中点,若AB=4,BC=6,则图乙中阴影部分的面积为.三、解答题(本大题有8小题,共80分)17.(9分)作图题:⊙O上有三个点A,B,C,∠BAC=70°,请画出要求的角,并标注.(1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周角.18.(8分)有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3,另有一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4(如图所示),小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人转动圆盘,另一人从口袋中摸出一个小球,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用画树状图或列表的方法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由.19.(10分)已知二次函数y=﹣2x2+bx+c的图象经过点(0,6)和(1,8).(1)求这个二次函数的解析式;(2)①当x在什么范围内时,y随x的增大而增大?②当x在什么范围内时,y>0?20.(7分)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?21.(10分)如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC 于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.22.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F.(1)求证:=;(2)过点C作CG⊥BF于G,若AB=5,BC=2,求CG,FG的长.23.(12分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD的面积为Sm2,垂直于墙的AB边长为xm.(1)若墙可利用的最大长度为8m,篱笆长为18m,花圃中间用一道篱笆隔成两个小矩形.①求S与x之间的函数关系式;②如何围矩形花圃ABCD的面积会最大,并求最大面积.(2)若墙可利用最大长度为50m,篱笆长99m,中间用n道篱笆隔成(n+1)小矩形,当这些小矩形都是正方形且x为正整数时,请直接写出所有满足条件的x、n的值.24.(14分)如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.参考答案与试题解析一、选择题:(每题4分,共40分)1.(4分)若3a=5b,则a:b=()A.6:5B.5:3C.5:8D.8:5【分析】由比例的基本性质,即两内项之积等于两外项之积即可得出结果.【解答】解:∵3a=5b,∴=,故选:B.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.2.(4分)一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球【分析】个数最多的就是可能性最大的.【解答】解:因为白球最多,所以被摸到的可能性最大.故选:A.【点评】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.(4分)已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】本题考查了点与圆的位置关系,掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.(4分)若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x﹣2)2+1B.y=5(x+2)2+1C.y=5(x﹣2)2﹣1D.y=5(x+2)2﹣1【分析】根据平移规律,可得答案.【解答】解:y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为y=5(x﹣2)2+1,故选:A.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.5.(4分)如图,在▱ABCD中,F为BC的中点,延长AD至E,使DE:AD=1:3,连接FF交DC于点G,则DG:CG=()A.1:2B.2:3C.3:4D.2:5【分析】由平行四边形的性质可得AD=BC,AD∥BC,可证△DEG∽△CFG,可得=.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵F为BC的中点,∴CF=BF=BC=AD,∵DE:AD=1:3,∴DE:CF=2:3,∵AD∥BC,∴△DEG∽△CFG,∴=,故选:B.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,6.(4分)点A(﹣3,y1),B(0,y2),C(3,y3)是二次函数y=﹣(x+2)2+m图象上的两点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1=y3<y2C.y3<y2<y1D.y1<y3<y2【分析】先确定抛物线的对称轴,然后比较三个点到对称轴的距离,再利用二次函数的性质判断对应的函数值的大小.【解答】解:二次函数y=﹣(x+2)2+m图象的对称轴为直线x=﹣2,而点A(﹣3,y1)到直线x=﹣2的距离最小,点C(3,y3)到直线x=﹣2的距离最大,所以y3<y2<y1.故选:C.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.7.(4分)如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为()A.6B.13C.D.【分析】延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.【解答】解:过点A作等腰直角三角形BC边上的高AD,垂足为D,所以点D也为BC的中点.根据垂径定理可知OD垂直于BC.所以点A、O、D共线.∵⊙O过B、C,∴O在BC的垂直平分线上,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3﹣1=2,由勾股定理得:OB==.故选:C.【点评】本题主要考查对等腰三角形的性质和判定,等腰直角三角形的性质,三角形的内角和定理,勾股定理,垂线,垂径定理等知识点的理解和掌握,求出OD、BD的长是解此题的关键.8.(4分)二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是()A.±2B.2C.±2.5D.2.5【分析】分m≤0、m≥1和0≤m≤1三种情况,根据y的最大值为4,结合二次函数的性质求解可得.【解答】解:y=﹣x2+2mx=﹣(x﹣m)2+m2(m为常数),①若m≤0,当x=0时,y=﹣(0﹣m)2+m2=4,m不存在,②若m≥1,当x=1时,y=﹣(1﹣m)2+m2=4,解得:m=2.5;③若0≤m≤1,当x=m时,y=m2=4,即:m2=4,解得:m=2或m=﹣2,∵0≤m≤1,∴m=﹣2或2都舍去,故选:D.【点评】本题主要考查二次函数的最值,能根据二次函数的顶点式确定最值是解答本题的关键.9.(4分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′∥AB,A'C′与AB 交于点E,则A′E的长为()A.3B.3.2C.3.5D.3.6【分析】如图,过点D作DF⊥AB,可证四边形EFDC'是矩形,可得C'E=DF,通过证明△BDF∽△BAC,可得,可求DF=2.4=C'E,即可求解.【解答】解:如图,过点D作DF⊥AB,∵∠C=90°,AC=6,BC=8,∴AB===10,∵将Rt△ABC绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,∴AC=A'C'=6,∠C=∠C'=90°,CD=BD=4,∵AB∥C'B'∴∠A'EB=∠A'C'B'=90°,且DF⊥AB,∴四边形EFDC'是矩形,∴C'E=DF,∵∠B=∠B,∠DFB=∠ACB=90°,∴△BDF∽△BAC∴,∴∴DF=2.4=C'E,∴A'E=A'C'﹣C'E=6﹣2.4=3.6,故选:D.【点评】本题考查了相似三角形的判定和性质,矩形的判定和性质,旋转的性质,勾股定理等知识,添加恰当辅助线是本题的关键.10.(4分)如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD=8,以CD为直径作⊙P交AB于点E,F.动点C从点O向终点A的运动过程中,线段EF长的变化情况为()A.一直不变B.一直变大C.先变小再变大D.先变大再变小【分析】如图,连接OP,PF,作PH⊥AB于H.点P的运动轨迹是以O为圆心、OP 为半径的⊙O,易知EF=2FH=2=,观察图形可知PH的值由大变小再变大,推出EF的值由小变大再变小.【解答】解:如图,连接OP,PF,作PH⊥AB于H.∵CD=8,∠COD=90°,∴OP=CD=4,∴点P的运动轨迹是以O为圆心OP为半径的⊙O,∵PH⊥EF,∴EH=FH,∴EF=2FH=2=,观察图形可知PH的值由大变小再变大,∴EF的值由小变大再变小,故选:D.【点评】本题考查轨迹,坐标与图形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二、填空题:(每题5分,共30分)11.(5分)有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【解答】解:∵从1到6的数中3的倍数有3,6,共2个,∴从中任取一张卡片,P(卡片上的数是3的倍数)==.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.12.(5分)已知扇形的面积为3πcm2,半径为3cm,则此扇形的圆心角为120度.【分析】利用扇形的面积公式:S=计算即可.【解答】解:设扇形的圆心角为n°.则有3π=,解得n=120,故答案为120【点评】本题考查扇形的面积,解题的关键是记住扇形的面积公式,属于中考常考题型.13.(5分)如图,四边形ABCD内接于⊙O,连结AC,若∠BAC=35°,∠ACB=40°,则∠ADC=75°.【分析】根据三角形内角和定理求出∠ABC,根据圆内接四边形的性质计算,得到答案.【解答】解:∠ABC=180°﹣∠BAC﹣∠ACB=105°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣∠ABC=75°,故答案为:75.【点评】本题考查的是圆周角定理、三角形内角和定理,掌握圆内接四边形的对角互补是解题的关键.14.(5分)如图,在△ABC中,AC=4,BC=6,CD平分∠ACB交AB于D,DE∥BC交AC于E,则DE的长为 2.4.【分析】由条件可证出DE=EC,证明△AED∽△ACB,利用对应边成比例的知识,可求出DE长.【解答】解:∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,又∵DE∥BC,∴∠EDC=∠DCB,∴∠ACD=∠EDC,∴DE=EC,设DE=x,则AE=4﹣x,∵DE∥BC,∴△AED∽△ACB,∴,即,∴x=2.4.故答案为:2.4.【点评】本题考查了相似三角形的判定与性质,解答本题的关键是掌握平行线的性质及相似三角形的性质:对应边成比例.15.(5分)如图,C,D是抛物线y=(x+1)2﹣5上两点,抛物线的顶点为E,CD∥x 轴,四边形ABCD为正方形,AB边经过点E,则正方形ABCD的边长为.【分析】首先设AB=CD=AD=BC=a,再根据抛物线解析式可得E点坐标,表示出C 点横坐标和纵坐标,进而可得方程﹣5﹣a=﹣5,再解即可.【解答】解:设AB=CD=AD=BC=a,∵抛物线y=(x+1)2﹣5,∴顶点E(﹣1,﹣5),对称轴为直线x=﹣1,∴C的横坐标为﹣1,D的横坐标为﹣1﹣,∵点C在抛物线y=(x+1)2﹣5上,∴C点纵坐标为(﹣1+1)2﹣5=﹣5,∵E点坐标为(﹣1,﹣5),∴B点纵坐标为﹣5,∵BC=a,∴﹣5﹣a=﹣5,解得:a1=,a2=0(不合题意,舍去),故答案为:.【点评】此题主要考查了二次函数的性质和正方形的性质,解决问题的关键是表示出B、C点的纵坐标.16.(5分)图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙).图乙中,点E、F、G、H分别为矩形AB、BC、CD、DA 的中点,若AB=4,BC=6,则图乙中阴影部分的面积为.【分析】因为S阴=S菱形PHQF﹣2S△HTN,想办法求出菱形PHQF的面积,△HTN的面积即可解决问题.【解答】解:如图,设FM=HN=a.由题意点E、F、G、H分别为矩形AB、BC、CD、DA的中点,可得四边形HQF是菱形,它的面积=S矩形ABCD=×4×6=6,∵FM∥BJ,CF=FB,∴CM=MJ,∴BJ=2FM=2a,∵EJ∥AN,AE=EB,∴BJ=JN=2a,∵S△HBC=•6•4=12,HJ=BH,∴S△HCJ=×12=,∵TN∥CJ,∴△HTN∽△HCJ,∴=()2=,∴S△HTN=×=,∴S阴=S菱形PHQF﹣2S△HTN=6﹣=,故答案为.【点评】本题考查矩形的性质,三角形中位线定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.三、解答题(本大题有8小题,共80分)17.(9分)作图题:⊙O上有三个点A,B,C,∠BAC=70°,请画出要求的角,并标注.(1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周角.【分析】(1)根据∠BAC=70°,画一个140°的圆心角,与∠BAC同弧即可;(2)在劣弧BC上任意取一点P画一个∠BPC即可得110°的圆周角;(3)过点C画一条直径CD,连接AD即可画一个20°的圆周角.【解答】解:(1)如图1所示:∠BOC即为140°的圆心角;(2)如图2所示:∠BPC即为110°的圆周角;(3)连接CO并延长交圆于点D,连接AD,则∠BAD即为20°的圆周角.【点评】本题考查了复杂作图、圆周角定理、圆内接四边形性质,解决本题的关键是利用直径所对圆周角是直角.18.(8分)有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3,另有一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4(如图所示),小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人转动圆盘,另一人从口袋中摸出一个小球,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用画树状图或列表的方法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平.【解答】解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.19.(10分)已知二次函数y=﹣2x2+bx+c的图象经过点(0,6)和(1,8).(1)求这个二次函数的解析式;(2)①当x在什么范围内时,y随x的增大而增大?②当x在什么范围内时,y>0?【分析】(1)根据二次函数y=﹣2x2+bx+c的图象经过点(0,6)和(1,8),可以求得该抛物线的解析式;(2)①根据(1)求得函数解析式,将其化为顶点式,然后根据二次函数的性质即可得到x在什么范围内时,y随x的增大而增大;②根据(1)中的函数解析式可以得到x在什么范围内时,y>0.【解答】解:(1)∵二次函数y=﹣2x2+bx+c的图象经过点(0,6)和(1,8),∴,得,即该二次函数的解析式为y=﹣2x2+4x+6;(2)①∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴该函数的对称轴是x=1,函数图象开口向下,∴当x<1时,y随x的增大而增大;②当y=0时,0=﹣2x2+4x+6=﹣2(x﹣3)(x+1),解得,x1=3,x2=﹣1,∴当﹣1<x<3时,y>0.【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20.(7分)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?【分析】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【解答】解:∵EG⊥AB,FH⊥AD,HG经过点A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH,∴=.∵AB=9里,AD=7里,EG=15里,∴AF=3.5里,AE=4.5里,∴=,∴FH=1.05里.【点评】本题考查了相似三角形的应用,矩形的性质,解题的关键是从实际问题中整理出相似三角形,难度不大.21.(10分)如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC 于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.【分析】(1)分别求出点C,顶点D,点A,B的坐标,如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,证明△BCD是直角三角形,即可由三角形的面积公式求出其面积;(2)先求出直线BD的解析式,设P(a,a2﹣2a﹣3),用含a的代数式表示出直线PC 的解析式,联立两解析式求出含a的代数式的点F的坐标,过点C作x轴的平行线,交BD于点H,则y H=﹣3,由△CDF与△BEF的面积相等,列出方程,求出a的值,即可写出E,P的坐标.【解答】解:(1)在y=x2﹣2x﹣3中,当x=0时,y=﹣3,∴C(0,﹣3),当x=﹣=1时,y=﹣4,∴顶点D(1,﹣4),当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S △BCD =DC •BC =×3=3;(2)设直线BD 的解析式为y =kx +b ,将B (3,0),D (1,﹣4)代入,得,解得,k =2,b =﹣6,∴y BD =2x ﹣6,设P (a ,a 2﹣2a ﹣3),直线PC 的解析式为y =mx ﹣3,将P (a ,a 2﹣2a ﹣3)代入,得am =a 2﹣2a ﹣3,∵a ≠0,∴解得,m =a ﹣2,∴y PC =(a ﹣2)x ﹣3,当y =0时,x =,∴E (,0), 联立, 解得,,∴F (,),过点C 作x 轴的平行线,交BD 于点H ,则y H =﹣3,∴H (,﹣3),∴S △CDF =CH •(y F ﹣y D ),S △BEF =BE •(﹣y F ),∴当△CDF 与△BEF 的面积相等时,CH •(y F ﹣y D )=BE •(﹣y F ),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).【点评】本题考查的是抛物线与坐标轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.22.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F.(1)求证:=;(2)过点C作CG⊥BF于G,若AB=5,BC=2,求CG,FG的长.【分析】(1)连接AE,利用等腰三角形的三线合一的性质证明∠EAB=∠EAC即可解决问题.(2)证明△BCG∽△ABE,可得=,由此求出CG,再利用平行线分线段成比例定理求出CF,利用勾股定理即可求出FG.【解答】(1)证明:连接AE.∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∴=.(2)解:∵BF⊥AB,CG⊥BF,AE⊥BC∴∠CGB=∠AEB=∠ABF=90°,∵∠CBG+∠ABC=90°,∠ABC+∠BAE=90°,∴∠CBG=∠BAE,∴△BCG∽△ABE,∴=,∴=,∴CG=2,∵CG∥AB,∴=,∴=,∴CF=,∴FG===.【点评】本题属于相似形综合题,考查了圆周角定理,等腰三角形的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23.(12分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD的面积为Sm2,垂直于墙的AB边长为xm.(1)若墙可利用的最大长度为8m,篱笆长为18m,花圃中间用一道篱笆隔成两个小矩形.①求S与x之间的函数关系式;②如何围矩形花圃ABCD的面积会最大,并求最大面积.(2)若墙可利用最大长度为50m,篱笆长99m,中间用n道篱笆隔成(n+1)小矩形,当这些小矩形都是正方形且x为正整数时,请直接写出所有满足条件的x、n的值.【分析】(1)①根据等量关系“花圃的面积=花圃的长×花圃的宽”列出函数关系式,并确定自变量的取值范围;②通过函数关系式求得S的最大值;(2)根据等量关系“花圃的长=(n+1)×花圃的宽”写出符合题中条件的x,n.【解答】解:(1)①由题意得:S=x×(18﹣3x)=﹣3x2+18x;②由S=﹣3x2+18x=﹣3(x﹣3)2+27,∴当x=3米时,S最大,为27平方米;(2)根据题意可得:(n+2)x+(n+1)x=99,则n=3,x=11;或n=4,x=9,或n=15,x=3,或n=48,x=1.【点评】此题主要考查了二次函数的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.24.(14分)如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE 是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE ∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【解答】解:(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=AB=2,AH=AB•sin60°=2,∴HP=BP﹣BH=1,∴在Rt△AHP中,AP==,∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM===,∴⊙O的半径为,即PA的长为,⊙O的半径为;(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴=,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=2,BF=AB=2,∴=,∴EF=,在Rt△BFE中,BE===,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r=;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=2,CN=CD=2,∴PQ=DN=2,设QE=x,则PE=2﹣x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴=,∴=,∴BP=10﹣x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10﹣x)2+(2﹣x)2,解得,x1=6(舍),x2=,∴AE=2,∴BE===2,∴r=,∴⊙O的半径为2或或.【点评】本题考查了圆的有关性质,平行四边形的性质,相似三角形的判定与性质,勾股定理,解直角三角形等,综合性质强,难度大,解题关键是具有扎实的数学功底,熟练掌握各相关知识点.。

2019-2020学年度浙教版九年级数学上册期末考试题(有答案)

2019-2020学年度浙教版九年级数学上册期末考试题(有答案)

2019-2020学年度浙教版九年级数学上册期末考试题(有答案) 学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)∥BC ,若BM=4AM ,MN=1,则BC 的长是( )A 、6B 、5C 、4D 、32.已知二次函数y=a (x ﹣2)2+c ,当x=x 1时,函数值为y 1;当x=x 2时,函数值为y 2,若|x 1﹣2|>|x 2﹣2|,则下列表达式正确的是( ).A .y 1+y 2>0B .y 1﹣y 2>0C .a (y 1﹣y 2)>0D .a (y 1+y 2)>03.下列说法中,不成立的是( )A .弦的垂直平分线必过圆心B .弧的中点与圆心的连线垂直平分这条弧所对的弦C .垂直于弦的直线经过圆心,且平分这条弦所对的弧D .垂直于弦的直径平分这条弦4.下列各式中,y 是x 的二次函数的是( )A .21(0)y mx m =+≠B .2y ax bx c =++C .22(2)y x x =--D .31y x =-5.已知二次函数y=a (x ﹣2)2+c ,当x=x 1时,函数值为y 1;当x=x 2时,函数值为y 2,若|x 1﹣2|>|x 2﹣2|,则下列表达式正确的是( )A .y 1+y 2>0B .y 1﹣y 2>0C .a (y 1﹣y 2)>0D .a (y 1+y 2)>06.抛物线y=﹣3x 2﹣x+4与坐标轴的交点个数是( )A .3B .2C .1D .07.抛物线()21y x =-与y 轴的交点坐标是A .(0,1);B .(1,0);C .(0,-1);D .(0,0).8.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A=22.5°,OC=4,CD 的长为( )A ..4 C . D .89.一个扇形的弧长是20πcm ,面积是240πcm 2,那么扇形的圆心角是( )A .120° B.150° C.210° D.240°10.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6间的大小关系是( )A .S 3>S 4>S 6B .S 6>S 4>S 3C .S 6>S 3>S 4D .S 4>S 6>S 311.如图,已知△ABC ,P 为AB 上一点,连接CP ,以下条件中不能判定△ACP ∽△ABC 的是( )A .∠ACP=∠B B .∠APC=∠ACBC .AC AB AP AC =D .BC CP AB AC = 评卷人 得分二、填空题(题型注释)“剪刀”的概率是 .13.不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是 .14.如图,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30°, 则点O 到CD 的距离OE= .ED CBAO 15.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD=BC ,∠PEF=18°,则∠PFE 的度数是 度.16.圆心角为120°,弧长为12π的扇形半径为 .17.如图,点G 为△ABC 的重心,GE ∥BC ,BC=12,则GE= .18.如图,∠BAC=120°,AD 平分∠BAC ,且AD=4,点P 是射线AB 上一动点,连接DP ,△PAD 的外接圆于AC 交于点Q ,则线段QP 的最小值是 .19.一人乘雪橇沿坡比110米,则此人下降的高度为米.20.将边长为4的正方形ABCD向右倾斜,边长不变,∠ABC逐渐变小,顶点A、D及对角线BD的中点N分别运动列A′、D′和N′的位置,若∠A′BC=30°,则点N到点N′的运动路径长为.三、计算题(题型注释),以A为圆心,5为半径作圆A,点C在⊙A上,过点C作CD∥AB交⊙A于点D(点D在C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的关系式及x的取值范围;(3)设BC的中点为M,AD的中点为N,MN∥CD,线段MN交⊙A于点E,联结CE,当CD取何值时,CE∥AD.22.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x 轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N ,连接MN ,直线AC 分别交x 轴,y 轴于点H ,G ,试求线段MN 的最小值,并直接写出此时m 的值.23.如图1,直线l :y=34x+m 与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线y=12x 2+bx+c 经过点B ,与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2),设点D 的横坐标为t (0<t <4),矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.24.如图,抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足S △PAB =8,并求出此时P 点的坐标.四、解答题(题型注释) +c 的图象经过点(2,1),(0,1).(1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q22,4(y a +)在抛物线上,试判断y1与y2的大小.(写出判断的理由)26.小明在课外学习时遇到这样一个问题:定义:如果二次函数21111(a 0)y a x b x c =++≠与22222(a 0)y a x b x c =++≠满足120a a +=,12b b =,120c c +=,则称这两个函数互为“旋转函数”.求函数232y x x =--的“旋转函数”.小明是这样思考的:由函数232y x x =--可知,11a =,13b =-,12c =-,根据120a a +=,12b b =,120c c +=,求出2a ,2b ,2c ,就能确定这个函数的“旋转函数”. 请参考小明的方法解决下面问题:(1)直接写出函数232y x x =--的“旋转函数”;(2)若函数2335y x mx =-+-与23y x nx n =-+互为“旋转函数”,求2015415m n +()的值;(3)已知函数1142y x x =-+()(﹣)的图象与x 轴交于点A 、B 两点(A 在B 的左边),与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,试证明经过点A 1,B 1,C 1的二次函数与函数1142y x x =-+()(﹣)互为“旋转函数”。

每日一学:浙江省温州市2019-2020学年九年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省温州市2019-2020学年九年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省温州市2019-2020学年九年级上学期数学期末考试试卷_压轴题解答答案浙江省温州市2019-2020学年九年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2020温州.九上期末) 如图,在矩形ABCD 中,AB=6,BC=8,点E ,F 分别在边BC ,AB 上,AF=BE=2,连结DE ,DF ,动点M 在EF 上从点E 向终点F 匀速运动,同时,动点N 在射线CD 上从点C 沿CD 方向匀速运动,当点M 运动到EF 的中点时,点N 恰好与点D 重合,点M 到达终点时,M ,N 同时停止运动。

(1) 求EF 的长。

(2) 设CN=x ,EM=y ,求y 关于x 的函数表达式,并写出自变量x 的取值范围。

(3) 连结MN ,当MN 与△DEF 的一边平行时,求CN 的长。

考点: 几何图形的动态问题;平行线分线段成比例;相似三角形的判定与性质;~~ 第2题 ~~(2020温州.九上期末) 如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是的中点,连结AC 变BD 于点E ,连结AD,若BE=4DE ,CE=6,则AB 的长为________。

~~ 第3题 ~~(2020温州.九上期末) 如图,抛物线y=-(x+m)+5交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为( )A .B .C . 3D .浙江省温州市2019-2020学年九年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:2解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:B解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省温州市瑞安市六校联盟2019-2020学年九年级上学期期末数
学试题(word无答案)
一、单选题
(★) 1 . 若3 a=5 b,则 a: b=()
A.6:5B.5:3C.5:8D.8:5
(★★) 2 . 一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是( )
A.摸出的是白球B.摸出的是黑球
C.摸出的是红球D.摸出的是绿球
(★★) 3 . 已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()
A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断
(★) 4 . 若将抛物线y=5x 2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()
A.y=5(x﹣2)2+1B.y=5(x+2)2+1C.y=5(x﹣2)2﹣1D.y=5(x+2)2﹣1
(★) 5 . 如图,在▱ ABCD中, F为 BC的中点,延长 AD至 E,使 DE: AD=1:3,连接 FF交DC于点 G,则 DG: CG=()
A.1:2B.2:3C.3:4D.2:5
(★) 6 . 点 A(﹣3, y 1), B(0, y 2), C(3, y 3)是二次函数 y=﹣( x+2)2+ m图象上的三点,则 y 1, y 2, y 3的大小关系是()
A.y1<y2<y3B.y1=y3<y2C.y3<y2<y1D.y1<y3<y2
(★) 7 . 如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()
A.6B.13C.D.2
(★★) 8 . 二次函数 y=﹣ x 2+2 mx( m为常数),当0≤ x≤1时,函数值 y的最大值为4,则m的值是()
A.±2B.2C.±2.5D.2.5
(★★) 9 . 如图,在Rt△ ABC中,∠ C=90°, AC=6, BC=8,将它绕着 BC中点 D顺时针旋转一定角度(小于90°)后得到△ A′ B′ C′,恰好使B′ C′∥ AB,A' C′与 AB交于点 E,则A′ E 的长为()
A.3B.3.2C.3.5D.3.6
(★) 10 . 如图,点 A, B的坐标分别为(0,8),(10,0),动点 C, D分别在 OA, OB上且CD=8,以 CD为直径作⊙ P交 AB于点 E, F.动点 C从点 O向终点 A的运动过程中,线段EF长的变化情况为()
A.一直不变B.一直变大
C.先变小再变大D.先变大再变小
二、填空题
(★★) 11 . 有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是
(★) 12 . 已知扇形的面积为3π cm 2,半径为3 cm,则此扇形的圆心角为_____度.
(★) 13 . 如图,四边形 ABCD内接于⊙ O,连结 AC,若∠ BAC=35°,∠ ACB=40°,则∠ ADC=_____ °.
(★) 14 . 如图,在△ ABC中, AC=4, BC=6, CD平分∠ ACB交 AB于 D,DE∥ BC交 AC 于 E,则 DE的长为_____.
(★★) 15 . 如图, C, D是抛物线 y=( x+1)2﹣5上两点,抛物线的顶点为 E,CD∥ x 轴,四边形 ABCD为正方形, AB边经过点 E,则正方形 ABCD的边长为
_____.
(★★★★) 16 . 图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙).图乙中,点 E、 F、 G、 H分别为矩形 AB、 BC、 CD、 DA的中点,若 AB=4, BC=6,则图乙中阴影部分的面积为
_____.
三、解答题
(★) 17 . 作图题:⊙ O上有三个点 A, B, C,∠ BAC=70°,请画出要求的角,并标注.
(1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周
角.
(★)18 . 有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3,另有一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4(如图所示),
小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人转动圆盘,另一
人从口袋中摸出一个小球,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;
否则小亮去.
(1)用画树状图或列表的方法求出小颖参加比赛的概率;
(2)你认为该游戏公平吗?请说明理由.
(★) 19 . 已知二次函数 y=﹣2 x 2+ bx+ c的图象经过点(0,6)和(1,8).
(1)求这个二次函数的解析式;
(2)①当 x在什么范围内时, y随 x的增大而增大?
②当 x在什么范围内时, y>0?
(★)20 . “今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池 ABCD,东边城墙 AB长9里,南边城墙 AD长7里,东门点 E,南门点 F分别是 AB、 AD的中点,EG⊥ AB,FH⊥ AD, EG
=15里, HG经过点 A,问 FH多少里?
(★★) 21 . 如图,抛物线 y= x 2﹣2 x﹣3与 x轴分别交于 A, B两点(点 A在点 B的左边),
与 y轴交于点 C,顶点为 D.
(1)如图1,求△ BCD的面积;
(2)如图2, P是抛物线 BD段上一动点,连接 CP并延长交 x轴于 E,连接 BD交 PC于 F,
当△ CDF的面积与△ BEF的面积相等时,求点 E和点 P的坐
标.
(★★) 22 . 如图,在△ ABC中, AB= AC,以 AB为直径的⊙ O分别交 AC, BC于点 D, E,过点 B作 AB的垂线交 AC的延长线于点 F.
(1)求证:;
(2)过点 C作CG⊥ BF于 G,若 AB=5, BC=2 ,求 CG, FG的长.
(★★) 23 . 如图,一面利用墙,用篱笆围成的矩形花圃 ABCD的面积为 Sm 2,垂直于墙的 AB
边长为 xm.
(1)若墙可利用的最大长度为8 m,篱笆长为18 m,花圃中间用一道篱笆隔成两个小矩形.
①求 S与 x之间的函数关系式;
②如何围矩形花圃 ABCD的面积会最大,并求最大面积.
(2)若墙可利用最大长度为50 m,篱笆长99 m,中间用 n道篱笆隔成( n+1)小矩形,当这些小矩形都是正方形且 x为正整数时,请直接写出所有满足条件的 x、 n的值.
(★★★★) 24 . 如图,在▱ ABCD中, AB=4, BC=8,∠ ABC=60°.点 P是边 BC上一动点,作△ PAB的外接圆⊙ O交 BD于 E.
(1)如图1,当 PB=3时,求 PA的长以及⊙ O的半径;
(2)如图2,当∠ APB=2∠ PBE时,求证: AE平分∠ PAD;
(3)当 AE与△ ABD的某一条边垂直时,求所有满足条件的⊙ O的半径.。

相关文档
最新文档