决策支持系统的概念和特点
DSS(决策支持系统)
决策支持系统管理的核心是“决策”。
全球经济一体化的进程以及信息技术的发展,消除了许多流通壁垒。
企业比以往任何时候都面临着更为复杂的生存环境,更难以形成并维护其竞争壁垒。
竞争的压力对企业制定决策的质量、速度都有更高要求。
决策支持系统作为一种新兴的信息技术,能够为企业提供各种决策信息以及许多商业问题的解决方案,从而减轻了管理者从事低层次信息处理和分析的负担,使得他们专注于最需要决策智慧和经验的工作,因此提高了决策的质量和效率。
现代企业的管理决策一、管理和决策制定60年代末,明茨伯格(Mintzberg)对5位总经理的工作进行一项仔细的研究。
他发现,管理者扮演着十种不同的但却是高度相关的角色。
这十种角色可以进一步分为三方面:人际关系、信息传递和决策制定,如下表所示:在这三方面中,决策制定是管理最核心、最实质性的角色。
所有的管理活动都围绕着决策。
决策的整体质量对企业的成败有重大影响。
二、现代企业决策的挑战在过去许多年,管理者制定决策是一门纯粹的艺术,是通过很长一段时间的经验所获得的一项天赋。
管理之所以被看成一门艺术,是因为许多个体风格被用于处理并成功地解决了同一类型的管理问题。
这些风格源于创造力、判断力、直觉和经验,而不是建立在科学方法基础上的系统化的定量分析方法。
但是,今天管理所面临的外部环境正在发生迅速变化。
商业及其本身的环境也比以往更加复杂,而且这种复杂性日益增加。
这些都对现代企业的管理决策带来了新的挑战:1. 决策质量的要求更高随着技术的迅速发展,客户获得产品和服务的渠道更为畅通,客户的选择余地更大。
同时大规模生产使得产品出现了供过于求的状态。
客户成为最稀缺的资源。
这迫使企业必须采取“以客户为中心”的经营策略,努力提高产品和服务的质量。
2. 决策时要考虑的因素更复杂随着经济全球化的趋势,尤其是中国加入WTO之后,无论是否愿意,企业都将面对全球的竞争者和全球范围的消费市场;随着环境的恶化、消费者权益意识的增强等,政府颁布了更详尽的法令和制度来约束企业的经营行为。
灌区管理服务中的决策支持系统和决策模型
灌区管理服务中的决策支持系统和决策模型灌区管理是指对农田进行水资源调控和管理的一种管理方式。
灌区管理的目的是为了提高农田灌溉效率,保障农田的水资源供给,并合理分配水资源,从而确保农业生产的可持续发展。
而决策支持系统和决策模型是在灌区管理中为管理者提供决策辅助和决策分析的工具。
本文将就灌区管理服务中的决策支持系统和决策模型的概念、功能和应用进行介绍。
一、决策支持系统的概念和功能决策支持系统(Decision Support System,简称DSS)是一种基于现代信息技术的管理支持系统,它通过数据、模型和分析工具的结合,提供对管理者决策过程的辅助和支持。
决策支持系统的主要功能包括数据收集与整理、决策模型的建立与分析、决策方案的生成与评估、以及对决策结果的监控与反馈。
对于灌区管理而言,决策支持系统能够帮助管理者对灌区的水资源进行科学的调配和管理,优化灌溉决策,提高农田的灌溉效率。
决策支持系统在灌区管理中的具体功能包括以下几个方面:1. 数据收集与整理:决策支持系统通过收集、整理和管理灌区的各类数据,如水资源、气象、土地利用等数据,为决策提供数据支持。
2. 决策模型的建立与分析:决策支持系统通过建立与灌溉相关的模型,如灌水需求模型、水资源分配模型等,对灌区的水资源进行分析和模拟,为决策提供科学依据。
3. 决策方案的生成与评估:决策支持系统能够根据灌区的实际情况和不同的目标要求,生成多种决策方案,并通过评估模块对这些方案进行评估,以帮助管理者选择最优的决策方案。
4. 监控与反馈:决策支持系统能够对决策方案的实施过程进行监控,及时收集和反馈决策方案的执行情况和结果,以便管理者进行调整和优化。
二、决策模型在灌区管理中的应用决策模型是决策支持系统的核心组成部分,它是通过建立数学模型来分析决策问题,对决策方案进行量化评估和决策制定的工具。
在灌区管理中,决策模型主要包括灌水需求模型、水资源分配模型和灌溉效率模型等。
智慧决策支持助力智慧城市的科学决策
智慧决策支持助力智慧城市的科学决策智慧城市是指运用信息技术、物联网等现代信息技术手段,以提高城市管理能力和效率,优化资源配置,改善居民生活质量为目标的新型城市发展模式。
在智慧城市建设中,科学决策起着至关重要的作用。
而智慧决策支持系统则是实现科学决策的基础,为政府和决策者提供了全面、准确的数据支持和辅助决策的功能。
本文将探讨智慧决策支持助力智慧城市的科学决策,旨在为智慧城市建设提供理论和实践指导。
一、智慧决策支持系统的概念与特点智慧决策支持系统,简称DCSS(Decision Support System),是指通过信息系统、网络通信和数据挖掘等技术手段,将大量的数据进行整合、分析和模型建立,为决策者提供科学的数据支持和决策辅助的系统。
DCSS的特点主要包括以下几个方面:1. 大数据分析:DCSS利用信息系统和数据挖掘技术,能够对大量数据进行快速分析和挖掘,从中提取出有价值的信息,为决策者提供决策所需的实时数据和决策依据。
2. 多维决策:智慧城市的决策问题往往是多维多目标的,涉及到经济、社会、环境等各个方面。
DCSS能够集成多个领域的数据和指标,为决策者提供全面的决策支持,促进综合决策的实现。
3. 可视化呈现:为了提高决策者对决策结果的理解和接受度,DCSS通常采用数据可视化的方式进行呈现。
通过图表、地图等形式,直观地展示数据和决策结果,减少决策者的认知负荷,提高决策效率。
二、智慧决策支持系统在智慧城市建设中的应用智慧决策支持系统在智慧城市建设中发挥着重要作用,主要体现在以下几个方面:1. 智慧交通管理:在智慧城市中,交通拥堵、交通事故等问题是常见的。
通过智慧决策支持系统,可以实时监测交通流量、路况等信息,对交通进行预测和调度,优化交通资源配置,提高交通运行效率。
2. 智慧环境保护:智慧城市建设中,环境保护是一个重要方面。
通过智慧决策支持系统,可以监测和分析环境污染指标,及时预警和处置环境问题,通过科学决策推动环境保护工作的落实。
决策支持系统名词解释管理学
决策支持系统名词解释管理学决策支持系统(Decision Support System,简称DSS)是管理学领域中的一个重要概念,指的是一种基于计算机技术的系统,旨在辅助管理者在复杂的决策环境中进行决策制定和分析。
本文将详细解释决策支持系统的概念、特点、构成以及在管理学中的应用。
一、决策支持系统的概念决策支持系统是一种集成了数据仓库、数学模型、人工智能等技术手段的信息系统。
其核心目标是为决策者提供必要的信息和分析工具,支持其在信息不完整、不确定的决策环境中,实现决策的科学化、合理化和高效化。
二、决策支持系统的特点1.针对性:决策支持系统针对特定的决策问题,提供定制化的信息支持。
2.交互性:系统允许决策者与系统进行交互,调整参数、假设,观察决策结果的变化。
3.集成性:系统集成了多种数据来源和分析工具,为决策者提供全面的决策支持。
4.智能性:利用人工智能等技术,实现对数据的自动分析和处理,减轻决策者的工作负担。
三、决策支持系统的构成决策支持系统主要由以下几个部分构成:1.数据仓库:存储和管理大量数据,为决策提供数据基础。
2.模型库:集成了多种数学模型,用于对数据进行分析和预测。
3.知识库:存储了专家的知识和经验,为决策提供智力支持。
4.人机交互界面:决策者与系统进行交互的界面,允许决策者输入指令、查看结果等。
四、决策支持系统在管理学中的应用在管理学中,决策支持系统被广泛应用于企业的战略决策、市场营销、生产管理等领域。
例如,企业战略决策者可以利用决策支持系统分析市场环境、竞争对手情况,制定合适的战略方向。
市场营销人员可以通过系统分析消费者行为、市场需求,制定精准的市场营销策略。
生产管理人员可以利用系统优化生产流程,提高生产效率和质量。
五、总结综上所述,决策支持系统是一种基于计算机技术的信息系统,具有针对性、交互性、集成性和智能性等特点。
它主要由数据仓库、模型库、知识库和人机交互界面等部分构成,在管理学中被广泛应用于企业的各个领域,为企业决策提供科学有效的支持。
决策支持系统(DDS)
综述: 综述:决策支持系统的基本特征
1、对准上层管理人员经常面临的结构化程 、 度不高、说明不充分的问题; 度不高、说明不充分的问题; 2、把模型或分析技术与传统的数据存取技 、 术检索技术结合起来; 术检索技术结合起来; 3、易于为非计算机专业人员以交互会话的 、 方式使用; 方式使用; 4、强调对用户决策方法改变的灵活性及适 、 应性; 应性; 5、支持但不是代替高层决策者制定决策。 、支持但不是代替高层决策者制定决策。
决策支持系统的分类
(1)结构化决策,是指对某一决策过程的环境及规 结构化决策, 结构化决策 能用确定的模型或语言描述, 则,能用确定的模型或语言描述,以适当的算法产 决策按其性质可分 生决策方案,并能从多种方案中选择最优解的决策; 生决策方案,并能从多种方案中选择最优解的决策; (2)非结构化决策,是指决策过程复杂,不可能 非结构化决策,是指决策过程复杂, 非结构化决策 用确定的模型和语言来描述其决策过程, 用确定的模型和语言来描述其决策过程,更无所谓 最优解的决策; 最优解的决策; (3)半结构化决策,是介于以上二者之间的决策, 半结构化决策,是介于以上二者之间的决策, 半结构化决策 这类决策可以建立适当的算法产生决策方案, 这类决策可以建立适当的算法产生决策方案,使决 策方案中得到较优的解。 策方案中得到较优的解。
• 核心数据库主要任务 在于支持银行交易处 理系统、 理系统、保证银行的 日常运行、 日常运行、正确记录 客户数据信息、 客户数据信息、追求 数据的绝对精确和可 靠,数据来自银行联 机交易处理系统
银行数据仓库与核心数据库的 区别
• 数据仓库重在收集具 有一定含义的信息及 数据, 数据,对具体数据源 抽象和概括, 抽象和概括,目的是 向银行管理决策提供 支持, 支持,为银行决策服 务。
决策支持系统
1.6 群体决策支持系统
群体决策支持系统
DSS与计算机网络技术结合构成了新型的能 供异地决策者共同参与决策的群体决策支持系 统GDSS,GDSS利用便捷的网络通信技术在多 位决策者之间沟通信息,提供良好的协商与综 合决策环境,以支持需要集体作出决定的重要 决策。
1.6 群体决策支持系统
群体决策支持系统的特点
1.2 决策支持系统的概念与功能
决策支持系统
DSS是以管理科学、运筹学、控制论和行为 科学为基础,以计算机技术、仿真技术和信息 技术为手段,面向半结构化决策问题,支持决 策活动的具有智能作用的人机系统。
1.2 决策支持系统的概念与功能
决策支持系统的功能
① 管理并随时提供与决策问题有关的组织内部信息 ② 收集、管理并提供与决策问题有关的组织外部信息 ③ 收集、管理并提供各项决策方案执行情况的反馈信息 ④ 能以一定的方式存储和管理与决策问题有关的各种数
推理机
专家系统与决策支持系统的区别
1.7 专家系统
目标 决策方 询问类型 问题域 数据库 发展演化
决策支持系统
专家系统
辅助人 人
人向机器提问 复杂、广泛 包括事实性的知识 适应于变化的环境
提供“专家”查询 系统
机器向人提问 狭窄
包括过程和数据 适应于同定的问题域
管理信息系统
专家系统的一般结 构
知识库
知识获取子系统 专家
1.7 专家系统
解释子系统 推理 机
用户界面 用户
1.6 管理信息系统的发展历程
4. 专家系统(Expert Systems,ES)
解决需要经验、专门知识和缺乏结构的问题的系统,
是人工智能的分支。
专家
用户
决策分析和决策支持系统方案
决策分析和决策支持系统方案一、简介决策分析和决策支持系统是管理领域中常用的工具和方法,它们旨在帮助决策者更好地理解复杂的问题,并提供针对决策问题的解决方案。
本文将探讨决策分析和决策支持系统的概念、特点以及其在实际应用中的方案。
二、决策分析决策分析是指通过对问题进行系统的分析和评估,为决策者提供决策依据的过程。
它旨在将复杂的问题简化、量化,并提供不同方案之间的比较和评判。
决策分析通常包括以下步骤:1. 问题定义:明确决策的目标和范围,并确定需要解决的问题。
2. 数据收集:收集相关的数据和信息,并对其进行整理和分析。
3. 建立模型:根据问题的特点,构建数学模型或其他模型,以便对问题进行量化和分析。
4. 分析和评估:使用适当的方法对模型进行分析,评估不同方案的优劣。
5. 结果解释:将分析结果向决策者进行解释,并提供相应的建议。
三、决策支持系统决策支持系统是利用计算机技术和数学方法来辅助决策者进行决策的系统。
它结合了信息技术、管理科学和决策理论,能够处理大量的数据和信息,并提供可视化和交互式的界面。
决策支持系统通常包括以下特点:1. 数据库管理:能够存储和管理大量的数据和信息,方便决策者进行查询和分析。
2. 模型建立:支持使用数学模型或其他模型来辅助决策,提供量化和分析的能力。
3. 决策分析:能够对不同方案进行评估和比较,帮助决策者做出最优的决策。
4. 可视化和交互界面:提供直观、易于操作的界面,方便决策者进行数据分析和决策过程的控制。
四、决策分析和决策支持系统的应用方案决策分析和决策支持系统在各行各业都有广泛的应用。
以下是几个常见的应用方案:1. 营销决策:通过对市场数据的分析和评估,帮助企业确定最佳的市场推广策略和定价策略。
2. 供应链管理:利用决策支持系统来优化供应链的运作,包括供应商选择、库存管理和运输优化等。
3. 项目管理:使用决策分析方法来评估项目风险、资源分配和进度控制,提高项目决策的准确性和效率。
医学决策支持系统
医院信息系统的决策支持
医学决策支持:医疗工作中的计算机辅助决策支持 管理决策支持:计算机辅助管理决策支持
决策支持基础
统计学 数据仓库 人工智能
壹
医学决策支持:临床医生经常为病人的诊断、治疗作出决定。这些临床决定亦即临床决策(clinical decision)。
贰
决策(decision making)就是为达到同一目标在众多可以采取的方案中选择最佳方案。
知识库
知识擷取副系统
推理机
解释副系统
自然語言 介面
使用者
问题状况 问题叙述
工作区
专家或知识工程師
叁
临床决策支持系统:指帮助医务人员制定临床决策的计算机程序。
逻辑推理: 如A能推出B、B能推出C,则A一定能推出C。 由于医学中没有严格的规则,所以用得少。
归纳推理:
启发式推理: 上一次推理得出的结论,做为第二次循环推理的前提,循环推理,逐步求精。
二、医学决策基本过程
临床上的鉴别诊断: 不同的疾病为不同的概念集合,而不同疾病之间有很多交集。 鉴别诊断:区分交集部分的不同集合。
01
于是,
05
比较上面三个似然函数的大小,最大函数为LG1,因而可以判断患者所得的病名属于G1类:大脑前、中动脉支配区域出血。
03
LG2=0.83×(1-0.01) ×0.17×0.33×0.83×(1-0.01)=0.04
02
LG1=0.83×(1-0.08)×0.54×0.83×0.79×(1-0.01)=0.27
02
若将病理诊断G1与G2合并后分为出血类(G1+G2)和栓塞类(G3)二大类,则病理诊断G1+G2类计30例计量诊断符合28例;栓塞17例中符合16例;同时,3例脑于出血全部符合,只有l例脑干栓塞误分在G1类中。
流程管理中的决策与决策支持系统
决策是指在特定条件下,对若干备选 方案进行评估、选择并付诸实施的过 程。
决策重要性
决策是流程管理中的关键环节,对组 织目标的实现和业务流程的优化具有 决定性作用。
决策支持系统的概念与功能
概念
决策支持系统(DSS)是一种基于计 算机的信息系统,用于支持半结构化 和非结构化决策过程。
功能
提供数据查询、数据分析、模型模拟 等功能,帮助决策者获取信息、理解 问题、探索解决方案。
决策支持系统的历史与发展
历史
决策支持系统的概念最早可追溯到20世纪70年代,随着信息技术的发展,其功能和性能不断提升。
发展
未来的决策支持系统将更加智能化、自动化,结合大数据、人工智能等技术,提高决策效率和准确性 。
02 流程管理中的决策问题
CHAPTER
流程识别与定义
总结词
在流程管理过程中,决策者需要明确识别和定义业务流程,以便更好地进行管 理和优化。
04 决策支持系统的技术实现
CHAPTER
数据仓库技术
数据仓库是一个集成的数据存储系统 ,用于存储和管理大量的数据,以便 进行查询、分析和报告。
数据仓库技术通过数据建模、ETL( 提取、转换、加载)和数据存储等技 术实现数据的整合和组织,为决策提 供支持。
数据挖掘技术
数据挖掘是从大量数据中提取有用信 息和知识的过程,通过数据挖掘技术 可以发现隐藏的模式和关联。
流程监控与控制
总结词
为了确保业务流程按照预定的规则和要求进行,决策者需要建立有效的监控和控制机制。
详细描述
流程监控与控制是确保流程管理有效性的关键环节,它要求决策者对业务流程进行实时监控,及时发现和解决异 常和问题。同时,还需要建立相应的控制机制,确保业务流程在出现异常时能够迅速恢复到正常状态。
DSS(决策支持系统)
决策支持系统管理的核心是“决策”。
全球经济一体化的进程以及信息技术的发展,消除了许多流通壁垒。
企业比以往任何时候都面临着更为复杂的生存环境,更难以形成并维护其竞争壁垒。
竞争的压力对企业制定决策的质量、速度都有更高要求。
决策支持系统作为一种新兴的信息技术,能够为企业提供各种决策信息以及许多商业问题的解决方案,从而减轻了管理者从事低层次信息处理和分析的负担,使得他们专注于最需要决策智慧和经验的工作,因此提高了决策的质量和效率。
现代企业的管理决策一、管理和决策制定60年代末,明茨伯格(Mintzberg)对5位总经理的工作进行一项仔细的研究。
他发现,管理者扮演着十种不同的但却是高度相关的角色。
这十种角色可以进一步分为三方面:人际关系、信息传递和决策制定,如下表所示:在这三方面中,决策制定是管理最核心、最实质性的角色。
所有的管理活动都围绕着决策。
决策的整体质量对企业的成败有重大影响。
二、现代企业决策的挑战在过去许多年,管理者制定决策是一门纯粹的艺术,是通过很长一段时间的经验所获得的一项天赋。
管理之所以被看成一门艺术,是因为许多个体风格被用于处理并成功地解决了同一类型的管理问题。
这些风格源于创造力、判断力、直觉和经验,而不是建立在科学方法基础上的系统化的定量分析方法。
但是,今天管理所面临的外部环境正在发生迅速变化。
商业及其本身的环境也比以往更加复杂,而且这种复杂性日益增加。
这些都对现代企业的管理决策带来了新的挑战:1. 决策质量的要求更高随着技术的迅速发展,客户获得产品和服务的渠道更为畅通,客户的选择余地更大。
同时大规模生产使得产品出现了供过于求的状态。
客户成为最稀缺的资源。
这迫使企业必须采取“以客户为中心”的经营策略,努力提高产品和服务的质量。
2. 决策时要考虑的因素更复杂随着经济全球化的趋势,尤其是中国加入WTO之后,无论是否愿意,企业都将面对全球的竞争者和全球范围的消费市场;随着环境的恶化、消费者权益意识的增强等,政府颁布了更详尽的法令和制度来约束企业的经营行为。
决策支持系统要点
1.决策的概念:决策是指个人或集体为了达到或实现某一目标,借助一定的科学手段和方法,从若干备选方案中选择或综合成一个满意合理的方案,并付诸实施的过程。
2.决策的特征:1)决策具有目的性2)决策不是简单的方案选择,而是一个具有创造性的过程3)决策石油一系列的活动过程组成的4)决策的过程需要有效的支持3.决策的类型1)从决策者的角度,决策可分为个人决策和群体决策2)从组织的层次角度,决策可分为高层决策,中层决策和基层决策3)从决策涉及的范围和着眼点角度,决策可分为宏观决策,中观决策和微观决策4)从决策影响的时间和影响面角度,决策可分为战略决策,战术决策和运行决策4.决策支持的概念、目的P21:决策支持是目标,而决策支持系统是工具。
决策支持的基本含义是用计算机及软件技术来达到如下目的:(1)帮助决策者在半结构化或非结构化的任务中做决策(2)支持决策,但并没有代替决策(3)改进决策的效能,而不是提高决策的效率5.决策支持的特征{决策问题:决策问题是指在一定的决策支持原子目标下决策支持系统所要完成的相对独立的信息处理任务。
决策问题的分类1)结构化问题;指常规的,可重复性的,以结构化模型求解就可得到合理结果的问题。
2)非结构话问题;指自身逻辑性并不清晰,或者在目前掌握的知识水平下无法用较为明晰的程序化语言描述清楚的问题。
3)半结构化问题;单指那些在问题中既存在可以利用结构化语言建立模型求解的部分,同时又存在只能借助个人经验,常识等非逻辑化知识帮助求解的部分。
}5.决策制定的过程(西蒙提出)1)情报阶段(1)识别和确定决策问题(2)解析决策问题(3)建立决策问题的所有权(4)确定决策目标2)设计阶段(1)确立决策的价值准则(2)建立和描述决策问题模型(3)开发产生决策方案3)选择阶段(1)分析评价决策的备选方案(2)选择决策方案4)实施阶段6.决策支持系统产生1971年,美国学者M.S.Scott Morton在《管理决策系统》一文中首次提出决策支持系统的概念。
管理信息系统教案11 决策支持系统
课程名称:管理信息系统授课章节第十一章 决策支持系统 课时 1目的要求了解利用信息技术辅助决策的主要形式,重点是掌握决策支持系统的概念、组成及开发。
同时,了解智能决策支持系统和群体决策支持系统的应用。
重点难点重点:决策支持系统的概念;决策支持系统的组成;智能决策支持系统;群体决策支持系统。
难点:决策支持系统的构成;智能决策支持系统;群体决策支持系统。
§11.1决策支持系统的概念1、决策支持系统的产生与发展70年代中期Keen和Scott Morton首次提出了“决策支持系统”(Decision Support Systems,简称DSS)一词,标志着利用计算机与信息支持决策的研究与应用进入了一个新的阶段,并形成了决策支持系统新学科。
一般认为DSS是结合与利用计算机强大的信息处理能力和人的灵活判断能力,以交互方式支持决策者解决半结构化和非结构化决策问题的系统。
2、决策支持系统的功能与定义DSS的目标是要在人的分析与判断的基础上借助计算机与科学方法支持决策者对半结构化和非结构化问题进行有序的决策,以获得尽可能令人满意的客观的解决方案。
DSS的定义:DSS是一种以计算机为工具,应用决策科学及有关学科的理论与方法,以人机交互方式辅助决策者解决半结构化和非结构化决策问题的信息系统。
3、决策支持系统与管理信息系统的关系(1)MIS是一个总概念,DSS是MIS发展的高级阶段或高层子系统;(2)DSS是鉴于MIS的不足而推出的目标不同于MIS的新型系统;(3)MIS是DSS的基础部分,也即DSS包括提供决策信息的MIS,MIS是DSS的一个子系统;(4)在广义与狭义之分,就狭义而言,MIS与DSS是不同的系统,就广义而,DSS是MIS的分系统。
§11.2决策支持系统的组成DSS概念模式的建立是开发中最初阶段的工作,它通过对决策问题与决策过程的系统分析来描述。
基本的概念模式见P236。
目前常用的DSS系统分析方法是ROMC(表述、操作、记忆辅助、控制机制)分析方法。
Bi的总结归纳
Bi的总结归纳经过多次的实践和总结,我对Bi的特点和实际应用进行了深入的归纳和总结。
以下是我对Bi的总结归纳:一、Bi的概念和特点Bi,即商业智能,是一种基于数据分析和数据挖掘技术的商业决策支持系统。
其主要特点包括:1. 数据驱动:Bi通过分析和挖掘企业数据,提供可靠的决策支持,帮助企业实现数据驱动的经营管理。
2. 高度集成:Bi整合了多种数据来源和分析工具,能够将分散的数据整合为一体,提供全方位的数据支持和决策分析。
3. 多维分析:Bi提供多维数据分析功能,可以从不同维度对数据进行切片和分析,帮助企业深入了解业务问题。
4. 可视化展示:Bi能够将复杂的数据和分析结果以直观的图表形式展示,帮助用户快速理解和把握关键业务信息。
二、Bi的应用场景Bi广泛应用于企业的各个领域,以下是几个常见的应用场景:1. 销售分析:Bi可以对销售数据进行细致的分析和监控,帮助企业制定销售策略、评估销售绩效并优化销售流程。
2. 客户关系管理:Bi可以分析客户信息和行为,帮助企业了解客户需求、提高客户满意度并实现精准营销。
3. 财务分析:Bi可以整合财务数据,分析企业的财务状况和业绩,帮助决策者进行财务规划和风险评估。
4. 供应链管理:Bi可以对供应链数据进行分析,帮助企业优化供应链流程、减少库存成本并提高供应链的运作效率。
5. 决策支持:Bi可以提供多维度的数据支持和决策分析,帮助决策者制定可靠的商业决策和战略规划。
三、Bi的优势和挑战Bi作为一种决策支持技术,具有多种优势,但也面临一些挑战:1. 优势:a. 提供及时的数据支持:Bi可以快速获取和分析企业数据,帮助企业及时了解业务情况,并做出相应决策。
b. 支持决策的科学化:Bi基于数据分析和挖掘技术,能够提供客观、可靠的数据支持,帮助决策者做出科学的决策。
c. 提升运营效率:Bi通过自动化的数据分析和报表展示,减少了决策者的工作量,提高了管理效率。
d. 支持战略规划:Bi可以对大数据进行深度分析,为企业的战略规划提供全面和准确的数据支持。
决策支持系统考试名词解释
决策支持系统的定义:决策支持系统是综合利用大量数据,有机组合众多模型,通过人机交互,辅助各级决策者实现科学决策的系统。
决策支持系统(DSS)结构图,三部件结构图。
决策制定是由决策支持系统和它的用户共同完成的。
决策问题的结构化分类:决策问题按结构化程度分类,即对决策问题的内在规律能否用明确的程序化语言给以清晰的说明或者描述.,如果能够描述清楚的,称为结构化问题;不能描述清楚,而只能凭直觉或者经验作出判断的,称为非结构化问题;介于这两者之间的,则成为半结构化问题。
三部件结构 1.对话部件:是决策支持系统与用户的交互界面,用户通过“人机交互系统”控制实际决策支持系统的运行。
2.数据部件:数据部件包括数据库和数据库管理系统。
3.模型部件;模型部件包括模型库和模型库管理系统。
DSS与MIS的不同:1.MIS是面向中层管理人员,为管理服务的系统。
DSS是面向高层人员,为辅助决策服务的系统。
2.MIS按事务功能(生产,销售,人事)综合多个事务处理的EDP。
DSS是通过模型计算辅助决策。
3.MIS是以数据库系统为基础;以数据驱动的系统。
DSS是以模型库系统为基础的,以模型驱动的系统.4.MIS分析着重于系统的总体信息的需求,输出报表模式是固定的。
DSS分析着重于决策者的需求,输出数据的模式是复杂的。
5.MIS系统追求的是效率,即快速查询和产生报表。
DSS追求的是有效性,即决策的正确性。
6.MIS支持的是结构化决策。
这类决策是经常的、重复发生的。
DSS支持的是半结构化决策。
这类决策是指既复杂又无法准确描述处理原则又涉及大量计算,既要应用计算机又要用户干预,才能取得满意结果的决策。
决策过程中四大步骤可以分成更详细的八个步骤:提出问题;确定目标;价值准则;拟定方案;分析评价;选定方案;试验验证;普遍实施。
决策体系与决策信息:决策体系由决策系统、参谋(智囊)系统、信息系统、执行系统与监督系统这五大部分组成一个统一整体。
决策支持系统的数据库、方法库与知识库
数据库管理系统
1
DBMS定义
数据库管理系统的定义及其分类
2
DBMS功能
数据库管理系统的主要功能
3
常见的DBMS软件
Oracle、SQL Server、MySQL等常见数据库管理软件的介绍
数据仓库及数据挖掘
数据仓库概念
基于主题、集成、稳定的数 据储存和分析系统
数据仓库架构
数据仓库的基本架构和组成 部分
3 网络化
随着网络技术的发展, 决策支持系统的网络化 将更加普及和完善
数据库在决策支持系统中的作用
数据存储
决策支持系统需要大量数据 的支持,数据库可以提供数 据存储和管理的功能
数据分析
数据库可以为决策支持系统 提供实时的数据分析和查询 功能
数据可视化
决策支持系统通常需要通过 数据可视化的方式展现数据, 数据库可以为此提供支持
常见的决策支持系统数据库类型
关系型数据库
本体
形成一套通用的、可能被不同 用户使用或共用的字典
语义网
将知识和数据进行标准化,以 便机器可以理解和使用该知识
自然语言处理
将人类语言映射到计算机可处 理和表示的形式,以便计算机 可以在不同文本数据中自动识 别知识
知识获取和生成方法
案例学习法
以先前的经验案例为基础, 提取规律和模型
数据挖掘法
利用数据挖掘技术,挖掘隐 含在数据中的知识
数据挖掘方法
数据挖掘的基本方法和流程, 包括分类、聚类等
数据挖掘在决策支持系统中的应用
预测分析
通过挖掘历史数据,分析未来 可能发生的情况
市场分析
通过挖掘市场数据,分析市场 趋势和主要分层
jc
决策支持系统DSS:决策支持系统是综合利用大量数据,有机组合众多模型,通过人机交互,辅助各级决策者实现科学决策的系统。
特性:(1)用定量方式辅助决策,而不是代替决(2)使用大量的数据和多个模型(3)支持决策制定过程(4)为多个管理层次上的用户提供决策支持(5)能支持相互独立的决策和相互依赖的决策(6)用于半结构化决策领域功能:(1)解决高层管理者碰到的半结构化和非结构化问题(2)把模型以传统的数据存储和检索功能结合起来(3)以对话方式使用决策支持系统(4)能适应环境和用户要求的变化专家系统:专家系统是利用专家的知识在计算机上进行推理,达到专家解决问题能力的系统。
特性:(1)用定性方式辅助决策(2)使用知识和推理机制(3)知识获取比较困难(4)包括确定知识和经验知识(5)解决问题的能力受知识库的限制(6)专家系统适应范围较宽群决策支持系统GDSS:群决策支持系统(GDSS)是集成多个决策者的智慧、经验以及相应的决策支持系统组成的集成系统特性:①GDSS是一个支持群决策的支持系统,它需要专门设计,不是多个DSS的简单组合。
②GDSS能减少群中部分消极行为的影响。
③GDSS能完成群决策过程和得出群决策方案,并在组织管理者指导下得到群决策结果。
④GDSS能支持在一个地点举行的群决策会议,也能支持远程的决策会议,并得到决策问题的结果。
四种应用类型:(1)决策室:在同一个会议室内,每个决策者可以在自己的终端上利用DSS 系统进行决策制定,GDSS的组织者协调和综合各决策者的意见,得出群决策结论。
(2)局部决策网:利用计算机局部网络使各决策者在各自的办公室中进行群决策。
(3)远程会议:两个或者多个决策室通过可视通信设备连接在一起,使用电子传真通过远程会议进行决策。
(4)远程决策制定:每个决策者都拥有一台“决策工作站”,在站与站之间存在不间断的通讯联系,其中任何一个决策者可在任何时候与群体的其他成员取得联系,共同做出决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专家系统的基本组成
用户
பைடு நூலகம்用户 控制模块
专家 知识库
推理 模块 (模式)
解释模块
专家知识 获取程序
专家
第一节 空间决策支持
决策的概念 决策支持系统的概念和特点 决策支持系统的构成 空间决策支持的一般过程
一、 决策的概念
决策是为达到某一目的而在若干可行方案中经过 科学分析、比较、判断,从中选取最优方案并赋 予实施的过程。 决策过程一般分为五个步骤: ⑴ 识别问题或对决策的要求; ⑵ 分析和阐明方案; ⑶ 做出选择; ⑷ 传达和执行决策; ⑸ 追踪和反馈决策的结果。
三、决策支持系统的构成
1.交互语言系统 2.问题处理系统 3.知识库系统 4.数据库系统 5.模型库系统 6.方法库系统
四、空间决策支持的一般过程
1.空间决策支持的概念 2.空间决策支持的一般过程 ⑴ 确定目标 ⑵ 搜集数据 ⑶ 建立模型 ⑷ 寻求手段 ⑸ 结果评价
第二节 专家系统
专家系统的基本组成 专家系统的知识表示与推理 人工智能与专家系统
二、决策支持系统的概念和特点
决策支持系统DSS是以管理科学、运筹学、控制论和行为 科学为基础,以计算机技术、仿真技术和信息技术为手段, 利用各种数据、信息、知识、人工智能和模型技术,面对 半结构化的决策问题,支持决策活动的人机交互信息系统。 决策支持系统的特点 ⑴ 主要解决半结构化的决策问题。 ⑵ 面向决策者。 ⑶ 强调支持的概念。 ⑷ 模型和用户共同驱动。 ⑸ 强调交互式的处理方式。