假设检验的基本概念与基本思想

合集下载

假设检验的基本概念

假设检验的基本概念
第五节 检验水准与两类错误
第二章
I型错误和II型错误
假设检验是利用小概率反证法思想,从问题的对立面(H0)出发间接判断要解决的问题(H1)是否成立,然后在假定H0成立的条件下计算检验统计量,最后根据P值判断结果,此推断结论具有概率性,因而无论拒绝还是不拒绝H0,都可能犯错误。详见表8-1。
01
P122 例8-3
02
两均数之差的标准误的估计值
03
01
P122 例8-3
02
两均数之差的标准误的估计值
由于u0.05/2=1.96,u0.01/2=2.58,|u|>u0.01/2, 得P<0.01,按α=0.05水准,拒绝H0,接受H1,两组间差别有统计学意义。可以认为试验组和对照组退热天数的总体均数不相等,两组的疗效不同。试验组的平均退热天数比对照组短。例7-7已计算了的95%的可信区间: 天,给出了两总体均数差别的数量大小。
1- :检验效能(power):当两总体确有差别,按检验水准 所能发现这种差别的能力。
a 与 b 间的关系
a
b
减少(增加)I型错误,将会增加(减少)II型错误 增大n 同时降低a 与 b
B
D
A
C
减少I型错误的主要方法:假设检验时设定 值。
提高检验效能的最有效方法:增加样本量。
若 ,不拒绝H0,但不能下“无差别”或“相等”的结论,只能下“根据目前试验结果,尚不能认为有差别”的结论。
第三节 大样本均数的假设检验
单样本数据,每组例数等于或大于60例;两样本数据,两组例数的合计等于或大于60例,而且基本均等。
两总体方差已知。
样本数据不要求一定服从正态分布总体。
另一方面,可信区间不但能回答差别有无统计学意义,而且还能比假设检验提供更多的信息,即提示差别有无实际的专业意义。

4 假设检验和t检验

4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检

概率论与数理统计 第8章

概率论与数理统计  第8章
后所生产的灯管中抽取 25 只,测得平均寿命为 1675 小时。 问采用新工艺后,灯管寿命是否有显著性提高?
现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第7~8章【圣才出品】

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第7~8章【圣才出品】

,xn;
)
0
2.分类数据的χ2 拟合优度检验
定理:在实际观测数与期望观测数相差不大的假定下,在 H0 成立时,对统计量
2
r i 1
(ni
npi0 )2 npi0
有 2
L 2 (r 1) 。
根据定理,采取显著性水平为α 的显著性检验:检验统计量为:
2
r i 1
(ni
npi0 )2 npi0
,拒绝域为W
{ 2
2 1
(r
1)} 。
五、正态性检验 1.W 检验 W 统计量
3 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台

W
n
(ai
i 1
a
)( x ( i )
x
)
2
n
n
(ai a )2 (x(i) x )2
i 1
i 1
拒绝域{W≤Wa}。
2.比率 p 的检验(见表 7-1-2)
表 7-1-2 比率 p 的检验
2 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台

四、似然比检验与分布拟合检验
1.似然比检验的思想
假设的似然比
sup p(x1,K ,xn; )
( x1,K
,xn
)
sup
p( x1,K
+(n)}。
7.2 课后习题详解
习题 7.1
1.设 x1,…,xn 是来自 N(μ,1)的样本,考虑如下假设检验问题
4 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台

H0:μ=2 vs H1:μ=3
若检验由拒绝域为 W {x 2.6}确定。

3.假设检验

3.假设检验
条件下进行推导和运算. 如果得到矛盾,
则推翻原来的假设,结论不成立.
但是,这里所得到的矛盾不是纯形式逻辑上 的矛盾,不是绝对成立的矛盾, 而是与人们 普遍的经验的矛盾, 就是小概率事件在一次 试验中不会发生. 假设检验把这条经验作为
一条原则. 根据这条原则,如果小概率事件在
一次试验中发生了,则认为原来的假设不成立 .
则 变大;反之 变小,则 变大 . 实际应用时,通常只能控制犯第一类错误的 概率, 因此一般事先给定犯第一类错误的概 率 , 力求使犯第二类错误的概率 尽量小. 犯第一类错误的概率 恰好是检验的显著性 水平, 通常情况下 取 0.05, 0.01, 0.001, 0.10.
四、假设检验的步骤: (1) 建立原假设 H0 ; (2) 构造一个含有待检参数 (但不含其它参数) 且分布已知的函数 ; (3) 给定显著水平 α , 利用所构造的函数及其分 布, 结合 H0 给出拒绝域 ;
(二)两个正态总体的参数假设检验:
设有两个正态总体
2 X N 1 , 12 , Y N 2 , 2 ,




从两个总体中分别抽取两个样本
( X1 , X 2 , , X n1 ) , (Y1 , Y2 , , Yn2 ) ,
并设其样本平均数及样本方差分别为
2 X , Y 及 S12 , S2 .
1. 两个正态总体均值的假设检验:
作假设 H 0 : 1 = 2 ;
H1 : 1 2
1) 若 σ12 , σ22 已知, 在 H0 成立的前提下作函数
U=
X Y

2 1
n1
+

2 2
N( 0 ,1) ,

卫生统计学:第7-8章 假设检验与t检验

卫生统计学:第7-8章 假设检验与t检验
8
反证法
当一件事情的发生只有A、B两种可能的时候,为了肯 定其中的一种情况A,但又不能直接证实A,这时否定 了另一种情况B,则间接肯定了A。 证明A还是证明B? 抗氧化剂 • 在H0成立的条件下,均数之间的差异是由抽样误差
引起的,有规律可循; • 在H1成立的条件下,均数间的不同包含种种未知情
形,无规律可循。 • 故从H0成立的角度出发,寻求其成立的概率。
分布。
数理统计的中心极限定理表明:从正态总体N ( , ) 中抽取例数均为n 的样 本,样本均 数也服从正态分布N( , X )。
Gosset 将此时的 u 转换:
X
定义为t 转换: t sX
u X X
并将t 值的分布命名为t 分布。
t 分布的图形及特征
• 单峰分布,以0为中心,左右对称 • t分布是一簇曲线,其形状与自由度υ(υ=n-1)
基本原则——小概率事件在一次试验中是不可能发生的。
建立检验假设,确定检验水准
假 设 检 验 步 骤
P≤α
计算检验统计量
确定P值
作推断结论
P>α
拒绝H0,接受H1
不拒绝H0
为了解某地1岁婴儿的血红蛋白浓度,某医 生从该地随机抽取了1岁婴儿25名,测得其血红 蛋白浓度的平均数为123.5g/L,标准差为11.6 g/L, 而一般正常小儿的平均血红蛋白浓度为125 g/L, 故认为该地1岁婴儿的平均血红蛋白浓度低于一 般正常小儿的平均血红蛋白浓度。
│t│值越大,则 P 值越小;反之,│t│值 越小,P 值越大。根据上述的意义,在同 一自由度下,│t│≥ tα ,则P≤ α ; 反之, │t│<tα,则P>α。
t 检验的应用条件:
单样本t 检验中,σ未知且样本含量较小 (n<50)时,要求样本来自正态分布总体;

假设检验

假设检验
X是的无偏估计量,
U | X 0 | ~ N (0,1)
/ n
3° 在假设 H0成立的条件下,由样本判断 y 小概率事件是否发生。 y pU ( x )

P{| U | u / 2 }
2

2
当 0很小时 ,
uα / 2
O uα / 2
x
{| U | u / 2 }是个小概率事件 (如上图) .
第一节
假设检验的 基本概念
一、假设检验的基本原理 二、假设检验的基本概念 三、两类错误

四、假设检验的一般步骤
停 下
实验设计 数理统计 统计推断
参数估计 假设检验 (回归分析)
统计推断: 研究如何加工、处理数据,从而 对所考察对象的性质做出尽可能精确和可靠的 推断.
很难发生. 但“很难发生”不等于“不发生”, 因而 假设检验所作出的结论有可能是错误的. 这种错误 有两类: (1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称为第Ⅰ类错误, 又叫弃真 错误, 这类错误是“以真为假”. 犯第Ⅰ类错误的概 率就是显著性水平 .
= P { 拒绝原假设H0 | H0为真 }
H0称为原假设或零假设, H1称为备择假设.
4. 拒绝域与临界点样本值x=(x1, x2, · · · , xn)所组成的集合. W1 = { x x 且使H0不成立}
W1 W1 : 拒绝原假设H0的检验统计量的取值范围.
W1 x x , U U
根据小概率原理, 如果H 0为真,则 | x 0 | 不应太大,则由一次试验得到
满足不等式
| u |
| x 0 |
/ n

07 假设检验

07 假设检验

2=02
202
2
2=()02 2>02 2=()02 2<02
2 n 1 S

2 0
单个正态总体均值已知的方差检验——2检验
问题:总体 X~N(,2),已知 假设
H0 : ; H1 : ;
2 2 0 2
构造2统计量 2
概率论与数理统计
第七章 假设检验
主要内容
假设检验的基本概念 正态总体参数的假设检验 *多个正态总体均值的比较——单因素方差 分析 *2拟合优度检验
§7.1 假设检验的基本概念
一、统计假设与统计假设检验 统计假设:通过实际观察或理论分析对总体分布形式 或对总体分布形式中的某些参数作出某种假设。 同一问题中的统计假设有两个:原假设和备择假设
基本原则——小概率事件在一次试验中是不可能发生的。 思想:如果原假设成立,那么某个分布已知的统计 量在某个区域内取值的概率应该较小,如果样本的观 测数值落在这个小概率区域内,则原假设不正确,所以, 拒绝原假设;否则,接受原假设。
• 假设检验的推理用到概率性质的反证法:先假设
H0正确,看由此可以推出什么结果。如果样本观 测值导致了一个不合理现象的出现,则有理由否 定原假设H0,而接受备择假设H1;否则,只能将 原假设H0当做真的保留下来。
故T统计量的观测值为
x 99.978 100 T 0.0545 S n 1.212 9
因为0.0545<1.86 ,即观测值落在接受域内 所以接受原假设,即可认为这天的包装机工作正常。
单边检验
H0:=0;H1:0
拒绝域为
X 0 P t (n 1) S n
X

应用统计学7假设检验

应用统计学7假设检验

应用统计学第九章假设检验朱佳俊博士Applied Statistics 第一节假设检验的基本问题一、假设检验的基本概念对总体的概率分布或分布参数作出某种“假设”,根据抽样得到的样本观测值,运用数理统计的分析方法,检验这种“假设”是否正确,从而决定接受或拒绝“假设”,这就是本章要讨论的假设检验问题。

1、假设定义为一个调研者或管理者对被调查总体的某些特征所做的一种假定或猜想。

是对总体参数的一种假设。

常见的是对总体均值或比例和方差的检验;在分析之前,被检验的参数将被假定取一确定值。

2、假设检验(hypothesis test)(1)概念–事先对总体参数或分布形式作出某种假设–然后利用样本信息来判断原假设是否成立(2)类型–参数假设检验–非参数假设检验(3)特点–采用逻辑上的反证法–依据统计上的小概率原理... 因此我们拒绝假设 =20... 如果这是总体的真实均值样本均值μ= 50抽样分布H0这个值不像我们应该得到的样本均值...203、假设检验的基本思想小概率原理是假设检验的基本依据,即认为小概率事件在一次试验中几乎是不可能发生的。

当进行假设检验时,先假设H 0正确,在此假设下,若小概率事件A出现的概率很小,例如P (A )=0.01,经过取样试验后,A 出现了,则违反了上述原理,我们认为这是一个不合理的结果。

4、小概率原理5、原假设和备择假设(1)原假设(null hypothesis)研究者想收集证据予以支持的假设也称“研究假设”总是有符号≠, <或>表示为H 1–H 1 :μ<某一数值,或μ>某一数值–例如, H 1 :μ< 10cm ,或μ>10cm(2)备择假设(alternative hypothesis)研究者想收集证据予以支持的假设也称“研究假设”总是有符号≠, <或>表示为H1–H1 :μ<某一数值,或μ>某一数值–例如, H1 :μ< 10cm,或μ>10cm6、双侧检验与单侧检验(1)备择假设没有特定的方向性,并含有符号“≠”的假设检验,称为双侧检验或双尾检验(two-tailed test)(2)备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验,称为单侧检验或单尾检验(one-tailed test)–备择假设的方向为“<”,称为左侧检验–备择假设的方向为“>”,称为右侧检验双侧检验与单侧检验(假设的形式)单侧检验H1: μ> μ0H1:μ< μ0H1: μ≠μ0备择假设H: μ≤μ0H: μ≥μ0H: μ= μ0原假设右侧检验左侧检验双侧检验假设二、假设检验中的两类错误与显示性水平1、假设检验中的两类错误(1)第Ⅰ类错误(弃真错误)–原假设为真时拒绝原假设–第Ⅰ类错误的概率记为α•被称为显著性水平(2)第Ⅱ类错误(取伪错误)–原假设为假时未拒绝原假设–第Ⅱ类错误的概率记为β(Beta)2、显著性水平(significant level)(1)是一个概率值(2)原假设为真时,拒绝原假设的概率–被称为抽样分布的拒绝域(3)表示为α(alpha)–常用的α值有0.01, 0.05, 0.10(4)由研究者事先确定三、检验统计量与拒绝域(一)检验统计量(test statistic)1、根据样本观测结果计算得到的,并据以对原假设和备择假设作出决策的某个样本统计量2、对样本估计量的标准化结果–原假设H为真–点估计量的抽样分布点估计量的抽样标准差假设值—点估计量标准化检验统计量=3.标准化的检验统计量显著性水平和拒绝域(双侧检验)抽样分布临界值临界值α/2α/2 样本统计量拒绝H 0拒绝H 01 -α1 -置信水平显著性水平和拒绝域(单侧检验)0临界值α样本统计量拒绝H 0抽样分布1 -α置信水平(二)决策规则1、给定显著性水平α,查表得出相应的临界值z α或z α/2,t α或t α/22、将检验统计量的值与α水平的临界值进行比较3、作出决策–双侧检验:I 统计量I > 临界值,拒绝H 0–左侧检验:统计量< -临界值,拒绝H 0–右侧检验:统计量> 临界值,拒绝H 0四、利用P 值进行决策(一)什么是P 值(P -value)1、在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率–双侧检验为分布中两侧面积的总和2、反映实际观测到的数据与原假设H 0之间不一致的程度3、被称为观察到的(或实测的)显著性水平4、决策规则:若p 值<α, 拒绝H 0双侧检验的P 值α/ 2α/ 2Z拒绝H 0拒绝H 0临界值计算出的样本统计量计算出的样本统计量临界值1/2 P 值1/2 P 值临界值α样本统计量拒绝H 0抽样分布1 -1 -α置信水平计算出的样本统计量P 值左侧检验的P 值临界值α拒绝H 0抽样分布 1 -1 -α置信水平计算出的样本统计量P 值右侧检验的P 值五、假设检验步骤1、陈述原假设和备择假设2、从所研究的总体中抽出一个随机样本3、确定一个适当的检验统计量,并利用样本数据算出其具体数值4、确定一个适当的显著性水平,并计算出其临界值,指定拒绝域5、将统计量的值与临界值进行比较,作出决策–统计量的值落在拒绝域,拒绝H 0,否则不拒绝H 0–也可以直接利用P 值作出决策第二节一个总体参数的检验z 检验(单尾和双尾)z 检验(单尾和双尾)t 检验(单尾和双尾)t 检验(单尾和双尾)z 检验(单尾和双尾)z 检验(单尾和双尾)χ2 检验(单尾和双尾)χ2 检验(单尾和双尾)均值均值一个总体一个总体比率比率方差方差是z 检验x z nμσ−=否z 检验ns x z 0μ−=一、总体均值的检验σ是否已知小样本容量n大σ是否已知否t 检验ns x t 0μ−=是z 检验nx z σμ0−=(一)总体均值的检验(大样本)•1.假定条件–正态总体或非正态总体大样本(n ≥30)2.使用z 检验统计量σ2已知:σ2未知:)1,0(~0N nx z σμ−=)1,0(~0N nsx z μ−=1、总体均值的检验(σ2已知)【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml ,标准差为5ml 。

4. 假设检验和t检验

4. 假设检验和t检验
0g/L
假设检验的基本思想—利用小概率反证法的思想
利用小概率反证法思想,从问题的对立面(H0)出 发间接判断要解决的问题(H1)是否成立。然后在
H0成立的条件下计算检验统计量,最后获得P值来判 断。当P小于或等于预先规定的概率值α,就是小概
率事件。根据小概率事件的原理:小概率事件在一次 抽样中发生的可能性很小,如果他发生了,则有理由 怀疑原假设H0,认为其对立面H1成立
案例10-13
0 136.0g / L, n 25, X 121g / L, S 48.8g / L;
造成 X 0 的可能原因有二:
① 抽样误差造成的; ② 本质差异造成的。
假设检验目的——判断差别是由哪种原因造成的。
一种假设H0
炊事员血红蛋白总体均数
136.0g/L
抽样误差
X 121g/L
( 二)单样本 z 检验
样本来自正态分布的总体
样本含量较大( 100)或总体标准差已知
我们可以近似用z检验
公式如下:
z x u0 x u0 (n 100) sx s / n
z
x u0
x
x u0
0 / n
( 0已知时)
案例
大规模调查表明,健康成年男子血红蛋白的均 数为136.0g/L,今随机调查某单位食堂成年男 性炊事员100名,测得其血红蛋白均数121g/L, 标准差48.8g/L。
似用z检验。当样本含量较大时,t检验与z检验可 以等同使用。
一、样本均数与总体均数比较 ➢ 单样本t检验 ➢ 单样本z检验
二、配对t检验 三、完全随机设计两均数比较
➢ 两独立样本t检验 ➢ 两样本z检验
一、样本均数与总体均数比较
样本均数 X (代表未知总体均数)与已知 总体均数0(一般为理论值、标准值或经过大量

6、 假设检验(参数)

6、 假设检验(参数)
加样本容量.
单、双侧检验 双侧检验,它的拒绝域取在两侧; 单侧检验,它的拒绝域取在左侧或右侧 . 下面看一个单侧检验的例子.
例3 某织物强力指标X的均值 0 =21公斤. 改
进工艺后生产一批织物,今从中取30件,测
得 X =21.55公斤. 假设强力指标服从正态分
布 N ( , 2 ), 且已知 =1.2公斤, 问在显著 性水平 =0.01下,新生产织物比过去的织物
H0: 0( 0 = 355)
它的对立假设是:
H1: 0
在实际工作中, 往往把不轻易 否定的命题作
为原假设.
称H0为原假设(或零假设); 称H1为备择假设(或对立假设).
由于 是正态分布的期望值,它的估计量是
样本均值 X ,因此可以根据 X 与 0的差距 | X - 0| 来判断H0 是否成立. 当 | X - 0| 较小时,可以认为H0是成立的;
{
X
0
U } 1
2
n
(1)均值的检验
(1) 2已知
对假设:.H 0 : 0
H1 : 0;
拒绝域为: W {X c}


P{X
c|

0}
P0 { X
c}

X P0{
0

c
0
})

1

(
c

0
)
n
n
n
即:c 0
罐装可乐的容量按标准应在 350毫升和360毫升之间.
生产流水线上罐装可 乐不断地封装,然后装箱 外运. 怎么知道这批罐装 可乐的容量是否合格呢?
通常的办法是进行抽样检查.
每隔一定时间,抽查若干罐 . 如每隔1小时, 抽查5罐,得5个容量的值X1,…,X5,根 据这些值来判断生产是否正常.

假设检验

假设检验

例3.某厂生产的一种钢筋,其抗断强度一直服 从正态分布,今换一批材料生产,问其抗断强 度是否仍服从正态分布? 更一般的问题是:如何根据抽样的结果来判 断总体X的分布函数F(x)是否等于给定的函数 F0(x)。 上述例子所代表的问题是很广泛的,它们 的共同特点是:先对总体的参数或总体的分布 函数的形式作某种假设H0,然后由抽样结果对假 设H0是否成立进行推断。为此需要建立检验假设 的方法。在数理统计学中,称检验假设H0的方法 为假设检验。
现从该厂生产的螺钉中抽取容量为 36 的样本, 其样本均值为 x 68 . 5,问原假设是否正确?
若原假设正确, 则
X ~ N (68 , 3.6
2
)
36
偏离较远 因而E ( X ) 68,即 X 偏离68不应该太远, 是小概率事件, 由于
X 68 3.6 6
X 68
~ N (0,1)

(4)比较

x 570
/
n
与 z
1
的值的大小。现在
x 570
/
n
2 .0 5 5 1 .6 4 5 z 1
(5) 拒绝假设H0即接受H1.也就是新生产 的铜丝的折断力比以往生产的铜丝的折断力 要大.
以上三种检验法由于都是使用U的分布,故又 名U检验法.
二.2未知时,均值的假设检验
小概率原理又称实际推断原理,它是概率论 中一个基本而有实际价值的原理,在日常生活中 也有广泛应用。人们出差,旅行可以放心大胆地 乘坐火车,原因是{火车出事故}这事件的概率 很小,在一次试验(乘坐一次火车)中,这个小 概率事件实际上不会发生的。
第一节 假设检验的概念 1.定义: 先对总体X的分布函数或参数提出假 设,然后通过抽样并根据样本提供的信息对假设 的正确性进行推断,作出接受或拒绝假设的决策. 这一过程称为假设检验. 2.参数假设检验和非参数假设检验 3.理论依据 实际推断原理:小概率事件在一次试验中(几 乎)是不可能发生的.

假设检验的基本思想

假设检验的基本思想
《概率统计》 返回 下页 结束
㈡ 检验的逻辑过程 例3. 设某考试成绩X~N(m , 202), 从中任抽36人的成绩, 算得 平均分为75, 问在显著性水平a = 0.05下, 是否可以认为全体考生 的平均成绩为70分? 要点: 某考试 (所有) 成绩是总体, 任意抽取的36人的成绩为 样本. 欲通过样本信息推断总体分布中的 m 是否为70分? 检验依据: 小概率事件在一次试验中一般不发生,若发生了,则认为
② 选择统计量
③ 确定拒绝域
选统计量 U
X m
/
~ N ( 0 ,1) .
n
由 P { | U | u a } a 0 .0 5, 查 表 得 拒 绝 域 为
2
U< -1.96 或 U>1.96 . ④ 计算统计量的值 统 计 量 的 值 为
U x m
完整解答…
/
75 70 20 / 6 1 .5 . n
《概率统计》 返回 下页 结束
例3. 设某考试成绩X~N(m , 202), 从中任抽36人的成绩, 算得 平均分为75, 问在显著性水平a = 0.05下, 是否可以认为全体考生 的平均成绩为70分? 检验过程(形而下): ① H0: m =m0=70, 即总体X~N(70 , 202), 从而知
一、假设检验的基本思想 例1. 设某厂生产一种灯管, 其寿命 X~N (m , 200 2), 原来灯管
的平均寿命为m = 1500小时. 现在采用新工艺后, 在所生产的灯管 中抽取25只, 测得平均寿命为1675小时. 问采用新工艺后, 灯管寿
命是否有显著提高 ?
问题表现为:判断 m >1500 ? 例2. 某种农作物的农药残留量 X 是否服从正态分布 ?

第8章 假设检验

第8章 假设检验
❖ 解:显然,研究者想证实“家庭汽车拥有量的 比例超过30%”,所以: H0:л≤30%(拥有量的比例不超过30%) H1:л≻30% (拥有量的比例超过30%)
关于建立假设的几点认识:
❖ 1.原假设和备择假设是一个完备事件组,且相互对 立,即必有一个成立,而且只有一个成立。
❖ 2.在假设检验中,通常将符号≤ ≥ =放在原假设上。 ❖ 3. 不同的研究者出于不同的研究目的或角度,可能
根据计算的检验统计 量与临界值进行比较, 得出拒绝或不拒绝原 假设的结论
检验统计量与拒绝域
拒绝原假设的检验统计量的所有可能取 值的集合,称为拒绝域。
若 绝对值Z临界值,拒绝原假设
拒绝域的大小与我们事先选定的显著性 水平有关。
根据选定的显著性水平确定的拒绝域的 边界值,称为临界值。
选定的显著性水平后,查阅书后的附表 就可以得到具体的临界值,将检验统计 量与之比较,就可以作出拒绝或接受原 假设的决策。
H0 H1
研究的问题 双侧检验 左侧检验 右侧检验
= 0

8.1.4 用P 值进行假设检验
❖ P 值是一个概率值(194页) 左侧检验时,P值为曲线左边小于等于检
验统计量部分的面积
右侧检验时,P值为曲线右边大于等于检
验统计量部分的面积
双侧检验时P值为曲线两边大于等于或小于 等于检验统计量部分的面积检验统计量部
什么是原假设?
1. 待检验的假设,又称“0假设”
为什么叫0 假设?
2. 研究者想收集证据予以反对的假设
3. 总是有等号 , 或
4. 表示为 H0 例如, H0: 3190(克)
什么是备择假设?
1. 与原假设对立的假设,也称“研究假设”
2. 研究者想收集证据予以支持的假设,总 是有不等号: , 或

统计学中的假设检验

统计学中的假设检验

统计学中的假设检验在统计学中,假设检验是一种重要的数据分析方法,用于确定一个统计推断是否支持或拒绝一个关于总体或总体参数的假设。

通过对样本数据进行分析,我们可以评估样本数据中的统计显著性,并作出关于总体的推断。

1. 假设检验的基本概念假设检验的基本思想是基于样本数据对总体特征做出推断。

通常,我们设置一个零假设(null hypothesis)H0,表示无效或无差异的假设,以及一个备择假设(alternative hypothesis)H1,表示有差异或有效的假设。

通过对样本数据进行分析,我们可以判断是否拒绝H0,并支持H1。

2. 假设检验的步骤(1)确定假设:明确零假设H0和备择假设H1。

(2)选择显著性水平:通常设定为0.05或0.01。

显著性水平表示我们拒绝H0的概率阈值,通常称为α。

(3)确定检验统计量:选择适当的统计量来检验H0和H1之间的差异。

(4)计算检验统计量:基于样本数据计算检验统计量的值。

(5)确定拒绝域:根据显著性水平,确定检验统计量的分布并确定拒绝域。

(6)做出结论:将计算得到的检验统计量与拒绝域进行比较,得出是否拒绝H0的结论。

3. 常见的假设检验方法(1)单样本假设检验:用于对一个总体的平均值或比例进行推断。

常用的方法有单样本t检验和单样本比例检验。

(2)两独立样本假设检验:用于比较两个独立样本的均值或比例是否有显著差异。

常用的方法有独立样本t检验和独立样本比例检验。

(3)配对样本假设检验:用于比较同一个样本在两个不同条件下的均值或比例是否有显著差异。

常用的方法有配对样本t检验和配对样本比例检验。

(4)方差分析:用于比较三个或三个以上样本的均值是否有显著差异。

常用的方法有单因素方差分析和多因素方差分析。

4. 结论的解释与结果分析当假设检验的结果显示拒绝了H0时,我们可以解释为拒绝了无效的假设,即我们对总体的推断得到了支持。

反之,如果结果不能拒绝H0,则无法得出对总体的有力推断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H0 : 0 ; H1 : 0
的拒绝域.
当 H1 为真时,观测值 x 往往偏大,因此,拒绝域的 形式为
x k ,( k 是某一正数)
又P
拒绝H0 H0为真
P
X k
P
X
0
k
0
/ n / n

2020/10/7
16
目录
上页
下页
返回
因 H0 为真,故
0
,从而 X / n
就前一种情况而言,要求犯错误的概率很小,因此, 人们常常要求
P 拒绝H0 H0为真 ,
其中 (0 1) 是一个人为给定的很小的数,常见地取 0.01,0.05,0.1 等,称 为显著性水平(significance
level). 只对犯第 I 类错误的概率加以控制,而不考虑 犯 第 II 类 错 误 的 概 率 的 检 验 , 称 为 显 著 性 检 验 (significance test),它只涉及到原假设.
n
u
.
2020/10/7
17
目录
上页
下页
返回
类似地,可得左边检验问题
的拒绝域为
H0 : 0 ; H1 : 0
u x 0 / n
u ,即 x
0
n
u
.
2020/10/7
18
目录
上页
下页
返回
内容小结
假设检验的基本原理、相关概念和一般步骤.
假设检验的两类错误
真实情况 (未知)
H0 为真 H0 不真
等式
X 0 / n
u /2 几乎是不会发生的.如果发生了,则有
理由怀疑 H0 的正确性,因而拒绝 H0 .相反,观测值 x 满

X 0 / n
u /2 ,此时没有理由拒绝原假设 H0 ,从而可以
接受 H0 .
2020/10/7
12
目录
上页
下页
返回
一般地,称统计量 U X 0 为检验统计量(test / n
《概率论与数理统计》
*****大学理学院数学系
伯努利(Bernoulli) 柯尔莫哥洛夫(Kolmogorov)
2020/10/7
1
目录
上页
下页
返回
第八章 假设检验
§8.1 假设检验的基本概念和基本思想 §8.2 正态总体均值的假设检验 §8.3 正态总体方差的假设检验 §8.4 分布拟合检验
2020/10/7
98.3,97.7,100.5,98.8,101.2,99.5,102.5, 99.7,100.1
试问此包装机的工作是否正常?
设 X 表示每包饲料的重量,则 X ~ N (, 2 ) .当自动 包装机工作原正假常设时(nu,ll h0ypo1t0h0e,sis) 2 1.152 .
备提择出假两设个(a相lte互rn独at立iv的e h假yp设othesis)
2020/10/7
11
目录
上页
下页
返回
通过以上分析,我们知道假设检验的方法符合“小概率
推断原理”.因为通常 总是取得较小,一般地取 0.1, 0.01 , 0.05 等 . 因 而 , 若 H0 为 真 , 即 当 0 时 ,
X
0
/ n
u
/
2

















理,如果 H0 为真,则由一次试验得到的观测值 x ,满足不
下面结合实例来说明假设检验的基本思想.
2020/10/7
5
目录
上页
下页
返回
【例 1】 某饲料厂用自动包装机将饲料打包,每包饲料 的标准重量规定为 100 斤.每天开工时,需要先检验一 下包装机的工作是否正常.机器正常时,其均值为 100 斤,标准差为 1.15 斤.某日开工后,抽检了 9 包,其重 量数据如下(单位:斤):
(3)
给定显著性水平 ,按 P
拒绝H0
H
为真
0

定拒绝域W ;一般地,确定临界值就确定了拒绝域;
(4) 作出判断:若 u W ,则拒绝原假设 H0 ,否则接
受原假设 H0 .
2020/10/7
14
目录
上页
下页
返回
三种假设检验
双边假设检验(bilateral hypothesis test)
H0 : 0 ; H1 : 0
所作决策
接受 H0 正确
拒绝 H0 犯第I类错误
犯第II类错误
正确
2020/10/7
19
目录
上页
下页
返回
习题A
2020/10/7
20
目录
上页
下页
返回
2020/10/7
9
目录
上页
下页
返回
为了确定常数 k ,我们考虑统计量 x 0 . / n

P
拒绝H0
H0为真
P
|
X
0
|
k
.
/ n
当 H0 为真时,U
X
0
/n
~
N (0,1) ,由标准正态分布分
位点的定义有 k u /2 ,
若U 的观察值满足 u
x 0 / n
k u /2 ,则拒绝 H0 ,
返回
两类错误
第I类错误(error of the first kind)
(弃真错误 )
P拒 绝 H 0H 0 为 真
第II类错误(error of the second kind) (取伪错误 )
P 接 受 H 0H 0 为 假
2020/10/7
8
目录
上页
下页
返回
实践中,人们习惯地采用如下策略:限制犯第 I 类错 误的概率,或者在限制犯第 I 类错误的概率下,使犯第 II 类错误的概率尽可能地小.
statistic).当检验统计量取某个区域W 中的值时,我 们 拒 绝 原 假 设 H0 , 称 区 域 W 为 拒 绝 域 (rejection region) , 拒 绝 域 的 边 界 点 称 为 临 界 点 (critical
point) , 拒 绝 域 的 补 集 W 称 接 受 域 (acceptance region).例如上例中拒绝域为
而若| u |
x 0 / n
k u /2 ,则接受 H0 .
2020/10/7
10
目录
上页
下页
返回
例如,在本例中取 0.05,则有 k u0.05/2 u0.025 1.96 , 又已知 n 9 , 1.15,即有
x 0 0.493 1.96 , / n
于是接受 H0 ,即可认为这天包装机工作正常.
2
目录
上页
下页
返回
8.1 假设检验的基本概念 和基本思想
2020/10/7
3
目录
上页
下页
返回
假设检验的基本原理
在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下, 为了推断总体的某些性 质, 提出某些关于总体的假设.
例如, 提出总体服从泊松分布的假设;
又如 ,对于正态总体 期提 望出 等 0的 数 于学
拒绝 H0 .考虑到,当 H0 为真时,
X
0
/n
~
N (0,1) .而衡量
x 0
的大小可归结为衡量
x
0
/n
的大小.因此,我们可
适当选定一正数 k ,使得当观测值 x 满足 x 0 k 时就拒 / n
绝原假设
H0
,反之,若
x
/
0
n
k ,就接受原假设 H0 .
2020/10/7
ቤተ መጻሕፍቲ ባይዱ
7
目录
上页
下页
X
0
/n


X
0
k 0
X
k 0
.
/ n / n / n / n

P
X
k
0
,则必有
P
/ n / n
拒绝H0
H0为真
.

X
/
n
~
N (0,1)

P
X
/
n
k
0
/n
,可得
k
/
0
n
u
,即 k
0
n
u .
由此可得拒绝域为 u x 0 / n
u ,即 x
0
W (, 1.96) (1.96, ) ,
而 u u /2 1.96 为两个临界点.
2020/10/7
13
目录
上页
下页
返回
综上所述,参数假设检验的一般步骤如下:
(1) 根据实际问题的要求,提出原假设 H0 及备择假
设 H1 ; (2) 构造一个合适的统计量并确定该统计量的分布,
由样本观测值计算出统计量U 的值 u ;
右边检验
H0 : 0 ; H1 : 0
左边检验
H0 : 0 ; H1 : 0
2020/10/7
15
目录
上页
下页
返回
下面来讨论单边检验的拒绝域.
设 总 体 X ~ N(, 2) , 未 知 、 为 已 知 ,
X1, X 2, , X n 是来自 X 的样本,给定显著性水平 .确 定假设检验问题
假设. 等 假设检验就是根据样本对所提出的假设作
出判断: 是接受, 还是拒绝.
2020/10/7
相关文档
最新文档