工程力学(天津大学)第4章答案

合集下载

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N ==1(,)arccos 2944RY R R F F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑ 13sin 45sin 450RY F Y P P ==-=∑ 故:3R F KN == 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=0Y =∑ cos300AC F W -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑ sin 700AB F W -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=0Y =∑ sin 30sin 600AB AC F F W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=0Y =∑ cos30cos300AB AC F F W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑cos 450RA F P -=15.8RA F KN ∴=由0Y =∑sin 450RA RB F F P +-=7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CB RA F F '-= 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

天津大学工程力学习题答案

天津大学工程力学习题答案

3-10 求图示多跨梁支座A 、C 处的约束力。

已知M =8kN ·m ,q =4kN/m ,l =2m 。

解:(1)取梁BC 为研究对象。

其受力如图(b)所示。

列平衡方程 (2)取整体为研究对象。

其受力如图(c)所示。

列平衡方程3-11 组合梁 AC 及CD 用铰链C 连接而成,受力情况如图(a)所示。

设F =50kN ,q =25kN/m ,力偶矩M =50kN ·m 。

求各支座的约束力。

F BkN1842494902332,0=⨯⨯===⨯⨯-⨯=∑ql F ll q l F M C C B kN624318303,0=⨯⨯+-=+-==⨯-+=∑ql F F l q F F F C A C A ymkN 32245.10241885.10405.334,022⋅=⨯⨯+⨯⨯-=+⨯-==⨯⨯-⨯+-=∑ql l F M M l l q l F M M MC A C A A解:(1)取梁CD 为研究对象。

其受力如图(c)所示。

列平衡方程(2)取梁AC 为研究对象。

其受力如图(b)所示,其中F ′C =F C =25kN 。

列平衡方程F C(b)(c)´CkN 25450252420124,0=+⨯=+==-⨯⨯-⨯=∑M q F M q F MD D CkN 25450256460324,0=-⨯=-==-⨯⨯+⨯-=∑M q F M q F MC C D)kN(25225225250222021212,0↓-=⨯-⨯-='--==⨯'-⨯⨯-⨯+⨯-=∑CA C A BF q F F F q F F MkN150225425650246043212,0=⨯+⨯+='++==⨯'-⨯⨯-⨯-⨯=∑CB CB AF q F F F q F F M6−1作图示杆件的轴力图。

解:在求AB 段内任一截面上的轴力时,在任一截面1−1处截断,取左段为脱离体(图c ),并设轴力F N1为拉力。

工程力学教程篇(第二版)习题第4章答案

工程力学教程篇(第二版)习题第4章答案

第4章 刚体静力学应用问题习题(平面桁架)4-1 题4-1图所示房架为锯齿形桁架。

1220G G kN ==,1210W W kN ==,几何尺寸如图所示,试求各杆内力。

题4-1解:取房架整体为研究对象,作受力图如题4-1图(b )所示。

由平衡方程 0A M =∑,1221(21cos60)40B G G W Y ⨯++⨯+-= 得 1(2020 2.5410)27.54B Y kN =+⨯+⨯= 由平衡方程0Y =∑,12120A B R Y G G W W +----=得 1212(2020101027.5)32.5A B R G G W W Y kN =+++-=+++-= 由平衡方程0X =∑,0B X =得 0B X =取节点B 为研究对象,作受力图如题4-1图(c )所示。

由平衡方程 0Y =∑,27sin300B Y W S -+=得 271027.535sin 300.5B Y W S kN --===- (压力) 由平衡方程 0X =∑,67cos300S S --=得 67cos3035cos3030.3S S kN =-== (拉力)取节点E 为研究对象,作受力图如题4-1图(d )所示。

由平衡方程 0X =∑,742sin300S S G -+= 得 472sin30(3520sin30)25S S G kN =+=-+=- (压力)由平衡方程0Y =∑,25cos300G S --=得 52cos3020cos3017.3S G kN =-=-=- (压力)取节点D 为研究对象,作受力图如题4-1图(e )所示。

由平衡方程 0Y =∑,35cos30cos300S S +=得 3517.3S S kN =-=(拉力)由平衡方程0X =∑,6153()cos600S S S S -+-=得 1653()cos6030.3(17.317.3)cos6013S S S S kN =+-=+--= (拉力) 取节点C 为研究对象,作受力图如题4-1图(f )所示。

工程力学习题 及最终答案

工程力学习题 及最终答案

——————————————工程力学习题——————————————第一章绪论思考题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。

按其是否直接接触如何分类?试举例说明。

3) 工程静力学的基本研究内容和主线是什么?4) 试述工程力学研究问题的一般方法。

第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R。

习题2-1图2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。

2-3 求图中汇交力系的合力F R 。

2-4 求图中力F 2的大小和其方向角α。

使 a )合力F R =1.5kN, 方向沿x 轴。

b)合力为零。

2习题2-2图(b)F 1F 1F 2习题2-3图(a )F 1习题2-4图2-5 二力作用如图,F 1=500N 。

为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。

2-6 画出图中各物体的受力图。

F 12习题2-5图(b)(a)(c)(d)AC2-7 画出图中各物体的受力图。

(f)(g) 习题2-6图(b)(a )DC2-8 试计算图中各种情况下F 力对o 点之矩。

(d)习题2-7图习题2-8图 P(d)(c)(a ) A2-9 求图中力系的合力F R 及其作用位置。

习题2-9图( a )1F 3 ( b )F 3F 2( c) 1F /m( d )F 32-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。

2-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。

( a )q 1=600N/m2( b )q ( c )习题2-10图B习题2-11图第三章静力平衡问题习题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm,压力p=6N/mm2,若α=30︒, 求工件D所受到的夹紧力F D。

工程力学课后习题与答案全集

工程力学课后习题与答案全集

工程力学习题答案第一章静力学根底知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力向。

解:〔a 〕杆AB 在A 、B 、C 三处受力作用。

由于力p 和B R 的作用线交于点O 。

如图〔a 〕所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 、O 两点的连线。

〔b 〕同上。

由于力p 和B R 的作用线 交于O 点,根据三力平衡汇交定理, 可判断A 点的约束反力向如 以下图〔b 〕所示。

2.不计杆重,画出以下各图中AB 杆的受力图。

解:〔a 〕取杆AB 为研究对象,杆除受力p 外,在B 处受绳索作用的拉力B T ,在A 和E 两处还受光滑接触面约束。

约束力A N 和E N 的向分别沿其接触外表的公法线,并指向杆。

其中力E N 与杆垂直,力A N 通过半圆槽的圆心O 。

AB 杆受力图见以下图〔a 〕。

(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力B N 和C N ,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且B N =C N 。

研究杆AB ,杆在A 、B 两点受到约束反力A N 和B N ,以及力偶m 的作用而平衡。

根据力偶的性质,A N 和B N 必组成一力偶。

(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力A T 和C T ,在B 点受到支座反力B N 。

A T 和C T 相交于O 点,根据三力平衡汇交定理,可以判断B N 必沿通过 B 、O 两点的连线。

见图(d ).第二章 力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1. 平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。

(完整word版)(整理)工程力学(静力学与材料力学)第四版习题答案

(完整word版)(整理)工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑ 12sin 140RY F Y P P N θ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故:223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑ sin300ACAB FF -= 0Y =∑ cos300ACFW -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos700ACAB FF -= 0Y =∑ sin700ABFW -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos60cos300ACAB FF -= 0Y =∑ sin30sin600ABAC FF W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin30sin300ABAC FF -=0Y =∑ cos30cos300ABAC FF W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由x =∑22cos 45042RA F P -=+15.8RA F KN ∴=由Y =∑22sin 45042RA RB F F P +-=+7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 45010RA RB F F P --= 0Y =∑sin 45sin 45010RA RB F F P +-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑ cos45cos450RA CB P F F --=0Y =∑ sin 45sin 450CBRA F F '-=联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑ cos60cos300AC AB F F W ⋅--=0Y =∑ sin30sin600ABAC FF W +-=联立上二式,解得: 7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑ sin cos 0DB T W αα-=0DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑ cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+ ⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑ sin75sin750AB AD F F -=0Y =∑ cos75cos750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑ cos5cos800AD ND F F '-=cos5cos80ND ADF F '=⋅由对称性及 AD AD F F '=cos5cos5222166.2cos80cos802cos75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O点,列O点平衡由x=∑cos cos300RA DCF F Pα+-=Y=∑sin sin300RAF Pα-=联立上二式得: 2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '-= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q2RE F Q '=(2)取ABCE 部分,对C 点列平衡x =∑ cos450RE RA F F -=0Y =∑ sin 450RBRA FF P --=且 RE RE F F '=联立上面各式得: 22RA F Q =2RB F Q P =+(3)取BCE 部分。

工程力学第一章∽ 第四章习题答案

工程力学第一章∽ 第四章习题答案

第一章 静力学基本概念与物体的受力分析下列习题中,未画出重力的各物体的自重不计,所有接触面均为光滑接触。

1.1 试画出下列各物体(不包括销钉与支座)的受力图。

解:如图(g)(j)P (a)(e)(f)WWF F A BF DF BF AF ATF BA1.2画出下列各物体系统中各物体(不包括销钉与支座)以及物体系统整体受力图。

解:如图F BB(b)(c)C(d)CF D(e)AFD(f)FD(g)(h)EOBO E F O(i)(j) BYFB XBFXE(k)1.3铰链支架由两根杆AB、CD和滑轮、绳索等组成,如题1.3图所示。

在定滑轮上吊有重为W的物体H。

试分别画出定滑轮、杆CD、杆AB和整个支架的受力图。

解:如图'FD1.4题1.4图示齿轮传动系统,O1为主动轮,旋转方向如图所示。

试分别画出两齿轮的受力图。

解:1o xF2o xF2o yF o yFFF'1.5结构如题1.5图所示,试画出各个部分的受力图。

解:第二章汇交力系2.1 在刚体的A 点作用有四个平面汇交力。

其中F 1=2kN ,F 2=3kN ,F 3=lkN , F 4=2.5kN ,方向如题2.1图所示。

用解析法求该力系的合成结果。

解 0001423c o s 30c o s 45c o s 60c o s 45 1.29Rx F X F F F F KN ==+--=∑00001423sin30cos45sin60cos45 2.54Ry F Y F F F F KN ==-+-=∑2.85R F KN ==0(,)tan63.07Ry R RxF F X arc F ∠==2.2 题2.2图所示固定环受三条绳的作用,已知F 1=1kN ,F 2=2kN ,F 3=l.5kN 。

求该力系的合成结果。

解:2.2图示可简化为如右图所示023cos60 2.75Rx F X F F KN ==+=∑ 013sin600.3Ry F Y F F KN ==-=-∑2.77R F KN ==0(,)tan6.2Ry R RxF F X arc F ∠==-2.3 力系如题2.3图所示。

工程力学课后详细答案

工程力学课后详细答案

工程力学课后详细答案第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑cos 45cos 45010RA RB F F P --=0Y =∑sin 45sin 45010RA RB F F P -=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=-2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q -=联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。

工程力学课后答案第4章

工程力学课后答案第4章

第4章影响线1.【解】 (1)图4-22(2)图4-231M 的影响线A F 的影响线SA M 的影响线C F 的影响线SC(3)图4-24(4)图4-25(1)图4-26M CF SC(2)图4-273. 【解】(1)图4-28判别60kN 和20kN 是否为临界荷载403<60+20+309 40+603>20+309所以60kN 是临界荷载40+603>20+309 40+60+203>309所以20kN 不是临界荷载C 0.752.251.751.25M CC0.250.750.5830.417F SCC0.0830.750.523F SC0.250.25M Cmax =40×0.75+60×2.25+20×1.75+30×1.25=237.5kN ·mF SCmax =40×0.75+60×0.583+20×0.417+30×0.25 =80.82kN ·mF SCmin =−60×0.083−20×0.25+30×0.583 =−9.16kN ·m判别478.5kN 是否为临界荷载03<478.5+324.5+324.59 478.53>324.5×29所以478.5kN 是临界荷载判别左边324.5kN 是否为临界荷载478.53>324.5×29 478.5+324.53>324.59所以324.5kN 不是临界荷载C2.251.88750.6875C0.750.250.25M CF SCF SCC0.750.6290.2294. 【解】 (1)图4-30①求使跨中截面C 发生最大弯矩的临界荷载 判别左边324.5kN06<324.5+324.56 324.56≥324.56所以第一个324.5kN 是临界荷载1.2m4.8m0.636m②求临界载荷的位置因为对称,右边集中力也为临界荷载,产生相同大小的跨中弯矩合力F =629kN ,所以 x =l 2−a 2=122−2.42=4.8m③求绝对最大弯矩M Cmax =478.5×2.25+324.5×1.8875+324.5×0.6875 =1912.21kN ·mF SCmax =478.5×0.75+324.5×0.629+324.5×0.229 =637.296kN ·mF SCmin =−324.5×0.25 =−81.125kN ·mM Cmax =324.5×3+324.5×0.6 =1168.2kN ·m(2)图4-31①求使跨中截面C 发生最大弯矩的临界荷载06≤120+606 1206≥60+206所以120kN 是临界荷载2m4m136m②求临界载荷的位置因为对称,右边集中力也为临界荷载,产生相同大小的跨中弯矩合力F =200kN ,因为 200∙x ′=60×4+20×8 所以 x ′=2m =a x =l2−a2=122−22=5m ,此时20kN 不在范围内重新计算合力F =120+60=180kN ,因为 180∙x ′=60×4 所以 x ′=1.333m =ax =l 2−a 2=122−1.3332=5.334m ③求绝对最大弯矩5. 【解】①自重下的弯矩图kN·mM Cmax =120×3+60×1=420kN ·m②各截面弯矩影响线及相应不利荷载的位置M 1的影响线M 2的影响线M 3的影响线单位:kN·m移动荷载下弯矩包络图③叠加①和②的弯矩图450706.7706.7450单位:kN·m0.5m0.5m。

423002[工程力学] 天津大学考试 参考资料答案

423002[工程力学]  天津大学考试 参考资料答案

工程力学复习题参考的答案 天津大学1、利用对称性,计算下图所示各结构的内力,并绘弯矩图。

解:取半结构如图(a)所示,为2次超静定结构。

再取半结构的基本体系如图(b)所示,基本方程为1111221P 2112222P 00X X X X δδ∆δδ∆++=⎧⎪⎨++=⎪⎩ 系数和自由项分别为119EIδ=,1221552EIδδ==,223613EIδ=,1P 13603EI ∆=,2P 1900EI∆=解得17.04kN X =-,214.18kN X =-。

原结构弯矩图如图(f)所示。

C BA10kN/m4m3m4mCBA10kN/m2X1X1X=1112X=133710kN/m80807.04202030.4230.4230.4230.4226.326.31(b) 基本体系M图(c)(a) 半结构PM(e)M图(kN·m)(f)2M图(d)图(kN·m)2、用结点法或截面法求图示桁架各杆的轴力。

解:(1)判断零杆(12根)。

(2)节点法进行内力计算,结果如图。

3、分析如图所示体系的几何构造。

解:从A点开始依次去掉二元体,可知为几何不变体系且无多余约束。

4、试求图示刚架在水压力作用下C、D两点的相对水平位移,各杆EI为常数。

解:(1)作荷载作用下弯矩图:在C、D两点加一对反向的单位水平力,并作弯矩图如下:则:5、某条形基础,宽B=2m ,埋深d=1m 。

基底附加压力p=100kPa ,基底至下卧层顶面的距离Z=2m ,下卧层顶面以上土的重度3/20m kN =γ,经修正后,下卧层地基承载力设计值kPa f 110=,扩散角 22=θ,试通过计算,验算下卧层地基承载力是否满足要求?(4.0tan =θ) 解:kPa d cz 60203)2(=⨯=⨯+=γσ kPa Z b b p z 6.554.02222100tan 20=⨯⨯+⨯=⨯+⨯=θσf kPa z cz >=+=+6.115606.55σσ,故不能满足要求。

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:161.2R F N==1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 3R F KN== 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)由x =∑cos 450RA F P -=15.8RA F KN∴=由Y =∑sin 450RA RB F F P +-=7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得:22.410RA RB F KN F KN==三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及 ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案一、选择题1. 在静力学中,刚体是指()A. 不可变形的物体B. 受力后不发生变形的物体C. 受力后变形很小的物体D. 受力后变形可以忽略的物体答案:D2. 平面汇交力系的平衡方程是()A. ΣF = 0B. ΣF_x = 0,ΣF_y = 0C. ΣM = 0D. ΣM_x = 0,ΣM_y = 0答案:B3. 在材料力学中,胡克定律适用于()A. 弹性体B. 塑性体C. 非线性体D. 理想弹性体答案:D二、填空题1. 静力学的基本公理有:______、______、______。

答案:力的平行四边形法则、二力平衡公理、力的可传递性公理2. 材料力学的任务是研究材料在______、______、______作用下的力学性能。

答案:外力、温度、湿度3. 轴向拉伸和压缩时,应力与应变的关系可表示为______。

答案:σ = Eε三、计算题1. 题目:一重10kg的物体,受到两个力的作用,如图所示。

求两个力的合力大小和方向。

答案:解:首先,将重力分解为水平和竖直两个方向的分力。

重力大小为F_g = mg = 10 × 9.8 = 98N。

水平方向分力为F_x = F_g × cos30° = 98 × 0.866 = 84.82N竖直方向分力为F_y = F_g × sin30° = 98 × 0.5 = 49N设合力大小为 F,合力方向与水平方向的夹角为α。

根据力的平行四边形法则,可得:F_x = F × cosαF_y = F × sinα联立以上两个方程,解得:F = √(F_x^2 + F_y^2) = √(84.82^2 + 49^2)≈ 95.74Nα = arctan(F_y / F_x) ≈ 28.96°所以,合力大小为 95.74N,方向与水平方向的夹角为28.96°。

【工程力学 课后习题及答案全解】第4章 刚体静力学专题习题解

【工程力学 课后习题及答案全解】第4章 刚体静力学专题习题解

工程力学(1)习题全解第4章 刚体静力学专题4-1 塔式桁架如图所示,已知载荷F P 和尺寸d 、l 。

试求杆1、2、3的受力。

解:截面法,受力如图(a ) dl=αtan ,22cos dl d +=α0=∑x F ,0cos 2P =−αF FP 222F dd l F +=(拉) 0=∑AM ,02P 1=⋅−l F d FP 12F dlF =(拉)0=∑y F ,0sin 231=++αF F FP 33F dlF −=(压)4-2 图示构件AE 和EQ 铰接在一起做成一个广告牌。

它承受给定的分布风载。

试求解:(1)先将分布载荷合成于E 点88894.2)7.7402963(8.47.740=×−+×=F N由节点C ,显然 F CQ = 0 (1) (2)截面法,图(a )0=∑D M ,08.4538.4=××+×−QG F F ,F QG = 14815 N (拉) (2)0=∑B M ,F QD = 00=∑y F ,054=+×BC QG F F ,11852−=BC F N (压) (3) (3)截面法,图(b )习题4-3图习题4-4图0=∑E M ,08.04.2)7.7402963(212.14.27.7404.253=××−−××−××−AB F2963−=AB F N (压) (4) (4)节点B ,图(c )0=∑y F ,05454=−−′BQ BC AB F F F ,05411852296354=−+×−BQ F F BQ = 11852 N (拉)(5)0=∑x F ,0)(53=++′BE BQ ABF F F ,0)118522963(53=++−BE F ,5333−=BE F N (压) (6) 又 11852−==BC CD F F N (压)(7)4-3 桁架的载荷和尺寸如图所示。

工程力学第四版课后习题答案

工程力学第四版课后习题答案

工程力学第四版课后习题答案工程力学第四版课后习题答案工程力学是一门研究物体静力学和动力学的学科,是工程学的基础课程之一。

通过学习工程力学,可以帮助我们理解和解决各种工程问题。

而课后习题则是巩固和应用所学知识的重要方式。

本文将为读者提供工程力学第四版课后习题的答案,希望能够帮助大家更好地掌握这门学科。

第一章:力的基本概念1. 一个物体的质量是5kg,重力加速度为9.8m/s²,求其重力。

答案:重力 = 质量× 重力加速度= 5kg × 9.8m/s² = 49N2. 一个力的大小为20N,方向与x轴夹角为30°,求其在x轴上的分力。

答案:在x轴上的分力 = 力的大小× cos(夹角) = 20N × cos(30°) ≈ 17.32N第二章:力的作用效果1. 一个物体受到两个力的作用,一个力的大小为10N,方向与x轴正向夹角为30°;另一个力的大小为15N,方向与x轴正向夹角为60°。

求物体所受合力的大小和方向。

答案:合力的x分力= 10N × cos(30°) + 15N × cos(60°) ≈ 17.32N合力的y分力= 10N × sin(30°) + 15N × sin(60°) ≈ 23.09N合力的大小= √(合力的x分力² + 合力的y分力²) ≈ 28.35N合力的方向 = arctan(合力的y分力 / 合力的x分力) ≈ 53.13°第三章:力的分解与合成1. 一个力的大小为30N,方向与x轴夹角为45°,求其在x轴和y轴上的分力。

答案:在x轴上的分力 = 力的大小× cos(夹角) = 30N × cos(45°) ≈ 21.21N在y轴上的分力 = 力的大小× sin(夹角) = 30N × sin(45°) ≈ 21.21N2. 一个物体受到两个力的作用,一个力的大小为20N,方向与x轴正向夹角为60°;另一个力的大小为15N,方向与x轴正向夹角为45°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M z 230.95 0.707 Mo 326.60
4-6 轴AB与铅直线成 角,悬臂CD垂直地固定在轴上,其长为a,并与铅直面zAB成 角,如图所示。如在点D作用铅直向下的力P,求此力对轴AB的矩。 解:力P对轴AB的矩为 z B
M AB P sin sin a Pa sin sin
M o (F ) M 2 x (F ) M 2 y (F ) M 2 z (F ) 230.952 (230.95) 2 326.60N m M cos( M o , i ) x 0, Mo
cos( M o , j ) cos( M o , k ) My Mo 230.95 0.707, 326.60
B
D A
B J y
F x
C
解:取矩形平板为研究对象,其上受一汇交于D点的空间汇交力系作用,连 接DH、DI、DJ,如图b所示。列平衡方程
F F F
y
0,
AH BH FB 0 AD BD AH BH , AD BD, FA FA
FA FB
1 2
x
0,
z
100 100 5
1 5
100
0.3 100 13 100 5 3 1 300 0.1 200 0.3 13 5 51.78 N m 200 M y M y ( F ) F1 0.2 F2 0.1 100 13 2 100 0.2 300 0.1 13 36.64 N m 300 200 M z M z ( F ) F2 0.2 F3 0.3 100 13 100 5 3 2 300 0.2 200 0.3 13 5 103.59 N m
(a )
A
F F F
z
0 0 0
FA cos 45 F 0 FA 2 F 2 1000 1414N FB FA sin 45 cos 45 0 FB 707N FC FA sin 45 cos 45 0 FC 707N
0
AI BJ CO FB FC 0 AD BD DO 40 40 40 FA FB FC 0 10 61 10 61 10 52 DO DO DO FA FB FC G 0 DA DB DC 60 60 60 FA FB FC 20 0 10 61 10 61 10 52
z A

F2 ( R sin cos cos )
F2 E D

O C F 1 h
M y ( F2 ) F2 sin R sin F2 R sin sin M z ( F2 ) F2 cos R sin F2 R cos sin
x
y
4 - 5 一力F沿正立方体的对角线BK作用,方向如图示。设F =200 N,正立方体边长为2m,求力F对O点之矩矢的大小及方向。 解:力F在三个坐标轴上的投影为, z B F
Fx F
2 2 1 cos 45 F 2 3 3
K x
O
x
2 2 1 sin 45 F 2 3 3 2 1 Fz F F 2 3 3 Fy F
143.13
F 50N
4 - 8 截面为工字形的立柱受力如图示,试求此力向截面形心C平移的结果。 解:将力F向截面形心C平移的结果为一个力F' 和一个力偶MC
z 100kN 125 C 50
Fx 0,
Fy 0
Fz 100kN
y
F 100kkN
x
M x ( F ) yFz zFy 0.125 (100) 0 0 12.5kN m M y ( F ) zFx xFz 0 0 (0.05) (100) 5kN m M z ( F ) xFy yFx (0.05) 0 0.125 0 0 M c M x ( F ) M y ( F ) M z ( F ) 12.5i 5 jkN m
300
0.1 F3
4 - 10 在图示起重机中,AB = BC = AD = AE;点A、B、D和E等均为球铰链连接,如三角形ABC的投影为AF线,AF与y轴夹 角为 ,如图。求铅垂支柱和各斜杆的内力。
z B
z

C y x
FCB
C y x
E D
45° 90 A °

45° FCA A

4-1 如图所示,铅垂轴上固结一水平圆盘,圆盘半径为R,OB=h。在圆盘的边缘上C、 D两点分别作用力F1和F2,F2平行于yBz面,ED平行于y轴, 、 均为已知。试分 别写出力F1及F2对各坐标轴之矩。 解:
M x ( F1 ) F1 h M y ( F1 ) 0 M z ( F1 ) 0 M x ( F2 ) F2 cos h F2 sin R cos
C

a

A
P
D
习题 4 6图
4-7 图示三圆盘A、B和C的半径分别为150 mm、100 mm和50 mm。三轴OA、OB和OC 在同一平面内, AOB 为直角,在这三圆盘上分别作用力偶,组成各力偶的力作 用在轮缘上,它们的大小分别等于10 N、20 N和F。如这三圆盘所构成的物系处于 平衡,不计物系重量,求能使此物系平衡的力F的大小和角 。 解:此力系为空间力偶系,列平衡方程 20 B Mx 0 N 10 150 2 F 50 2 cos( 90) 0 (1) 10 N 20N My 0 90° 20 100 2 F 50 2sin( 90) 0 (2) F A O C F 由(1)、(2)式联立解得 10 N 习题 4 7图
F B y A Az D C F x 1 z F3 FAx r1 F2 F4 r2 z FBx F1 x z (a) F3 (b) z 4 - 11图 F2 习题 F4 z z 解:取水平轴及两个带轮为研究对 z 象,受力如图(b)所示。列平衡方程 z z z y r1
C
B
y z z z z z z z z z z y
M
y
( F ) 0,
F1 r1 F2 r1 F3 r2 F4 r2 0 F1 r1 2 F1 r1 2 F4 r2 F4 r2 0 F4 F1 r1 2500 0.2 2000 N r2 0.25
B x 习题4 - 1图
y x
4-2 匀质矩形平板重G=20kN,用过其重心铅垂线上D点的三根绳索悬在水平位置。设 DO =60 cm,AB =60 cm,BE =80 cm,C点为EF的中心。求各绳所受的拉力。 z FT B O x G E x (a ) y F I F A A F C C x 习题4 - 2图 z D F H O x G E x (b )
z
15°
D
G y F
C
C
15°
F F
B A
A 45° O B
30°
45°
G y
x
x (b )
(a )
习题 4 - 3图
解:取空间构架及物体为研究对象,受力如图(b)所示。建立坐标系如图,列 平衡方程 Fx 0 FA cos 45 FB cos 45 0 (1)
F F
y
0 0
FA sin 45 cos 30 FB sin 45 cos 30 FC cos15 0 FA sin 45 sin 30 FB sin 45 sin 30 FC sin15 G 0
(2) (3)
z
由(1)、(2)、(3)式联立解得
FA FB 26.39kN FC 33.46kN
FBD cos 45 FBE cos 45 FBA cos 0 FBA 2F cos
4 - 11 水平轴上装有两个带轮C和D,轮的半径r1=20 cm,r2=25 cm,轮C的胶带是水平的 ,其拉力F2 = 2F1=5000 N,轮D的胶带与铅垂线成角 30 ,其拉力F3 = 2F4;不计轮轴的重量。求在平衡情况下拉力F3 和F4的大小及轴承约束力。 z 50c m A 100c m 50c m D r2 z 50c m 100c m 50c m FBz
300
2
13 354.29 N Fy F2 FRy 300 3 13 249.61N
200
2 5
300 100 13
Fz F1 F3 FRz 100 200 10.59 N
M x M x ( F ) F2
力F对三个坐标轴的矩为
y x
习题 4 5图
1 1 F ) 2 ( F) 0 3 3 1 1 2 M y ( F ) zFx xFz 2 F 0 ( F) F 3 3 3 2 400 200 =230.95N m 3 3 1 1 2 M z ( F ) xFy yFx 0 ( F) 2 F F 3 3 3 2 400 200 = 230.95N m 3 3 M x ( F ) yFz zFy 2 (
F x
F
F x (b )
F
(a )
z B
FBE

C y x
90 A ° (c )
F x 习题4 - 10图
解:取C铰及重物为研究对象,受力如图(b)所示。建立坐标系如图,列平衡 方程 Fz 0 FCA cos 45 F 0
FCA
F
x
0
F 2F cos 45 FCA sin 45 cos FCB cos 0 2 F 2
相关文档
最新文档