高一数学对数函数的运算(一)

合集下载

4.3.2对数的运算-高中数学人教A版必修一课件

4.3.2对数的运算-高中数学人教A版必修一课件

(1)loga (MN ) loga M loga N
(2)loga
M N
loga M
loga
N
(3)loga M n n loga M (n R)
2.对数换底公式:
loga b
logc b (a logc a
0, 且a 1;b 0;c 0, 且c
1).
本课结束
自我探究
仿照上述推理过程,结合指数幂的运算性质
am an
amn
和 (am )n amn

推导出对数运算的其他性质.
学习新知
对数的运算性质:
如果 a 0 ,且 a 1,M >0 ,N >0 .那么
(1)loga (MN ) loga M loga N
(2)loga
M N
loga M
loga
2
3
巩固练习
用 lg x ,lg y ,lg z 表示 下列各式.
(1)lg(xyz)
(2)lg xy2
z
(3)lg xy3
z
(4)lg
x y2z
lg x lg y lg z
lg x 2 lg y lg z lg x 3lg y 1 lg z
2 1 lg x 2 lg y lg z 2
2( ln 3 ln 2 ln 3 ln 2 ln 3 ln 2 ln 3 ln 2) ln 4 ln 3 ln 8 ln 3 ln 4 ln 9 ln 8 ln 9
2(1 1 1 1) 23 6
4
课堂小结
1.对数的运算性质:如果 a 0 ,且 a 1,M >0 ,N >0 .那么
第四章 指数函数与对数函数
4.3 对数

对数的运算 课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册

对数的运算 课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
= log33-1
=-1.
10
解:
11
2. 用lnx , lny , lnz 表示下列各式:
解:(1) lg(xyz)
=lgx+lgy+lgz.
(2)
=lgx+lgy2–lgz
=lgx+2lgy–lgz.
(1) lg(xyz);
= lg(xy2)–lgz
12
(1)利用计算工具求ln2, ln3的近似值;(2)由对数的定义,你能利用ln2, ln3的值求log23的值吗?(3)根据对数的定义, 你能用logca, logcb表示logab(a>0, 且a≠1; b>0, c>0, 且c≠1)吗?
ax =N logaN = x
5
我们知道了对数与指数间的关系,能否利用指数幂运算性质得出相应的对数运算性质呢?
设M=am , N=an,
因为aman=am+n, 所以MN=am+n.
根据指数与对数间的关系可得
logaM=m, logaN=n, loga(MN)=m+n.
3
复习回顾
1. 实数指数幂的运算性质
x = logaN ,
其中a叫做对数的底数,N叫做真数 .
2. 对数的定义
3. 两种特殊的对数
(1) 以10为底的对数叫常用对数, 并把
log10N记作lgN .
(2) 以无理数 e (e=2.71828…)为底的对数叫自然对数, 并把
logeN记作lnN .
(1) aras =ar+s (a>0 , r , s∈R);
解:设里氏9.0级和8.0级地震的能量分别为E1和E2.
由lgE=4.8+1.5M, 可得

新教材高中数学第四章对数运算与对数函数1对数的概念课件北师大版必修第一册

新教材高中数学第四章对数运算与对数函数1对数的概念课件北师大版必修第一册
(3)3lo g 3 √ =9.
解(1)∵ln(log2x)=0,∴log2x=1.∴x=21=2.
(2)∵log2(lg x)=1,∴lg x=2.∴x=102=100.
(3)由3lo g 3 √ =9 得√=9,解得 x=81.
规律方法
1
2
在对数的运算中,常见的对数的基本性质有:(1)负数和零没有对数;
1
解(1)log24=-2.
(2)log10100=2,或 lg 100=2.
(3)loge16=a,或 ln 16=a.
1
3
-
(4)64 =
1
.
4
(5)xz=y(x>0,且 x≠1,y>0).
探究点二 利用对数式与指数式的关系求值
【例2】 求下列各式中x的值:
(1)4x=5·3x; (2)log7(x+2)=2;
3.常见误区:易忽视对数式中底数与真数的范围.
学以致用•随堂检测全达标
1.将log5b=2化为指数式是( C )
A.5b=2 B.b5=2
C.52=b D.b2=5
2.已知ln x=2,则x等于(
A.±2
B.e2
C.2e
)
D.2e
答案 B
解析 由ln x=2,得e2=x,即x=e2.
3.(多选题)下列选项中,可以求对数的是(
A.0
B.-5 C.π
)
D.7
答案 CD
解析 根据对数的定义可知0和负数没有对数,所以选项A,B没有对数,π>0,
选项C有对数.又7>0,所以选项D有对数.
4.已知a=log23,则2a=
.
答案 3
解析 由a=log23,化对数式为指数式可得2a=3.

人教版数学高一教案对数及其运算(一)

人教版数学高一教案对数及其运算(一)

§3.2 对数与对数函数3.2.1 对数及其运算(一)一.教学目标:1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.二.重点与难点:(1)重点:对数式与指数式的互化及对数的性质(2)难点:对数性质的推导三.学法与教具:(1)学法:讲授法、讨论法、类比分析与发现(2)教具:投影仪教学过程[问题情境] 对数,延长了天文学家的生命.“给我空间、时间和对数,我可以创造一个宇宙”,这是16世纪意大利著名学者伽利略的一段话.从这段话可以看到,伽利略把对数与最宝贵的空间和时间相提并论.那么,“对数”到底是什么呢?本节就来探讨这个问题.探究点一 对数的概念问题1 若24=M ,则M 等于多少?若2-2=N ,则N 等于多少?答: M =16,N =14. 问题2 若2x =16,则x 等于多少?若2x =14,则x 等于多少? 答: x 的值分别为4,-2.问题3 满足2x =3的x 的值,我们用log 23表示,即x =log 23,并叫做“以2为底3的对数”.那么满足2x =16,2x =14,4x =8的x 的值如何表示? 答: 分别表示为log 216,log 214,log 48. 小结: 1.在指数函数f (x )=a x (a >0,且a ≠1)中,对于实数集R 内的每一个值x ,在正实数集内都有唯一确定的值y 和它对应;反之,对于正实数集内的每一个确定的值y ,在R 内都有唯一确定的值x 和它对应.幂指数x ,又叫做以a 为底y 的对数.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.2.对数log a N (a >0,且a ≠1)的性质(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.3.常用对数以10为底的对数叫做常用对数.为了简便起见,对数log 10N 简记作lg N .探究点二 对数与指数的关系问题1 当a >0,且a ≠1时,若a x =N ,则x =log a N ,反之成立吗?为什么?答:反之也成立,因为对数表达式x =log a N 不过是指数式a x =N 的另一种表达形式,它们是同一关系的两种表达形式.问题2 在指数式a x =N 和对数式x =log a N 中,a ,x ,N 各自的地位有什么不同?答问题3 若a b =N ,则b =log a N ,二者组合可得什么等式?答:对数恒等式:a =N .问题4 当a >0,且a ≠1时,log a (-2),log a 0存在吗?为什么?由此能得到什么结论? 答:不存在,因为log a (-2),log a 0对应的指数式分别为a x =-2,a x =0,x 的值不存在,由此能得到的结论是:0和负数没有对数.问题5 根据对数定义,log a 1和log a a (a >0,a ≠1)的值分别是多少?答:log a 1=0,log a a =1.∵对任意a >0且a ≠1,都有a 0=1, ∴化成对数式为log a 1=0; ∵a 1=a ,∴化成对数式为log a a =1.小结: 对数log a N (a >0,且a ≠1)具有下列性质:(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.例1 求log 22, log 21, log 216, log 212. 解: 因为21=2,所以log 22=1;因为20=1,所以log 21=0;因为24=16,所以log 216=4;因为2-1=12,所以log 212=-1. 小结: log a N =x 与a x =N (a >0,且a ≠1,N >0)是等价的,表示a ,x ,N 三者之间的同一种关系,可以利用其中两个量表示第三个量.因此,已知a ,x ,N 中的任意两个量,就能求出另一个量. 跟踪训练1 将下列指数式写成对数式:(1)54=625; (2)2-6=164; (3)3a =27; (4)⎝⎛⎭⎫13m =5.73. 解: (1)log 5625=4;(2)log 2164=-6;(3)log 327=a ;(4)log 135.73=m . 例2 计算:(1)log 927; (2)log 4381; (3)log 354625.解:(1)设x =log 927,则9x =27,32x =33,∴x =32. (2)设x =log 4381,则⎝⎛⎭⎫43x =81,3=34,∴x =16.(3)令x =log 354625,∴⎝⎛⎭⎫354x =625,5=54,∴x =3.小结:要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解.跟踪训练2 求下列各式中的x 的值:(1)log 64x =-23; (2)log x 8=6; (3)lg 100=x . 解: (1)x =(64) -23=(43) -23=4-2=116.(2)x 6=8,所以x =(x 6) 16=816=(23) 16=212= 2.(3)10x =100=102,于是x =2.探究点三 常用对数问题 阅读教材96页下半页,说出什么叫常用对数?常用对数如何表示?答:以10为底的对数叫做常用对数.通常把底10略去不写,并把“log”写成“lg”,并把log 10N 记做lg N .如果以后没有指出对数的底,都是指常用对数.如“100的对数是2”就是“100的常用对数是2”.例3 求lg 10,lg 100,lg 0.01.解:因为101=10,所以lg 10=1;因为102=100,所以lg 100=2;因为10-2=0.01,所以lg 0.01=-2.小结:由本例题可以看出,对于常用对数,当真数为10n (n ∈Z )时,lg 10n =n ;当真数不是10的整数次方时,常用对数的值可通过查对数表或使用科学计算器求得.跟踪训练3 求下列各式中的x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1; (3)log (2-1)13+22=x .解: (1)∵log 2(log 5x )=0. ∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000.(3)∵log (2-1)13+22=x ,∴(2-1)x =13+22=1(2+1)2=12+1=2-1, ∴x =1.当堂检测1.若log (x +1)(x +1)=1,则x 的取值范围是( B ) A.x >-1B.x >-1且x ≠0C.x ≠0D.x ∈R 解析:由对数函数的定义可知x +1≠1,x +1>0即x >-1且x ≠0.2.已知log 12x =3,则x 13=__12______.解析:∵log 12x =3,∴x =(12)3, ∴x 13=12. 3.已知a 12=49(a >0),则log 23a =__4______.解析:由a 12=49(a >0),得a =(49)2=(23)4, 所以log 23a =log 23(23)4=4. 4.将下列对数式写成指数式:(1)log 16=-4;(2)log 2128=7;(3)lg 0.01=-2.解:(1)⎝⎛⎭⎫12-4=16;(2)27=128; (3)10-2=0.01.课堂小结:1.掌握指数式与对数式的互化a b =N ⇔log a N =b .2.对数的常用性质有:负数和0没有对数,log a 1=0,log a a =1.3.对数恒等式有:a log a N =N ,log a a n =n .4.常用对数:底数为10的对数称为常用对数,记为lg N .。

高一必修一对数函数知识点

高一必修一对数函数知识点

高一必修一对数函数知识点对数函数是高中数学中的一个重要内容,它涉及到了指数函数和对数函数的关系。

对数函数的学习对于高中数学学习的深入理解和能力的发展非常重要。

本文将为大家介绍高一必修一对数函数的主要知识点,并通过示例来加深理解。

一、对数函数的定义和性质1. 对数函数的定义:对数函数y=loga(x)定义为y=a^x,其中a>0且a≠1。

其中,a称为底数,x称为指数,y称为对数。

2. 对数函数的性质:- 当x>0时,对数函数y=loga(x)是严格单调递增函数。

- 当0<a<1时,对数函数关于x轴对称。

- 当a>1时,对数函数关于y轴对称。

二、对数函数的图像和性质1. 对数函数的图像:对数函数的图像随着底数a的不同而变化,当底数a>1时,对数函数的图像呈现上升的指数形状;当0<a<1时,对数函数的图像呈现下降的指数形状。

2. 对数函数的常用性质:- 对数函数的定义域为(0, +∞),值域为(-∞, +∞)。

- 对数函数的图像经过点(1, 0),即loga(1) = 0。

- 对数函数在x=1时取到最小值,即loga(1) = 0。

- 对数函数在x→+∞时,值趋近于正无穷;在x→0+时,值趋近于负无穷。

三、对数函数的基本性质1. 对数函数的指数运算:- loga(xy) = loga(x) + loga(y)- loga(x/y) = loga(x) - loga(y)- loga(x^p) = p·loga(x)2. 对数函数的换底公式:- loga(x) = logb(x) / logb(a)四、对数方程和对数不等式1. 对数方程的求解:- 求解对数方程时,需要根据对数函数的性质来进行等式变形和求解。

2. 对数不等式的求解:- 求解对数不等式时,需要根据对数函数的性质来确定不等式的取值范围。

五、常用对数的计算常用对数是以10为底的对数,用logx表示。

对数函数的运算公式.

对数函数的运算公式.

对数函数的运算公式.对数函数的运算公式有以下几种:1.乘法公式:loga(xy) = loga(x) + loga(y)2.除法公式:loga(x/y) = loga(x) - loga(y)3.指数公式:loga(x^n) = n*loga(x)4.同底数对数之积:loga(x) * logb(x) = logc(x) (c是常数)5.同底数对数之商:loga(x) / logb(x) = logc(x) (c是常数)注意:上述公式中的log是以a为底的对数。

对数函数在数学、物理、工程等领域都有广泛的应用,对数函数的运算公式是我们理解和使用对数函数的基础。

乘法公式:loga(xy) = loga(x) + loga(y) 乘法公式告诉我们,如果我们要计算两个数的对数的乘积,我们可以把它们的对数相加。

这个公式在处理复杂的数学公式时特别有用,能够简化计算过程。

除法公式:loga(x/y) = loga(x) - loga(y) 除法公式告诉我们,如果我们要计算两个数的对数的商,我们可以把除数的对数从被除数的对数中减去。

这个公式在处理分数时特别有用。

指数公式:loga(x^n) = n*loga(x) 指数公式告诉我们,如果我们要计算一个数的对数的n次方,我们可以把n乘上这个数的对数。

这个公式在处理指数函数时特别有用,能够简化计算过程。

同底数对数之积:loga(x) * logb(x) = logc(x) (c是常数) 同底数对数之积公式告诉我们,如果我们要计算两个数的对数的乘积,我们可以将它们同时乘上一个常数c,c=loga(b)。

这个公式在转换不同底数的对数的时候特别有用。

同底数对数之商:loga(x) / logb(x) = logc(x) (c是常数) 同底数对数之商公式告诉我们,如果我们要计算两个数的对数的商,我们可以将它们同时除上一个常数c, c=loga(b)。

这个公式在转换不同底数的对数的时候特别有用。

4.3.2对数的运算法则课件(第一课时)-2024-2025学年高一上学期数学湘教版(2019)必修

4.3.2对数的运算法则课件(第一课时)-2024-2025学年高一上学期数学湘教版(2019)必修

和 =
= ( ∈ ,a > 0, a ≠ 1)
= 称作为对数运算的基础。
巩固练习
例一、设 = = = 用A、B、C表示
2
3


解:

3
3
若 = 不一定有 = ,需要保证, ≠
若 = 也不一定有M=N;
反例: = (−)
但 ≠ −
课堂小结
在学习完对数的基本运算法则后我们一定要掌握:
(1) = + (2) = ( ∈ )

= − Βιβλιοθήκη = + − = + − ;







= − = + −





= + −


巩固练习
50
5
1
(2) 10 12.5 − 10 + 10
8
2
解:





= =
− = ÷


÷ =



. − + = . ÷ ×

= + −

[方法二] = − = × −


= + −
= + − −

= + − − = + −
现在假设
= = 则 = =

高中数学新人教A版必修1课件:第二章基本初等函数(Ⅰ)对数运算及对数函数习题课

高中数学新人教A版必修1课件:第二章基本初等函数(Ⅰ)对数运算及对数函数习题课
log1 ,0 < ≤ 1,
2
(2)y=|log1 | =
其图象如图②所示,
2
log2 , > 1,
其定义域为(0,+∞),值域为[0,+∞),在区间(0,1]上是减函数,在区间
(1,+∞)内是增函数.
图①
图②
题型一
题型二
题型三
题型四
反思1.一般地,函数y=f(x±a)±b(a,b为正实数)的图象可由函数
由(1)知f(x)的定义域为(-1,1),
且f(-x)=loga(-x+1)-loga(1+x)= -[loga(x+1)-loga(1-x)]=-f(x),
故f(x)为奇函数.
(3)因为当a>1时,f(x)在定义域(-1,1)内是增函数,
所以由f(x)>0,得loga(x+1)-loga(1-x)>0,即loga(x+1)>loga(1-x),即
y=f(x)的图象变换得到.
将y=f(x)的图象向左或向右平移a个单位长度可得到函数y=f(x±a)
的图象,再向上或向下平移b个单位长度可得到函数y=f(x±a)±b的
图象(记忆口诀:左加右减,上加下减).
2.含有绝对值的函数的图象变换是一种对称变换,一般地,y=
f(|x-a|)的图象是关于x=a对称的轴对称图形,也可以由y=f(x)的图象
题型二
题型三
题型四
4
【变式训练 1】 计算:(log43+log83)(log32+log92)-log1 32.
2
解:原式 =
5
6
3
1
2
1

对数函数运算法则公式

对数函数运算法则公式

对数函数运算法则公式一、什么是对数函数对数函数,又称为指数函数,是一类常见的数学函数,它可以用来表达不同系数的多次方之间的关系。

它的基本形式为y=loga x (a>0, a≠1),其中 a 为底数,x 为真数,y 为对数。

二、对数函数运算法则1. 同底数相加/减法则:若 y1=loga x,y2=loga m,则有:y1+y2=loga x+loga m =loga (xm)y1-y2=loga x-loga m =loga (x/m)2. 同底数乘/除法则:若 y1=loga x,y2=loga m,则有:y1*y2=loga x*loga m =loga (x^m)y1/y2=loga x/loga m =loga (x^(1/m))3. 相乘/除法则:若 y1=loga x,y2=logb m,则有:y1*y2=loga x*logb m =loga (x^b)y1/y2=loga x/logb m =loga (x^(1/b))4. 幂函数的对数运算法则:若 y=ax,则有:loga y=x*loga a5. 指数函数的对数运算法则:若 y=a^x,则有:loga y=x*loga a6. 反函数的对数运算法则:若 y=f-1(x),则有:loga y=loga f-1(x)=loga x7. 同余式的对数运算法则:若y=a^x ≡ b^x mod c,则有:loga y=x*loga a ≡ x*loga b mod c三、总结以上就是关于“对数函数运算法则公式” 的详细介绍,它是一类常见的数学函数,可以用来表达不同系数的多次方之间的关系,它有 7 种运算法则,即同底数相加/减法、同底数乘/除法、相乘/除法、幂函数的对数运算法则、指数函数的对数运算法则、反函数的对数运算法则以及同余式的对数运算法则。

高中数学新人教A版必修1课件:第二章基本初等函数2.2.1对数与对数运算(第1课时)对数

高中数学新人教A版必修1课件:第二章基本初等函数2.2.1对数与对数运算(第1课时)对数
• 并非所有指数式都可以直接化为对数式.如(-3)2=9就不能直接 写成log(-3)9=2,只有a>0且a≠1,N>0时,才有ax=N⇔x=logaN.
〔跟踪练习1〕
将下列指数式化为对数式,对数式化为指数式:
(1)42=16;
(2)102=100;
1
(3)42
=2;
(4)log1 32=-5. 2
(3)原式=(alogab) logbc=blogbc=c.
• 『规律方法』 运用对数恒等式时注意事项 • (1)对于对数恒等式alogaN=N要注意格式: • ①它们是同底的;②指数中含有对数情势;③其值为对数的真数. • (2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.
〔跟踪练习3〕 求31+log36-24+log23+103lg3+(19)log34的值. [解析] 原式=3·3 log36-24·2 log23+(10lg3)3+(3 log34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4176.
• 3.对数与指数的关系
• 当a>0,且a≠1时,ax=N⇔x=____ln_N_______.
• 4.对数的基本性质 • (1)___零___和_负_数______没有对数.
• (2)loga1=_0____(a>0,且a≠1). • (3)logaa=_1____(a>0,且a≠1). • 5.对数恒等式
B.log1 9=-2 3
C.log1 (-2)=9 3
D.log9(-2)=13
[解析] 将(13)-2=9写成对数式为log13 9=-2,故选B.
• 4.若log2(log3x)=0,则x=_3____. • [解析] 由题意得log3x=1,∴x=3.

4.3.2对数的运算-高一数学人教A版必修一同步课件

4.3.2对数的运算-高一数学人教A版必修一同步课件
2.2 对数函数
人教A版必修第一册
第四章 指数函数与对数函数
4.3.2 对数的运算(1)
一、学习目标(1分钟)
1、掌握对数的运算性质,会用定义推导运算性质 2、能熟练的运用法则进行简单的化简和证明
二、问题导学(5分钟)
阅读课本124-125页,思考并完成对数运算性质
am an amn (m, n R)
性质拓展与方法指点:
(1)推广:loga(N1N2…Nk)=logaN1+logaN2+…+logaNk(Nk>0,k∈N*). (2)对数运算性质推导的基本方法:利用对数的定义将对数问题转化为 指数问题,再利用幂的运算性质,进行转化变形,然后把它还原为对数问 题. (3)对数运算性质的实质就是把积、商、幂的对数运算分别转化为对数 的加、减、乘运算,使用时要注意公式的适用条件.
(2)
loga M n nloga M (n R) (3)
练习: 1.判断(正确的打“√”,错误的打“×”)
(1)积、商的对数可以化为对数的和、差.
(√ )
(2)loga(xy)=logax·logay.
(× )
(3)log2(-5)2=2log2(-5).
(× )
例1.计算
(1)log 2 (25 47 )
例 3:计算下列各式的值:
lg (1)
3+25lg
9+35lg
27-lg
3 ;
lg 81-lg 27
(2)(lg 5)2+lg 2×lg 50+21+ log25.
解 (1)解法一:(正用公式)
lg 原式=
3+54lg 3+190lg 4lg 3-3lg
3-21lg 3
3
=1+45+l1g903-12lg 3=151.

必修1第三章对数函数的运算法则

必修1第三章对数函数的运算法则

必修1第三章对数函数的运算法则对数函数是数学中的一种常见函数,它与指数函数是对应关系。

在学习对数函数的运算法则之前,我们先来了解一下对数的定义及其性质。

1.对数的定义:设a为大于0且不等于1的实数,对任意正数x,称满足方程a^y = x的实数y为以a为底x的对数,记作y=log_a(x)。

其中,a称为对数的底数,x称为真数,y称为对数。

2.对数的性质:①对数的底数不为1,大于0,且不等于1② 对数的定义就是一个等式,如果a^b=x,则b=log_a(x)。

③ 对数的值域为全体实数,即:log_a(x)对任何正数x都有定义。

④ 对数函数是一个递增函数,即:当x_1<x_2时,log_a(x_1)<log_a(x_2)。

⑤对数函数的图像关于y轴对称。

⑥ 特殊的对数值:当a>1时,log_a(1)=0;当a<1时,log_a(1)=0。

了解了对数的一些基本概念之后,我们可以来学习对数函数的运算法则了:1.换底公式:log_a(b)=log_c(b)/log_c(a)换底公式是对数运算中的重要公式,它可以将一个对数转化为以另一个底数的对数。

利用这个公式,我们可以在计算对数时灵活选择适用的底数。

2.对数函数的四则运算:①和差公式:log_a(b*c)=log_a(b)+log_a(c);log_a(b/c)=log_a(b)-log_a(c)和差公式可以将对数函数中的乘法和除法转化为加法和减法。

②幂公式:log_a(b^c)=c*log_a(b)幂公式可以将对数函数中的指数转化为乘法。

3.对数函数的指数与对数的互化:指数运算和对数运算是互为逆运算的,即:a^log_a(x)=x;log_a(a^x)=x这个性质在实际运算中经常会用到,可以帮助我们方便地进行对数函数的简化。

4.公式法则:①log_a(b^n)=n*log_a(b);②log_a(b)=log_a(c)+log_c(b);③log_a(b^n)=1/n*log_a(b^);④log_a(x^n)=n*log_a(x);⑤log_a(b)=1/log_b(a)。

对数函数的运算

对数函数的运算

对数函数的运算1. 什么是对数函数对数函数是指以一个常数为底数的幂函数的反函数。

常见的对数函数有自然对数(以e为底数的对数)和常用对数(以10为底数的对数)。

对数函数通常表示为log_x(y),其中x为底数,y为真数,结果表示为x的多少次方等于y,即 log_x(y) = x^a = y。

对数函数的一些性质: - 若x > 1,则log_x(1) = 0; - 若x > 1,则log_x(x) = 1; - 若x > 1,则log_x(xy) = log_x(x) +log_x(y); - 若x > 1,则log_x(a^m) = m * log_x(a);2. 对数函数的运算规则2.1. 对数的乘法规则若log_x(a) + log_x(b) = log_x(ab)。

例如: log_2(4) + log_2(8) = log_2(4 * 8) = log_2(32) = 5.2.2. 对数的除法规则若log_x(a) - log_x(b) = log_x(a/b)。

例如: log_2(8) - log_2(4) = log_2(8/4) = log_2(2) = 1.2.3. 对数的幂规则若log_x(a^m) = m * log_x(a)。

例如: log_2(4^3) = 3 * log_2(4) = 3 * 2 = 6.2.4. 对数的换底公式若log_a(x) = log_b(x) / log_b(a)。

通过换底公式,可以将一个对数转换为以不同底数的对数。

例如: log_2(16) = log_10(16) / log_10(2)。

3. 对数函数的应用对数函数在实际问题中有广泛的应用,以下介绍一些常见的应用场景:3.1. 财务管理在财务管理中,对数函数经常用于计算复利问题。

由于复利增长是指数增长,所以对数函数可以用来计算复利增长的速度和数量。

3.2. 动力学和科学实验对数函数在描述动力学和科学实验方程中起着重要的作用。

对数函数加减运算法则

对数函数加减运算法则

对数函数加减运算法则对数函数是数学中常见的几个特殊函数之一,具有独特的运算法则。

在进行对数函数的加减运算时,可以依据一些特定的规则进行运算,以简化计算和推导过程。

下面将详细介绍对数函数的加减运算法则。

1.对数函数的加减法则:(1)加法法则log_a (x·y) = log_a x + log_a y这个法则描述了对数函数过程中的乘法关系。

当对数函数的底数a不变时,对数函数的乘法运算可以转化为对数函数的加法运算。

也就是说,若两个数x和y的乘积等于n,则它们的对数之和等于对数函数n的结果。

(2)减法法则log_a (x/y) = log_a x - log_a y这个法则描述了对数函数过程中的除法关系。

当对数函数的底数a不变时,对数函数的除法运算可以转化为对数函数的减法运算。

也就是说,若两个数x和y的比值等于n,则它们的对数之差等于对数函数n的结果。

2.混合运算法则:混合运算法则指同时涉及加法和减法运算的对数函数。

在这种情况下,我们需要通过一定的步骤将对数函数的加减关系转化为简单的加法或减法运算,以便简化计算。

(1)如何将对数函数的减法转化为加法?对于任意两个数x和y,我们可以使用加法法则将对数函数的减法转化为加法:log_a (x/y) = log_a x + log_a (1/y)= log_a x + (-log_a y)= log_a x - log_a y(2)如何将对数函数的加法转化为减法?对于任意两个数x和y,我们可以使用减法法则将对数函数的加法转化为减法:log_a (x·y) = log_a x + log_a y= log_a x + [-log_a (1/y)]= log_a x - log_a (1/y)= log_a x - [-log_a y]= log_a x + log_a y3.运算法则的应用:(1)三角函数的应用:在三角函数的求解过程中,经常涉及到对数函数的运算。

对数函数的运算公式大全

对数函数的运算公式大全

对数函数的运算公式大全对数函数是一种常见的数学函数,可以用于解决许多问题。

下面是对数函数的一些常用运算公式。

1.对数函数的定义:y = logₐ(x),其中,y是以a为底的x的对数。

2.换底公式:如果我们需要计算以不同底的对数,可以使用换底公式:logₐ(x) = log_b(x) / log_b(a)其中,b是我们想要换成的底。

3.对数函数的性质:对数函数具有以下性质:a. log_a(1) = 0,b. log_a(a) = 1,c. log_a(x * y) = log_a(x) + log_a(y),d. log_a(x / y) = log_a(x) - log_a(y),e. log_a(x^k) = k * log_a(x),其中,x,y是正实数,a是大于0且不等于1的实常数,k是任意实数。

4.对数函数的基本公式:a. log_a(1) = 0,b. log_a(a) = 1,c. log_a(a^x) = x,d. a^log_a(x) = x其中,a是大于0且不等于1的实常数,x是正实数。

5.常用对数和自然对数:6.对数函数的反函数:y=a^x其中,a和x的关系可以表示为:x = log_a(y)。

7.对数函数的图像:8.对数函数的应用:对数函数可以用于解决各种问题,例如:a.在复利计算中,可以使用对数函数计算收益率;b.在实际问题中,可以使用对数函数解决指数增长或衰减问题;c.在科学和工程领域,对数函数可以用于测量物理量的幅度范围。

以上是对数函数的一些常用运算公式,它们在数学和实际问题中都有广泛的应用。

高一数学对数函数知识点

高一数学对数函数知识点

高一数学对数函数知识点一、对数函数的基本概念对数函数是数学中的一种基本函数,它与指数函数有着密切的关系。

在高一数学的学习中,对数函数的概念、性质和应用是重要的知识点。

对数函数可以定义为:如果a^b=c(其中a>0,且a≠1,b和c为实数),那么数b就称为以a为底c的对数,记作b=log_a c。

二、对数的运算法则对数的运算法则是解决对数问题的基础。

以下是几个基本的对数运算法则:1. 乘法变加法:log_a (xy) = log_a x + log_a y2. 除法变减法:log_a (x/y) = log_a x - log_a y3. 幂的对数:log_a (x^b) = b * log_a x4. 对数的换底公式:log_a x = log_c x / log_c a,其中c为新的底数。

掌握这些运算法则对于解决复杂的对数问题至关重要。

三、常用对数函数在高中数学中,最常用的对数函数是自然对数和常用对数。

1. 自然对数:以e(约等于2.71828)为底的对数称为自然对数,记作ln x。

自然对数在数学、物理和工程等领域有着广泛的应用。

2. 常用对数:以10为底的对数称为常用对数,记作log x。

常用对数在科学计数法中经常被使用。

四、对数函数的图像和性质对数函数的图像和性质是理解对数函数行为的关键。

对数函数y=log_a x具有以下性质:1. 函数图像总是通过点(1,0),因为任何底数的0次幂都等于1。

2. 对数函数是单调递增的,这意味着随着x的增加,y也会增加。

3. 当x>0时,函数有定义;当x<=0时,函数无定义。

4. 对数函数的图像是一条在y轴右侧的曲线,永远不会与x轴相交。

五、对数函数的应用对数函数在实际问题中有许多应用,例如:1. 复利计算:在金融领域,对数函数可以用来计算连续复利。

2. 地震强度:地震的强度常常用对数来表示,因为地震能量的增加与震级不是线性关系。

3. pH值计算:在化学中,pH值是衡量溶液酸碱度的指标,它是基于对数的计算。

4.3.2 对数的运算 高中数学人教A版必修一

4.3.2 对数的运算 高中数学人教A版必修一
2.对于连等式可令其等于k(k>0),然后将指数式用对数式表示,再由换底公
式可将指数的倒数化为同底的对数,从而使问题得解.
训练 3 已知 3a=5b=c,且a1+b1=2,求 c 的值.
解 ∵3a=5b=c,∴c>0,
∴a=log3c,b=log5c,
∴1a=logc3,1b=logc5, ∴1a+b1=logc15. 由 logc15=2 得 c2=15,
二、换底公式 1.问题 假设lloogg2253=x,则 log25=xlog23,即 log25=log23x,从而有 3x=5,再将此 式化为对数式可得到什么结论? 提示 x=log35,从而 x=lloogg2253=log35.
logcb
2. 填 空 对 数 换 底 公 式 : logabl=og_ca_______ (a>0 , 且 a≠1 ; b>0 ; c>0 , 且
什么结论? 提示 (1)lg 10+lg 100=lg 1 000=3, (2)log39+log327=log3243=5, (3)log1241+log128=log122=-1. 每组中两式子的值均相等,两个正数的乘积的对数等于每个正数对数的和.
2.问题 计算下列各组式子的值: (1)lg 10-lg 100,lg 110;
y-loga3 z
z
=2loga|x|+12logay-13logaz.
角度2 用代数式表示对数
例3 已知log189=a,18b=5,用a,b表示log3645.
解 法一 ∵log189=a,18b=5,
∴log185=b,
于是 log3645=lloogg11884356=lloogg1188((198××52)) =log11+89+loglo18g2185=1+al+ogb18198=1+1a-+lbog189=a2+ -ba.

人教B版高中数学必修一《第三章 基本初等函数(Ⅰ) 3.2 对数与对数函数 3.2.1 对数及其运算》_1

人教B版高中数学必修一《第三章 基本初等函数(Ⅰ) 3.2 对数与对数函数 3.2.1 对数及其运算》_1
板书设计:
教学反思:
“三四五”高效课堂教学设计:
(授课日期:年月日星期班级)
授课题目
对数与对数运算(二)
拟课时
第课时
明确目标
1.知识与技能:理解对数的运算性质.
2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.
3.情感、态度与价值观
(2)在第(3)小题的计算过程中,用到了性质log Mn= logaM及换底公式logaN= .利用换底公式可以证明:logab= ,
即logablogba=1.
例2:已知log189 =a,18b= 5,求log3645.
.
四、总结提升
1、本节课你主要学习了
五、问题过关
1.已知 , ,求下列格式的值
则由1、 0=12、 1= 如何转化为对数式
②负数和零有没有对数?
③根据对数的定义, =?
(以上三题由学生先独立思考,再个别提问解答)
由以上的问题得到
① ( >0,且 ≠1)
②∵ >0,且 ≠1对任意的力, 常记为 .
恒等式: =N
3.两类对数
①以10为底的对数称为常用对数, 常记为 .
②以无理数e=2.71828…为底的对数称为自然对数, 常记为 .
让学生讨论、研究,教师引导
师组织,生交流探讨得出如下结论:
底数a>0,且a≠1,真数M>0,N>0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.
学生思考,口答,教师板演、点评.
学生先做,老师再评讲
板书设计:
教学反思:
“三四五”高效课堂教学设计:
(授课日期:年月日星期班级)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学对数函数的运算(一)
一.选择题(共18小题)
1.对数式log(a﹣2)(5﹣a)中实数a的取值范围是()
A.(﹣∞,5)B.(2,5)C.(2,3)∪(3,5)D.(2,+∞)
2.若对数式log(t﹣2)3有意义,则实数t的取值范围是()
A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)
3.函数y=是()
A.区间(﹣∞,0)上的增函数B.区间(﹣∞,0)上的减函数
C.区间(0,+∞)上的增函数D.区间(0,+∞)上的减函数
4.在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()
A.(﹣∞,3] B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)
5.设,则f(3)的值是()
A.128 B.256 C.512 D.8
6.若且abc≠0,则=()
A.2 B.1 C.3 D.4
7.若a2017=b(a>0,且a≠1),则()
A.log a b=2017 B.log b a=2017 C.log2017a=b D.log2017b=a
8.如果N=a2(a>0且a≠1),则有()
A.log2N=a B.log2a=N C.log N a=2 D.log a N=2
9.下列指数式与对数式互化不正确的一组是()
A.e0=1与ln 1=0 B.log39=2与9=3 C.8=与log8=﹣D.log77=1与71=7
10.已知lg2=n,lg3=m,则=()
A.n+m B.n﹣m C.2n+m D.2n﹣m
11.设函数f(x)=log a x(a>0,a≠1),若f(x1x2…x2018)=4,则f(x12)+f(x12)+…+f(x20182)的值等于()
A.4 B.8 C.16 D.2log48
12.已知lga、logb是方程6x2﹣4x﹣3=0的两根,则(lg)2等于()A.B.C.D.13.已知a=20.9,b=50.4,,则()
A.b>a>c B.a>c>b C.b>c>a D.a>b>c 14.实数的值等于()
A.1 B.2 C.3 D.4 15.已知1g2=a,lg3=b,则log26=()
A.B.C.D.16.设ln2x﹣lnx﹣2=0的两根是α、β,则logαβ+logβα=()A.B.C.D.17.设lg2=a,lg3=b,则log125=()
A.B.C.D.18.下列等式中一定正确的是()
A.B.
C.D.
二.填空题(共14小题)
19.若4x=9y=6,则= .
20.10的次幂等于0.01;10的次幂等于5(注lg2=0.3010)21.请你写一个比lg3小的实数是.
22.把对数式x=log527改写为指数式.
23.若3x=4y=36,则= .
24.已知lg2=a,lg3=b,则log36= (用含a,b的代数式表示).
25.求值:(log23)(log34)= .
26.计算:= .
27.已知log32=a,log37=b,则log27= .
28.计算:log69+2log62= ;= .29.求值:= .
30.计算的值为.
31.﹣π0+lg+lg= .
32.计算:1.50+﹣0.5﹣2= ;2﹣2+log23= .
三.解答题(共8小题)
33.求下列各式x的取值范围.
(1)log(x﹣1)(x+2);(2)log(x+3)(x+3).
34.已知1g2=a,求1g50.
35.已知函数(a>0),且f(1)=2;(1)求a和f(x)的单调区间;
(2)f(x+1)﹣f(x)>2.
36.(1).(2)设2x=3y=5z=30,求的值.
37.计算下列各式的值:
(1)()﹣4•(﹣2)﹣3+()0﹣9(2)
38.
39.计算下列各式的值:
(Ⅰ)()×(﹣)0+9×﹣;(Ⅱ)log3+lg25﹣3+lg4.
40.利用对数的换底公式化简下列各式:
(1)log a c•log c a;(2)log23•log34•log45•log52;
(3)(log43+log83)(log32+log92).
高一数学对数函数的运算(一)
参考答案
一.选择题(共18小题)
1.C;2.B;3.A;4.B;5.B;6.A;7.A;8.D;9.B;10.B;11.B;12.D;13.A;
14.B;15.A;16.D;17.A;18.B;
二.填空题(共14小题)
19.2;20.﹣2;0.699;21.0;22.5x=27;23.1;24.;25.2;26.;27.;
28.2;0;29.﹣5;30.;31.;32.1;;
三.解答题(共8小题)
33.;34.;35.;36.;37.;38.;39.;40.;。

相关文档
最新文档