目标规划例题
线性规划典型例题
例1:生产计划问题某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。
若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。
现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。
试建立模型。
解:法1 设每个季度分别生产x1,x2,x3,x4则要满足每个季度的需求x4≥26x1+ x2≥40x1+ x2+ x3≥70x1+ x2+ x3+ x4=80考虑到每个季度的生产能力 0≤x1≤300≤x2≤400≤x3≤200≤x4≤10每个季度的费用为:此季度生产费用+上季度储存费用第一季度15.0x1第二季度14 x2 0.2(x1-20)第三季度15.3x3+0.2(x1+ x2-40)第四季度14.8x4+0.2(x1+ x2+ x3-70)工厂一年的费用即为这四个季度费用之和,得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26s.t.x1+ x2≥40x1+ x2+ x3≥70x1+ x2+ x3+ x4=8020≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。
法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨根据合同要求有:xll=20x12+x22=20x13+x23+x33=30x14+x24+x34+x44=10又根据每季度的生产能力有:xll+x12+x13+x14≤30x22+x23+x24≤40x33+x34≤20x44≤10第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。
minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44s.t. xll=20,x12+x22=20,x13+x23+x13=30,x14+x24+x34+x44=10,x1l+x12+x13+x14≤30,x22+x23+x24≤40,x33+x34≤20,x44≤10,xij≥0, i=1,…,4;j=1,…,4,j≥i。
运筹学——目标规划
OR2
运筹学——目标规划
5.2目标规划的图解法
n 图解法的基本步骤:
n (1)先作硬约束与决策变量的非负约束, 同一般线性规划作图法。
n (2)作目标约束,此时,先让di- -di+= 0,然后标出di- 及di+的增加方向(实际上
是目标值减少与增加的方向)。
n (3)按优先级的次序,逐级让目标规划 的目标函数中极小化偏差变量取0,从而 逐步缩小可行域,最后找出问题的解。
此问题即为多目标决策问题,目标规划就是解这类 问题的方法。
A
B
限量
原材料(kg)
2
1
11
设备(台时)
1
2
10
单位利润
8
10
•minZ=P1 d1+ +P2 (d2-+ d2+) +P3 d3-
OR2
运筹学——目标规划
例2的解法
解:问题分析:找差别、定概念(与单目标规划相 比)
1)绝对约束:必须严格满足的等式约束和不 等式约束,称之为绝对约束。
OR2
运筹学——目标规划
n 例4:
OR2
运筹学——目标规划
5.3 目标规划的单纯形解法
n 考虑目标规划数学模型的一些特点,作以下规定:
n 1)因目标函数为求最小化,所以要求
n 2)因非基变量检验数中含有不同等级的
优先因子,即
,因
p1≫p2≫…≫pk;从每个检验数的整体看: 检验数的正、负首先决定于p1的系数a1j的 正负,若a1j=0, 则此检验数的正、负就决定于p2的系数 a2j的正负,依次类推。
minZ=P1 d1+ +P2 (d2-+ d2+) +P3 d3-
运筹学第五章 目标规划
第五章 目标规划§5.1重点、难点提要一、目标规划的基本概念与模型特征 (1)目标规划的基本概念。
当人们在实践中遇到一些矛盾的目标,由于资源稀缺和其它原因,这些目标可能无法同时达到,可以把任何起作用的约束都称为“目标”。
无论它们是否达到,总的目的是要给出一个最优的结果,使之尽可能接近制定的目标。
目标规划是处理多目标的一种重要方法,人们把目标按重要性分成不同的优先等级,并对同一个优先等级中的不同目标赋权,使其在许多领域都有广泛应用。
在目标规划中至少有两个不同的目标;有两类变量:决策变量和偏差变量;两类约束:资源约束(也称硬约束)和目标约束(也称软约束)。
(2)模型特征。
目标规划的一般模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=≥==-+=≤⎪⎭⎫ ⎝⎛+=+-=+-===++--∑∑∑∑.,,2,1;0,;,,2,10,,2,1,,2,1..)(min 1111K k d d n j x K k g d d x c m i b x a t s d d P Z k k j n j k k k j kj i nj j ij Lr K k k rk k rk r ωω 其中r P 为目标优先因子,+-rk rk ωω,为目标权系数,+-k k d d ,为偏差变量。
1)正、负偏差变量,i i d d +-。
正偏差变量i d +表示决策值超过目标值的部分;负偏差变量i d -表示决策值未达到目标值的部分。
因为决策值不可能既超过目标值同时又未达到目标值,所以有0i i d d +-⨯=。
2)硬约束和软约束。
硬约束是指必须严格满足的等式约束和不等式约束;软约束是目标规划特有的。
我们可以把约束右端项看成是要努力追求的目标值,但允许发生正、负偏差,通过在约束中加入正、负偏差变量来表示努力的结果与目标的差距,于是称它们为目标约束。
3)优先因子与权系数。
一个规划问题通常有若干个目标,但决策者在要求达到这些目标时,是有主次或缓急之分的。
目标规划和线性规划的区别]
(Goal programming)
目标规划概述 目标规划的数学模型
目标规划的图解法 目标规划的单纯形法
一、目标规划概述
目标规划是在线性规划的基础上,为适应经济管理 中多目标决策的需要而逐步发展起来的一个分支。
(一)、目标规划与线性规划的比较
1、线性规划只讨论一个线性目标函数在一组线性约束 条件下的极值问题;而目标规划是多个目标决策,可求 得更切合实际的解。
(二)、目标规划的基本概念
例题4—1
线性规划模型为:
maxZ = 8x1 + 10 x2 2x1 + x2 ≤11 ①
x1 +2x2 ≤10 ②
x1, x2≥0 X*=(4,3)T Z*=62
目标函数的地位突出,约束条件是必须严 格满足的等式或不等式,是绝对化的“硬约 束”,此种问题若要求太多时,很容易相互矛 盾,得不到可行解。如根据市场情况再加以下 要求:
目标值之间的差异,记为 d 。 正偏差变量:表示实现值超过目标值的部分,记为 d
+。 负偏差变量:表示实现值未达到目标值的部分,记为
d-。
在一次决策中,实现值不可能既超过目标值又未达到 目标值,故有 d+× d- =0,并规定d+≥0, d-≥0
当完成或超额完成规定的指标则表示:d+≥0, d-=0 当未完成规定的指标则表示: d+=0, d-≥0 当恰好完成指标时则表示: d+=0, d-=0 ∴ d+× d- =0 成立。
后面乘任意大的数还是小。必须“满足”第一级才能 “满足”第二级,依次类推。
权系数ωlk :区别具有相同优先因子的两个目标的 重要性差别,决策者可视具体情况而定。 (优先因子和权系数的大小具有主观性和模糊性,它 不是运筹学本身的问题,主要是决策人自身的经验, 可用专家评定法给以量化。)
目标规划Goalprogramming
⑴.恰好到达目的值,取
d
l
。d
l
⑵.允许超出目的值,取 d。l
⑶.不允许超出目的值,取 d。l
优先因子和权系数相相应旳偏差变量构成旳,要求实
现极小化旳目旳函数,即达成函数。
(三)、小结
• 目旳函数
变量 约束条件
解
线性规划LP
min , max 系数可正负 xi, xs xa
系统约束 (绝对约束)
目旳值之间旳差别,记为 d 。 正偏差变量:表达实现值超出目旳值旳部分,记为 d
+。 负偏差变量:表达实现值未到达目旳值旳部分,记为
d-。
在一次决策中,实现值不可能既超出目的值又未到 达目的值,故有 d+× d- =0,并要求d+≥0, d-≥0
当完毕或超额完毕要求旳指标则表达:d+≥0, d-=0 当未完毕要求旳指标则表达: d+=0, d-≥0 当恰好完毕指标时则表达: d+=0, d-=0 ∴ d+× d- =0 成立。
⑶.要求超出目旳值,即超出量不限,但不低于目旳值, 也就是负偏差变量尽量小,则minZ = f(d-)。
对于由绝对约束转化而来旳目旳函数,也照上述处理即 可。
4、优先因子(优先等级)与优先权系数
优先因子Pk 是将决策目旳按其主要程度排序并表 达出来。P1>>P2>>…>>Pl>>Pl+1>>…>>PL , l=1.2…L。
2x1 +x2 ≤11
x1 - x2 + d1- - d1+ = 0
x1 +2x2 + d2- - d2+ =10
8x1 +10x2 + d3- - d3+ =56
目标规划模型的求解(NO17)
工序
产品 A 工时定额
B
生产能力
加工
10
9
210
装配
5
6
120
毛利(元/件)
400
500
23
工厂领导提出下列目标:
(1)每个作业班的毛利不少于9800元;
(2)充分利用两个工序的工时,且已知加工工时费是装配 工时费的二倍;
(3) 尽量减少加班。
问:该工厂应如何生产,才能使这些目标依序实现?试建
立其数学模型。
8
初始单纯形表
min
Z
P1d1
P2
d
2
P3
(d
3
d
3
)
s.t.
3x1 x2
d1 d1 60
x1
x2
2x3
d
2
d
2
10
x1
x2
x3
d
3
d
3
20
xi
0;
d
i
0;
d
i
0(i
1,2,3)
min z1 d1 60 3x1 x2 d1 min z2 d2 min z3 d3 d3 20 x1 x2 x3 2d3
建立模型的电 子表格模型
4x1+3x2+ d3--d3+ =30
20
优化 目标1
P1: minZ1=d1-
优化 目标2
minZ2= d2++d2-
21
优化 目标3
P3: minZ3=d3-
此表也即为最优表,最优解为 x1 4.8, x2 4.8, d2 2, d3 3.6 :
目标的达到情况:
Z
运筹学第五章
A 原材料(kg) 设备(台时) 2 1 B 1 2 限量 11 10
单位利润
8
10
minZ=P1 d1+ +P2 (d2-+ d2+) +P3 d3OR2 4
例2的解法
解:问题分析:找差别、定概念(与单目标规划相 比) 1)绝对约束:必须严格满足的等式约束和不 等式约束,称之为绝对约束。 2x1+1.5x2≤50 (1) (2) 2)目标约束:那些不必严格满足的等式约束和 不等式约束,称之为目标约束(软约束)。目标 约束是目标规划特有的,这些约束不一定要求严 格完全满足,允许发生正或负偏差,因此在这些 约束中可以加入正负偏差变量。
16
例4:min Z
x1 x1 s .t . x 1 x2 x1
OR2
p d p d p (2 d d x d d 40 x d d 50 d d 24 d d 30 , x ,d ,d 0 ( i 1, 2 , 3 ,4 )
OPERATIONS RESEARCH
运筹学
徐 玲
OR2
1
第五章
目标规划
要求 1、理解概念 2、掌握建模 3、掌握图解法和单纯形解法 4、理解目标规划的灵敏度分析
OR2
2
5.1目标规划的概念及数学模型1
多目标问题 多目标线性规划 产品 例1
资源 原材料(kg) 设备(台时) 单位利润
OR2 8
7)目标规划的目标函数: 目标规划的目标函数是按各约束的正、负偏 差变量和赋予相应的优先因子而构造的。 目标函数的基本形式有三种: 1、要求恰好达到目标值,即正负偏差变量都要尽 可能地小,这时, minZ=f(d++d-). 2、要求不超过目标值,即允许达不到目标值但正 偏差变量要尽可能地小,这时, minZ=f(d+). 3、要求超过目标值,即超过量不限但负偏差变量 要尽可能的小,这时, minZ=f(d-) 显然,本题目标函数表示为:
管理运筹学第4章-目标规划
多目标决策问题
多目标规划的矩阵表示: 多目标规划的矩阵表示:
max Z = CX
AX ≤ b
X ≥0
z1 z 其中: 其中: Z = 2 M zm
C = (cij )m×n c11 c = 21 M c m1 c12 c 22 cm 2 L c1n L c2n M L c mn
目标规划的数学模型---相关概念
1、设 x1 , x 2 为决策变量,此外,引进正负偏差变 量 d i+ d i−
d i+ 表示: 决策值超过目标值的部分。 正偏差变量
负偏差变量 d i−表示: 决策值未达到目标值的部分。 因决策值不可能既超过目标值又同时未达到目标值, 即恒有 d + × d − = 0
例:LP----目标规划:加入正负偏差变量
目标规划的数学模型---相关概念
3、优先因子(优先等级)与权系数 依据达到目标的主次或轻重缓急而存在的系数(权)。
要求第一个达到的目标赋予优先因子P1,次位目标P2 …… 并规定PK > PK+1……,表示更大的优先权。
若要区别具有相同优先因子的两个目标的差别,此时可 以分别赋予它们不同的权系数 wi
+ i
目标规划的一般数学模型—p103
− + min z = ∑ Pl ∑ ( wlk d k− + wlk d k+ ) l =1 k =1 L K
式中,
− + wlk , wlk 为权系数
n c kj x j + d k− − d k+ = g k , k = 1K K ∑ j =1 n a x ≤ (=, ≥)b , i = 1L m i ∑ ij j j =1 x j ≥ 0, j = 1L n − + d k , d k ≥ 0, k = 1L K
目标规划与多目标规划
总费用为3360.
Reduced Cost 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
硬约束(供应约束)
系列软约束 (1)用户4必须全部满足
(2)供应用户1的产品中,工厂3的产品不少于100单位
(3)每个用户的满足率不低于80%; 四个用户的80%需求量分别为160,80,360,200,即
(4)应尽量满足个用户的要求
(5)新运费尽量不超过不考虑各个目标费用的10%: (6)因道路限制,工厂2到用户4的路线的运输任务应尽量避免: (7) 用户1和用户3的满足率尽量平衡:
2 目标规划的模型
例2 在上述例1的基础上,计划人员还要求考虑如下意见:
1 由于产品II销售疲软,故希望产品II的产量不超过产品I产 量的一半;
2 原材料严重短缺,生产中应避免过量消耗;
3 最好能够节约4小时设备工时;
4 计划利润不少于48元。
分析:把这四条意见分别看成营销部门、材料部门、设备管理 部门、财务部门四个部门的目标愿望。那么在决策的时候,如 何协调者四个部门的意愿呢。同等对待每个目标意愿,势必陷 于矛盾中。故当务之急是确定四个目标的重要程度或轻重缓急。 然后根据重要程度逐一协调。下面引入一些新的变量来解决问 题。
目标决策值f
X2-x1/2 5x1+10x2 4x1+4x2 6x1+8x2
简单的线性规划典型例题
简单的线性规划典型例题篇一:典型例题:简单的线性规划问题典型例题【例1】求不等式|x-1|+|y-1|≤2表示的平面区域的面积.【例2】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?参考答案例1:【分析】依据条件画出所表达的区域,再根据区域的特点求其面积.【解】|x-1|+|y-1|≤2可化为或其平面区域如图:或或∴面积S=×4×4=8【点拨】画平面区域时作图要尽量准确,要注意边界.例2:【分析】弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.【解】设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么z=252x+160y,作出不等式组所表示的平面区域,即可行域,如图作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=252×2+160×5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.【点拨】用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.篇二:不等式线性规划知识点梳理及经典例题及解析线性规划讲义【考纲说明】(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.【知识梳理】简单的线性规划问题一、知识点1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一.1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B0时,Ax0+By0+C0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)( Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)①二元一次不等式Ax+By+C>0(或②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
目标规划应用例题
某构件公司商品混凝土车间生产能力为 20T/小时,每天工作 8 小时,现有 2 个施 工现场分别需要商品混凝土 A150T , 商品混凝土 B100T ,两种混凝土的构成、单位利润 及企业所拥有的原料见表 10.4.2,现管理部门提出:1 、充分利用生产能力; 2、加班不超过2 小时;3 、产量尽量满足两工地需求; 4、力争实现利润 2 万元/天。
试建立目标规划模型拟定一个满意的生 产计划。
[解]1、确定变量设 X 1 、X 2 分别为两种商品混凝土 的产量2、约束条件 (1)目标约束:P 1 级: 要求生产能力充分利用, 即要求剩余工时越小越好。
x 1 + x 2 + d 一1 一 d = 160(T)其中要求d一1 →0P 2 级: 要求可以加班,但每日不 超过 2 小时,日产量不能超过 200T 。
x 1 + x 2 + d 一2一 d = 200(T)其中要求 d →0P 3 级: 两个工地需求尽量满足, 但不能超过需求。
x 1 + d 一3 = 150(T)其中要求: d 一3 →0x 2 + d 一4 = 100(T)d 一4 →0因需求量不能超过其需要,故d , d =0P 4 级:目标利润超过 2 万元。
100x 1+80x 2+ d一5一 d =20 000 (元),其中要求 d 一5 →0(2)资源约束:ⅰ)水泥需求不超过现有资源0.35x 1+0.25x 2 ≤50ⅱ)砂需求不超过现有资源0.55x 1+0.6x 2 ≤130(3)非负约束:x 1 ≥ 0, x 2 ≥ 0, d i 一、 d i +≥ 0 (i =1,2, (5)3 、目标函数。
依目标约束中的要求, 第三层目标 中有 2 个子目标,其权数可依其利润多 少的比例确定,即 100: 80,简化为 5: 4,故 W 1=5, W 2=4 。
故目标函数为:Z min = P 1d 一1 + P 2 d + 3P (5d 一3 + 4d 一4) + P 4 d 一5整理得该问题的目标规划模型为: Z min = P 1d 一1 + P 2 d + 3P (5d 一3 + 4d 一4) + P 4 d 一5约束:x + x + d 一一 d + = 160 1 2 1 1x + x + d 一一 d + = 200 1 2 2 2x + d 一 = 150 1 3x + d 一 = 100 2 4100x 1+80x 2+ d 一5 一 d =20000 0.35x 1+0.25x 2 ≤50 0.55x 1+0.6x 2 ≤130x 1 ≥ 0, x 2 ≥ 0, d i一d i 一 ≥ 0(i=1,2,……,5水泥砂单位利润A 0.35 0.55 100B 0.25 0.65 80拥有资源 50T 130T。
第6章目标规划管理运筹学
目标规划的正式提出
目标规划(Goal Programming):是针对线性规划目标单一 的局限性而提出的,是线性规划的应用拓展,是解决实际问题 的一种方法。线性规划是研究资源有效分配和利用,其特点是 在满足一组约束条件的情况下,寻求某一个目标的最大值或最 小值。而在现实社会中,经常遇到需要考虑多个目标的优化问 题。目标规划与传统方法不同,它强调了系统性,其方法在于 寻找一个“尽可能”满足所有目标的解,而不是绝对满足这些 目标的值。
根据背 景材料 列出全 部约束 不等式
目标 约束
系统 约束
xj ≥0 d±≥0
“≥”min{d-} “≤”min{d+} “=”min{d-+d+}
左端+ d--d+=右端
确定优先 级和权系 数,构造目 标偏差最 小的目标 函数
约束 条件
目标 规划 数学 模型
管理运筹学 第6章 目标规划
例6-1
已知某实际问题的线性规划模型 为:
目标规划有着极大的灵活性,表现在它可以模拟系统的约束和 目标优先等级变化的各种模型,为管理决策提供众多的信息。 解决目标规划问题首先要根据目标的重要性分清主次先后、轻 重缓急,引入偏差变量,将目标按等级转化为目标约束,最终 形成可用线性规划方法解决的问题。
管理运筹学 第6章 目标规划
目标规划的正式提出
(2)据市场预测,I、II两种产品 需求量的比例大致是1:2;
(3)A为贵重设备,严格禁止超时 使用;
(4)设备C可以适当加班,但要控 制;设备B既要求充分利用,又尽可 能不加班,在重要性上设备B是C的 3倍。
综合考虑上述因素,企业应如何决 策?这里本章所要讨论的问题。
管理运筹学 第6章 目标规划
目标规划数学模型例题
1
2
3
4
产量
1 2 3 412 Nhomakorabea3
4 300
200 100 200 250 150 100
200 100 450 250
200 400 100
min S 2950 元
上述方案只考虑了总运费最小.但在实际问题中,在制定最优调 运方案时,所追求的目标及受到的客观限制往往是多方面的。 例如考虑以下7个目标: 多目标规划
多目标规划
用户 工厂
1
1 2 3 目标7
x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34
2
3
4
产量 300 200 400 性能指标 目标值
销量 200 100 450 250 力求减少新方案的总费用
min cij xij
2950
多目标规划
目标1 x14 x24 x34 250 x 31 100 目标2
1
2
3
4
产量 300 200 400 性能指标 目标值
x14 x24 x34
x 31 x11 x21 x31 x12 x22 x32 x13 x23 x33 x14 x24 x34
250 100 160 80 360 200
多目标规划
用户 工厂 工厂
性能指标
目标值
x11 x21 x31 160 x12 x22 x32 80 目标3 x13 x23 x33 360 x14 x24 x34 200 目标4 cij xij 3245 x 24 0 目标5 目标6 x11 x21 x31 200 x13 x23 x33 0 450 目标7 min cij xij 2950
初中数学学习目标规划(含学习方法技巧、例题示范教学方法)
初中数学学习目标规划数学作为基础学科之一,在学生的学习生涯中占据着举足轻重的地位。
特别是对于处于初中阶段的学生来说,数学学习不仅关系到他们未来的学业发展,更是培养逻辑思维、抽象思维和创新能力的重要途径。
因此,对初中数学学习目标进行合理规划,对学生的全面发展具有重要意义。
本文将从以下几个方面阐述初中数学学习目标规划的具体内容。
1. 掌握数学基础知识初中阶段是数学学习的初级阶段,学生需要掌握基本的数学概念、性质、定理和公式。
这些基础知识是解决数学问题的基石,包括有理数、实数、代数、几何等基础知识。
学生需要通过课堂学习和课后复习,系统地掌握这些知识,并能够熟练运用。
2. 培养数学思维能力数学思维能力是学生在解决数学问题时所必须具备的能力。
初中阶段,学生需要培养的数学思维能力包括逻辑思维、抽象思维、创新思维等。
教师应通过设计富有挑战性和启发性的数学题目,引导学生独立思考、分析问题、解决问题,从而提高学生的数学思维能力。
3. 提高数学应用能力数学学习的最终目的是为了应用,解决现实生活中的问题。
初中数学学习目标规划中,应注重培养学生的数学应用能力。
这包括将数学知识运用到实际问题中,运用数学方法分析问题、建立模型、解决问题。
教师可以结合生活实例,设计数学应用题,让学生在解决问题的过程中,提高数学应用能力。
4. 培养良好的学习习惯和学习方法良好的学习习惯和学习方法是学生取得优异成绩的关键。
在初中数学学习目标规划中,教师和学生应共同培养以下学习习惯和学习方法:(1)认真听讲,做好笔记。
课堂学习是获取知识的主要途径,学生应认真听讲,做好笔记,及时巩固所学知识。
(2)及时复习,查漏补缺。
课后应及时复习所学内容,对学习中发现的疑问和不足,及时向老师或同学请教,查漏补缺。
(3)注重练习,提高解题速度和正确率。
学生应多做数学练习,特别是典型题和中考题,提高解题速度和正确率。
(4)培养自主学习能力。
学生应学会独立思考,自主学习,善于运用各种学习资源和工具,提高自主学习能力。
目标规划图解法例题
目标规划图解法例题目标规划图解法是一种基于图解的方法,用于制定和实现个人或组织的目标。
下面是一个关于个人目标规划图解法的例题。
假设你是一名大学生,正在为自己的未来做规划。
你希望在未来三年内,能够顺利毕业、找到一份好工作、发展个人能力、保持健康的生活方式、建立良好的社交关系等。
首先,你需要准备一张空白的图纸,并将纵坐标分成三个部分,代表三年。
然后,将横坐标分成五个部分,分别代表毕业、工作、能力、健康、社交五个方面。
接下来,根据每个目标的优先级,将每个目标在相应的年份中进行分配。
例如,你可以在第一年将重点放在毕业和发展个人能力上,将重点放在第二年的工作和健康上,将重点放在第三年的社交上。
在每个目标的下方,你可以绘制一条水平直线,代表该目标在每年中的进展情况。
例如,如果你希望在第一年中达到一个毕业进度的目标,你可以在第一年的这条直线上标明“毕业进度70%”。
在每个目标的旁边,你可以写下具体的行动计划,包括所需要的时间、资源以及具体的行动步骤。
例如,如果你想要发展个人能力,你可以写下“每周阅读一本专业书籍,参加一个相关领域的研讨会”。
最后,在整张图上标上时间节点,以便你在未来几年中能够追踪和评估自己的目标实现情况。
例如,你可以在每个目标的左上角标明“2023年1月”等时间节点。
通过这样的目标规划图解法,你可以清晰地看到自己的目标,并有条不紊地提供行动计划,以实现每个目标。
同时,你可以通过不断更新图表,及时调整目标和行动计划,以适应不同的情况和需求。
最后,目标规划图解法是一个非常实用和灵活的方法,能够帮助你实现个人目标。
只要你认真规划、积极行动,并持续跟踪和评估自己的目标,相信你一定能够取得成功。
目标规划例题
目标规划某企业生产甲、乙两种产品,需要用到A,B,C 三种设备,关于产品的赢利与使用设备的工时及限制如表 2 所示。
问该企业应如何安排生产,才能达到下列目标:表 2甲 乙 设备的生产能力(h )A (h/件) 2 2 12B (h/件) 4 0 16C (h/件) 0 5 15赢利(元/件) 200 300(1)力求使利润指标不低于 1500 元;(2)考虑到市场需求,甲、乙两种产品的产量比应尽量保持 1:2;(3)设备 A 为贵重设备,严格禁止超时使用;(4)设备C 可以适当加班,但要控制;设备B 既要求充分利用,又尽可能不加班。
在重要性上,设备B 是设备C 的 3 倍。
建立相应的目标规划模型并求解。
解 设备 A 是刚性约束,其余是柔性约束。
首先,最重要的指标是企业的利润,因此,将它的优先级列为第一级;其次,甲、乙两种产品的产量保持 1:2 的比例,列为第二级;再次,设备B,C 的工作时间要有所控制,列为第三级。
在第三级中,设备B 的重要性是设备C 的三倍,因此,它们的权重不一样,设备B 前的系数是设备C 前系数的 3 倍。
设生产甲乙两种产品的件数分别为x1, x2, ,相应的目标规划模型为min z = P1d1- + P2 ( d2+ + d2- ) + P3 ( 3d3+ + 3d3- + d4+ )121211122213324412221220030015002040515,,,0(1,2,3,4...)i i x x x x d d x x d d x d d x d d x x d d i -+-+-+-+-++≤⎧⎪++-=⎪⎪-+-=⎪⎨+-=⎪⎪+-=⎪≥=⎪⎩LINGO程序编码model:sets:level/1..3/:p,z,goal;variable/1..2/:x;h_con_num/1..1/:b;s_con_num/1..4/:g,dplus,dminus;h_con(h_con_num,variable):a;s_con(s_con_num,variable):c;obj(level,s_con_num)/1 1,2 2,3 3,3 4/:wplus,wminus; endsetsdata:ctr=;goal= 0;b=12;g=1500 0 16 15;a=2 2;c=200 300 2 -1 4 0 0 5;wplus=0 1 3 1;wminus=1 1 3 0;enddatamin=@sum(level:p*z);p(ctr)=1;@for(level(i)|i#ne#ctr:p(i)=0);@for(level(i):z(i)=@sum(obj(i,j):wplus(i,j)*dplus(j)+wminus(i,j)* dminus(j)));@for(h_con_num(i):@sum(variable(j):a(i,j)*x(j))<b(i));@for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i)=g(i));@for(level(i)|i #lt# @size(level):@bnd(0,z(i),goal(i)));End程序解释当程序运行时,会出现一个对话框。
目标规划练习题
多目标规划训练例题某音像商店有5名全职熟练货员和4名兼职售货员,全职售货员每月工作160h,兼职售货员每月工作80h,根据过去的工作纪录,全职售货员每小时销售CD25张,平均每小时工资15元,加班工资每小时22.5元,兼职售货员每小时销售CD10张,平均工资每小时10元,加班工资每小时10元,现在预测下个月CD销售量为27500张,商店每周开门营业6天,所以可能要加班,每出售一张CD盈利1.5元。
商店经理认为,保持稳定的就业水平加上必要的加班,比不加班但就业水平不稳定要好,但全职售货员如果加班过多,就会因为疲劳过度而造成效益下降,因此,不允许每月加班超过100h,建立相应的目标规划模型,并应用Lingo软件求解。
解:首先建立目标约束的优先级:1P :下月的CD 销售量达到27500张2P :限制全职售货员加班时间不超过100h3P :保持全体售货员充分就业,因为充分工作是良好劳资关系的重要因素,但对全职售货员要比兼职售货员加倍优先考虑4P :尽量减少加班时间,但对两种售货员区别对待,优先权因子由他们对利润的贡献而定。
第二,建立目标约束(1)销售目标约束,设1x :全体全职售货员下月的工作时间;2x :全体兼职售货员下月的工作时间;-1d :达不到销售目标的偏差;+1d :超过销售目标的偏差;希望下月的销售超过27500张CD 片,因此销售目标为⎩⎨⎧=-+++--275001025}min{11211d d x x d (2)正常工作时间约束,设-2d :全体全职售货员下月的停工时间; +2d :全体全职售货员下月的加班时间; -3d :全体兼职售货员下月的停工时间; +3d :全体兼职售货员下月的加班时间; 由于希望保持全体售货员充分就业,同时加倍优先考虑全职售货员,因此工作目标约束为⎪⎩⎪⎨⎧=-+=-+++-+---320800}2min{33222132d d x d d x d d(3)加班时间的限制,设-4d :全体全职售货员下月加班时间不足100h 的偏差;+4d :全体全职售货员加班时间超过100h 的偏差;限制全职售货员加班时间不超过100h ,将加班约束看成正常班约束,不同的是右端加上100 h ,因此加班目标约束为⎩⎨⎧=-++-+900}min{4414d d x d 另外,全职售货员加班1h ,商店得到的利润为15元)155.225.125(=-⨯,兼职售货员加班1h ,商店得到的利润为5元)5105.110(=-⨯,因此加班1h 全职售货员获得的利润是兼职售货员的3倍,故权因子之比为3:1:32=++d d所以,另一个加班目标约束为⎪⎩⎪⎨⎧=-+=-+++-+-++320800}3min{33222132d d x d d x d d第三,按目标的优先级,写出相应的目标规划模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-+=-+=-+=-+++++++=+-+-+-+-+-++--+-4,3,2,1,,,,900320800275001025..);3()2(min 2144133222111213243234211i d d x x d d x d d x d d x d d x x t s d d P d d P d P d P z i i第四,写出相应的LINGO 程序 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目标规划
某企业生产甲、乙两种产品,需要用到A,B,C 三种设备,关于产品的赢利
与使用设备的工时及限制如表 2 所示。
问该企业应如何安排生产,才能达到下列目标: 表 2
甲乙设备的生产能力(h )
A (h/件) 2 2 12
B (h/件) 4 0 16
C (h/件) 0 5 15
赢利(元/件) 200 300
(1)力求使利润指标不低于 1500 元;
(2)考虑到市场需求,甲、乙两种产品的产量比应尽量保持 1:2;
(3)设备 A 为贵重设备,严格禁止超时使用;
(4)设备C 可以适当加班,但要控制;设备B 既要求充分利用,又尽可能不加班。
在重要性上,设备B 是设备C 的 3 倍。
建立相应的目标规划模型并求解。
解设备 A 是刚性约束,其余是柔性约束。
首先,最重要的指标是企业的利润,
因此,将它的优先级列为第一级;其次,甲、乙两种产品的产量保持 1:2 的比例,列为 第二级;再次,设备B,C 的工作时间要有所控制,列为第三级。
在第三级中,设备B 的 重要性是设备C 的三倍,因此,它们的权重不一样,设备B 前的系数是设备C 前系数
的 3 倍。
设生产甲乙两种产品的件数分别为x1, x2, ,相应的目标规划模型为
min z = P1d1- + P2 ( d2+ + d2- ) + P3 ( 3d3+ + 3d3- + d4+ )
121211122213324412221220030015002040515,,,0(1,2,3,4...)i i x x x x d d x x d d x d d x d d x x d d i -+-+-+-+-++≤⎧⎪++-=⎪⎪-+-=⎪⎨+-=⎪⎪+-=⎪≥=⎪⎩
LINGO 程序编码
model:
sets:
level/1..3/:p,z,goal;
variable/1..2/:x;
h_con_num/1..1/:b;
s_con_num/1..4/:g,dplus,dminus;
h_con(h_con_num,variable):a;
s_con(s_con_num,variable):c;
obj(level,s_con_num)/1 1,2 2,3 3,3 4/:wplus,wminus;
endsets
data:
ctr=?;
goal=? ? 0;
b=12;
g=1500 0 16 15;
a=2 2;
c=200 300 2 -1 4 0 0 5;
wplus=0 1 3 1;
wminus=1 1 3 0;
enddata
min=@sum(level:p*z);
p(ctr)=1;
@for(level(i)|i#ne#ctr:p(i)=0);
@for(level(i):z(i)=@sum(obj(i,j):wplus(i,j)*dplus(j)+wminus(i,j)*
dminus(j)));
@for(h_con_num(i):@sum(variable(j):a(i,j)*x(j))<b(i));
@for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i)=g(i));
@for(level(i)|i #lt# @size(level):@bnd(0,z(i),goal(i)));
End
程序解释
当程序运行时,会出现一个对话框。
在做第一级目标计算时,ctr 输入1,goal(1)和goal(2)输入两个较大的值,表明这
两项约束不起作用。
求得第一级的最优偏差为0,进行第二轮计算。
在第二级目标的运算中,ctr 输入2。
由于第一级的偏差为0,因此goal(1)的输入值
为0,goal(2)输入一个较大的值。
求得第二级的最优偏差仍为0,进行第三级计算。
在第三级的计算中,ctr 输入3。
由于第一级、第二级的偏差均是0,因此,goal(1) 和goal(2)的输入值也均是0。
最终结果是:x1=2, x2=4最优利润是1600 元,第三级的最优偏差为29。