高中数学选修2-2练习
人教版高中数学选修2-2试题四套(带答案)(整理)
2高中数学选修《2-2》复习试题一、选择题(共8题,每题5分)1.复数(2)z i i =+在复平面内的对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限2. 一质点做直线运动,由始点经过s t 后的距离为3216323s t t t =-+,则速度为0的时刻是( )A .4s t= B .8s t = C .4s t =与8s t = D .0s t =与4s t =3。
某射击选手每次射击击中目标的概率是0.8,如果他连续射击5次,则这名射手恰有4次击中目标的概率是( )(A )40.80.2⨯ (B)445C 0.8⨯ (C )445C 0.80.2⨯⨯ (D )45C 0.80.2⨯⨯ 4.已知14a b c =+==则a,b ,c 的大小关系为( ) A .a>b>cB .c>a 〉bC .c 〉b 〉aD .b>c 〉a5.曲线32y x =-+上的任意一点P 处切线的斜率的取值范围是( ) A.)+∞B. )+∞C. ()+∞ D 。
[)+∞ 6。
有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点. 以上推理中( )A .大前提错误B . 小前提错误C .推理形式错误D .结论正确7。
.在复平面内, 复数1 + i 与31+i 分别对应向量OA 和OB , 其中O 为坐标原点,=( ) A 。
2 B 。
2 C 。
10 D. 48、函数2()1x f x x =-( )A .在(0,2)上单调递减B .在(,0)-∞和(2,)+∞上单调递增C .在(0,2)上单调递增D .在(,0)-∞和(2,)+∞上单调递减二、填空题(共6题,30分) 9. .观察下列式子 2222221311511171,1,1222332344+<++<+++< , … … , 则可归纳出________________________________10. 复数11z i =-的共轭复数是________。
高中数学选修2-2导数习题(无答案)
极 限1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a ,那么就说数列}{n a 以a 为极限.记作lim n n a a →∞=.2.几个重要极限: (1)01lim=∞→nn (2)C C n =∞→lim (C 是常数) (3)无穷等比数列}{n q (1<q )的极限是0,即 )1(0l i m<=∞→q q nn 3.函数极限的定义:(1)当自变量x 取正值并且无限增大时,如果函数f (x )无限趋近于一个常数a ,就说当x 趋向于正无穷大时,函数f (x )的极限是a .记作:+∞→x lim f (x )=a ,或者当x →+∞时,f (x )→a .(2)当自变量x 取负值并且绝对值无限增大时,如果函数f (x )无限趋近于一个常数a ,就说当x 趋向于负无穷大时,函数f (x )的极限是a .记作-∞→x lim f (x )=a 或者当x →-∞时,f (x )→a .(3)如果+∞→x lim f (x )=a 且-∞→x lim f (x )=a ,那么就说当x 趋向于无穷大时,函数f (x )的极限是a ,记作:∞→x lim f (x )=a 或者当x →∞时,f (x )→a .4.常数函数f (x )=c .(x ∈R ),有∞→x lim f (x )=c .即lim ,x C C →∞=∞→x lim f (x )存在,表示+∞→x lim f (x )和-∞→x lim f (x )都存在,且两者相等.所以∞→x lim f (x )中的∞既有+∞,又有-∞的意义,而数列极限∞→x lim a n 中的∞仅有+∞的意义5. 趋向于定值的函数极限概念:当自变量x 无限趋近于0x (0x x ≠)时,如果函数)(x f y =无限趋近于一个常数a ,就说当x 趋向0x 时,函数)(x f y =的极限是a ,记作0lim ()x x f x →=C C x x =→0lim ;00lim x x x x =→6. 0lim ()lim ()lim ()x x x x x x f x a f x f x a -+→→→=⇔==其中0lim ()x x f x a -→=表示当x 从左侧趋近于0x 时的左极限,0lim ()x x f x a +→=表示当x 从右侧趋近于0x 时的右极限二、讲解新课:1. 对于函数极限有如下的运算法则:如果B x g A x f oox x x x ==→→)(lim ,)(lim ,那么B A x g x f ox x +=+→)]()([lim ;B A x g x f ox x ⋅=⋅→)]()([lim ;)0()()(lim ≠=→B BA x g x f ox x )(lim )]([lim x f C x Cf o o x x x x →→=,n xx n x x x f x f oo )](lim [)]([lim →→=这些法则对于∞→x 的情况仍然适用. *lim (),ok k o x x x x k N →=∈ *1lim0()k x k N x→∞=∈ 三、讲解范例:例1 求)3(lim 22x x x +→ 例2 求1212lim 2321-+++→x x x x x . 例3 求121lim 221---→x x x x . 例4 求112lim 231++-→x x x x例5 求416lim 24--→x x x 例6 求133lim 22++-∞→x x x x例7 求下列极限. (1))1)(12()2)(1(lim -+-+∞→x x x x n ; (2)12144lim 232+++-∞→x x x x n四、课堂练习:1.求下列极限: (1) 1lim →x (3x 2-2x +1) (代入法.) (2))6)(5()12)(3(lim 1-+-+-→x x x x x . (代入法) (3)24lim22--→x x x . (因式分解法.)(4)201213lim 2+--∞→x x x x (5)4228lim 24---→x x x . (分子有理化.)五、小结 :有限个函数的和(或积)的极限等于这些函数的和(或积);两个(或几个)函数的极限至少有一个不存在时,他们的和、差、积、商的极限不一定不存在. 在求几个函数的和(或积)的极限时,一般要化简,再求极限 .求函数的极限要掌握几种基本的方法.①代入法;②因式分解法;③分子、分母同除x 的最高次幂;④分子有理化法.六、课后作业:1.(1))432(lim 31++-→x x x ;(2)35lim 222-+→x x x ;(3)12lim 21++→x x x x ;(4))1413(lim 20+-+-→x x x x ;(5)13lim 2423++-→x x x x ;(6)245230233lim x x x x x x -++→;(7)42lim 22--→x x x ;(8)11lim 21-+-→x x x ;(9)623lim 2232--++-→x x xx x x ;(10)xm m x x 220)(lim -+→;(11))112(lim 2x x x +-∞→ ;(12)12222-+→x x x答案:⑴-1 ⑵9 ⑶2/3 ⑷3/4 ⑸0 ⑹-1/2 ⑺1/4 ⑻-1/2 ⑼ -2/5⑽2m ⑾2 ⑿ 1/2导数概念与运算一、基本知识 1.概念:(1)定义:(2)导数的几何意义:(3)求函数在一点处导数的方法: (4)导函数:2.基本函数的导数:_____'=C (C 为常数) ______)'(=n x ,+∈N n ______)'(sin =x _____)'(cos =x ______)'(=x e _____)'(=x a ______)'(ln =x ____)'(log =x a3.运算法则:[]_______')()(=±x v x u []_____')()(=x v x u _______')()(=⎥⎦⎤⎢⎣⎡x v x u 4.复合函数的导数:二、典型例题例1.若函数f (x )在x =a 处的导数为A , 则x x a f a f x ∆∆+-→∆)()(lim 0= ,=+-+→∆tt a f t a f x )5()4(lim0 例2.求下列导函数①x x y cos 2= ②11-+=x x e e y ③x y 2sin 3= ④)1ln(2x x y ++=⑤x x y 2sin 10⋅= ⑥3221sin ln x x y -+=例4.求函数452++=x x y (1)在)4,0(处的切线;(2)斜率为3的切线;(3)过)3,0(处的切线三、课堂练习1.(2007全国II,8)已知曲线x x y ln 342-= 的一条切线的斜率为21,则切点的横坐标为( )A .3B .2 C.1 D.0.5 2.求导数(1)3223111x x x x x x y +++++=(2)xy 1=+x +3(3))1)(13()2)(32(x x x x y -+++-=31)1(')(23+--+=x x f x x f 则 ._____)1(____,)1('f f =-4.求过原点且与曲线59++=x x y 相切的切线方程.四、规范训练1曲线106323-++=x x x y 的切线中,斜率最小的切线方程为——————)x (f )x ('2f .D )]x ('f .[C )x (f .B )x ('f .A )(x x ])x (f [)]x (f [lim,x x )x (f y .20020000202n 0=--==∞→则处可导在已知3.函数33x x y -= ,求过点P (2,-2)的切线方程.4.(’07江西11)设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( )A.15-B.0C.15 D.5 5.(’06福建11)已知对任意实数x ,有()()()()f x f x g x gx -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,6.(’07全国Ⅱ8)已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .127.(’06湖南13)曲线xy 1=和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是______8.(’04重庆文15)已知曲线31433y x =+,则过点(2,4)P 的切线方程是______________9.(’07全国Ⅱ22)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.导数的应用(单调性、极值、最值)一、基本知识1.利用导数判断函数的单调性的充分条件在此区间是减函数则内,如果在在此区间是增函数;则内,如果在内可导在区间设函数)x (f ,0)x ('f )b ,a ()x (f ,0)x ('f )b ,a ()b ,a ()x (f y <>=(求单调区间的步骤:求定义域,求导数,解不等式) 2. 利用导数研究函数的极值:.x ),x (f y x )x (f ),x (f )x (f )x (f x ),x (f y x )x (f ),x (f )x (f ,x x ,x )x (f y 0000000000称作极小值点并把处取极小值,记作在点则称函数极大值点;如果都有的一个称为函数并把处取极大值,记作在点则称函数如果都有的开区间内的所有点对于存在一个包含及其定义域内一点已知函数极小值极大值=>=<=(极值是局部概念,最值是整体概念;极大值可以小于极小值)(求极值的步骤:求导、解方程、判断、结论)3.利用导数研究函数的最值:(闭区间上的连续函数一定有最大和最小值) ①函数f (x )在区间[a ,b ]上的最大值是函数f (x )在区间[a ,b ]上的极大值与f (a ),f (b )中的最大者; ②函数f (x )在区间[a ,b ]上的最小值是函数f (x )在区间[a ,b ]上的极小值与f (a ),f (b )中的最小者; (求最值的步骤:先求极值再与端点值比较) 二、典型例题例1(1)求函数53323-+-=x x x y 的单调区间、极值.(2)求函数5933+-=x x y 在]2,2[-∈x 上的最大值与最小值例2.(05Ⅱ文)设a 为实数,函数.)(23a x x x x f +--= (Ⅰ)求)(x f 的极值.(Ⅱ)当a 在什么范围内取值时,曲线x x f y 与)(=轴仅有一个交点.例3(2005山东卷)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<,(I )求m 与n 的关系式;(II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.例4.函数32324)(x ax x x f -+= 在区间[]1,1-上增,求实数a 的取值范围.例5.(2007山东文)设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数()f x 没有极值点;当0ab <时,函数()f x 有且只有一个极值点,并求出极值.三、课堂练习1.在(a ,b )内,f ‘(x )>0是f (x )在(),b a 内单调增加的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2.可导函数)(x f y =,f ‘(x 0)=0是函数)(x f y =在x 0处取得极值的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 3.关于函数)(x f y =在区间],[b a 上的极值与最值,下列说法正确的是( )A .极大值一定大于极小B .最大值一定是极大值C .极小值一定不是最大值D .最小值一定小于极小值4已知c bx ax x x f +++=23)(,当1-=x 时取的极大值7,当3=x 时取得极小值,求极小值以及对应的a ,b ,c5.函数d cx bx ax y +++=23的图象与y 轴的交点为P ,且曲线在P 点处的切线方程为 12x -y-4=0,若函数在x =2处取得极值0,试确定函数的解析式.6.已知函数c bx x x x f ++-=2321)(,若函数)(x f 的图象有与x 轴平行的切线.(1)求b 的取值范围; (2)若函数)(x f 在x =1处取得极值,且]2,1[-∈x 时,2)(c x f <恒成立,求c 的取值范围四.规范训练:4.D 8.C 45.B 413.A )(]221[)x (f x12x )x (g q px x )x (f ]221[122大值上的最,在小值,那么在同一点取得相同的最与上,函数,在区间+=++=11.D 5.C 29.B 37.A )(]22[3]2,2[)m (m 6x 2x )x (f 223------+-=上的最小值,,那么此函数在值上有最大,在为常数、已知上的值域,求此函数在是减函数,是增函数,在及在区间若函数4][-1)2,0()[2,)0,(cx bx x y 323+∞-∞++=_________)0,21()1,0)((log )(43的取值范围内单调递增,则在区间若函数a a a ax x x f a -≠>-= .)1,1()(6.13)(52323的取值范围是增函数,求上在区间、已知函数的取值范围求上是减函数,在、已知t t tx x x x f a R x x ax x f -+++-=+-+=.),6()4,1(1)1(2131)(8.),()(7233的取值范围求实数为增函数,内是减函数,在在区间、若函数的取值范围则实数内是增函数,在、若三次函数a x a ax x x f k kx x x f +∞+-+-=+∞-∞+=定积分与微积分基本定理一、基本知识1.一般函数定积分的定义:(被积函数,积分上限,积分下限) 2. 定积分的几何意义: 3.定积分的物理意义: 4.微积分基本定理: 5.定积分的性质:(1)⎰⎰=babadx x f cdx x cf )()((c 为常数)(2))(),(x g x f 可积,则[]⎰⎰⎰+=+bab abadx x g dx x f dx x g x f )()()()( (3)⎰⎰⎰+=bacabcdx x f dx x f dx x f )()()(6.常见函数的原函数:①常数函数:c x f =)(的原函数为')(c cx x F +=('c 为任意常数);②幂函数:)1( )(-≠=n x x f n的原函数为'1)(1c n x x F n ++=+('c 为任意常数); ③反比例函数:xx f 1)(=的原函数为'||ln )(c x x F +=('c 为任意常数); ④指数函数:)1,0()(≠>=a a a x f x的原函数为'ln )(c aa x F x+=('c 为任意常数); ⑤正弦函数:x x f sin )(=的原函数为'cos )(c x x F +-=('c 为任意常数); ⑥余弦函数:x x f cos )(=的原函数为'sin )(c x x F +=('c 为任意常数); ⑦对数函数:x x f ln )(=的原函数为'ln )(c x x x x F +-=('c 为任意常数); 二、典型例题例1.求下列定积分 (1)=+-⎰-dx x x )123(312(2)⎰=2cos πxdx(3)=⎰dx x211例2.求面积(1) 曲线x y sin =与x 轴在区间[]π2,0上所围成阴影部分的面积。
(湘教版)高中数学选修2-2(全册)同步练习汇总
(湘教版)高中数学选修2 -2 (全册)同步练习汇总第4章导数及其应用4.1导数概念4.1.1问题探索- -求自由落体的瞬时速度一、根底达标1.设物体的运动方程s=f(t) ,在计算从t到t+d这段时间内的平均速度时,其中时间的增量d() A.d>0 B.d<0C.d=0 D.d≠0答案 D2.一物体运动的方程是s=2t2 ,那么从2 s到(2+d) s这段时间内位移的增量为() A.8 B.8+2dC.8d+2d2D.4d+2d2答案 C解析Δs=2(2+d)2-2×22=8d+2d2.3.一物体的运动方程为s=3+t2 ,那么在时间段[2,2.1]内相应的平均速度为() A.4.11 B.4.01 C.4.0答案 D解析v=错误!=4.1.4.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t之间的方程为s=18t2 ,那么t=2时,此木块水平方向的瞬时速度为()A.2 B.1 C.12 D.14答案 C解析ΔsΔt=18(2+Δt)2-18×22Δt=12+18Δt→12(Δt→0).5.质点运动规律s=2t2+1 ,那么从t=1到t=1+d时间段内运动距离对时间的变化率为________.答案4+2d解析v=2(1+d)2+1-2×12-11+d-1=4+2d.6.某个物体走过的路程s(单位:m)是时间t(单位:s)的函数:s=-t2+1.(1)t=2到t=2.1;(2)t =2到t =2.01; (3)t =2到t =2.001.那么三个时间段内的平均速度分别为________ ,________ ,________ ,估计该物体在t =2时的瞬时速度为________. 答案 -4.1 m/s -4.01 m/s -4.001 m/s -4 m/s7.某汽车的紧急刹车装置在遇到特别情况时 ,需在2 s 内完成刹车 ,其位移 (单位:m)关于时间(单位:s)的函数为: s (t )=-3t 3+t 2+20 ,求:(1)开始刹车后1 s 内的平均速度; (2)刹车1 s 到2 s 之间的平均速度; (3)刹车1 s 时的瞬时速度. 解 (1)刹车后1 s 内平均速度v 1=s (1)-s (0)1-0=(-3×13+12+20)-201=-2(m/s).(2)刹车后1 s 到2 s 内的平均速度为: v 2=s (2)-s (1)2-1=(-3×23+22+20)-(-3×13+12+20)1=-18(m/s).(3)从t =1 s 到t =(1+d )s 内平均速度为: v 3=s (1+d )-s (1)d=-3(1+d )3+(1+d )2+20-(-3×13+12+20)d=-7d -8d 2-3d 3d =-7-8d -3d 2→-7(m/s)(d →0)即t =1 s 时的瞬时速度为-7 m/s. 二、能力提升8.质点M 的运动方程为s =2t 2-2 ,那么在时间段[2,2+Δt ]内的平均速度为( )A .8+2ΔtB .4+2ΔtC .7+2ΔtD .-8+2Δt答案 A解析 Δs Δt =2(2+Δt )2-2-(2×22-2)Δt=8+2Δt .9.自由落体运动的物体下降的距离h 和时间t 的关系式为h =12gt 2 ,那么从t =0到t =1时间段内的平均速度为________ ,在t =1到t =1+Δt 时间段内的平均速度为________ ,在t =1时刻的瞬时速度为________. 答案 12g g +12g Δt g 解析 12g ×12-12g ×021-0=12g .12g (1+Δt )2-12g ×12Δt =g +12g Δt . 当Δt →0时 ,g +12g Δt →g .10.自由落体运动的物体下降距离h 和时间t 的关系式为h =12gt 2,t =2时的瞬时速度为19.6 ,那么g =________. 答案解析 12g (2+Δt )2-12g ×22Δt =2g +12g Δt . 当Δt →0时 ,2g +12g Δt →2g . ∴2g =19.6 ,g =9.8.11.求函数s =2t 2+t 在区间[2,2+d ]内的平均速度. 解 ∵Δs =2(2+d )2+(2+d )-(2×22+2)=9d +2d 2 , ∴平均速度为Δsd =9+2d .12.甲、乙二人平时跑步路程与时间的关系以及百米赛跑路程和时间的关系分别如图①、②所示.问:(1)甲、乙二人平时跑步哪一个跑得快?(2)甲、乙二人百米赛跑,快到终点时,谁跑得快(设Δs为s的增量)?解(1)由题图①在(0 ,t]时间段内,甲、乙跑过的路程s甲<s乙,故有s甲t<s乙t即在任一时间段(0 ,t]内,甲的平均速度小于乙的平均速度,所以乙比甲跑得快.(2)由题图②知,在终点附近[t-d,t)时间段内,路程增量Δs乙>Δs甲,所以Δs乙d>Δs甲d即快到终点时,乙的平均速度大于甲的平均速度,所以乙比甲跑得快.三、探究与创新13.质量为10 kg的物体按照s(t)=3t2+t+4的规律做直线运动,求运动开始后4秒时物体的动能.解s(Δt+4)-s(4)Δt=3(Δt+4)2+(Δt+4)+4-(3×42+4+4)Δt=3Δt+25 , 当Δt→0时,3Δt+25→25.即4秒时刻的瞬时速度为25.∴物质的动能为12m v2=12×10×252=3 125(J)4.问题探索- -求作抛物线的切线一、根底达标1.曲线y=2x2上一点A(1,2) ,那么A处的切线斜率等于() A.2 B.4C.6+6d+2d2D.6答案 B2.曲线y=12x2-2上的一点P(1 ,-32) ,那么过点P的切线的倾斜角为()A.30°B.45°C.135°D.165°答案 B3.如果曲线y=2x2+x+10的一条切线与直线y=5x+3平行,那么切点坐标为() A.(-1 ,-8) B.(1,13)C.(1,12)或(-1,8) D.(1,7)或(-1 ,-1)答案 B4.曲线y=x-2在点P(3,1)处的切线斜率为()A.-12B.0 C.12D.1答案 C解析(3+Δx)-2-3-2Δx=Δx+1-1Δx=1Δx+1+1.当Δx→0时,1Δx+1+1→12.5.假设曲线y=x2+1在曲线上某点处的斜率为2 ,那么曲线上该切点的坐标为________.答案(1,2)6.曲线y=x2+2在点P(1,3)处的切线方程为________.答案2x-y+1=0解析(1+Δx)2+2-(12+2)Δx=Δx+2 ,当Δx→0时,Δx+2→2.所以曲线y=x2+2在点P(1,3)处的切线斜率为2 ,其方程为y-3=2(x-1).即为2x-y+1=0.7.抛物线y=x2在点P处的切线与直线2x-y+4=0平行,求点P的坐标及切线方程.解设点P(x0 ,y0) ,f(x0+d)-f(x0)d=(x0+d)2-x20d=d+2x0 ,d→0时,d+2x0→2x0.抛物线在点P处的切线的斜率为2x0 ,由于切线平行于2x-y+4=0 ,∴2x0=2 ,x0=1 , 即P点坐标为(1,1) ,切线方程为y-1=2(x-1) ,即为2x-y-1=0.二、能力提升8.曲线y=-1x在点(1 ,-1)处的切线方程为()A.y=x-2 B.y=xC.y=x+2 D.y=-x-2 答案 A解析-1Δx+1-(-11)Δx=1-1Δx+1Δx=1Δx+1,当Δx→0时,1Δx+1→1.曲线y=-1x在点(1 ,-1)处的切线的斜率为1 ,切线方程为y+1=1×(x-1) ,即y=x-2.9.曲线f(x)=x2+3x在点A(2,10)处的切线的斜率为________.答案7解析f(2+Δx)-f(2)Δx=(2+Δx)2+3(2+Δx)-(22+3×2)Δx=Δx+7 ,当Δx→0时,Δx+7→7 ,所以,f(x)在A处的切线的斜率为7.10.曲线f(x)=x2+3x在点A处的切线的斜率为7 ,那么A点坐标为________.答案(2,10)解析设A点坐标为(x0 ,x20+3x0) ,那么f(x0+Δx)-f(x0)Δx=(x0+Δx)2+3(x0+Δx)-(x20+3x0)Δx=Δx+(2x0+3) ,当Δx→0时,Δx+(2x0+3)→2x0+3 ,∴2x0+3=7 ,∴x0=2.x20+3x0=10.A点坐标为(2,10).11.抛物线y=x2+1 ,求过点P(0,0)的曲线的切线方程.解设抛物线过点P的切线的切点为Q(x0 ,x20+1).那么(x0+Δx)2+1-(x20+1)Δx=Δx+2x0.Δx→0时,Δx+2x0→2x0.∴x20+1-0x0-0=2x0 ,∴x0=1或x0=-1.即切点为(1,2)或(-1,2).所以,过P(0,0)的切线方程为y=2x或y=-2x.即2x-y=0或2x+y=0.三、探究与创新12.直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求切点的坐标及a的值.解设切点A(x0 ,y0) ,(x0+d)3-(x0+d)2+1-(x30-x20+1)d=3x20d+3x0d2+d3-2x0d-d2d=3x 20-2x 0+(3x 0-1)d +d 2→3x 20-2x 0(d →0). 故曲线上点A 处切线斜率为3x 20-2x 0 ,∴3x 20-2x 0=1 ,∴x 0=1或x 0=-13 ,代入C的方程得 ⎩⎪⎨⎪⎧x 0=1 y 0=1或⎩⎪⎨⎪⎧x 0=-13 y 0=2327代入直线l ,当⎩⎪⎨⎪⎧x 0=1y 0=1时 ,a =0(舍去) ,当⎩⎪⎨⎪⎧x 0=-13 y 0=2327时 ,a =3227 ,即切点坐标为(-13 ,2327) ,a =3227.4. 导数的概念和几何意义一、根底达标1.设f ′(x 0)=0 ,那么曲线y =f (x )在点(x 0 ,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交答案 B2.函数y =f (x )的图象如图 ,那么f ′(x A )与f ′(x B )的大小关系是( )A.f′(x A)>f′(x B) B.f′(x A)<f′(x B)C.f′(x A)=f′(x B) D.不能确定答案 B解析分别作出A、B两点的切线,由题图可知k B>k A ,即f′(x B)>f′(x A).3.曲线y=2x2上一点A(2,8) ,那么在点A处的切线斜率为() A.4 B.16 C.8 D.2解析在点A处的切线的斜率即为曲线y=2x2在x=2时的导数,由导数定义可求y′=4x ,∴f′(2)=8.答案 C4.函数f(x)在x=1处的导数为3 ,那么f(x)的解析式可能为() A.f(x)=(x-1)2+3(x-1)B.f(x)=2(x-1)C.f(x)=2(x-1)2D.f(x)=x-1答案 A解析分别求四个选项的导函数分别为f′(x)=2(x-1)+3;f′(x)=2;f′(x)=4(x-1);f′(x)=1.5.抛物线y=x2+x+2上点(1,4)处的切线的斜率是________ ,该切线方程为____________.答案33x-y+1=0解析Δy=(1+d)2+(1+d)+2-(12+1+2)=3d+d2 ,故y′|x=1=limd→0Δy d=limd→0(3+d)=3.∴切线的方程为y-4=3(x-1) ,即3x-y+1=0.6.假设曲线y=x2-1的一条切线平行于直线y=4x-3 ,那么这条切线方程为____________.答案4x-y-5=0解析∵f′(x)=f(x+d)-f(x)d=(x+d)2-1-(x2-1)d=2xd+d2d=(2x+d)=2x.设切点坐标为(x0,y0) ,那么由题意知f′(x0)=4 ,即2x0=4 ,∴x0=2 ,代入曲线方程得y0y-3=4(x-2) ,即4x-y-5=0.7.求曲线y=x3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.解∵f′(3)=f(3+d)-f(3)d=(3+d)3-33d=(d2+9d+27)=27 ,∴曲线在点(3,27)处的切线方程为y-27=27(x-3) , 即27x-y-54=0.此切线与x轴、y轴的交点分别为(2,0) ,(0 ,-54).∴切线与两坐标轴围成的三角形的面积为S=12×2×54=54.二、能力提升8.曲线y=-x3+3x2在点(1,2)处的切线方程为() A.y=3x-1 B.y=-3x+5C.y=3x+5 D.y=2x答案 A解析-(Δx+1)3+3(Δx+1)2-(-13+3×12)Δx=-Δx2+3.Δx→0时,-Δx2+3→3.∴f′(1)=3.即曲线在(1,2)处的切线斜率为3. 所以切线方程为y-2=3(x-1) ,即y=3x-1.9.函数y=f(x)图象在M(1 ,f(1))处的切线方程为y=12x+2 ,那么f(1)+f′(1)=________. 答案 3解析 由切点在切线上. ∴f (1)=12×1+2=52.切线的斜率f ′(1)=12.∴f (1)+f ′(1)=3.10.假设曲线y =x 2+ax +b 在点(0 ,b )处的切线方程为x -y +1=0 ,那么a ,b 的值分别为________ ,________. 答案 1 1解析 ∵点(0 ,b )在切线x -y +1=0上 , ∴-b +1=0 ,b =1.又f (0+Δx )-f (0)Δx =Δx 2+a Δx +b -b Δx =a +Δx ,∴f ′(0)=a =1.11.曲线y =x 3+1 ,求过点P (1,2)的曲线的切线方程. 解 设切点为A (x 0 ,y 0) ,那么y 0=x 30+1.(x 0+Δx )3+1-(x 30+1)Δx =Δx 3+3x 20Δx +3x 0Δx2Δx =Δx 2+3x 0Δx +3x 20.∴f ′(x 0)=3x 20 ,切线的斜率为k =3x 20.点(1,2)在切线上 ,∴2-(x 30+1)=3x 20(1-x 0).∴x 0=1或x 0=-12. 当x 0=1时 ,切线方程为3x -y -1=0 , 当x 0=-12时 ,切线方程为3x -4y +5=0.所以 ,所求切线方程为3x -y -1=0或3x -4y +5=0. 12.求抛物线y =x 2的过点P (52 ,6)的切线方程. 解 由得 ,Δyd =2x +d , ∴当d →0时 ,2x +d →2x , 即y ′=2x ,设此切线过抛物线上的点(x 0 ,x 20) , 又因为此切线过点(52 ,6)和点(x 0 ,x 20) ,其斜率应满足x20-6x0-52=2x0 ,由此x0应满足x20-5x0+6=0.解得x0=2或3.即切线过抛物线y=x2上的点(2,4) ,(3,9).所以切线方程分别为y-4=4(x-2) ,y-9=6(x-3).化简得4x-y-4=0,6x-y-9=0 ,此即是所求的切线方程.三、探究与创新13.求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.解设切点为P(a ,b) ,函数y=x3+3x2-5的导数为y′=3x2+6x.故切线的斜率k=y′|x=a=3a2+6a=-3 ,得a=-1 ,代入y=x3+3x2-5得,b=-3 ,即P(-1 ,-3).故所求直线方程为y+3=-3(x+1) ,即3x+y+6=0.4.导数的运算法那么一、根底达标1.设y=-2e x sin x ,那么y′等于() A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案 D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=() A.a B.±a C.-a D.a2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2 ,由x 20-a 2=0得x 0=±a . 3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直 ,那么a 等于( )A .2 B.12 C .-12 D .-2 答案 D 解析 ∵y =x +1x -1=1+2x -1, ∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2 ,即a =-2.4.曲线y =x 3在点P 处的切线斜率为k ,那么当k =3时的P 点坐标为( )A .(-2 ,-8)B .(-1 ,-1)或(1,1)C .(2,8)D.⎝ ⎛⎭⎪⎪⎫-12 -18 答案 B解析 y ′=3x 2 ,∵k =3 ,∴3x 2=3 ,∴x =±1 , 那么P 点坐标为(-1 ,-1)或(1,1).5.设函数f (x )=g (x )+x 2 ,曲线y =g (x )在点(1 ,g (1))处的切线方程为y =2x +1 ,那么曲线y =f (x )在点(1 ,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.f (x )=13x 3+3xf ′(0) ,那么f ′(1)=________. 答案 1解析 由于f ′(0)是一常数 ,所以f ′(x )=x 2+3f ′(0) , 令x =0 ,那么f ′(0)=0 , ∴f ′(1)=12+3f ′(0)=1. 7.求以下函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+ 3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3 , ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为( )A .-12 B.12 C .-22 D.22 答案B 解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12 ,∴曲线在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为12. 9.点P 在曲线y =4e x +1上 ,α为曲线在点P 处的切线的倾斜角 ,那么α的取值范围是( )A .[0 ,π4) B .[π4 ,π2) C .(π2 ,3π4] D .[3π4 ,π)答案 D解析 y ′=-4e x (e x +1)2=-4e xe 2x +2e x+1 ,设t =e x ∈(0 ,+∞) ,那么y ′ =-4tt 2+2t +1=-4t +1t +2,∵t +1t ≥2 ,∴y ′∈[-1,0) ,α∈[3π4 ,π). 10.(2021·江西)设函数f (x )在(0 ,+∞)内可导 ,且f (e x )=x +e x ,那么f ′(1)=________. 答案 2解析 令t =e x ,那么x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1 ,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上 ,可令切点坐标为(x 0 ,x 30).由题意 ,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20 ,即x 30x 0-2=3x 20 ,解得x 0=0或x 0=3.当x 0=0时 ,得切点坐标是(0,0) ,斜率k =0 ,那么所求直线方程是y =0; 当x 0=3时 ,得切点坐标是(3,27) ,斜率k =27 , 那么所求直线方程是y -27=27(x -3) , 即27x -y -54=0.综上 ,所求的直线方程为y =0或27x -y -54=0.12.曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线 ,求曲线的切线方程. 解 设切点为(x 0 ,y 0) ,那么由导数定义得切线的斜率k =f ′(x 0)=3x 20-3 ,∴切线方程为y =(3x 20-3)x +16 , 又切点(x 0 ,y 0)在切线上 , ∴y 0=3(x 20-1)x 0+16 ,即x 30-3x 0=3(x 20-1)x 0+16 ,解得x 0=-2 ,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2 ,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值 ,并求此定值. (1)解 由7x -4y -12=0得y =74x -3.当x =2时 ,y =12 ,∴f (2)=12 ,①又f ′(x )=a +bx 2 , ∴f ′(2)=74 ,②由① ,②得⎩⎪⎨⎪⎧2a -b 2=12 a +b 4=74.解之得⎩⎪⎨⎪⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0 ,y 0)为曲线上任一点 ,由y ′=1+3x 2知 曲线在点P (x 0 ,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0) ,即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎪⎫0 -6x 0. 令y =x 得y =x =2x 0 ,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0 ,y 0)处的切线与直线x =0 ,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y =f (x )上任一点处的切线与直线x =0 ,y =x 所围成的三角形的面积为定值 ,此定值为6.4.2 导数的运算4.2.1 几个幂函数的导数 4.2.2 一些初等函数的导数表一、根底达标1.以下结论中正确的个数为( )①y =ln 2 ,那么y ′=12;②y =1x 2 ,那么y ′|x =3=-227;③y =2x ,那么y ′=2x ln 2;④y =log 2x ,那么y ′=1x ln 2. A .0 B .1 C .2 D .3 答案 D解析 ①y =ln 2为常数 ,所以y ′=0.①错.②③④正确. 2.过曲线y =1x 上一点P 的切线的斜率为-4 ,那么点P 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫12 2B.⎝ ⎛⎭⎪⎪⎫12 2或⎝ ⎛⎭⎪⎪⎫-12 -2C.⎝ ⎛⎭⎪⎪⎫-12 -2D.⎝ ⎛⎭⎪⎪⎫12 -2 答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4 ,x =±12 ,应选B. 3.f (x )=x a ,假设f ′(-1)=-4 ,那么a 的值等于( )A .4B .-4C .5D .-5 答案 A解析 f ′(x )=ax a -1 ,f ′(-1)=a (-1)a -1=-4 ,a =4. 4.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定 答案 B解析∵f ′(x )=3x 2 ,设切点为(x 0 ,y 0) ,那么3x 20=1 ,得x 0=±33 ,即在点⎝ ⎛⎭⎪⎪⎫33 39和点⎝ ⎛⎭⎪⎪⎫-33 -39处有斜率为1的切线. 5.曲线y =9x 在点M (3,3)处的切线方程是________. 答案 x +y -6=0解析 ∵y ′=-9x 2 ,∴y ′|x =3=-1 , ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0. 6.假设曲线在点处的切线与两个坐标轴围成的三角形的面积为18 ,那么a =________. 答案 64 解析∴曲线在点处的切线斜率,∴切线方程为.令x =0得;令y =0得x =3a .∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·=18 ,∴a =64.7.求以下函数的导数:(1) y =7x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2x 2-log 2x . 解 (1)y ′=⎝⎛⎭⎫7x 3′==377x 4.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4 =2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.直线y =kx 是曲线y =e x 的切线 ,那么实数k 的值为( )A.1e B .-1e C .-e D .e 答案 D解析y ′=e x,设切点为(x 0 ,y 0) ,那么⎩⎪⎨⎪⎧y 0=kx 0 y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0 ,∴x 0=1 ,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4 ,那么a =______. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1 ,∴a =1.10.点P 是曲线y =e x 上任意一点 ,那么点P 到直线y =x 的最|小距离为________. 答案 22解析 根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0 ,y 0) ,该切点即为与y =x 距离最|近的点 ,如图.那么在点(x 0 ,y 0)处的切线斜率为1 ,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1 ,得x 0=0 ,代入y =e x ,得y 0=1 ,即P (0,1).利用点到直线的距离公式得距离为22.11.f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1 , 由f ′(x )+g ′(x )≤0 ,得-sin x +1≤0 , 即sin x ≥1 ,但sin x ∈[-1,1] , ∴sin x =1 ,∴x =2k π+π2 ,k ∈Z .12.抛物线y =x 2 ,直线x -y -2=0 ,求抛物线上的点到直线的最|短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线 ,对应的切点到直线x-y-2=0的距离最|短,设切点坐标为(x0 ,x20) ,那么y′|x=x=2x0=1 ,所以x0=12,所以切点坐标为⎝⎛⎭⎪⎪⎫1214,切点到直线x-y-2=0的距离d=⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x-y-2=0的最|短距离为728.三、探究与创新13.设f0(x)=sin x ,f1(x)=f′0(x) ,f2(x)=f′1(x) ,… ,f n+1(x)=f′n(x) ,n∈N ,试求f2 014(x).解f1(x)=(sin x)′=cos x ,f2(x)=(cos x)′=-sin x ,f3(x)=(-sin x)′=-cos x ,f4(x)=(-cos x)′=sin x ,f5(x)=(sin x)′=f1(x) ,f6(x)=f2(x) ,… ,f n+4(x)=f n(x) ,可知周期为4 ,∴f2 014(x)=f2(x)=-sin x.4.3导数在研究函数中的应用4.3.1利用导数研究函数的单调性一、根底达标1.命题甲:对任意x∈(a ,b) ,有f′(x)>0;命题乙:f(x)在(a ,b)内是单调递增的,那么甲是乙的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析f(x)=x3在(-1,1)内是单调递增的,但f′(x)=3x2≥0(-1<x<1) ,故甲是乙的充分不必要条件,选A.2.函数y=12x2-ln x的单调减区间是()A.(0,1) B.(0,1)∪(-∞ ,-1) C.(-∞ ,1) D.(-∞ ,+∞)答案 A解析∵y=12x2-ln x的定义域为(0 ,+∞) ,∴y′=x-1x,令y′<0 ,即x-1x<0 ,解得:0<x<1或x<-1.又∵x>0 ,∴0<x<1 ,应选A.3.函数f(x)=x3+ax2+bx+c ,其中a ,b ,c为实数,当a2-3b<0时,f(x)是() A.增函数B.减函数C.常函数D.既不是增函数也不是减函数答案 A解析求函数的导函数f′(x)=3x2+2ax+b ,导函数对应方程f′(x)=0的Δ=4(a2-3b)<0 ,所以f′(x)>0恒成立,故f(x)是增函数.4.以下函数中,在(0 ,+∞)内为增函数的是() A.y=sin x B.y=x e2C.y=x3-x D.y=ln x-x答案 B解析 显然y =sin x 在(0 ,+∞)上既有增又有减 ,故排除A ;对于函数y =x e 2 ,因e 2为大于零的常数 ,不用求导就知y =x e 2在(0 ,+∞)内为增函数; 对于C ,y ′=3x 2-1=3⎝⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33 ,故函数在⎝ ⎛⎭⎪⎫-∞ -33 ,⎝ ⎛⎭⎪⎫33 +∞上为增函数 , 在⎝ ⎛⎭⎪⎪⎫-33 33上为减函数;对于D ,y ′=1x -1 (x >0). 故函数在(1 ,+∞)上为减函数 , 在(0,1)上为增函数.应选B.5.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎪⎫-32 3内可导 ,其图象如下图 ,记y =f (x )的导函数为y=f ′(x ) ,那么不等式f ′(x )≤0的解集为________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤-13 1∪[2,3)6.函数y =ln(x 2-x -2)的递减区间为________. 答案 (-∞ ,-1) 解析 f ′(x )=2x -1x 2-x -2,令f ′(x )<0得x <-1或12<x <2 ,注意到函数定义域为(-∞ ,-1)∪(2 ,+∞) ,故递减区间为(-∞ ,-1).7.函数f (x )=x 3+ax +8的单调递减区间为(-5,5) ,求函数y =f (x )的递增区间. 解 f ′(x )=3x 2+a .∵(-5,5)是函数y =f (x )的单调递减区间 ,那么-5,5是方程3x 2+a =0的根 ,∴af′(x)=3x2-75 ,令f′(x)>0 ,那么3x2-75>0 ,解得x>5或x<-5 ,∴函数y=f(x)的单调递增区间为(-∞ ,-5)和(5 ,+∞).二、能力提升8.如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()答案 A解析由f(x)与f′(x)关系可选A.9.设f(x) ,g(x)在[a ,b]上可导,且f′(x)>g′(x) ,那么当a<x<b时,有() A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)>g(x)+f(a)D.f(x)+g(b)>g(x)+f(b)答案 C解析∵f′(x)-g′(x)>0 ,∴(f(x)-g(x))′>0 ,∴f (x )-g (x )在[a ,b ]上是增函数 , ∴当a <x <b 时f (x )-g (x )>f (a )-g (a ) , ∴f (x )+g (a )>g (x )+f (a ).10.(2021·大纲版)假设函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞是增函数 ,那么a 的取值范围是________. 答案 [3 ,+∞)解析 因为f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞上是增函数 ,故f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立 , 即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立. 令h (x )=1x 2-2x ,那么h ′(x )=-2x 3-2 , 当x ∈⎝ ⎛⎭⎪⎪⎫12 +∞时 ,h ′(x )<0 ,那么h (x )为减函数 , 所以h (x )<h ⎝ ⎛⎭⎪⎫12=3 ,所以a ≥3.11.求以下函数的单调区间: (1)y =x -ln x ; (2)y =ln(2x +3)+x 2.解 (1)函数的定义域为(0 ,+∞) ,y ′=1-1x , 由y ′>0 ,得x >1;由y ′<0 ,得0<x <1.∴函数y =x -ln x 的单调增区间为(1 ,+∞) ,单调减区间为(0,1). (2)函数y =ln(2x +3)+x 2的定义域为⎝ ⎛⎭⎪⎪⎫-32 +∞.∵y =ln(2x +3)+x 2 ,∴y ′=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当y ′>0 ,即-32<x <-1或x >-12时 , 函数y =ln(2x +3)+x 2单调递增; 当y ′<0 ,即-1<x <-12时 , 函数y =ln(2x +3)+x 2单调递减.故函数y =ln(2x +3)+x 2的单调递增区间为⎝ ⎛⎭⎪⎪⎫-32 -1 ,⎝ ⎛⎭⎪⎪⎫-12 +∞ ,单调递减区间为⎝ ⎛⎭⎪⎪⎫-1 -12. 12.函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2) ,且在点M (-1 ,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2) ,知d =2 , ∴f (x )=x 3+bx 2+cx +2 ,f ′(x )=3x 2+2bx +c . 由在点M (-1 ,f (-1))处的切线方程为6x -y +7=0 , 知-6-f (-1)+7=0 ,即f (-1)=1 ,f ′(-1)=6. ∴⎩⎪⎨⎪⎧ 3-2b +c =6 -1+b -c +2=1 即⎩⎪⎨⎪⎧2b -c =-3 b -c =0 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. (2)f ′(x )=3x 2-6xf ′(x )>0 , 得x <1-2或x >1+2; 令f ′(x )<0 ,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞ ,1-2)和(1+ 2 ,+∞) ,单调递减区间为(1- 2 ,1+2). 三、探究与创新13.函数f(x)=mx3+nx2(m、n∈R ,m≠0) ,函数y=f(x)的图象在点(2 ,f(2))处的切线与x轴平行.(1)用关于m的代数式表示n;(2)求函数f(x)的单调增区间.解(1)由条件得f′(x)=3mx2+2nx ,又f′(2)=0 ,∴3m+n=0 ,故n=-3m.(2)∵n=-3m ,∴f(x)=mx3-3mx2 ,∴f′(x)=3mx2-6mx.令f′(x)>0 ,即3mx2-6mx>0 ,当m>0时,解得x<0或x>2 ,那么函数f(x)的单调增区间是(-∞,0)和(2 ,+∞);当m<0时,解得0<x<2 ,那么函数f(x)的单调增区间是(0,2).综上,当m>0时,函数f(x)的单调增区间是(-∞ ,0)和(2 ,+∞);当m<0时,函数f(x)的单调增区间是(0,2).4.3.2函数的极大值和极小值一、根底达标y=f(x)的定义域为(a,b) ,y=f′(x)的图象如图,那么函数y=f(x)在开区间(a ,b)内取得极小值的点有()A.1个B.2个C.3个D.4个答案 A解析当满足f′(x)=0的点,左侧f′(x)<0 ,右侧f′(x)>0时,该点为极小值点,观察题图,只有一个极小值点.2. "函数y=f(x)在一点的导数值为0”是 "函数y=f(x)在这点取得极值〞的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析对于f(x)=x3 ,f′(x)=3x2 ,f′(0)=0 ,不能推出f(x)在x=0处取极值,反之成立.应选B.3.假设a>0 ,b>0 ,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,那么ab的最|大值等于() A.2 B.3 C.6 D.9答案 D解析f′(x)=12x2-2ax-2b ,∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0 ,∴a+b=6.又a>0 ,b>0 ,∴a+b≥2ab,∴2ab≤6 ,∴ab≤9 ,当且仅当a=b=3时等号成立,∴ab的最|大值为9.4.函数y=x3-3x2-9x(-2<x<2)有() A.极大值5 ,极小值-27B.极大值5 ,极小值-11C.极大值5 ,无极小值D.极小值-27 ,无极大值答案 C解析由y′=3x2-6x-9=0 ,得x=-1或x=3 ,当x<-1或x>3时,y′>0 ,当-1<x<3时,y′x=-1时,函数有极大值5;x取不到3 ,故无极小值.5.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,那么实数a的取值范围是________.答案(-∞ ,-1)∪(2 ,+∞)解析∵f′(x)=3x2+6ax+3(a+2) ,令3x2+6ax+3(a+2)=0 ,即x2+2ax+a +2=0 ,∵函数f(x)有极大值和极小值,∴方程x2+2ax+a+2=0有两个不相等的实数根 ,即Δ=4a 2-4a -8>0 ,解得a >2或a <-1.6.假设函数y =x 3-3ax +a 在(1,2)内有极小值 ,那么实数a 的取值范围是________. 答案 (1,4)解析 y ′=3x 2-3a ,当a ≤0时 ,y ′≥0 ,函数y =x 3-3ax +a 为单调函数 ,不合题意 ,舍去;当a >0时 ,y ′=3x 2-3a =0⇒x =±a ,不难分析 ,当 1<a <2 ,即1<a <4时 ,函数y =x 3-3ax +a 在(1,2)内有极小值. 7.求函数f (x )=x 2e -x 的极值. 解 函数的定义域为R , f ′(x )=2x e -x+x 2·⎝ ⎛⎭⎪⎫1e x ′ =2x e -x -x 2e -x =x (2-x )e -x , 令f ′(x )=0 ,得x =0或x =2.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表: x (-∞ ,0) 0 (0,2) 2 (2 ,+∞) f ′(x ) -0 +0 -f (x )4e -2当x =2时 ,函数有极大值 ,且为f (2)=4e -2. 二、能力提升8.函数f (x ) ,x ∈R ,且在x =1处 ,f (x )存在极小值 ,那么( )A .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )<0B .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )>0C .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )>0D .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )<0 答案 C解析 ∵f (x )在x =1处存在极小值 , ∴x <1时 ,f ′(x )<0 ,x >1时 ,f ′(x )>0.9.(2021·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点 ,以下结论一定正确的选项是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 x 0(x 0≠0)是f (x )的极大值点 ,并不是最|大值点.故A 错;f (-x )相当于f (x )关于y 轴的对称图象的函数 ,故-x 0应是f (-x )的极大值点 ,B 错;-f (x )相当于f (x )关于x 轴的对称图象的函数 ,故x 0应是-f (x )的极小值点.跟-x 0没有关系 ,C 错;-f (-x )相当于f (x )关于坐标原点的对称图象的函数.故D 正确.y =f (x )的导函数的图象如下图 ,给出以下判断: ①函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-3 -12内单调递增; ②函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-12 3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时 ,函数y =f (x )有极小值; ⑤当x =-12时 ,函数y =f (x )有极大值. 那么上述判断正确的选项是________.(填序号) 答案 ③解析 函数的单调性由导数的符号确定 ,当x ∈(-∞ ,-2)时 ,f ′(x )<0 ,所以f (x )在(-∞ ,-2)上为减函数 ,同理f (x )在(2,4)上为减函数 ,在(-2,2)上是增函数 ,在(4 ,+∞)上为增函数 ,所以可排除①和② ,可选择③.由于函数在x =2的左侧递增 ,右侧递减 ,所以当x =2时 ,函数有极大值;而在x = -12的左右两侧 ,函数的导数都是正数 ,故函数在x =-12的左右两侧均为增函数 ,所以x =-12不是函数的极值点.排除④和⑤.11.f (x )=x 3+12mx 2-2m 2x -4(m 为常数 ,且m >0)有极大值-52 ,求m 的值. 解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ) , 令f ′(x )=0 ,那么x =-m 或x =23m . 当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x (-∞ ,-m ) -m⎝ ⎛⎭⎪⎪⎫-m 23m 23m ⎝ ⎛⎭⎪⎪⎫23m +∞ f ′(x ) +0 -0 +f (x )极大值极小值∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52 ,∴m =1. 12.设a 为实数 ,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时 ,曲线y =f (x )与x 轴仅有一个交点 ? 解 (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0 ,那么x =-13或x =1.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎪⎫-∞ -13 -13 ⎝ ⎛⎭⎪⎪⎫-13 1 1 (1 ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-13=527+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1 , 由此可知 ,x 取足够大的正数时 ,有f (x )>0 , x 取足够小的负数时 ,有f (x )<0 ,所以曲线y =f (x )与x 轴至|少有一个交点.由(1)知f (x )极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.∵曲线y =f (x )与x 轴仅有一个交点 ,∴f (x )极大值<0或f (x )极小值>0 , 即527+a <0或a -1>0 ,∴a <-527或a >1 ,∴当a ∈⎝ ⎛⎭⎪⎪⎫-∞ -527∪(1 ,+∞)时 ,曲线y =f (x )与x 轴仅有一个交点. 三、探究与创新13.(2021·新课标Ⅱ)函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点 ,求m ,并讨论f (x )的单调性; (2)当m ≤2时 ,证明f (x )>0. (1)解 f ′(x )=e x -1x +m. 由x =0是f (x )的极值点得f ′(0)=0 ,所以m =1. 于是f (x )=e x -ln(x +1) ,定义域为(-1 ,+∞) , f ′(x )=e x -1x +1. 函数f ′(x )=e x -1x +1在(-1 ,+∞)单调递增 ,且f ′(0)=0 ,因此当 x ∈(-1,0)时 ,f ′(x )<0;当x ∈(0 ,+∞)时 ,f ′(x )>0. 所以f (x )在(-1,0)单调递减 ,在(0 ,+∞)单调递增. (2)证明 当m ≤2 ,x ∈(-m ,+∞)时 ,ln(x +m )≤ ln(x +2) ,故只需证明当m =2时 ,f (x )>0. 当m =2时 , 函数f ′(x )=e x -1x +2在(-2 ,+∞)单调递增.又f′(-1)<0 ,f′(0)>0 ,故f′(x)=0在(-2 ,+∞)有唯一实根x0 , 且x0∈(-1,0).当x∈(-2 ,x0)时,f′(x)<0;当x∈(x0 ,+∞)时,f′(x)>0 ,从而当x=x0时,f(x)取得最|小值.由f′(x0)=0得e x0=1x0+2,ln(x0+2)=-x0 ,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0.4.3.3三次函数的性质:单调区间和极值一、根底达标1.函数y=f(x)在[a ,b]上() A.极大值一定比极小值大B.极大值一定是最|大值C.最|大值一定是极大值D.最|大值一定大于极小值答案 D解析由函数的最|值与极值的概念可知,y=f(x)在[a,b]上的最|大值一定大于极小值.2.函数y=x e-x ,x∈[0,4]的最|大值是()A.0 B.1e C.4e4 D.2e2答案 B解析y′=e-x-x·e-x=e-x(1-x) ,令y′=0 ,∴x=1 ,∴f(0)=0 ,f(4)=4e4,f(1)=e-1=1e,∴f(1)为最|大值,应选B.3.函数y=ln xx的最|大值为()A.e-1B.e C.e2 D.10 3答案 A解析令y′=(ln x)′x-ln x·x′x2=1-ln xx2=0.(x>0)解得xx>e时,y′<0;当0<x<e时,y′>0.y极大值=f(e)=1e,在定义域(0 ,+∞)内只有一个极值,所以y max=1 e.4.函数y=4xx2+1在定义域内() A.有最|大值2 ,无最|小值B.无最|大值,有最|小值-2 C.有最|大值2 ,最|小值-2 D.无最|值答案 C解析令y′=4(x2+1)-4x·2x(x2+1)2=-4x2+4(x2+1)2=0 ,得xx变化时,y′ ,y随x的变化如下表:x (-∞ ,-1)-1(-1,1)1(1 ,+∞) y′-0+0-y 极小值极大值最|大值2.5.函数f(x)=e x-2x+a有零点,那么a的取值范围是________.答案(-∞ ,2ln 2-2]解析 函数f (x )=e x -2x +a 有零点 ,即方程e x -2x +a =0有实根 ,即函数 g (x )=2x -e x ,y =a 有交点 ,而g ′(x )=2-e x ,易知函数g (x )=2x -e x 在 (-∞ ,ln 2)上递增 ,在(ln 2 ,+∞)上递减 ,因而g (x )=2x -e x 的值域为 (-∞ ,2ln 2-2] ,所以要使函数g (x )=2x -e x ,y =a 有交点 ,只需 a ≤2ln 2-2即可.6.函数y =x +2cos x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0 π2上的最|大值是________. 答案π6+ 3 解析 y ′=1-2sin x =0 ,x =π6 ,比拟0 ,π6 ,π2处的函数值 ,得y max =π6+ 3. 7.函数f (x )=2x 3-6x 2+a 在[-2,2]上有最|小值-37 ,求a 的值及f (x )在 [-2,2]上的最|大值.解 f ′(x )=6x 2-12x =6x (x -2) , 令f ′(x )=0 ,得x =0或x =2 ,当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x -2 (-2,0) 0 (0,2) 2 f ′(x ) +0 - 0 f (x )-40+a极大值a-8+amin 当x =0时 ,f (x )的最|大值为3. 二、能力提升8.设直线x =t 与函数f (x )=x 2 ,g (x )=ln x 的图象分别交于点M ,N ,那么当|MN |到达最|小时t 的值为( )A .1 B.12 C.52 D.22 答案 D解析 由题意画出函数图象如下图 ,由图可以看出|MN |=y =t 2-ln t (t >0).y′=2t-1t=2t2-1t=2⎝⎛⎭⎪⎫t+22⎝⎛⎭⎪⎫t-22t.当0<t<22时,y′<0 ,可知y在⎝⎛⎭⎪⎫22上单调递减;当t>22时,y′>0 ,可知y在⎝⎛⎭⎪⎫22+∞上单调递增.故当t=22时,|MN|有最|小值.9.(2021·湖北重点中学检测)函数f(x)=x3-tx2+3x,假设对于任意的a∈[1,2] ,b ∈(2,3] ,函数f(x)在区间[a ,b]上单调递减,那么实数t的取值范围是() A.(-∞ ,3] B.(-∞ ,5] C.[3 ,+∞) D.[5 ,+∞)答案 D解析∵f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3 ,由于函数f(x)在(a,b)上单调递减,那么有f′(x)≤0在[a ,b]上恒成立,即不等式3x2-2tx+3≤0在[a,b]上恒成立,即有t≥32⎝⎛⎭⎪⎫x+1x在[a,b]上恒成立,而函数y=32⎝⎛⎭⎪⎫x+1x在[1,3]上单调递增,由于a∈[1,2] ,b∈(2,3] ,当b=3时,函数y=32⎝⎛⎭⎪⎫x+1x取得最|大值,即y max=32⎝⎛⎭⎪⎫3+13=5 ,所以t≥5 ,应选D.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最|大值是2 ,那么f(x)在[-1,1]上的最|小值是________.答案-1 2解析f′(x)=3x2-3x ,令f′(x)=0得x=0 ,或x=1.∵f(0)=a ,f(-1)=-52+a ,f(1)=-12+a ,∴f(x)max=a=2.∴f (x )min =-52+a =-12.11.函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ).(1)假设函数f (x )在x =-1和x =3处取得极值 ,试求a ,b 的值; (2)在(1)的条件下 ,当x ∈[-2,6]时 ,f (x )<2|c |恒成立 ,求c 的取值范围. 解 (1)f ′(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值 , ∴-1,3是方程3x 2-2ax +b =0的两根. ∴⎩⎪⎨⎪⎧-1+3=23a -1×3=b3,∴⎩⎨⎧a =3b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c ,f ′(x )=3x 2-6x -9 ,令f ′(x )=0 ,得x =-1或x =3. 当x 变化时 ,f ′(x ) ,f (x )随x 的变化如下表:x (-∞ ,-1)-1 (-1,3) 3 (3 ,+∞) f ′(x ) +0 -0 +f (x )极大值c +5极小值 c -27∴当x ∈[-2,6]时 ,f (x )的最|大值为c +54 , 要使f (x )<2|c |恒成立 ,只要c +54<2|c |即可 , 当c ≥0时 ,c +54<2c ,∴c >54; 当c <0时 ,c +54<-2c ,∴c <-18.∴c ∈(-∞ ,-18)∪(54 ,+∞) ,此即为参数c 的取值范围. 12.函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)假设f (x )在区间[-2,2]上的最|大值为20 ,求它在该区间上的最|小值.解(1)∵f′(x)=-3x2+6x+9.令f′(x)<0 ,解得x<-1或x>3 ,∴函数f(x)的单调递减区间为(-∞ ,-1) ,(3 ,+∞).(2)∵f(-2)=8+12-18+a=2+a ,f(2)=-8+12+18+a=22+a ,∴f(2)>f(-2).于是有22+a=20 ,∴a=-2.∴f(x)=-x3+3x2+9x-2.∵在(-1,3)上f′(x)>0 ,∴f(x)在[-1,2]上单调递增.又由于f(x)在[-2 ,-1]上单调递减,∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最|大值和最|小值,∴f(-1)=1+3-9-2=-7 ,即f(x)最|小值为-7.三、探究与创新13.(2021·新课标Ⅰ)函数f(x)=x2+ax+b,g(x)=e x(cx+d) ,假设曲线y=f(x)和曲线y=g(x)都过点P(0,2) ,且在点P处有相同的切线y=4x+2.(1)求a ,b ,c ,d的值;(2)假设x≥-2时,f(x)≤kg(x) ,求k的取值范围.解(1)由得f(0)=2 ,g(0)=2 ,f′(0)=4 ,g′(0)=4 ,而f′(x)=2x+a ,g′(x)=e x(cx+d+c) ,∴a=4 ,b=2 ,c=2 ,d=2.(2)由(1)知,f(x)=x2+4x+2 ,g(x)=2e x(x+1) ,设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2(x≥-2) ,F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).有题设可得F(0)≥0 ,即k≥1 ,令F′(x)=0得,x1=-ln k ,x2=-2 ,①假设1≤k<e2 ,那么-2<x1≤0 ,∴当x∈(-2 ,x1)时,F′(x)<0 ,当x∈(x1 ,+∞)时,F′(x)>0 ,即F(x)在(-2 ,x1)单调递减,在(x1 ,+∞)单调递增,故F(x)在x=x1取最|小值F(x1) ,而F(x1)=2x1+2-x21-4x1-2=-x1(x1+2)≥0.∴当≥-2时,F(x)≥0 ,即f(x)≤kg(x)恒成立.②假设k=e2 ,那么F′(x)=2e2(x+2)(e x-e2) ,∴当x ≥-2时 ,F ′(x )≥0 ,∴F (x )在(-2 ,+∞)单调递增 ,而F (-2)=0 ,∴当x ≥-2时 ,F (x )≥0 ,即f (x )≤kg (x )恒成立 ,③假设k >e 2 ,那么F (-2)=-2k e -2+2=-2e -2(k -e 2)<0 ,∴当x ≥-2时 ,f (x )≤kg (x )不可能恒成立.综上所述 ,k 的取值范围为[1 ,e 2].4.4 生活中的优化问题举例一、根底达标1.方底无盖水箱的容积为256 ,那么最|省材料时 ,它的高为( )A .4B .6C .4.5D .8 答案 A解析 设底面边长为x ,高为h , 那么V (x )=x 2·h =256 ,∴h =256x 2 ,∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2.令S ′(x )=0 ,解得x =8 ,∴h =25682=4.2.某银行准备新设一种定期存款业务 ,经预算 ,存款量与存款利率的平方成正比 ,比例系数为k (k >0).贷款的利率为0.0486 ,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.0486) ,假设使银行获得最|大收益 ,那么x 的取值为( )A .0.016 2B .0.032 4C .0.024 3D .0.048 6 答案 B。
高中数学选修2-2综合测试试题及答案解析
高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
高中数学选修2-2综合测试题(全册含答案)
高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
人教课标版高中数学选修2-2备选习题:函数的极值
函数的极值A组1.设x0为可导函数f(x)的极值点,则下列说法正确的是() A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A2.下列函数存在极值的是()A.y=1x B.y=x-exC.y=x3+x2+2x-3 D.y=x3解析:选B.A中f′(x)=-1x2,令f′(x)=0无解,且f(x)为双曲线.∴A中函数无极值.B中f′(x)=1-e x,令f′(x)=0可得x=0.当x<0时,f′(x)>0,当x>0时,f′(x)<0.∴y=f(x)在x=0处取极大值,f(0)=-1.C中f′(x)=3x2+2x+2,Δ=4-24=-20<0.∴y=f(x)无极值.D也无极值.故选B.3.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有()A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.4.y=x3-6x+a的极大值为________.解析:y′=3x2-6=0,得x=±2.当x<-2或x>2时,y′>0;当-2<x<2时,y′<0.∴函数在x=-2时,取得极大值a+4 2.答案:a+4 2B组一、选择题1.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.2.函数f(x)=x+1x在x>0时有()A.极小值B.极大值C.既有极大值又有极小值D.极值不存在解析:选A.令f′(x)=1-1x2=0,得x=±1,∵x>0,∴x=1.当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.∴在x>0时,函数f(x)有极小值.3.下列四个函数:①y=x3;②y=x2+1;③y=|x|;④y=2x.在x=0处取得极小值的函数是() A.①②B.②③C.③④D.①③解析:选B.作出函数的大致图象,由图象可分析出结论;也可以用排除法,因为①④是单调函数,无极值,即可排除A、C、D,故应选B.4.函数f(x)的定义在区间[a,b]上,其导函数的图象如图所示,则在[a,b]上函数f(x)的极值点个数为()A.3 B.4C.6 D.7解析:选C.图象与x轴有6个交点,即使得导数值为0的点有6个,故函数有6个极值点.5.设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则()A.a<-1 B.a>-1C.a>-1e D.a<-1e解析:选A .y′=e x+a,令y′=0得e x=-a,即x=ln(-a)>0,所以a<-1. 6.函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的为() A.x=-1一定是函数f(x)的极大值点B.x=-1一定是函数f(x)的极小值点C.x=-1不是函数f(x)的极值点D.x=-1不一定是函数f(x)的极值点解析:选D.由题意,得x>-1,f′(x)>0或x<-1,f′(x)<0,但函数f(x)在x=-1处未必连续,即x=-1不一定是函数f(x)的极值点,故选D.二、填空题7.函数y=x·2x取极小值时x等于________.解析:y′=2x+x·2x ln2=2x(1+x·ln2)=0.∴x=-1ln2.当x>-1ln2时,f′(x)>0,函数递增;当x<-1ln2时,f′(x)<0,函数递减.∴函数在x=-1ln2时取得极小值.答案:-1ln28.已知函数f(x)=x(x-c)2在x=2处有极大值,则常数c的值为________.解析:x=2是f(x)的极大值点,∵f(x)=x(x2-2cx+c2)∴f′(x)=x(2x-2c)+x2-2cx+c2=3x2-4cx+c2,∴f′(2)=c2-8c+12=0.∴c=2或c=6.当c=2时,f(x)在x=2处只能取极小值.不能取极大值,∴c=6.答案:69.当a为________时,函数f(x)=e x(x2+ax+a+1)没有极值点.解析:由已知可得f′(x)=e x(x2+ax+a+1)+e x(2x+a)=e x[x2+(a+2)x+2a+1],若函数不存在极值点,则在方程f′(x)=0即x2+(a+2)x+2a+1=0中,有Δ=(a +2)2-4(2a+1)=a2-4a≤0,解之得0≤a≤4.答案:0≤a≤4三、解答题10.求下列函数的极值:(1)f(x)=x3-3x2-9x+5;(2)f(x)=ln x x.解:(1)f′(x)=3x2-6x-9.解方程3x2-6x-9=0,得x1=-1,x2=3. 当x变化时,f′(x)与f(x)的变化情况如下表:得极小值,且极小值为f(3)=-22.(2)函数f(x)=ln xx的定义域为(0,+∞),且f′(x)=1-ln xx2,令f′(x)=0,得x=e.当x变化时,f′(x)与f(x)的变化情况如下表:故当x=e时函数取得极大值,且极大值为f(e)=1 e.11.如果函数f(x)=ax5-bx3+c(a≠0)在x=±1时有极值,极大值为4,极小值为0,试求a,b,c的值.解:f ′(x )=5ax 4-3bx 2.令f ′(x )=0,即5ax 4-3bx 2=0,x 2(5ax 2-3b )=0. ∵x =±1是极值点,∴5a (±1)2-3b =0. 又x 2=0,∴可疑点为x =0,x =±1. 若a >0,f ′(x )=5ax 2(x 2-1).当x 变化时,f ′(x ),f (x )的变化情况如下表:当x =1时,f (x )有极小值.∴⎩⎨⎧-a +b +c =4a -b +c =05a =3b⇒⎩⎪⎨⎪⎧ c =2b =a +2b =53a⇒⎩⎨⎧c =2a =3,b =5若a <0时,同理可得a =-3,b =-5,c =2.12.已知f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值. 解:∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ), 令f ′(x )=0,则x =-m 或x =23m . 当x 变化时,f ′(x ),f (x )变化如下表 ∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52,∴m =1.。
高中数学选修2-2全套知识点与练习答案解析
新课标人教 A 高中数学选修2-2 同步练习选修 2-2 知识点及习题答案解析导数及其应用一 .导数概念的引入1.导数的物理意义:瞬时速率。
一般的,函数y f (x) 在x x0处的瞬时变化率是lim f ( x0x) f (x0 ),x0x我们称它为函数y f ( x) 在x x0处的导数,记作 f (x0 )或 y |x x,即f (x0x) f ( x0 )f ( x0 ) = limx 0x2.导数的几何意义:曲线的切线 .通过图像 ,我们可以看出当点P n趋近于 P 时,直线 PT 与曲线相切。
容易知道,割线PP n的斜率是k n f (x n )f ( x),当点Pn趋近于P时,函数y f (x) 在x x0处的导数就是切线PT 的斜率x n x0k,即k f ( x n ) f ( x0 ) f (x0 )lim xn x0x03.导函数:当 x 变化时,f( x) 便是x的一个函数,我们称它为 f ( x) 的导函数. y f ( x)的导函数有时也记作 y ,即f( x)lim f (x x) f (x)x 0x二.导数的计算基本初等函数的导数公式 :1若f (x) c (c为常数),则f(x)0 ;3若 f ( x)sin x ,则f ( x)cos x5若 f ( x) a x,则f ( x) a x ln a7若f ( x)log a x,则f (x)1x ln a导数的运算法则1.[ f ( x)g ( x)] f ( x)g ( x)[ f ( x)g ( x)]f ( x) g ( x) f ( x) g ( x )f ( x) f ( x)g (x) f ( x)g ( x)3.[][ g( x)]2g (x)2若f ( x)x,则f ( x)x 1;4若f ( x)cos x,则f (x )sin x ;6若f ( x)e x,则f (x) e x8若f ( x)ln x,则f ( x)1x2.复合函数求导y f (u) 和u g (x) ,称则y可以表示成为x 的函数,即y f ( g(x)) 为一个复合函数y f (g (x))g ( x)三 .导数在研究函数中的应用1.函数的单调性与导数:一般的 ,函数的单调性与其导数的正负有如下关系:在某个区间( a, b)内新课标人教 A 高中数学选修2-2 同步练习(1)如果f ( x ) 0,那么函数y f ( x)在这个区间单调递增;(2) 如果f (x)0 ,那么函数y f ( x) 在这个区间单调递减 .2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数y f ( x )的极值的方法是:(1)如果在 x0附近的左侧f( x) 0 ,右侧f (x ) 0,那么 f (x0 )是极大值(2)如果在 x0附近的左侧 f ( x) 0,右侧 f (x) 0,那么f(x0)是极小值 ;4.函数的最大 (小) 值与导数求函数y f (x ) 在[ a,b]上的最大值与最小值的步骤:(2)将函数y f ( x)的各极值与端点处的函数值是最小值 .(1)求函数y f ( x) 在(a,b)内的极值;f ( a) ,f (b)比较,其中最大的是一个最大值,最小的推理与证明考点一合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理, 叫做归纳推理,归纳是从特殊到一般的过程, 它属于合情推理根据两类不同事物之间具有某些类似(或一致 )性 ,推测其中一类事物具有与另外一类事物类似的性质的推理 ,叫做类比推理 .类比推理的一般步骤:(1)找出两类事物的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题 (猜想 );(3)一般的 ,事物之间的各个性质并不是孤立存在的,而是相互制约的 .如果两个事物在某些性质上相同或相似 ,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的 .(4)一般情况下 ,如果类比的相似性越多 ,相似的性质与推测的性质之间越相关 ,那么类比得出的命题越可靠 .考点二演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三数学归纳法1. 它是一个递推的数学论证方法.2. 步骤 :A.命题在 n=1(或n0)时成立,这是递推的基础; B.假设在 n=k 时命题成立; C.证明 n=k+1 时命题也成立 ,完成这两步 ,就可以断定对任何自然数(或 n>= n0,且n N )结论都成立。
高中数学选修2-2课后习题答案
高中数学选修2-2课后习题答案一、选择题(12×5′=60′)1.一物体的运动方程为21t t s +-=,其中s 单位是米,t 单位是秒,那么物体在3秒末的瞬时速度是( )。
A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2.复数),(R b a bi a ∈+为纯虚数的充分必要条件是 ( )。
A 0=ab B0=ba C0=ab D 022=+b a3.某同学类比平面内正三角形的“三边相等,三内角相等”的性质,推出正四面体的下列性质: ①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
你认为正确的是( )。
A .①B .①②C .①②③D .③4.按照导数的几何意义,可以求得函数24x y -=在1=x 处的导数是 ( )。
A. 3-B. 33-C. 33±D. 35.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )。
A319 B316 C313 D3106.与直线250x y -+=平行的抛物线2y x =的切线方程为( )。
A.210x y --=B.230x y --=C.210x y -+=D.230x y -+= 7.函数344+-=x x y 在区间[]2,3-上的最小值为( )。
A 72B 36C 12D 08.由直线20x y +-=,曲线3y x =以及x 轴围成的图形的面积为( )。
A.43B.54C.56D.349.函数3y x x =+的递增区间是( )。
A ),0(+∞B )1,(-∞C ),(+∞-∞D ),1(+∞10.在数列{}n a 中,若11a =,1110n n n a a a ++⋅++=,则2009a =( )。
A.2-B.1-C.0.5-D.111.设函数2()(0)f x ax c a =+≠,若100()()f x dx f x =⎰,001x ≤≤,则0x 的值为( )。
最新人教A版高中数学选修2-2 2.2.2 反证法同步练习习题(含答案解析)
选修2-2 2.2.2 反证法一、选择题1.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解C.至少有三个解D.至少有两个解[答案] C[解析] 在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为( )A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数[答案] B[解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°[答案] B[解析] “至少有一个不大于”的否定是“都大于60°”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是( )A.假设a,b,c都是偶数B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数[答案] B[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.5.命题“△ABC 中,若∠A >∠B ,则a >b ”的结论的否定应该是( )A .a <bB .a ≤bC .a =bD .a ≥b[答案] B[解析] “a >b ”的否定应为“a =b 或a <b ”,即a ≤b .故应选B.6.已知a ,b 是异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( )A .一定是异面直线B .一定是相交直线C .不可能是平行直线D .不可能是相交直线[答案] C[解析] 假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面矛盾,故c 与b 不可能是平行直线.故应选C.7.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c中( ) A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2[答案] C[解析] ⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫c +1a +⎝⎛⎭⎪⎫b +1c =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c ∵a ,b ,c ∈(-∞,0),∴a +1a =-⎣⎢⎡⎦⎥⎤-a +⎝ ⎛⎭⎪⎫-1a ≤-2 b +1b =-⎣⎢⎡⎦⎥⎤-b +⎝ ⎛⎭⎪⎫-1b ≤-2 c +1c =-⎣⎢⎡⎦⎥⎤-c +⎝ ⎛⎭⎪⎫-1c ≤-2 ∴⎝ ⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫c +1a +⎝ ⎛⎭⎪⎫b +1c ≤-6 ∴三数a +1b 、c +1a 、b +1c 中至少有一个不大于-2,故应选C.8.若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面[答案] B[解析] 对于A ,若存在直线n ,使n ∥l 且n ∥m则有l ∥m ,与l 、m 异面矛盾;对于C ,过点P 与l 、m 都相交的直线不一定存在,反例如图(l ∥α);对于D ,过点P 与l 、m 都异面的直线不唯一.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁[答案] C[解析] 因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.10.已知x 1>0,x 1≠1且x n +1=x n (x 2n +3)3x 2n +1(n =1,2…),试证“数列{x n }或者对任意正整数n 都满足x n <x n +1,或者对任意正整数n 都满足x n >x n +1”,当此题用反证法否定结论时,应为( )A .对任意的正整数n ,都有x n =x n +1B .存在正整数n ,使x n =x n +1C .存在正整数n ,使x n ≥x n +1且x n ≤x n -1D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0[答案] D[解析] 命题的结论是“对任意正整数n ,数列{x n }是递增数列或是递减数列”,其反设是“存在正整数n ,使数列既不是递增数列,也不是递减数列”.故应选D.二、填空题11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案] 没有一个是三角形或四边形或五边形[解析] “至少有一个”的否定是“没有一个”.12.用反证法证明命题“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”,那么反设的内容是________________.[答案] a ,b 都不能被5整除[解析] “至少有一个”的否定是“都不能”.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°相矛盾,则∠A =∠B =90°不成立;②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°.正确顺序的序号排列为____________.[答案] ③①②[解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p 1、p 2、…、p n ,令p =p 1p 2…p n +1.显然,p 不含因数p 1、p 2、…、p n .故p 要么是质数,要么含有______________的质因数.这表明,除质数p 1、p 2、…、p n 之外,还有质数,因此原假设不成立.于是,质数有无限多个.[答案] 质数只有有限多个 除p 1、p 2、…、p n 之外[解析] 由反证法的步骤可得.三、解答题15.已知:a +b +c >0,ab +bc +ca >0,abc >0.求证:a >0,b >0,c >0.[证明] 用反证法:假设a ,b ,c 不都是正数,由abc >0可知,这三个数中必有两个为负数,一个为正数,不妨设a <0,b <0,c >0,则由a +b +c >0,可得c >-(a +b ),又a +b <0,∴c (a +b )<-(a +b )(a +b )ab +c (a +b )<-(a +b )(a +b )+ab即ab +bc +ca <-a 2-ab -b 2∵a 2>0,ab >0,b 2>0,∴-a 2-ab -b 2=-(a 2+ab +b 2)<0,即ab +bc +ca <0,这与已知ab +bc +ca >0矛盾,所以假设不成立.因此a >0,b >0,c >0成立.16.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14. [证明] 证法1:假设(1-a )b 、(1-b )c 、(1-c )a 都大于14.∵a 、b 、c 都是小于1的正数,∴1-a 、1-b 、1-c 都是正数.(1-a )+b 2≥(1-a )b >14=12, 同理(1-b )+c 2>12,(1-c )+a 2>12.三式相加,得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32, 即32>32,矛盾. 所以(1-a )b 、(1-b )c 、(1-c )a 不能都大于14. 证法2:假设三个式子同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得 (1-a )b (1-b )c (1-c )a >⎝ ⎛⎭⎪⎫143① 因为0<a <1,所以0<a (1-a )≤⎝ ⎛⎭⎪⎫1-a +a 22=14. 同理,0<b (1-b )≤14,0<c (1-c )≤14. 所以(1-a )a (1-b )b (1-c )c ≤⎝ ⎛⎭⎪⎫143.② 因为①与②矛盾,所以假设不成立,故原命题成立.17.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R .(1)若a +b ≥0,求证:f (a )+f (b )≥f (-a )+f (-b );(2)判断(1)中命题的逆命题是否成立,并证明你的结论.[解析] (1)证明:∵a +b ≥0,∴a ≥-b .由已知f (x )的单调性得f (a )≥f (-b ).又a +b ≥0⇒b ≥-a ⇒f (b )≥f (-a ).两式相加即得:f (a )+f (b )≥f (-a )+f (-b ).(2)逆命题:f (a )+f (b )≥f (-a )+f (-b )⇒a +b ≥0.下面用反证法证之.假设a +b <0,那么:a +b <0⇒a <-b ⇒f (a )<f (-b )a +b <0⇒b <-a ⇒f (b )<f (-a )⇒f (a )+f (b )<f (-a )+f (-b ).这与已知矛盾,故只有a +b ≥0.逆命题得证.18.(2010·湖北理,20改编)已知数列{b n }的通项公式为b n =14⎝ ⎛⎭⎪⎫23n -1.求证:数列{b n }中的任意三项不可能成等差数列.[解析] 假设数列{b n }存在三项b r 、b s 、b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b t >b s >b r ,则只可能有2b s =b r +b t 成立. ∴2·14⎝ ⎛⎭⎪⎫23s -1=14⎝ ⎛⎭⎪⎫23r -1+14⎝ ⎛⎭⎪⎫23t -1. 两边同乘3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s ,由于r <s <t ,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列{b n }中任意三项不可能成等差数列.。
(完整版)数学选修2-2练习题及答案
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
(完整版)高中数学选修2-2综合测试题(附答案)
高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。
已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。
高中数学选修2-2综合测试题(全册含答案)
高中数学选修2-2综合测试题(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.设z =10i3+i,则z 的共轭复数为( ) A .-1+3i B .-1-3i C .1+3iD .1-3i2.若函数f (x )=e x cos x ,则此函数的图象在点(1,f (1))处的切线的倾斜角为( ) A .0 B .锐角 C.π2D .钝角3.用反证法证明命题“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A .假设|f (1)|,|f (2)|,|f (3)|都不小于12B .假设|f (1)|,|f (2)|,|f (3)|都小于12C .假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D .假设|f (1)|,|f (2)|,|f (3)|至多有一个小于124.设a =⎠⎛01x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a5.由①y =2x +5是一次函数;②y =2x +5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )A .②①③B .③①②C .①②③D .②③①6.如图,我们知道,圆环也可以看作线段AB 绕圆心O 旋转一周所形成的平面图形,又圆环的面积S =π(R 2-r 2)=(R -r)×2π×R +r2,所以,圆环的面积等于以线段AB =R -r为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长2π×R +r2为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M ={}(x ,y )|(x -d )2+y 2≤r 2(其中0<r<d)绕y 轴旋转一周,则所形成的旋转体的体积是( )A .2πr 2dB .2π2r 2dC .2πrd 2D .2π2rd 27.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 015的末四位数字为( ) A .3 125 B .5 625 C .0 625D .8 1258.下面给出了关于复数的四种类比推理:①复数的加减法运算,可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2,可以类比得到复数z 的性质:|z |2=z 2;③方程ax 2+bx +c =0,(a ,b ,c ∈R ,且a ≠0)有两个不同的实数根的条件是b 2-4ac >0,类比可得方程ax 2+bx +c =0,(a ,b ,c ∈C 且a ≠0)有两个不同的复数根的条件是b 2-4ac >0;④由向量加法的几何意义,可以类比得到复数加法的几何意义.其中类比得到的结论正确的是( ) A .①③ B .②④ C .②③D .①④9.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A 与B 的大小关系为( )A .A >B B .A ≥BC .A <BD .A ≤B10.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )二、填空题(本大题共4小题,每小题5分,共20分) 11.若复数z 满足z +i =3+ii,则|z |=________.12.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为________. 13.我们把1,4,9,16,25,…这些数称作正方形数,这是因为这些数目的点可以排成一个正方形,如下图所示:第n 个正方形数是________.14.若O 为△ABC 内部任意一点,连接AO 并延长交对边于A ′,则AO AA ′=S 四边形ABOCS △ABC,同理连接BO ,CO 并延长,分别交对边于B ′,C ′,这样可以推出AO AA ′+BO BB ′+COCC ′=________;类似地,若O 为四面体ABCD 内部任意一点,连接AO ,BO ,CO ,DO 并延长,分别交相对的面于A ′,B ′,C ′,D ′,则AO AA ′+BO BB ′+CO CC ′+DODD ′=________.三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤) 15.(本小题满分12分)已知F (x )=1x-t (t -4)d t ,x ∈(-1,+∞).(1)求F (x )的单调区间; (2)求函数F (x )在[1,5]上的最值.16.(本小题满分12分)在△ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2.在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.17.(本小题满分12分)已知函数f (x )=x 3+ax 2-3x (a ∈R ). (1)若函数f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =13是函数f (x )的极值点,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点?若存在,请求出b 的取值范围;若不存在,试说明理由.18.(本小题满分14分)已知数列{a n }满足a 1=a ,a n +1=12-a n. (1)求a 2,a 3,a 4;(2)猜想数列{a n }的通项公式,并用数学归纳法证明.高中数学选修2-2综合测试题参考答案1.选D ∵z =10i3+i =10i (3-i )(3+i )(3-i )=1+3i ,∴z =1-3i.2.选D f ′(x )=e x ·cos x +e x ·(-sin x )=e x (cos x -sin x ).当x =1时,cos x -sin x <0,故f ′(1)<0,所以倾斜角为钝角.3.选B “|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”. 4.解析:选A 由题意可得a =⎠⎛01x -13d x =x 113-+-13+110=32x 2310=32;b =1-⎠⎛01x 12d x =1-x 323210=1-⎝⎛⎭⎫23-0=13;c =⎠⎛01x 3d x =x 4410=14.综上,a >b >c .5.选B 该三段论应为:一次函数的图象是一条直线(大前提),y =2x +5是一次函数(小前提),y =2x +5的图象是一条直线(结论).6.选B 平面区域M 的面积为πr 2,由类比知识可知:平面区域M 绕y 轴旋转一周得到的旋转体类似于为实心的车轮内胎,旋转体的体积等于以圆(面积为πr 2)为底,以O 为圆心、d 为半径的圆的周长2πd 为高的圆柱的体积,所以旋转体的体积V =πr 2×2πd =2π2r 2d .7.选D ∵55=3 125,56=15 625,57=8 125, 58=390 625,59=1 953 125,510=9 765 625,…∴5n (n ∈Z ,且n ≥5)的末四位数字呈周期性变化,且最小正周期为4,记5n (n ∈Z ,且n ≥5)的末四位数字为f (n ),则f (2 015)=f (502× 4+7)=f (7).∴52 015与57的末四位数字相同,均为8 125.8.选D ②中|z |2∈R ,但z 2不一定是实数.③中复数集不能比较大小,不能用b 2-4ac 来确定根的个数.9.选Cx 1+x +y 1+y >x 1+x +y +y1+x +y =x +y 1+x +y.10.选C 由函数f (x )在x =-2处取得极小值可知x <-2,f ′(x )<0,则xf ′(x )>0;x >-2,f ′(x )>0,则-2<x <0时,xf ′(x )<0,x >0时,xf ′(x )>0.11.解析:∵z =3+i i -i =(3+i )(-i )-i 2-i =-i 2-3i -i =1-4i ,∴z =1+4i.∴|z |=12+42=17.答案:1712.解析:∵直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),y =x 3+ax +b 的导数y ′=3x 2+a .∴⎩⎪⎨⎪⎧3=k ×1+13=13+a ×1+b , k =3×12+a ,解得a =-1,b =3,∴2a +b =1. 答案:113.解析:观察前5个正方形数,正好是序号的平方,所以第n 个正方形数应为n 2. 答案:n 214.解析:根据面积公式,在△ABC 中, AO AA ′=AA ′-OA ′AA ′=1-OA ′AA ′ =1-S △OBC S △ABC =S 四边形ABOC S △ABC ,所以AO AA ′+BO BB ′+CO CC ′=3-S △OBC +S △OAC +S △OABS △ABC=3-S △ABCS △ABC=2.根据体积分割方法,同理可得在四面体ABCD 中, AO AA ′+BO BB ′+CO CC ′+DODD ′=4-V O -ABD +V O -ACD +V O -ABC +V O -BCDV A -BCD=4-V A -BCDV A -BCD =3.答案:2 3 15.解:F(x )=1x⎰- (t 2-4t )d t =⎝⎛⎭⎫13t 3-2t 21x -=13x 3-2x 2-⎝⎛⎭⎫-13-2 =13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4; 由F ′(x )<0,即x 2-4x <0,得0<x <4, ∴F (x )的单调递增区间为(-1,0)和(4,+∞), 单调递减区间为(0,4).(2)由(1)知F(x )在[1,4]上递减,在[4,5]上递增,∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253.16. 证明:如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2, ∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC2.所以1AD 2=1AB 2+1AC2.猜想:类比AB ⊥AC ,AD ⊥BC 猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD2.如图,连接BE 并延长交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2.∴1AE 2=1AB 2+1AC 2+1AD2,故猜想正确. 17.解:(1)f ′(x )=3x 2+2ax -3, ∵f (x )在[1,+∞)上是增函数, ∴在[1,+∞)上恒有f ′(x )≥0, ∴-a3≤1,且f ′(1)=2a ≥0.∴a ≥0.故实数a 的取值范围为[0,+∞). (2)由题意知f ′⎝⎛⎭⎫13=0,即13+2a3-3=0, ∴a =4.∴f (x )=x 3+4x 2-3x .若函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点,即方程x 3+4x 2-3x =bx 恰有3个不等实根.∵x =0是其中一个根,∴方程x 2+4x -(3+b )=0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16+4(3+b )>0,-(3+b )≠0.∴b >-7,且b ≠-3.∴满足条件的b 存在,其取值范围是(-7,-3)∪(-3,+∞). 18.解:(1)由a n +1=12-a n 可得a 2=12-a 1=12-a ,a 3=12-a 2=12-12-a =2-a3-2a,a 4=12-a 3=12-2-a 3-2a=3-2a 4-3a . (2)推测a n =(n -1)-(n -2)an -(n -1)a.下面用数学归纳法证明:①当n =1时,左边=a 1=a , 右边=(1-1)-(1-2)a 1-(1-1)a=a ,结论成立.②假设n =k 时等式成立,有a k =(k -1)-(k -2)ak -(k -1)a ,则当n =k +1时, a k +1=12-a k=12-(k -1)-(k -2)a k -(k -1)a=k -(k -1)a2[k -(k -1)a ]-[(k -1)-(k -2)a ]=k -(k -1)a(k +1)-ka.故当n =k +1时,结论也成立. 由①②可知,对任何n ∈N *都有a n =(n -1)-(n -2)a n -(n -1)a.。
最新人教版高中数学选修2-2综合测试题及答案2套
最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。
第一象限B。
第二象限C。
第三象限D。
第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。
答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。
10B。
5/3C。
-1D。
-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。
A。
①②③B。
①③C。
①D。
②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。
答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。
极大值5,极小值-27B。
极大值5,极小值-11C。
极大值5,无极小值D。
极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。
答案:C5.函数y=4x^2+1/x的单调递增区间是()A。
(0,+∞)B。
(-∞,1)C。
(1,2)D。
(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。
高中数学选修2-2同步练习题库:定积分的简单应用(填空题:容易)
定积分的简单应用(填空题:容易)1、若,则实数的值是 .2、由曲线所围成的封闭图形的面积为________3、如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为___________.4、已知,则函数的单调递减区间是______.5、定积分的值为.6、_____________.7、曲线与直线及所围成的封闭图形的面积为 .8、曲线与所围成的封闭图形的面积s=9、已知,则.10、曲线和曲线围成的图形面积是11、的值等于 .12、曲线与直线围成的封闭图形的面积是 .13、在平面直角坐标系内,由曲线所围成的封闭图形的面积为.14、二项式的展开式的第二项的系数为,则的值为.15、.16、由直线与曲线所围成的封闭图形的面积为______________.17、定积分.18、计算定积分:.19、已知函数,则。
20、= .21、计算= .22、计算:= .23、等于.24、________.25、定积分___________;26、=。
27、求曲线,所围成图形的面积.28、由曲线,直线所围图形面积S= .29、定积分= .30、定积分的值为____________.31、计算定积分(x2+sinx)dx=.32、求曲线y=,y=2-x,y=-x所围成图形的面积为_______。
33、已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为________.34、dx + .35、曲线=x与y=围成的图形的面积为______________.36、=________________。
37、设.若曲线与直线所围成封闭图形的面积为,则______.38、一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为焦.39、由直线,,曲线及轴所围成的图形的面积是.40、计算定积分 .41、已知求 .42、曲线与直线所围成的封闭图形的面积为.43、在的展开式中的常数项为p,则 .44、设=,则二项式展开式中含项的系数是。
高中数学人教B版选修2-2《复数概念》课时习题含答案
《复数的概念》40分钟课时习题含答案一、单选题1.22,13,i i i i --中是虚数的有( )个A .1B .2C .3D .42.复数21i -的虚部为( )A .1B .1-C .2iD .23.若复数z =a +i 的实部与虚部相等,则实数a =( )A .-1B .1C .-2D .24.以2i +2i 2的实部为虚部的新复数是( )A .2-2iB .2+iC D 5.若a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a −bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .-17.下列说法正确的是( )A .如果两个复数的实部的差与虚部的差都等于0,那么这两个复数相等B .ai 是纯虚数(a ∈R)C .如果复数x +yi (x,y ∈R)是实数,则x =0且y =0D .复数a +bi (a,b ∈R)不是实数8.若(x +y )i =x -1(x ,y ∈R ),则2x +y 的值为( )A.12B .2C .0D .1 9.以复数)(24R m mi ∈+-的实部为首项。
虚部系数为公差的等差数列,当且仅当n=10时,其前n 项和最小,则m 的取值范围是( )A 512>m B.38512≤<m C.38512<≤m D.38512<<m二、填空题10.已知集合M ={1,2,(a 2-3a -1)+(a 2-5a -6)i},N ={-1,3},若M ∩N ={3},则实数a =________.11.设z 1=m 2+1+(m 2+m -2)i ,z 2=4m +2+(m 2-5m +4)i ,若z 1<z 2,则实数m 的取值范围为 .12.=--=θθθ是纯虚数,则若复数)2cos 1(2sin i z三、解答题13.已知复数z =+(a 2-5a -6)i (a ∈R).实数a 取什么值时,z 是(1)实数? (2)虚数? (3)纯虚数?参考答案一、选择题1.C【解析】22,13,1i i i i --=-中是虚数的有2,13i i i --三个,选C. 2.D【解析】复数2112i i -=-+的虚部为2,选D.3.B【解析】由于复数z =a +i 的实部与虚部分别为,1a ,故由题设可得1a =,应选答案B . 4.A【解析】∵2i 2+2i 2的实部为-2,∴所求复数为2-2i.5.B【解析】ab =0时,a =0或b =0,复数a -bi 为纯虚数时,a =0且b≠0,那么“ab =0”是“复数a -bi 为纯虚数”的必要不充分条件,故选B.6.B【解析】由得12a =或,且101a a -≠≠得,2a ∴=.7.A【解析】两个复数相等的充要条件是这两个复数的实部与虚部分别相等,即它们的实部的差与虚部的差都为0,故A 正确;B 中当a =0时,ai 是实数0;C 中x +yi 是实数,只需y =0就可以了;D 中当b =0时,复数a +bi 为实数.8.D[解析] 由复数相等的充要条件知,⎩⎪⎨⎪⎧ x +y =0,x -1=0,解得⎩⎪⎨⎪⎧ x =1,y =-1,∴x +y =0.∴2x +y =20=1. 9.D【解析】由题意,等差数列{}n a 的首项241-=a ,公差d=m,由当且仅当n=10时其前n 项和最小,知01024,09241110>+-=<+-=m a m a 。
高中数学选修2-2模块综合测试题
高中数学选修2-2模块综合测试题一、选择题1、函数2x y =在区间]2,1[上的平均变化率为( ) (A )2 (B )3 (B )4 (D )5 答案:(B )2曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( ) (A )38 (B )37 (C )35 (D )34答案:(A );3、已知直线kx y =是x y ln =的切线,则k 的值为( ) (A )e 1 (B )e 1- (C )e 2 (D )e2- 答案:(A )4、设ai b bi a ++,,1是一等比数列的连续三项,则b a ,的值分别为( )(A )21,23±=±=b a (B )23,21=-=b a(C )21,23=±=b a (D )23,21-=-=b a 答案:(C );由⎪⎪⎩⎪⎪⎨⎧=±=⇒⎩⎨⎧==-⇒+=+21232)(222b a a ab b b a bi a ai b 5、方程)(04)4(2R a ai x i x ∈=++++有实根b ,且bi a z +=,则=z ( ) (A )i 22- (B )i22+ (C )i 22+- (D )i 22--答案:(A );由⎩⎨⎧=-=⇒⎩⎨⎧=+=++220442a b a b b b ,则i z 22-= 6、已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=r c b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R 。
类比三角形的面积可得四面体的体积为( )(A )R s s s s V )(214321+++=(B )R s s s s V )(314321+++=(C )R s s s s V )(414321+++=(D )R s s s s V )(4321+++= 答案:(B )7、数列Λ,4,4,4,4,3,3,3,2,2,1的第50项是( )(A )8 (B )9 (C )10 (D )11 答案:(C )8、在证明12)(+=x x f 为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数12)(+=x x f 满足增函数的定义是小前提;④函数12)(+=x x f 满足增函数的定义是大前提;其中正确的命题是( )(A )①② (B )②④ (C )①③ (D )②③ 答案:(C )9、若R b a ∈,,则复数i b b a a )62()54(22-+-++-表示的点在( ) (A )在第一象限 (B )在第二象限 (C )在第三象限 (D )在第四象限答案:(D );由01)2(5422>+-=+-a a a ,05)1(6222<---=-+-b b b ,知在第四象限;10、用数学归纳法证明不等式“)2(2413212111>>+++++n n n n Λ”时的过程中,由k n =到1+=k n 时,不等式的左边( )(A )增加了一项)1(21+k (B )增加了两项)1(21121+++k k (C )增加了两项)1(21121+++k k ,又减少了11+k ; (D )增加了一项)1(21+k ,又减少了一项11+k ;答案:(C );11、如图是函数d cx bx x x f +++=23)(的大致 图象,则2221x x +等于( ) (A )32 (B )34(C )38 (D)312 答案:(C );提示,由图象过)0,2(),0,1(),0,0(知)2)(1()(--=x x x x f 经比较可得0,2,3==-=d c b ,即x x x x f 23)(23+-=,由263)(2/+-=x x x f 得⎪⎩⎪⎨⎧==+3222121x x x x ;12、对于函数233)(x x x f -=,给出下列四个命题:①)(x f 是增函数,无极值;②)(x f 是减函数,有极值;③)(x f 在区间]0,(-∞及),2[+∞上是增函数;④)(x f 有极大值为0,极小值4-;其中正确命题的个数为( )(A )1 (B )2(C )3 (D )4答案:(B );其中命题③与命题④是正确的。
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
高中数学选修2-2综合测试题与答案.doc
选修 2-2 综合测试题2一、选择题1.在数学归纳法证明“1 a a2an 1 a n 1(a,N ) ”时,验证当 n1时,等式的左1 n1 a边为( )A. 1B. 1aC. 1 aD. 1 a22.已知三次函数f ( x)1 x 3 (4 m 1)x 2(15m22m7) x 2 在 x ( ∞ , ∞ ) 上是增函数,则 m 的3取值范围为( )A. m 2 或 m4B. 4 m2C. 2 m 4 D.以上皆不正确3.设 f ( x)( axb)sin x(cxd )cos x ,若 f ( x) x cosx ,则 a , b , c , d 的值分别为( )A. 1,1,0, 0B. 1,0,1,0C. 0,1,0,1D. 1,0,0,14.已知抛物线 y ax2 bx c 通过点 P(11), ,且在点 Q(2, 1) 处的切线平行于直线 yx 3,则抛物线方程为( )A. y 3x211x 9B. y3x211x9C. y 3x211x 9D. y3x 2 11x92a n ,0≤ a n ≤1,26,则 a 2004 的值为(5.数列 a n满足 a n 11若 a 1)2a ≤ a n,7n,112A.6B. 5C.3D.177776.已知 a , b 是不相等的正数,x a b, ya b ,则 x , y 的关系是()2A. x yB. yxC. x2 yD.不确定7.复数 zm 2i( m R) 不可能在()1 2iA.第一象限B.第二象限C.第三象限D.第四象限8.定义A B,B C, C D, D A 的运算分别对应下图中的(1),(2),(3),(4),那么,图中(A),(B)可能是下列()的运算的结果A. B D,A DB.B D,A CC.B C,A DD.C D,A D- 1 -9.用反证法证明命题“a, b N ,如果 ab 可被5整除,那么 a , b 至少有1个能被5整除.”则假设的内容是()A. a , b 都能被5整除B. a , b 都不能被 5 整除C. a 不能被5整除D. a , b 有 1 个不能被 5 整除10.下列说法正确的是()A.函数C.函数y x 有极大值,但无极小值B.函数y x 既有极大值又有极小值D.函数y x 有极小值,但无极大值y x 无极值11.对于两个复数 1 3 i , 1 3 i,有下列四个结论:① 1 ;② 1 ;③ 1 ;2 2 2 2④33 1).其中正确的个数为(A. 1 B. 2 C. 3 D. 412.设f ( x)在[ a,b]上连续,则 f ( x)在[ a,b]上的平均值是()A. f ( a) B. b C.1D.f (b) f (x)dx b f ( x) dx 1 b f ( x)dx2 a 2 a b a a二、填空题13.若复数z log2( x23x 3) i log 2 ( x 3) 为实数,则x 的值为.14.一同学在电脑中打出如下图形(○表示空心圆,●表示实心圆)○●○○●○○○●○○○○●若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2006 年圆中有实心圆的个数为.15.函数f ( x) ax36ax 2b(a0) 在区间 [ 1,2] 上的最大值为,最小值为29 ,则 a , b 的值分3别为.16.由y2 4 x 与直线 y 2 x 4 所围成图形的面积为.三、解答题n n17.设n N且sin x cos x 1 ,求 sin x cos x 的值.(先观察 n 1,2,3,4 时的值,归纳猜测sin n x cos n x 的值.)18.设关于x的方程x2(tan i ) x (2 i)0 ,(1)若方程有实数根,求锐角和实数根;- 2 -(2)证明:对任意πkπ (k Z ) ,方程无纯虚数根.219.设t0 ,点 P(t,0) 是函数 f (x) x 3ax 与 g( x) bx 2 c 的图象的一个公共点,两函数的图象在点 P 处有相同的切线.(1)用t表示a,b,c;( 2)若函数y f (x) g ( x)在( 1,3)上单调递减,求 t 的取值范围.20.下列命题是真命题,还是假命题,用分析法证明你的结论.命题:若 a b c,且 a b c0 ,则 b 2 ac3 .a21.某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为k(k0) ,且知当利率为0.012 时,存款量为 1.44 亿;又贷款的利率为 4.8% 时,银行吸收的存款能全部放贷出去;若设存款的利率为x , x (0 ,0.048) ,则当 x 为多少时,银行可获得最大收益?22.已知函数 f ( x)x,数列 a n 满足 a1 f ( x) , a n 1f (a n ) .( x 0)1 x2(1)求a2,a3,a4;(2)猜想数列an的通项,并予以证明.参考答案一、选择题: CCDAC,BABBBD二、填空题: 13、4, 14 、61, 15 、 2,3 16、917、解:当n 1 时, sin x cosx 1 ;当 n 2 时,有 sin 2 x cos 2 x 1 ;当 n 3 时,有 sin 3 x cos 3 x (sin x cos x)(sin 2 x cos 2 x sin xcos x) ,而 sin x cos x 1 ,∴1 2sin x cos x 1 , sin xcos x 0 .∴ sin3 x cos 3 x1 .当 n 4 时,有 sin 4 x cos 4 x (sin 2 x cos2 x) 2 2sin 2 xcos 2 x 1 .由以上可以猜测,当n N时,可能有sin n x cos n x( 1) n成立.18、解:( 1)设实数根为a,则a2(tan i )a (2 i ) 0 ,即(a2a tan2) (a1)i 0 .R ,那么a 2 ,a , a 1,由于 a , tan a tan tan 2 0 .又 0 π,得πa 1 1 tan 1 2 .4- 3 -(2)若有纯虚数根i(R ) ,使 ( i) 2 (tan)(i ) i (2 ) i 0 ,即 ( 2 2) ( tan 1) i0 ,22 ,由, tan R ,那么,0 由于2 2 0 无实数解.tan 1 0故对任意πZ ) ,方程无纯虚数根kπ (k219、解:( 1)因为函数 f ( x) , g (x) 的图象都过点 (t,0) ,所以 f (t ) 0 ,即 t 3 at 0 .因为 t 0 ,所以 a t 2.g (t ) 0 ,即 bt 2 c 0 ,所以 c ab .又因为 f ( x) , g (x) 在点 (t,0) 处有相同的切线,所以 f (t )g (t ) ,而 f ( x) 3x 2 a , g (x)2bx ,所以 3t 2 a 2bt .将 a t 2代入上式得 b t .因此c ab t 3.故a t2, b t , c t 3.(2)y f (x)g (x) x3t 2 x tx 2t 3, y3x22tx t 2(3 x t )( x t ) .当 y(3x t )( x t) 0 时,函数 y f ( x) g (x) 单调递减.由 y 0 ,若 t 0 ,则tt ;x3若 t 0 ,则 t x t .3,t( 1,3) t ,( 13),由题意,函数 y f ( x) g (x) 在 ( 1,3) 上单调递减,则 3 t或t 3.所以 t ≤9 或 t ≥ 3 .又当 9 t 3时,函数y f (x) g( x)在( 1,3)上不是单调递减的.所以 t 的取值范围为∞, 9 3,∞.20、解:此命题是真命题.∵ a b c 0 , a b c ,∴ a0 , c 0 .b 2ac 2 2 2 2 2要证a3 成立,只需证bac 3a ,即证 b ac 3a ,也就是证 ( a c) ac 3a ,即证 ( a c)(2 a c) 0 .∵ a c 0 , 2a c ( a c)a b a 0 ,∴ (a c)(2 ac) 0 成立,故原不等式成立.21、解:由题意,存款量 f (x) kx2,又当利率为0.012 时,存款量为 1.44 亿,即x 0.012 时,;由2,得,那么 2 ,银行应支付的利息y 1.44 1 . 4 4 k ·(0.012) k 10000 f ( x)1 0 0 0x 0g (x) x·f (x) 10000x 3 ,- 4 -设银行可获收益为 y ,则 y480x 2 10000x 3,由于 y960x 30000x 2,则 y0 ,即 960x30000x20 ,得 x 0 或 x 0.032 .因为, x(0,0.032) 时, y0 ,此时,函数y480x 2 10000x 3递增;x (0.032 , 0.048) 时, y 0 ,此时,函数y480x 2 10000x 3递减;故当 x 0.032 时, y 有最大值,其值约为0.164亿.axx22、解:( 1)由 a 12, f (x) ,得 a 2f (a 1 )1a21 x1 2 x 2 1211xx21x a 3 f (a 2 )a 2 a 21 2 x21221x2x 21xa 3 1 3x2a 4 f (a 3 )a 21231x3x 21x13x 2 x14x2,.(2)猜想: a nxN ) ,(n1 nx2证明:( 1)当 n 1 时,结论显然成立;(2)假设当 nk 时,结论成立,即 a kx ;kx 21x那么,当 n k 1 时,由 a k 1f (a k )1 kx2x,1x 2 1 (k1)x2kx 21这就是说,当 nk1 时,结论成立;由( 1),( 2)可知, a nx 对于一切自然数 n( nN ) 都成立.1 nx 2- 5 -。
(完整版)人教版高中数学选修2-2课后习题参考答案(可编辑修改word版)
3V 34新课程标准数学选修 2—2 第一章课后习题解答第一章 导数及其应用 3.1 变化率与导数练习(P6)在第 3 h 和 5 h 时,原油温度的瞬时变化率分别为-1和 3. 它说明在第 3 h 附近,原 油温度大约以 1 ℃/h 的速度下降;在第 5 h 时,原油温度大约以 3 ℃/h 的速率上升. 练习(P8)函数h (t ) 在t = t 3 附近单调递增,在t = t 4 附近单调递增. 并且,函数h (t ) 在t 4 附近比在t 3 附近增加得慢. 说明:体会“以直代曲”1 的思想.练习(P9)函数r (V ) = (0 ≤ V ≤ 5) 的图象为根据图象,估算出r '(0.6) ≈ 0.3 , r '(1.2) ≈ 0.2 .说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题 1.1 A 组(P10)1、在t 处,虽然W (t ) = W (t ) ,然而W 1 (t 0 ) -W 1 (t 0 - ∆t ) ≥ W 2 (t 0 ) -W 2 (t 0 - ∆t ) .0 1 0 2 0-∆t -∆t所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、 ∆h = h (1+ ∆t ) - h (1) = -4.9∆t - 3.3 ,所以, h '(1) = -3.3 .∆t ∆t这说明运动员在t = 1s 附近以 3.3 m /s 的速度下降.3、物体在第 5 s 的瞬时速度就是函数 s (t ) 在t = 5 时的导数.∆s = s (5 + ∆t ) - s (5) = ∆t +10 ,所以, s '(5) = 10 . ∆t ∆tt 因 此 , 物 体 在 第 5 s 时 的 瞬 时 速 度 为 10 m / s , 它 在 第 5 s 的 动 能 E = 1⨯ 3⨯102 = 150 J. k24、设车轮转动的角度为,时间为t ,则= kt 2 (t > 0) . 由题意可知,当t = 0.8 时,= 2. 所以k =25,于是= 25 2. 88车轮转动开始后第 3.2 s 时的瞬时角速度就是函数(t ) 在t = 3.2 时的导数. ∆=(3.2 + ∆t ) -(3.2) = 25∆t + 20,所以'(3.2) = 20.∆t∆t8因此,车轮在开始转动后第 3.2 s 时的瞬时角速度为20s -1 .说明:第 2,3,4 题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数 f (x ) 在 x = -5 处切线的斜率大于零,所以函数在 x = -5 附近单调递增. 同理可得,函数 f (x ) 在 x = -4 , -2 ,0,2 附近分别单调递增,几乎没有变化,单调递减,单调递减.说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数 f '(x )的图象如图(1)所示;第二个函数的导数 f '(x ) 恒大于零,并且随着 x 的增加, f '(x )的值也在增加;对于第三个函数,当 x 小于零时, f '(x ) 小于零,当 x 大于零时,f '(x ) 大于零,并且随着 x 的增加, f '(x ) 的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系.习题 3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻 画的是速度变化的快慢,根据物理知识,这个量就是加速度.1 2 x -11 33 4V 23 2、说明:由给出的v (t ) 的信息获得 s (t ) 的相关信息,并据此画出 s (t ) 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数 f (x ) 的图象在点(1, -5) 处的切线斜率为-1,所以此点 附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2 导数的计算练习(P18)1、 f '(x ) = 2x - 7 ,所以, f '(2) = -3 , f '(6) = 5 .2、(1) y ' = 1x l n 2;(2) y ' = 2e x ;(3) y ' = 10x 4 - 6x ;(4) y ' = -3sin x - 4 cos x ;(5) y ' = - 1 sin x;(6) y ' =.3 3习题 1.2 A 组(P18)1、 ∆S = S (r + ∆r ) - S (r ) = 2r + ∆r ,所以, S '(r ) = lim(2r + ∆r ) = 2r .∆r ∆r∆r →02、h '(t ) = -9.8t + 6.5 .3、r '(V ) =.2 x =0 4、(1) y ' = 3x 2 +1x l n 2; (2) y ' = nx n -1e x + x n e x ;(3) y ' 3x 2 sin x - x 3 cos x + cos x sin 2x; (4) y = 99(x +1)98;(5) y ' = -2e -x ;(6) y ' = 2 s in(2x + 5) + 4x cos(2x + 5) .5、 f '(x ) = -8 + 2 2x . 由 f '(x 0 ) = 4 有 4 = -8 + 2 2x 0 ,解得 x 0 = 3 .6、(1) y ' = ln x +1; (2) y = x -1.7 、 y = - x +1.8、(1)氨气的散发速度 A '(t ) = 500 ⨯ln 0.834 ⨯ 0.834t .(2) A '(7) = -25.5 ,它表示氨气在第 7 天左右时,以 25.5 克/天的速率减少. 习题 1.2 B 组(P19) 1、(1)(2) 当h 越来越小时, y =sin(x + h ) - sin x就越来越逼近函数 y = cos x .h(3) y = sin x 的导数为 y = cos x .2、当 y = 0 时, x = 0 . 所以函数图象与 x 轴交于点 P (0, 0) .y ' = -e x ,所以 y ' = -1 .所以,曲线在点 P 处的切线的方程为 y = -x .2、d '(t ) = -4 sin t . 所以,上午 6:00 时潮水的速度为-0.42 m /h ;上午 9:00 时潮水 的速度为-0.63 m /h ;中午 12:00 时潮水的速度为-0.83 m /h ;下午 6:00 时潮水的速度为-1.24 m /h.1.3 导数在研究函数中的应用练习(P26)1、(1)因为 f (x ) = x 2 - 2x + 4 ,所以 f '(x ) = 2x - 2 .当 f '(x ) > 0 ,即 x > 1 时,函数 f (x ) = x 2 - 2x + 4 单调递增;= '当 f '(x ) < 0 ,即 x < 1时,函数 f (x ) = x 2 - 2x + 4 单调递减.(2)因为 f (x ) = e x - x ,所以 f '(x ) = e x -1.当 f '(x ) > 0 ,即 x > 0 时,函数 f (x ) = e x - x 单调递增; 当 f '(x ) < 0 ,即 x < 0 时,函数 f (x ) = e x - x 单调递减. (3)因为 f (x ) = 3x - x 3 ,所以 f '(x ) = 3 - 3x 2 .当 f '(x ) > 0 ,即-1 < x < 1时,函数 f (x ) = 3x - x 3 单调递增; 当 f '(x ) < 0 ,即 x < -1或 x > 1 时,函数 f (x ) = 3x - x 3 单调递减. (4)因为 f (x ) = x 3 - x 2 - x ,所以 f '(x ) = 3x 2 - 2x -1.当 f '(x ) > 0 ,即 x < - 1或 x > 1 时,函数 f (x ) = x 3 - x 2 - x 单调递增;3 当 f '(x ) < 0 ,即- 1< x < 1 时,函数 f (x ) = x 3 - x 2 - x 单调递减.32、注:图象形状不唯一.3、因为 f (x ) = ax 2 + bx + c (a ≠ 0) ,所以 f '(x ) = 2ax + b .(1)当a > 0 时,f '(x ) > 0 ,即 x > - b2a f '(x ) < 0 ,即 x < - b2a(2)当a < 0 时,f '(x ) > 0 ,即 x < - b 2a f '(x ) < 0 ,即 x > - b2a时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递增;时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递减.时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递增;时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递减.4、证明:因为 f (x ) = 2x 3 - 6x 2 + 7 ,所以 f '(x ) = 6x 2 -12x .当 x ∈(0, 2) 时, f '(x ) = 6x 2 -12x < 0 ,因此函数 f (x ) = 2x 3 - 6x 2 + 7 在(0, 2) 内是减函数.练习(P29)1、 x 2 , x 4 是函数 y = f (x ) 的极值点,1 1 其中 x = x2 是函数 y = f (x ) 的极大值点, x = x 4 是函数 y = f (x ) 的极小值点.2、(1)因为 f (x ) = 6x 2 - x - 2 ,所以 f '(x ) = 12x -1 .令 f '(x ) = 12x -1 = 0 ,得 x =1.12调递减.当 x >1时, f '(x ) > 0 , f (x ) 单调递增;当 x < 112 12时, f '(x ) < 0 , f (x ) 单 所 以 , 当x = 1时 , 12f (x ) 有 极 小 值 , 并 且 极 小 值 为f ( ) = 6 ⨯( )2 - 1 - 2 = - 49. 12 12 12 24(2)因为 f (x ) = x 3 - 27x ,所以 f '(x ) = 3x 2 - 27 .令 f '(x ) = 3x 2 - 27 = 0 ,得 x = ±3 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即 x < -3 或 x > 3 时;②当 f '(x ) < 0 ,即-3 < x < 3 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:因此,当 x = -3 时, f (x ) 有极大值,并且极大值为 54; 当 x = 3 时, f (x ) 有极小值,并且极小值为-54 . (3)因为 f (x ) = 6 +12x - x 3 ,所以 f '(x ) = 12 - 3x 2 .令 f '(x ) = 12 - 3x 2 = 0 ,得 x= ±2 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即-2 < x < 2 时;②当 f '(x ) < 0 ,即 x < -2 或 x > 2 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:=-因此,当x =-2 时,f (x) 有极小值,并且极小值为-10 ;当x = 2 时,f (x) 有极大值,并且极大值为22(4)因为 f (x) = 3x -x3,所以 f '(x) = 3 - 3x2.令 f '(x) = 3 - 3x2= 0 ,得 x =±1 .下面分两种情况讨论:①当f '(x) > 0 ,即-1 <x < 1时;②当f '(x) < 0 ,即x <-1或x > 1 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当x =-1 时,f (x) 有极小值,并且极小值为-2 ;当x = 1 时,f (x) 有极大值,并且极大值为2练习(P31)(1)在[0, 2] 上, 当 x =1 49f ( ) .12 24 1 时,12f (x) = 6x2-x - 2 有极小值,并且极小值为又由于 f (0) =-2 , f (2) = 20 .因此,函数 f (x) = 6x2-x - 2 在[0, 2] 上的最大值是 20、最小值是-49.24(2)在[-4, 4] 上,当 x =-3 时, f (x) =x3- 27x 有极大值,并且极大值为 f (-3) = 54 ;当x = 3 时, f (x) =x3- 27x 有极小值,并且极小值为 f (3) =-54 ;又由于 f (-4) = 44 , f (4) =-44 .(0, ) ,所以 f (x )因此,函数 f (x ) = x 3 - 27x 在[-4, 4] 上的最大值是 54、最小值是-54 .( 3) 在[- 1, 3] 上, 当 x = 2 时, 3f (x ) = 6 +12x - x 3 有极大值, 并且极大值为f (2) = 22 .又由于 f (- 1) = 55, f (3) = 15 .3 27因此,函数 f (x ) = 6 +12x - x 3 在[- 1 , 3] 上的最大值是 22、最小值是 55.3 27(4)在[2, 3] 上,函数 f (x ) = 3x - x 3 无极值.因为 f (2) = -2 , f (3) = -18 .因此,函数 f (x ) = 3x - x 3 在[2, 3] 上的最大值是-2 、最小值是-18 . 习题 1.3 A 组(P31)1、(1)因为 f (x ) = -2x +1,所以 f '(x ) = -2 < 0 .因此,函数 f (x ) = -2x +1是单调递减函数.(2)因为 f (x ) = x + cos x , x ∈ ' = 1- sin x > 0 , x ∈ 2(0, ) . 2 因此,函数 f (x ) = x + cos x 在 (0, ) 上是单调递增函数. 2(3)因为 f (x ) = -2x - 4 ,所以 f '(x ) = -2 < 0 .因此,函数 f (x ) = 2x - 4 是单调递减函数.(4)因为 f (x ) = 2x 3 + 4x ,所以 f '(x ) = 6x 2 + 4 > 0 .因此,函数 f (x ) = 2x 3 + 4x 是单调递增函数.2、(1)因为 f (x ) = x 2 + 2x - 4 ,所以 f '(x ) = 2x + 2 .当 f '(x ) > 0 ,即 x > -1 时,函数 f (x ) = x 2 + 2x - 4 单调递增.当 f '(x ) < 0 ,即 x < -1时,函数 f (x ) = x 2 + 2x - 4 单调递减.(2)因为 f (x ) = 2x 2 - 3x + 3 ,所以 f '(x ) = 4x - 3 .当 f '(x ) > 0 ,即 x > 3时,函数 f (x ) = 2x 2 - 3x + 3 单调递增.4当 f '(x ) < 0 ,即 x < 3时,函数 f (x ) = 2x 2 - 3x + 3 单调递减.4(3)因为 f (x ) = 3x + x 3 ,所以 f '(x ) = 3 + 3x 2 > 0 .因此,函数 f (x ) = 3x + x 3 是单调递增函数.(4)因为 f (x ) = x 3 + x 2 - x ,所以 f '(x ) = 3x 2 + 2x -1.当 f '(x ) > 0 ,即 x < -1或 x > 1时,函数 f (x ) = x 3 + x 2 - x 单调递增.3 当 f '(x ) < 0 ,即-1 < x < 1时,函数 f (x ) = x 3 + x 2 - x 单调递减.33、(1)图略. (2)加速度等于 0.4、(1)在 x = x 2 处,导函数 y = f '(x ) 有极大值;(2) 在 x = x 1 和 x = x 4 处,导函数 y = f '(x ) 有极小值;(3) 在 x = x 3 处,函数 y =(4) 在 x = x 5 处,函数 y = f (x ) 有极大值;f (x ) 有极小值.5、(1)因为 f (x ) = 6x 2 + x + 2 ,所以 f '(x ) = 12x +1.令 f '(x ) = 12x +1 = 0 ,得 x = - 1.12当 x > - 112 当 x < - 112时, f '(x ) > 0 , f (x ) 单调递增;时, f '(x ) < 0 , f (x ) 单调递减.所 以 ,x = - 1 时 , 12f (x ) 有 极 小 值 , 并 且 极 小 值 为 f (- 1 ) = 6 ⨯(- 1 )2 - 1 - 2 = - 49 .12 12 12 24(2)因为 f (x ) = x 3 -12x ,所以 f '(x ) = 3x 2 -12 .令 f '(x ) = 3x 2 -12 = 0 ,得 x = ±2 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即 x < -2 或 x > 2 时;②当 f '(x ) < 0 ,即-2 < x < 2 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:因此,当 x =-2 时, f (x) 有极大值,并且极大值为 16;当x = 2 时, f (x) 有极小值,并且极小值为-16 .(3)因为 f (x) = 6 -12x +x3,所以 f '(x) =-12 + 3x2.令 f '(x) =-12 + 3x2= 0 ,得 x =±2 .下面分两种情况讨论:①当f '(x) > 0 ,即x <-2 或x > 2 时;②当f '(x) < 0 ,即-2 <x < 2 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当 x =-2 时, f (x) 有极大值,并且极大值为 22;当x = 2 时, f (x) 有极小值,并且极小值为-10 .(4)因为 f (x) = 48x -x3,所以 f '(x) = 48 - 3x2.令 f '(x) = 48 - 3x2= 0 ,得 x =±4 .下面分两种情况讨论:①当f '(x) > 0 ,即x <-2 或x > 2 时;②当f '(x) < 0 ,即-2 <x < 2 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当x =-4 时,f (x) 有极小值,并且极小值为-128 ;当x = 4 时,f (x) 有极大值,并且极大值为128.6、(1)在[-1,1] 上,当 x =-112时,函数f (x) = 6x2+x + 2 有极小值,并且极小值为47.24由于f (-1) = 7 ,f (1) = 9 ,所以,函数f (x) = 6x2+x + 2 在[-1,1] 上的最大值和最小值分别为9,47.24(2)在[-3, 3] 上,当 x =-2 时,函数 f (x) =x3-12x 有极大值,并且极大值为 16; 当x = 2 时,函数 f (x) =x3-12x 有极小值,并且极小值为-16 .由于f (-3) = 9 ,f (3) =-9 ,所以,函数 f (x) =x3-12x 在[-3, 3] 上的最大值和最小值分别为 16, -16 .(3)在[-1,1] 上,函数f (x) = 6 -12x +x3在[-1,1] 上无极值.3 3由于f (-1) =269,f (1) =-5 ,3 27所以,函数f (x) = 6 -12x +x3在[-1,1] 上的最大值和最小值分别为269,-5 .3 27(4)当x = 4 时,f (x) 有极大值,并且极大值为128..由于f (-3) =-117 ,f (5) = 115 ,所以,函数 f (x) = 48x -x3在[-3, 5] 上的最大值和最小值分别为 128, -117 . 习题3.3 B 组(P32)1、(1)证明:设 f (x) = sin x -x ,x ∈(0,) .因为 f '(x) = cos x -1 < 0 , x ∈(0,)所以f (x) = sin x -x 在(0,) 内单调递减因此 f (x) = sin x -x <f (0) = 0 , x ∈(0,) , 即 sin x <x , x ∈(0,) . 图略(2)证明:设 f (x) =x -x2, x ∈(0,1) .因为 f '(x) = 1- 2x , x ∈(0,1)又1 1所以,当 x ∈1(0, )2时,f '(x) = 1- 2x > 0 ,f (x) 单调递增,f (x) =x -x2> f (0) = 0 ;当 x ∈1时,f '(x) = 1- 2x < 0 ,f (x) 单调递减,( ,1)2f (x) =x -x2> f (1) = 0 ;f ( ) => 0 . 因此, x -x22 4>0 ,x ∈(0,1) . (3)证明:设 f (x) =e x-1-x , x ≠ 0 .因为 f '(x) =e x-1, x ≠ 0所以,当x > 0 时,f '(x) =e x-1 > 0 ,f (x) 单调递增,f (x) =e x-1-x > f (0) = 0 ;当x < 0 时,f '(x) =e x-1 < 0 ,f (x) 单调递减,f (x) =e x-1-x >f (0) = 0 ;综上,e x-1 >x ,x ≠ 0 . 图略(4)证明:设 f (x) = ln x -x ,x > 0 .因为 f '(x) =1-1 ,x ≠ 0 x所以,当0 <x < 1时,f '(x) =1-1 > 0 ,f (x) 单调递增,xf (x) = ln x -x < f (1) =-1 < 0 ;当x > 1 时,f '(x) =1-1 < 0 ,f (x) 单调递减,xf (x) = ln x -x < f (1) =-1 < 0 ;当x =1 时,显然ln1 <1. 因此,ln x <x .由(3)可知, e x>x +1 >x , x > 0 .. 综上,ln x <x <e x,x > 0 图略2、(1)函数f (x) =ax3+bx2+cx +d 的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象图略( ) 上能大致估计它的单调区间.(2)因为 f (x ) = ax 3 + bx 2 + cx + d ,所以 f '(x ) = 3ax 2 + 2bx + c . 下面分类讨论:当a ≠ 0 时,分a > 0 和a < 0 两种情形: ①当a > 0 ,且b 2 - 3ac > 0 时,设方程 f '(x ) = 3ax 2 + 2bx + c = 0 的两根分别为 x , x ,且 x < x ,1212当 f '(x ) = 3ax 2 + 2bx + c > 0 ,即 x < x 或 x > x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单12调递增;当 f '(x ) = 3ax 2 + 2bx + c < 0 ,即 x < x < x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递减.12当a > 0 ,且b 2 - 3ac ≤ 0 时,此时 f '(x ) = 3ax 2 + 2bx + c ≥ 0 ,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递增.②当a < 0 ,且b 2 - 3ac > 0 时,设方程 f '(x ) = 3ax 2 + 2bx + c = 0 的两根分别为 x , x ,且 x < x ,1212当 f '(x ) = 3ax 2 + 2bx + c > 0 ,即 x < x < x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递12增;当 f '(x ) = 3ax 2 + 2bx + c < 0 ,即 x < x 或 x > x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单12调递减.当a < 0 ,且b 2 - 3ac ≤ 0 时,此时 f '(x ) = 3ax 2 + 2bx + c ≤ 0 ,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递减 1.4 生活中的优化问题举例习题 1.4 A 组(P37)1、设两段铁丝的长度分别为 x , l - x ,则这两个正方形的边长分别为 x , l - x,4 4两个正方形的面积和为 S = f (x ) = x 2 + (l - x )2 = 1 (2x 2- 2lx + l 2 ) , 0 < x < l .4 4 16 令 f '(x ) = 0 ,即4x - 2l = 0 , x = l.2当 x ∈ l (0, ) 2时, f '(x ) < 0 ;当 x ∈ l( , l ) 2 时, f '(x ) > 0 .因此, x = l是函数 f (x ) 的极小值点,也是最小值点.2V3 2 V321 ni 所以,当两段铁丝的长度分别是 l时,两个正方形的面积和最小.22、如图所示,由于在边长为a 的正方形铁片的四角截去四个边长为 x 的小正方形,做成一个无盖方盒,所以无盖方盒的底面为正方形,且边长为a - 2x ,高为 x .(1)无盖方盒的容积V (x ) = (a - 2x )2 x , 0 < x < a.2(2)因为V (x ) = 4x 3 - 4ax 2 + a 2 x ,所以V '(x ) = 12x 2 - 8ax + a 2 .令V '(x ) = 0 ,得 x = a (舍去),或 x = a.(第 2 题)当 x ∈ a (0, ) 6 2 时,V '(x ) > 0 ;当 x ∈ 6 a a( , ) 6 2 时,V '(x ) < 0 . 因此, x = a是函数V (x ) 的极大值点,也是最大值点.6 所以,当 x = a时,无盖方盒的容积最大.63、如图,设圆柱的高为h ,底半径为 R ,则表面积 S = 2Rh + 2R 2由V = R 2h ,得h =V .R 2因此, S (R ) = 2R2V V R 2 + 2R 2 = 2V + 2R 2 , R > 0 . R令 S '(R ) = - + 4R = 0 ,解得 R = .R当 R ∈(0, 3 V) 时, S '(R ) < 0 ;2当 R ∈( 3 V2, +∞) 时, S '(R ) > 0 .(第 3 题)因 此 , R =是 函 数 S (R ) 的 极 小 值 点 , 也 是 最 小 值 点 . 此 时 ,h = V R 2 = 23 V= 2R .2所以,当罐高与底面直径相等时,所用材料最省.n 4、证明:由于 f (x ) = ∑(x - a )2,所以 f '(x ) = 2 ∑(x - a ) .n i =1 n i =1i8a 4 + 令 f (x ) = 0 ,得 x = n ∑ = n ∑ n ∑ )x ' 1 na i =11 n可以得到, x a i是函数 f (x ) 的极小值点,也是最小值点.i =11 n这个结果说明,用 n 个数据的平均值 a i 表示这个物体的长度是合理i =1的,这就是最小二乘法的基本原理.5、设矩形的底宽为 x m ,则半圆的半径为 x 2m ,半圆的面积为x 2 8m 2 ,矩形的面积为a -x 2 8 m 2 ,矩形的另一边长为( a x - x ) m8因此铁丝的长为l (x ) =x + x + 2a - x = (1+ + 2a, 0 < x < 2 x 4 4 x令l '(x ) = 1+ - 4 2a = 0 ,得 x = x2(负值舍去).当 x ∈(0, ) 时, l '(x ) < 0 ;当 x ∈( 8a ,8a ) 时, l '(x ) > 0 .因此, x = 4 +是函数l (x ) 的极小值点,也是最小值点.所以,当底宽为m 时,所用材料最省.6、利润 L 等于收入 R 减去成本C ,而收入 R 等于产量乘单价. 由此可得出利润 L 与产量q 的函数关系式,再用导数求最大利润.收入 R = q ⋅ p = q (25 - 1 q ) = 25q - 1q 2 ,8 8 利润 L = R - C = (25q - 1 q 2 ) - (100 + 4q ) = - 1q 2 + 21q -100 , 0 < q < 200 .8 8求导得 L ' = - 1q + 214 令 L ' = 0 ,即- 1q + 21 = 0 , q = 84 .4当 q ∈(0,84) 时, L ' > 0 ;当 q ∈(84, 200) 时, L ' < 0 ;8a8a 4 + 8a4 + 8a4 +i ,n ∆ ( ) ⋅ + ⋅ ] 因此, q = 84 是函数 L 的极大值点,也是最大值点.所以,产量为 84 时,利润 L 最大,习题 1.4 B 组(P37)1、设每个房间每天的定价为 x 元,那么宾馆利润 L (x ) = (50 - x -180)(x - 20) = - 110 10令 L '(x ) = - 1x + 70 = 0 ,解得 x = 350 .5x 2 + 70x -1360 ,180 < x < 680 .当 x ∈(180, 350) 时, L '(x ) > 0 ;当 x ∈(350, 680) 时, L '(x ) > 0 .因此, x = 350 是函数 L (x ) 的极大值点,也是最大值点.所以,当每个房间每天的定价为 350 元时,宾馆利润最大. 2、设销售价为 x 元/件时,利润 L (x ) = (x - a )(c + c b - x ⨯ 4) = c (x - a )(5 - 4 x ) , a < x < 5b.b b 4令 L '(x ) = - 8c x + 4ac + 5bc = 0 ,解得 x = 4a + 5b.b b 8 当 x ∈(a , 4a + 5b ) 时, L '(x ) > 0 ;当 x ∈( 4a + 5b , 5b) 时, L '(x ) < 0 .8 8 4 当 x = 4a + 5b 是函数 L (x ) 的极大值点,也是最大值点.8所以,销售价为 4a + 5b元/件时,可获得最大利润.81.5 定积分的概念练习(P42) 8 . 3说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、∆s ≈ ∆s ' = v ( i )∆t = [-( i )2 + 2]⋅ 1 = -( i )2 ⋅ 1 + ⋅ 2, i = 1, 2, , n .i i n n n n n n于是 s = ∑ ∆s ≈ ∑ ∆s ' = ∑ i v ( ) ti =1 i ii =1 i =1n= ∑ i =1[- i 2 1 2n n n = - 1 2 1n -1 2 1 n 2 1( n ) ⋅ n- - ( ) ⋅ - ( ) n n n ⋅ + 2 n = - 1[1+ 22 + + n 2 ] + 2n 3nn n= ∑ i =1i =1i =1⎰ ∑a= - 1 ⋅ n (n +1)(2n +1) + 2 n 3 6 = - 1 (1+ 1 )(1+ 1) + 23 n 2n 取极值,得s = lim ∑ 1 i n[ v ( )] lim [- 1 (1+ 1 )(1+ 1 ) + 2] = 5n →∞ i =1 nn n →∞ i =1 3 n 2n 3 说明:进一步体会“以不变代变”和“逼近”的思想. 2、 22 km.3说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2x 3dx = 4 .说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线 y = x 3 与直线 x = 0 , x = 2 , y = 0 所围成的曲边梯形的面积 S = 4 . 习题 1.5 A 组(P50)2100i -1 1 1、(1) ⎰1 (x -1)dx ≈ ∑[(1+ 100 ) -1]⨯ 100 = 0.495 ; 2500i -1 1 (2) ⎰1 (x -1)dx ≈ ∑[(1+ 500) -1]⨯ 500 = 0.499 ; 21000i -1 1 (3) ⎰1 (x -1)dx ≈ ∑[(1+ 1000) -1]⨯ 1000 = 0.4995 . 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法. 2、距离的不足近似值为:18⨯1+12 ⨯1+ 7 ⨯1+ 3⨯1+ 0 ⨯1 = 40 (m ); 距离的过剩近似值为: 27 ⨯1+18⨯1+12 ⨯1+ 7 ⨯1+ 3⨯1 = 67 (m ). 3、证明:令 f (x ) = 1 . 用分点 a = x 0 < x 1 < < x i -1 < x i < < x n = b将区间[a , b ] 等分成 n 个小区间, 在每个小区间[x i -1 , x i ] 上任取一点i(i = 1, 2, , n )作和式∑ f (i )∆x = ∑ b - an = b - a , i =1bi =1nb - a 从而 1dx = lim n →∞i =1= b - a ,nnn n⎰1- x 2 1 ⎰⎰⎰⎰⎰⎰-1-1说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义, ⎰01- x 2 dx 表示由直线 x = 0 , x = 1 , y = 0 以及曲线y = 所围成的曲边梯形的面积, 即四分之一单位圆的面积, 因此 1- x 2 d x = . 0 4 5、(1) ⎰0 x 3dx = - 1 . -1 4由于在区间[-1, 0] 上 x 3≤ 0 ,所以定积分 0x 3dx 表示由直线 x = 0 , x = -1 , y = 0-1和曲线 y = x 3 所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得⎰1x 3dx = ⎰0x 3dx + ⎰1x 3dx = - 1 + 1= 0 .-1 -1 0 4 4由于在区间[-1, 0] 上 x 3 ≤ 0 ,在区间[0,1] 上 x 3≥ 0 ,所以定积分 1x 3dx 等于位于 x-1轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.(3)根据定积分的性质,得⎰2 x 3dx = ⎰0 x 3dx + ⎰2 x 3dx = - 1 + 4 = 15-1 -1 0 4 4由于在区间[-1, 0] 上 x 3 ≤ 0 ,在区间[0, 2] 上 x 3 ≥ 0 ,所以定积分 2x 3dx 等于位于 x-1轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.说明:在(3)中,由于 x 3 在区间[-1, 0] 上是非正的,在区间[0, 2] 上是非负的,如果直接利用定义把区间[-1, 2] 分成n 等份来求这个定积分,那么和式中既有正项又 有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质 3 可以将定积分 2x 3dx-1化为 0 x 3dx + 2x 3dx ,这样, x 3 在区间[-1, 0] 和区间[0, 2] 上的符号都是不变的,再-1利用定积分的定义,容易求出⎰0x 3dx , ⎰2x 3dx ,进而得到定积分⎰2x 3dx 的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题 1.5 B 组(P50)1、该物体在t = 0 到t = 6 (单位:s )之间走过的路程大约为 145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1) v = 9.81t .8 i 1 1 8⨯ 9(2)过剩近似值: ∑9.81⨯ ⨯ = 9.81⨯ ⨯ = 88.29 (m ); i =12 2 4 2 1⎰4 4∑ i l ∑ ∑ ∑ n8i -1 1 1 8⨯ 7不足近似值: ∑9.81⨯i =1⨯ = 9.81⨯ ⨯ 2 2 4 2 = 68.67 (m )(3) ⎰09.81tdt ; 3、(1)分割⎰09.81t d t = 78.48 (m ).在区间[0, l ] 上等间隔地插入n -1个分点,将它分成n 个小区间:l l 2l(n - 2)l [0, ] ,[ , ],……,[ , l ] , n n n n 记第i 个区间为[(i -1)l iln , n ] ( i = 1, 2, n ),其长度为 ∆x = il - (i -1)l = l .n n n 把细棒在小段 ll 2l(n - 2)l[0, ] ,[ , ],……,[ , l ] 上质量分别记作: n n n n∆m 1 , ∆m 2 , , ∆m n ,则细棒的质量m = ∑∆m i .i =1 (2) 近似代替当n 很大,即∆x 很小时,在小区间[(i -1)l , il] 上,可以认为线密度(x ) = x 2 n n的值变化很小, 近似地等于一个常数, 不妨认为它近似地等于任意一点 ∈[(i -1)l il处的函数值 () = 2. 于是, 细棒在小段 [(i -1)l il上质量 i , ] i i , ] n n n n∆m ≈ ()∆x = 2 l ( i = 1, 2, n ).i i i n(3) 求和得细棒的质量n nnm = ∆m ≈ ()∆x = 2. i ii n(4) 取极限i =1i =1nl2i =1l 2细棒的质量 m = limn →∞i =1n,所以m = ⎰0 x dx ..1.6 微积分基本定理练习(P55)(1)50;(2) 50 ;(3)4 2 - 5; (4)24; 33 3(5) 3 - ln 2 ; (6) 1 ;(7)0;(8) -2 .2 23 6 说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题 1.6 A 组(P55)1、(1) 40 ; (2) - 1- 3ln 2 ;(3) 9+ ln 3 - ln 2 ;3 (4) - 17 ;(5) 6232 82+1; (6) e 2- e - 2 ln 2 .说明:本题利用微积分基本定理和定积分的性质计算定积分.2、 3sin xdx = [-cos x ]3= 2 . ⎰0 它表示位于 x 轴上方的两个曲边梯形的面积与 x 轴下方的曲边梯形的面积之差. 或表述为:位于 x 轴上方的两个曲边梯形的面积(取正值)与 x 轴下方的曲边梯形的面积(取负值)的代数和. 习 题 1.6 B 组 (P55)1 e2 11 11、(1)原式=[ e 2x ]1 = - ;(2)原式=[ sin 2x ]4 = - ;2 0 2 22x 3 62 4 (3)原式=[ ln 2]1 = ln 2.2、(1) sin mxdx = [- cos mx ]= - 1[cos m - cos(-m )] = 0 ; ⎰-m - msin mx 1(2) cos mxdx = | = [sin m - sin(-m )] = 0 ;⎰-m - m(3) sin 2 mxdx = 1- cos 2mx dx = [ x - sin 2mx ]= ;⎰- ⎰- 2 2 4m - (4) cos 2mxdx = 1+ cos 2mx dx = [ x + sin 2mx ] = .⎰- ⎰- 2 2 4m -3、 ( 1) s (t ) = t g (1- e -kt )dt = g+ g e - kt ]t = g t + g e - kt - g = 49t + 245e -0.2t - 245 . ⎰0 k [ k t k2 0 k k 2 k 2(2)由题意得 49t + 245e -0.2t - 245 = 5000 .这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围.根据指数函数的性质,当t > 0 时, 0 < e -0.2t < 1 ,从而 5000 < 49t < 5245 ,因此, 5000 < t < 5245 .49 49因此245e-0.2⨯500049≈ 3.36 ⨯10-7 , 245e-0.2⨯524549≈ 1.24 ⨯10-7 ,所以,1.24 ⨯10-7 < 245e -0.2t < 3.36 ⨯10-7 .从而,在解方程49t + 245e -0.2t - 245 = 5000 时, 245e -0.2t 可以忽略不计.240 ⎰ ⎰= ⎰ 0a a 1]a 3因此,. 49t - 245 ≈ 5000 ,解之得 t ≈5245(s ).49说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7 定积分的简单应用练习(P58)(1) 32; (2)1.3说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程.练习(P59)52 51、 s = (2t + 3)dt = [t + 3t ] = 22 (m ).⎰3 2、W = ⎰0 (3x + 4)dx = [ 2 3x 2 + 4x ]4 = 40 (J ). 习题 1.7 A 组(P60)1、(1)2; (2) 9.2 2、W = ⎰b k q dr = [-q b = k q - k q.a r r a b3、令v (t ) = 0 ,即40 -10t = 0 . 解得t = 4 . 即第 4s 时物体达到最大高度.42 4最大高度为 h = (40 -10t )dt = [40t - 5t ] = 80 (m ).⎰4、设t s 后两物体相遇,则 0t(3t 2+1)dt = t10tdt + 5 , 0解之得t = 5 . 即 A , B 两物体 5s 后相遇.此时,物体 A 离出发地的距离为 5(3t 2 +1)dt = [t 3 + t ]5 = 130 (m ).⎰5、由 F = kl ,得10 = 0.01k . 解之得k = 1000 .所做的功为 0.1W1000ldl = 500l 2 |0.1= 5 (J ). 06、(1)令v (t ) = 5 - t + 551+ t= 0 ,解之得t = 10 . 因此,火车经过 10s 后完全停止.(2) s = (5 - t + 55 )dt = [5t - 1 t 2 + 55 ln(1+ t )]10 = 55 ln11(m ). ⎰1+ t2习题 1.7 B 组(P60)1、(1) ⎰- aa 2 - x 2 dx 表示圆 x 2 + y 2 = a 2 与 x 轴所围成的上半圆的面积,因此⎰- adx =a 22(2) ⎰[ - x ]dx 表示圆(x -1)2 + y 2 = 1与直线( 第 1( 2)2 a 2- x 21- (x -1)210k3 x 2 33x33x= 2bh . (第 2 题) 0⎩ ⎰ ⎰ y = x 所围成的图形(如图所示)的面积,1⨯12 1 1因此, ⎰0 [ - x ]dx =- ⨯1⨯1 = - . 4 2 4 22、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为 y = ax 2 ,则h = a ⨯ (b )2 ,所以a = 4h. 2 b 2从而抛物线的方程为y = 4h x 2. b 2b4h4h b 于是,抛物线拱的面积 S = 2 2(h - 0b 2 x 2 )dx = 2[hx - 3b 2 x 3 ]2 3⎧ y = x 2 + 23、如图所示.解方程组⎨ y = 3x得曲线 y = x 2 + 2 与曲线 y = 3x 交点的横坐标 x = 1 , x = 2 .12于是,所求的面积为 1[(x 2 + 2) - 3x ]dx + 2[3x - (x 2 + 2)]dx = 1 .0 14、证明:W = R +h G Mm dr = [-G Mm ]R +h = GMmh .⎰Rr2rRR (R + h )第一章 复习参考题 A 组(P65)1、(1)3;(2) y = -4 .2、(1) y ' =2 s in x cos x + 2x; (2) y ' = 3(x - 2)2 (3x +1)(5x - 3) ;cos 2x(3) y ' =2x ln x ln 2 + 2x x;(4) y 2x - 2x 2(2x +1)4.3、 F ' = -2GMm .r34、(1) f '(t ) < 0 . 因为红茶的温度在下降.(2) f '(3) = -4 表明在 3℃附近时,红茶温度约以 4℃/min 的速度下降. 图略.5、因为 f (x ) = ,所以 f '(x ) =2 .当 f '(x ) =2> 0 ,即 x > 0 时, f (x ) 单调递增; 1- (x -1)2 ⎰ ' =33x=当 f '(x ) =2< 0 ,即 x < 0 时, f (x ) 单调递减.6、因为 f (x ) = x 2 + px + q ,所以 f '(x ) = 2x + p .当 f '(x ) = 2x + p = 0 ,即 x = - p= 1 时, f (x ) 有最小值.2由- p= 1,得 p = -2 . 又因为 f (1) = 1- 2 + q = 4 ,所以q = 5 .27、因为 f (x ) = x (x - c )2 = x 3 - 2cx 2 + c 2 x ,所以 f '(x ) = 3x 2 - 4cx + c 2 = (3x - c )(x - c ) .当 f '(x ) = 0 ,即 x = c,或 x = c 时,函数 f (x ) = x (x - c )2 可能有极值.3由题意当 x = 2 时,函数 f (x ) = x (x - c )2 有极大值,所以c > 0 . 由于所以,当x = c 时,函数 f (x ) = x (x - c )2 有极大值. 此时, c = 2 , c = 6 . 3 3 8、设当点 A 的坐标为(a , 0) 时, ∆AOB 的面积最小.因为直线 AB 过点 A (a , 0) , P (1,1) ,所以直线 AB 的方程为 y - 0 = x - a,即 y =x - 0 1- a1 (x - a ) . 1- a 当 x = 0 时, y = a ,即点 B 的坐标是(0, a) .a -1因此, ∆AOB 的面积 S ∆AOB = S (a ) = a -11 aa 22 a a -1 2(a -1) .令 S '(a ) = ' = 1 ⋅a 2 - 2a =0 ,即 S (a ) 2 (a -1)2 0 .当a = 0 ,或a = 2 时, S '(a ) = 0 , a = 0 不合题意舍去.x (-∞, c )3c 3( c , c ) 3c(c , +∞)f '(x ) +-+f (x )单调递增 极大值 单调递减 极小值 单调递增由于所以,当a = 2 ,即直线 AB 的倾斜角为135︒ 时, ∆AOB 的面积最小,最小面积为 2. 9、 D .10、设底面一边的长为 x m ,另一边的长为(x + 0.5) m. 因为钢条长为 14.8m. 所以,长方体容器的高为14.8 - 4x - 4(x + 0.5) = 12.8 - 8x = 3.2 - 2x .4 4设容器的容积为V ,则V = V (x ) = x (x + 0.5)(3.2 - 2x ) = -2x 3 + 2.2x 2 +1.6x , 0 < x < 1.6 .令V '(x ) = 0 ,即-6x 2 + 4.4x +1.6 = 0 .所以, x = - 4 15(舍去),或 x = 1 .当 x ∈(0,1) 时,V '(x ) > 0 ;当 x ∈(1,1.6) 时,V '(x ) < 0 .因此, x = 1 是函数V (x ) 在(0,1.6) 的极大值点,也是最大值点. 所以,当长方体容器的高为 1 m 时,容器最大,最大容器为 1.8 m 3. 11、设旅游团人数为100 + x 时,旅行社费用为 y = f (x ) = (100 + x )(1000 - 5x ) = -5x 2 + 500 +100000 (0 ≤ x ≤ 80) .令 f '(x ) = 0 ,即-10x + 500 = 0 , x = 50 .又 f (0) = 100000 , f (80) = 108000 , f (50) = 112500 .所以, x = 50 是函数 f (x ) 的最大值点.所以,当旅游团人数为 150 时,可使旅行社收费最多. 12、设打印纸的长为 x cm 时,可使其打印面积最大.因为打印纸的面积为 623.7,长为 x ,所以宽为 623.7,x打印面积 S (x ) = (x - 2 ⨯ 2.54)( 623.7- 2 ⨯ 3.17)x= 655.9072 - 6.34x - 3168.396, 5.08 < x < 98.38 .x2 令 S '(x ) = 0 ,即6.34 - 3168.396 = 0 , x ≈ 22.36 (负值舍去), 623.7≈ 27.89 .x 2 22.365 2dx = 2 (cos x - sin x )dx = [sin x + cos x ]2 = 0 ; (5)原式= 2 dx = [ ]2 = x = 22.36 是函数 S (x ) 在(5.08, 98.38) 内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为 27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为 y 元.则 y = R (q ) - 20000 -100q = - 1q 2 + 300q - 20000 (0 < q ≤ 400, q ∈ N ) .2令 y ' = 0 ,即-q + 300 = 0 , q = 300 .当q = 300 时, y = 25000 ;当q = 400 时, y = 20000 .q = 300 是函数 y ( p ) 在(0, 400] 内唯一极值点,且为极大值点,从而是最大值点.所以,每年养 300 头猪时,可使总利润最大,最大总利润为 25000 元. 14、(1) 2 - 2 ;(2) 2e - 2 ; (3)1;cos 2 x - sin 2 x⎰0cos x + sin x⎰01- cos x x - sin x - 2⎰0 2 2 0 4 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2 - 2 .17、由 F = kl ,得0.049 = 0.01k . 解之得k = 4.9 .0.3l 2 0.3所做的功为 W = ⎰0.1 4.9ldl = 4.9 ⨯ 2|0.1 = 0.196 (J )第一章 复习参考题 B 组(P66)1、(1) b '(t ) = 104 - 2 ⨯103t . 所以,细菌在t = 5 与t = 10 时的瞬时速度分别为 0 和-104 .(2)当0 ≤ t < 5 时, b '(t ) > 0 ,所以细菌在增加;当5 < t < 5 + 5 时, b '(t ) < 0 ,所以细菌在减少.2、设扇形的半径为r ,中心角为弧度时,扇形的面积为 S .因为 S = 1r 2 , l - 2r =r ,所以= l- 2 .2 rS = 1r 2 = 1 ( l - 2)r 2 = 1 (lr - 2r 2 ) , 0 < r < l .2 2 r 2 23 2 (4)原式= .令 S ' = 0 ,即l - 4r = 0 , r = l,此时为 2 弧度.4r = l 是函数 S (r ) 在 4 l(0, ) 内唯一极值点,且是极大值点,从而是最大值点.2所以,扇形的半径为 l、中心角为 2 弧度时,扇形的面积最大.43、设圆锥的底面半径为r ,高为h ,体积为V ,那么r 2 + h 2 = R 2 . 因此,V =1r 2h = 1(R 2 - h 2 )h = 1R 2h -1h 3 , 0 < h < R .3 3 33令V ' = 1R 2 -h 2 = 0 ,解得h = 33 R .3容易知道, h =3 R 是函数V (h ) 的极大值点,也是最大值点.3所以,当h =3 R 时,容积最大.3把h =3 R 代入r 2 + h 2 = R 2 ,得r =36 R .3由 R = 2r ,得= 2 6 .3所以,圆心角为=2 6 时,容积最大.34、由于80 = k ⨯102 ,所以k = 4.5设船速为 x km /h 时,总费用为 y ,则 y = 4 x 2 ⨯ 20 + 20⨯ 4805 x x令 y ' = 0 ,即16 - 9600= 0 , x ≈ 24 .x2 = 16x + 9600, x > 0x容易知道, x = 24 是函数 y 的极小值点,也是最小值点.当 x = 24 时, (16 ⨯ 24 + 9600) ÷ ( 20) ≈ 941(元/时)24 24所以,船速约为 24km /h 时,总费用最少,此时每小时费用约为 941 元.5、 设汽车以 x km / h 行驶时, 行车的总费用y = 390x(3 +x 2 360 ) + 130 ⨯14 , x。
高中数学 类比推理 选修2-2 基础练习
类比推理 同步练习1. 等差数列{}n a 的公差为d ,前n 项和为n S ,有如下的性质:(1)()n m a a n m d =+-;(2)若,m n p q +=+其中,,,,m n p q N +∈,则m n p q a a a a +=+(3)若2,,,m n p m n p N ++=∈,则2m n p a a a +=(4)232,,n n n n n S S S S S --构成等差数列。
类比上述性质,在等比数列{}n b 中,写出相类似的性质。
2. 在等差数列{}n a 中,若010=a ,则有等式),19(*192121N n n a a a a a a n n ∈<+++=+++-成立,类比上述性质,在等比数列{}n b 中,若19=b ,则有等式__________________________成立。
3. 将下列平面内成立的结论类比地推广到空间,并判断类比的结论是否成立。
(1) 如果一条直线和两条平行线中的一条相交,则必和另一条相交。
如果一个平面和(2) 如果两条直线同时垂直于第三条直线,则这两条直线相互平行。
如果两个平面(3) 三角形的两边之和大于第三边;四面体中4. 类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是____________________。
(1)各棱长相等,同一顶点上的任两条棱的夹角都相等;(2)各面都是全等的正三角形,相邻两个面所成二面角都相等;(3)各面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
5. (2010年高考陕西卷文科11)观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式.....为6.若+∈R a a 21,,则有不等式221222122⎪⎭⎫ ⎝⎛+≥+a a a a 成立,请你类比推广此性质 +∈R a a a 321,,时,7. 若数列{a n }是等差数列,对于b n =1n(a 1+a 2+…+a n ),则数列{b n }也是等差数列.类比上述性质,若数列{c n }是各项都为正数的等比数列,对于d n >0,则d n =________时,数列{d n }也是等比数列.8.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”;③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”;⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =a b”. 以上式子中,类比得到的结论正确的个数是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修2-2综合测试卷
一、选择题(每空5分,共60 分)
1、复数满足(为虚数单位),则复数的虚部为()
A.3 B.-3i C.3i D.-3
2、已知函数在点处连续,下列结论中正确的是( )
A.导数为零的点一定是极值点
B.如果在附近的左侧,右侧,那么是极大值
C.如果在附近的左侧,右侧,那么是极小值
D.如果在附近的左侧,右侧,那么是极大值
3、有一段“三段论”推理是这样的:对于可导函数,若,则是函数的极值点.因为
在处的导数值,所以是的极值点. 以上推理
中
A.大前提错误 B.小前提错误 C.推理形式错误 D.结论正确
4、函数的导函数,满足关系式,则的值为()
A. B. C. D.
5、用数学归纳法证明等式:1+2+3+...+2n=n(2n+1)时,由n=k到n=k+1时,等式左边应添加的项是()A. 2k+1 B. 2k+2 C. (2k+1)+(2k+2) D. (k+1)+(k+2)+ (2)
6、.已知奇函数是函数是导函数,若时,则( )
A. B.
C. D.
7、设是函数的导函数,,若对任意的,,则的解集为()
A. (-1,1)
B. (-1,+∞)
C. (-∞,-1)
D. (-∞,1)
8、将正整数按下表的规律排列,把行与列交叉处的一个数称为某行某列的数,记作,如第2行第4列的数是15,记作a24=15,则有序数对(a28, a84)是
1 4 5 16 17 36 ……
2 3 6 15 18 35 ……
9 8 7 14 19 34 ……
10 11 12 13 20 33 ……
25 24 23 22 21 32 ……
26 27 28 29 30 31 ……
…………………………
A.(63,53) B.(64,53) C.(63,54) D.(62,53)
9、函数的大致图像为()
A. B. C. D.
10、函数的导函数,对,都有成立,若,则满足不等式
的的范围是()
A. B. C. D.
11、定义方程的实数根x0叫做函数的“新驻点”,如果函数,,
()的“新驻点”分别为,,,那么,,的大小关系是
()
A.>>B.>>C.>>D.>>
12、丹麦数学家琴生(Jensen)是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方向留下了很多宝贵的成果,设函数在上的导函数为,在上的导函数为,若在
上恒成立,则称函数在上为“凸函数”,已知在上为“凸函数”,则实数的取值范围是
A. B. C. D.
二、填空题(每空5 分,共20 分)
13、在复平面内,复数-3+i和1-i对应的点间的距离为.
14、关于下列说法:
①由平面三角形的性质推测空间四面体的性质,这是一种合情推理;
②归纳推理得到的结论不一定正确,类比推理得到的结论一定正确;
③演绎推理是由特殊到特殊的推理;
④演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.
其中正确的是.(填所有正确说法的序号)
15、已知甲、乙、丙三人恰好都去过北京、上海中的某一个城市,三人分别给出了以下说法:
甲说:“我去过上海,乙也去过上海,丙去过北京.”乙说:“我去过上海,甲说得不完全对.”
丙说:“我去过北京,乙说得对.”
已知甲、乙、丙三人中恰好有1人说得不对,则去过北京的是_________.
16、已知定义在上的函数和满足,,
.令,则使数列的前项和超过15/16的最小自然数的值
为.
三、简答题(共70分)
17、已知是复数,均为实数(为虚数单位),
(Ⅰ)求复数;
(Ⅱ)求一个以为根的实系数一元二次方程。
18、已知函数,当时,取得极小值.
(1)求的值;(2)求函数在上的最大值和最小值.
19、设a,b,c均为正数,且a+b+c=1,证明:
(1)ab+bc+ca≤ (2).
20、已知函数.
(I)当时,求曲线在处的切线方程;
(II)若在是单调递增函数,求实数的取值范围.
21、等比数列{}的前n项和为,已知对任意的,点,均在函数且
均为常数)的图像上.
(1)求r的值;
(2)当b=2时,记,
证明:对任意的,不等式成立.
22、已知函数.
(1)当时,求函数的单调区间;
(2)若函数有两个极值点,且,求证:;
(3)设,对于任意时,总存在,使成立,求实数的取值范围.
草稿纸
高中数学选修2-2综合测试卷参考答案
一、选择题
1、D
2、B
解析:导数为零的点且左右两边的符号不同才是极值点故A错.
如果在附近的左侧,右侧,则函数先增后减,则是极大值.
如果在附近的左侧,右侧,则函数先减后增,则是极小值. 故选B.
3、A
4、B
5、B
6、C
7、B
8、A
9、A
10、D
11、D
12、.C
二、填空题
13、
14、①④.
15、甲、丙
16、5
解析:∵,且,∴,从而有,
又,知为减函数,于是得,,由于
,故得使数列的前项和超过的最小自然数.
三、简答题
17、解:(Ⅰ)设,
,由题意得 (3)
分
…………………6分
由题意得. ∴ (8)
分
(Ⅱ)若实系数一元二次方程有虚根,则必有共轭虚根
,
所求的一个一元二次方程可以是. …………………12分
18、由已知得解得
,
令得
变化如下表
- 0 +
减增
又
,
19、【解析】(1)由得. 由题设得,即.
所以3(ab+bc+ca)≤1,即.
(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即
≥a+b+c,所以.
20、解:(I)的定义域为.
当时,,
所以曲线在处的切线方程为
(II)因为
又在是单调递增函数;
所以在恒成立
即在恒成立
令,
所以在单增,
所以,即,
故实数的取值范围为.
21、解析:因为对任意的,点,均在函数且均为常数的图像上. 所以得,当时,,
当时,,
又因为{}为等比数列,所以,公比为,
(2)当b=2时,,
则,所以
下面用数学归纳法证明不等式成立.
①当时,左边=,右边=,因为,所以不等式成立..
②假设当时不等式成立,即成立. 则当时,左边=
所以当时,不等式也成立.由①、②可得不等式恒成立.
22、解:
(1)当时,,
令或,令,
所以的递增区间为和,递减区间为.
(2)由于有两个极值点,
则在上有两个不等的实根,
设,
所以
所以在上递减,所以
即.
(3)由题意知:只需成立即可.
因为,
所以,因为,所以,而,
所以,所以在递增,
当时,.
所以在上恒成立,
令,则在上恒成立,
,又
当时,,在递减,当时,, 所以,所以;
当即时,
①即时,在上递增,
存在,使得,不合;
②即时,,在递减, 当时,,所以,所以
综上, 实数的取值范围为.。