常用的一维搜索方法
3.1搜索算法结构
![3.1搜索算法结构](https://img.taocdn.com/s3/m/b80cdcb28e9951e79a892741.png)
23 0.618034 0.618034
-1.1922e-005 2.9804e-006 1.219e-005 2.7093e-005
24 0.618035 0.618035
-1.1922e-005 -2.7117e-006 2.9804e-006 1.219e-005
25 0.618032 0.618032
f(x)
a x0 x1 x* x2 b x
(二)算法
1、选定初始点a 和步长h; 2、计算并比较f(a)和f(a+h);有前进(1)和后退(2)两种情况:
(1) 前进运算:若f(a) ≥f(a+h), 则步长加倍,计算f(a+3h)。若f(a+h) ≤f(a+3h),
令 a1=a, a2=a+3h, 停止运算;否则将步长加倍,并重复上述运算。 (2) 后退运算:若f(a) < f(a+h), 则将步长改为-h。计算f(a-h), 若f(a-h) ≥ f(a),
方法分类:
1、直接法:迭代过程中只需要计算函数值; 2、微分法:迭代过程中还需要计算目标函数的导数;
§3.2 搜索区间的确定
常用的一维直接法有消去法和近似法两类。它们都是从 某个初始搜索区间出发,利用单峰函数的消去性质,逐步缩 小搜索区间,直到满足精度要求为止。
§3.2.1 单峰函数
定义:如果函数f(x)在区间[a,b]上只有一个极值点, 则称f(x)为
(3)对称: x1 – a = b-x2 ;(4)保持缩减比:λ=(保留的区间长度/原
区间长度) 不变。(使每次保留下来的节点, x1或 x2 ,在下一次的比 较中成为一个相应比例位置的节点 )。
(一)黄金分割
机械优化设计_第三章一维搜索方法
![机械优化设计_第三章一维搜索方法](https://img.taocdn.com/s3/m/f2ed22bbaff8941ea76e58fafab069dc5122477c.png)
机械优化设计_第三章一维搜索方法一维方法是一种常用的优化方法,适用于在一个单变量的空间中寻找最优解或近似最优解的问题。
在机械优化设计中,一维方法可以用来寻找最佳的设计参数值,以优化机械系统的性能。
一维方法包括了多种常用的算法,如二分法、黄金分割法、斐波那契法等。
下面将介绍其中的二分法和黄金分割法这两种常用的一维方法。
二分法是一种简单而常用的方法,基本思想是不断将空间划分为两部分,直到找到最优解或接近最优解的区间。
具体步骤如下:1.初始化区间[a,b],其中a和b分别是空间的下界和上界。
2.计算区间的中点x=(a+b)/23.根据目标函数的取值情况,确定最优解或接近最优解所在的子区间。
4.更新区间为[a,x]或[x,b],继续步骤2和3,直到区间足够小或找到了最优解。
二分法的优点是简单易实现,但其收敛速度相对较慢,特别是对于空间为初值范围较大的问题。
黄金分割法是一种相对高效的一维方法,其基本思想是通过黄金分割点来确定区间的缩减比例。
具体步骤如下:1.初始化区间[a,b],其中a和b分别是空间的下界和上界。
2.计算区间的两个黄金分割点,即x1=a+(1-φ)(b-a)和x2=a+φ(b-a),其中φ是黄金分割比例,其取值约为0.6183.根据目标函数的取值情况,确定最优解或接近最优解所在的子区间。
4.更新区间为[x1,b]或[a,x2],同时更新黄金分割点,继续步骤2和3,直到区间足够小或找到了最优解。
黄金分割法的优点是收敛速度相对较快,通常比二分法更有效。
然而,其实现相对复杂一些,需要额外的计算和判断步骤。
除了二分法和黄金分割法,还有其他一维方法,如斐波那契法、插值法等。
这些方法可以根据具体问题的特点选择适合的方法进行优化设计。
总结起来,一维方法是机械优化设计中常用的方法之一,用于在一个单变量的空间中寻找最优解或近似最优解的问题。
通过选择适当的方法,可以有效地优化机械系统的性能。
工程优化 第三章 一维搜索
![工程优化 第三章 一维搜索](https://img.taocdn.com/s3/m/87a88568767f5acfa1c7cde0.png)
例
经 6 次迭代达到
b7 a7 0.111 0.16 满足精度要求,极小点 x [0.168,0.279] . 0.168 0.279 x 0.23 * 2 实际上,最优解 x 0.25 .可取 作为近似最
优解.
第四节 对分法(二分法) 对分法适用对象:单峰函数、连续可导 优点:每迭代一次可去掉区间的二分之一。 如果找到一个区间 [a, b] ,具有性质 (a) 0, (b) 0 ,则在 a, b 之
* * ( x ) 0. ( x ) 间必有 的极小点 x ,且
算法步骤: 已知 a, b 且 a b , (a) 0, (b) 0 及 0 . 1)
c ab 2 ,转 2);
2)若 b a ,转 4);否则,转 3);
3 )计算 (c) . 若 (c) 0 ,转 4 ) ;若 (c) 0 ,则令 a c ,转 1) ;若 (c) 0 ,则令 b c ,转 1) ; * t 4)令 c ,停止迭代. 4 3 2 ( x ) 3 x 16 x 30 x 24 x 8 ,求 ( x) 的极小点. 例 设
第三章 常用一维搜索方法
第一节 一维搜索概述 一、下降迭代算法的基本思想 不失一般性,考虑如下的优化问题
min f ( x)
xS
n f : S R R. 其中
(3.1)
1 x 下降迭代算法的基本思想:给定一个初始点 S ,按照
k k { x } { x 某种迭代规则产生一个点列 ,使得当 } 是有限点列时, k { x 其最后一个点是最优化问题的最优解;当 } 是无穷点列时,
* [ a , b ] ( x ) x 设 在 上是单峰函数,最小点为 .在 (a, b) 内任取
常用的一维搜索方法
![常用的一维搜索方法](https://img.taocdn.com/s3/m/105e67cefab069dc50220161.png)
算法时会给出一个明确的选取 d k 的方法。
在确定了迭代方向后,下一步就要确定迭代步长 λ k ,常
见的方法有3种。
(1) 令它等于某一常数(例如令λ k 1 ),这样做不能保证目标
函数值下降。
(2) 第二种称为可接受点算法,只要能使目标函数值下降,可 任意选取步长。
找下一个迭代点
注:迭代格式 不同,对应着 不同的算法
迭代法的分类
据 迭 代 点 可 行 算 法 : 所 有 迭 初代 始点 点都 不好是 找可 行 点 的 可 行 性 不 可 行 算 法 : 至 少 初有 始一 点个 任迭 意代 选点 取不 是 可 行 点
下降算法:k, f(xk1) f(xk)
线搜索迭代法的基本思想
现假定已迭代到点 x k , 若 x k 是一局部极小点, 则从 x k 出发沿任何方向移动,
都不能使目标函数值下降。
若从 x k 出发至少存在一个方向 d k
可使目标函数值有所下降, 如图1示
图1
线搜索迭代法的基本思想
若从 x k 出发至少存在一个方向 d k 可使目标函数值有所下
• 对某些较简单的函数,这样做有时是可行的;
• 但对一般n元函数 f(x) 来说,由条件 f (x) 0得到的是一
个非线性方程组,解它相当困难。 • 对于不可微函数,当然谈不上使用这样的方法。 • 为此,常直接使用迭代法。
迭代法的基本思想
为了求函数f(x)的最优解,首先给定一个初始估计 x 0 然后按某种规划(即算法)找出比 x 0 更好的解 x 1 , f (x1) f (x0)
第3章 常用的一维搜索方法
n元函数 f:DRnR
《一维搜索方法》课件
![《一维搜索方法》课件](https://img.taocdn.com/s3/m/297e4ead541810a6f524ccbff121dd36a32dc4e6.png)
02
线性搜索
线性搜索的定义
线性搜索是一种基本的搜索算法,它 从列表的第一个元素开始,逐个检查 每个元素,直到找到目标元素或遍历 完整个列表。
在线性搜索过程中,我们假设列表中 的元素是按顺序排列的,并且我们不 知道目标元素的确切位置,只知道它 存在于列表中。
线性搜索的步骤
初始化
选择一个起始位置,通常为列表的第一个元素。
抛物线搜索的步骤
3. 比较中间元素与目标值
2. 计算当前区间的中间元 素。
1. 初始化当前搜索区间为 整个数组。
01
03 02
抛物线搜索的步骤
01 如果中间元素等于目标值,返回该位置。
02
如果目标值小于中间元素,将左半部分区 间作为新的当前区间。
03
如果目标值大于中间元素,将右半部分区 间作为新的当前区间。
04
4. 重复步骤2和3,直到找到目标值或当前 区间为空。
抛物线搜索的时间复杂度
最坏情况下,抛物线搜索的时间复杂度为O(n),其中n为数 组长度。
平均情况下,由于每次比较都可以将搜索区间缩小一半,因 此时间复杂度为O(log n)。
THANKS
THANK YOU FOR YOUR WATCHING
的单峰函数。
一维搜索方法的重要性
解决实际问题
一维搜索方法广泛应用于各种实 际问题中,如参数优化、函数逼 近、插值等。
算法基础
一维搜索方法是许多算法的基础 ,如梯度下降法、牛顿法等都需 要用到一维搜索方法来寻找迭代 步长。
理论分析
一维搜索方法在数学分析中也有 重要应用,如中值定理、单调函 数性质等都需要用到一维搜索方 法。
常用的一维搜索方法
线性搜索
常用一维搜索算法
![常用一维搜索算法](https://img.taocdn.com/s3/m/1ff073bc05a1b0717fd5360cba1aa81144318f0e.png)
常用一维搜索算法常用一维算法一维算法是解决一维问题的常用方法。
一维算法主要通过在一维数据集中查找目标元素来解决问题。
以下是一些常用的一维算法:1. 线性(Linear Search):线性算法是一种最简单的算法,也是最基本的一维算法。
它从头到尾依次检查数据集中的每个元素,直到找到目标元素或遍历完整个数据集。
线性算法的时间复杂度为O(n)。
2. 二分(Binary Search):二分算法是一种高效的算法,但它要求数据集必须是有序的。
算法通过将数据集分成两半,并与目标元素进行比较,从而确定目标元素在哪个半部分中。
然后,它将重复这个过程,直到找到目标元素或数据集被划分为一个元素。
二分算法的时间复杂度为O(log n)。
3. 插值(Interpolation Search):插值算法是改进的二分算法,它根据目标元素与数据集中元素的相对位置来确定的起始位置。
它使用目标元素与数据集首尾元素之间的比例来估计目标元素的位置。
插值算法在数据集分布均匀的情况下具有较好的性能。
4. 斐波那契(Fibonacci Search):斐波那契算法基于斐波那契数列来确定的起始位置。
它通过比较目标元素与斐波那契数列中的元素来确定的范围,并将数据集划分成两部分。
然后,它在适当的部分中重复这个过程,直到找到目标元素。
斐波那契算法的时间复杂度为O(log n)。
5. 插入(Interpolation Search):插入算法是一种改进的线性算法,它使用了数据集中元素的顺序信息来提高效率。
与线性算法一样,它从头到尾依次检查数据集中的每个元素,但是当元素不满足条件时,它会根据元素的顺序信息来确定的方向,从而减少的次数。
6. 哈希(Hash Search):哈希算法使用哈希函数将数据集中的元素映射到哈希表中的索引。
然后,它通过查找哈希表中的索引来确定目标元素的位置。
哈希算法通常具有很高的效率,但是它需要额外的内存空间来存储哈希表。
上述算法是一维问题的常用解决方法。
§4.3 一维搜索方法
![§4.3 一维搜索方法](https://img.taocdn.com/s3/m/4ab6983a7e21af45b207a841.png)
§4.3 一维搜索方法一维搜索问题:目标函数为单变量的非线性规划问题,即)(min max00t t t t ϕ≤≤≥ (4.3.1)对t 的取值为0≥t 的(4.3.1)称为一维搜索问题,即 )(min 0t t ϕ≥ ;对t 的取值为max 0t t ≤≤的(4.3.1)称为有效一维搜索问题,即 )(minmax0t t t ϕ≤≤。
1、0.618法(近似黄金分割法)单谷函数:称函数)(t ϕ是区间],[b a 上的单谷函数,若存在 ],[*b a t ∈,使得)(t ϕ在],[*t a 上严格递减,且在],[*b t 上严格递增。
区间],[b a 称为)(t ϕ的单谷区间。
求解一维搜索问题的方法:先设法给出一个搜索区间],[b a ,然后通过迭代不断缩小搜索区间,当区间的长度充分小是,可取这个区间中的任一点作为一个近似极小点。
考虑问题)(min t bt a ϕ≤≤ (4.3.2)其中],[b a 是)(t ϕ的单谷区间, 下面将通过迭代不断缩小搜索区间, 获得)(t ϕ的唯一极小点 *t 的近似解。
在],[b a 内任取两点 21,t t ,设 21t t <,由于)(t ϕ是区间],[b a 上的单谷函数,所以有<1> 若)()(21t t ϕϕ≤,则 ],[2*t a t ∈;<2> 若)()(21t t ϕϕ≥,则 ],[1*b t t ∈。
证<1>:若],[2*t a t ∉,则 2*t t >,所以*21t t t a <<<,因为)(t ϕ在],[*t a 上严格递减,所以)()(21t t ϕϕ>,矛盾。
同理可证 <2>。
通过比较)(1t ϕ和)(2t ϕ的大小,可将搜索区间缩小为],[2t a 或],[1b t 。
不妨设为],[2t a ,则在],[2t a 只需另找一个点 2t ',比较 1t 和2t '的目标函数值,又可以进一步缩小搜索区间。
一维搜索的最优方法(黄金分割法)-2023年学习资料
![一维搜索的最优方法(黄金分割法)-2023年学习资料](https://img.taocdn.com/s3/m/8ecf3d97f021dd36a32d7375a417866fb94ac045.png)
d.比较f,>f3-再作前进运算-h=2×2=4-0%=0C2=2,-f1=fx=0-2=03 4,-f2=fx2=-2-a3=a2+h=8f3=f=18-e.此时有∫>f2,f2<f3,故 =%,=2,b=即初始搜索-区间为[2,8].
§4一2黄金分割法(0.618法-一、-消去法的基本原理-基本思路:逐步缩小搜索区间,直至最小 存在的区-间达到允许的误差范围为止。-设一元函数fa的起始搜索区间为[a,b],a是-函数的极 点。-在搜索区间[a,b]内任取两点a1、2。且-a<a1<2<b,计算j1人fo2将fa1' -fa2进行比较,可能出现三种情况:
在极小点附近,函数呈现“大-小-大”-y=fx-X
二、确定搜索区间的进退法-基本思想-从一点出发,按一定的步长,试图确定出函数值-呈现出”高-低 高“的三个点。一个方向不成功,就-退回来沿相反方向搜索。-具体作法:-给出初始点au,初始步长 。>0,若pa。十h〈pao,-则下一步从新点。十,出发,加大步长向前搜索,直到目标-函数上升 停止。若pa4。十h,>pa,则下一步仍然从点-α出发,沿反方向搜索,直到目标函数上升就停止。 样就-可以得到一个搜索区间。
假定给定了搜索方向S,从点X出发沿S方向-进行搜索,要确定步长,使得-fX=fxtas<fX-oa=fxk+ask-即确定步长a,就是单变量函数oa的搜索问题。-称为一维搜索问题。-mi paw=fX+x的S
®在极小点附近,函数呈现“大-小-大”-y-一维搜索的思路-y=fx-1确定极小点a*所在的区 间[a,b],在此区间内,函数呈-现“大-小-大”变化趋势。-搜速区间。-X-2在[a,b]内 *-将区-间长度逐步缩短。-0.618法与二次插值法就是解-决第二个步骤的方法
三章节一维搜索方法
![三章节一维搜索方法](https://img.taocdn.com/s3/m/855363f7d0f34693daef5ef7ba0d4a7303766c4a.png)
f x ad f x adTf x 1 ad T G ad
2
f x dTf x 1 2dTGd
2
上式求α旳极值,即求α导数为零。
dTf x *d TGd 0
则
*
dTf x
d T Gd
从上式看,需要求导进行计算,对于函数关系复杂旳, 解析法十分不便。
数值法旳基本思绪:拟定 *旳搜索区间,在不断缩小
a2 a3 y1 a3 a1 y2 a1 a2
a1 a2 a2 a3 a3 a1
y3
所以
p
a1
/
2a2
1 2
a22 a32 a2 a3
y1 a32 a12 y1 a3 a1
y2 a12 a22 y2 a1 a2
y3 y3
令
c1
y3 a3
y1 a1
一、牛顿法(切线法)
一维搜索函数 y f ,假定一给出极小点旳一种很好旳近
似点0 ,因为一种连续可微旳函数在极小点附近与一种二次 函数很接近,所以,在0 点附近用一种二次函数 逼近。
f
f
0
f
0
0
1 2
f
0
0 2
求二次函数 旳极小点作为f 极小点旳新近似点1
1 0 即 f 0 f 0 0 0
P a0 a1 a2 2
它应满足条件 P 1 a0 a11 a212 y1 f 1 (1)
P 2 a0
a12
a2
2 2
y2
f
2
P 3
a0
a13
a2
ห้องสมุดไป่ตู้
2 3
y3
f
3
从极值旳必要条件求得
常用一维搜索算法
![常用一维搜索算法](https://img.taocdn.com/s3/m/5dff7ae87e192279168884868762caaedc33ba44.png)
无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。
这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。
(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。
间接法:又称解析法,是应用数学极值理论的解析方法。
首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。
)在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。
根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。
一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。
一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。
由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。
在多变量函数的最优化中,迭代格式Xk+1=Xk+akdk其关键就是构造搜索方向dk和步长因子ak设Φ(a)=f(xk+adk)这样从凡出发,沿搜索方向dk,确定步长因子ak,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。
其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。
一维搜索通常分为精确的和不精确的两类。
如果求得ak使目标函数沿方向dk达到极小,即使得f (xk+akdk)=minf(xk+adk) (a>0)则称这样的一维搜索为最优一维搜索,或精确一维搜索,ak叫最优步长因子;如果选取ak使目标函数f得到可接受的下降量,即使得下降量f(xk)一f(xk+akdk)>0是用户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维搜索。
一维搜索
![一维搜索](https://img.taocdn.com/s3/m/e86176774431b90d6c85c7e7.png)
这两类方法一般只能求得极小点的近似值。
3.一维搜索的基本框架
一维搜索实际上是一元函数的极值问题,其基本的解决框 架是:
(1)确定包含最优解的初始搜索区间;
(2)采用某些区间分割技术或插值方法不断缩小搜索区 间,最后得到解。
5
0.056 0.348 0.168 0.236 -1.112 -1.125
6
0.168 0.348 0.236 0.279 -1.125 -1.123
7
0.168 0.279
函数逼近法
函数逼近法
谢谢!
一维搜索
一.一维搜索的基本概念 二. 试探法 三.函数逼近法
一维搜索的基本概念
一维搜索的基本概念
一维搜索的基本概念
2.一维搜索的方法有哪些?
一维搜索的方法有很多大体可以分成两类: 一类是试探法。采用这类方法,需要按照某种方式找
试探点,通过一系列试探点来确定极小点。 另一类是函数逼近法,或称插值法。这类方法是用某
确定初始区间
确定初始搜索区间的进退法
单峰函数的定义
缩小搜பைடு நூலகம்区间
下面定理表明,对单峰函数,可以通过简单地比较函数值,缩小搜索 区间。 定理:
试探法
一维搜索常见方法中0.618法,Fibonacci法,二分法等基本 思想都是通过取试探点并进行函数值比较,然后不断缩小搜索 区间,当区间长度缩到一定程度后,区间内各点均可作为近似 解。这类方法仅需计算函数值,十分简便,尤其适合于非光滑 及导数表达式复杂或写不出的情形,用途广泛。 这里主要介绍0.618法。
试探法
试探法
试探法
第三章-一维搜索方法
![第三章-一维搜索方法](https://img.taocdn.com/s3/m/6c7a88b5534de518964bcf84b9d528ea81c72fa9.png)
数值解法基本思路:
先确定 k 所在的搜索区间,然后根据区间消去法原理 不断缩小此区间,从而获得 k 的数值近似解。
一维搜索一般分为两大步骤: (1)确定初始搜索区间[a,b],该区间应是包括一维函数 极小点在内的单谷区间。 (2)在单谷区间[a,b]内通过缩小区间寻找极小点。
x2 a 0.618(b a), y2 f (x2 )
否 ba
是
x 0.5(a b)
止
f f (x)
b x2, x2 x1, y2 y1 x1 a 0.382(b a), y1 f (x1)
f
也可采用迭代次数是否大于或等于 k 作终止准则。
y1 y2 x a x1 x2 b
当方向 d k 给定,求最佳步长 k 就是求一元函数
f x k1 f xk kd k k
的极值问题。这一过程被称为一维搜索。
第三章 一维搜索方法
f (x (k+1) ) = min. f (x (k) + α S (k) ) = f (x (k) + α(k) S ( k) )
一维搜索是优化搜索方法的基础。
第三章 一维搜索方法
求解一元函数 a 的极小点 a* ,可用解析法。 f x ad f x adTf x 1 ad T G ad
2
f x dTf x 1 2dTGd
2
上式求α的极值,即求α导数为零。
dTf x *dTGd 0
则
*
dTf x
d T Gd
第三章 一维搜索方法
5
-1.386 -1.111 -0.940 -0.665
完整版一维搜索方法
![完整版一维搜索方法](https://img.taocdn.com/s3/m/1d8728d3b52acfc788ebc911.png)
f (? 1 ) f (? 2 )
o
?1 ?2
?
6
2) 若f1≤ f2 ,如下图所示, 则作后退计算。 令 h=-h, 将α1、 f1与α2、 f2对调,转入第3)步。
f (? )
f (? 2 )
f (? 1)
o
?1 ?2 ?
7
3)计算第3个试点α3 =α2+h, 计算函数值f3=f(α3), 并 比较f2 和 f3 ,有如下两种情况 :
1
? 一维优化一般可分为两大步骤: ?确定初始搜索区间[a,b]; 该区间应为包含一维优化目标函数的极小点在内的单 峰区间。 ?在搜索区间[a,b]内寻找极小点。
优化算法的基本迭代公式:
X k?1 ? X k ? ? k S k , k ? 0, 1, 2,?
当迭代初始点 Xk 及搜索方向Sk 确定后,迭代所得的新点 Xk?1 取
作代换: α1 =α2 , f1=f2; α2 =α3 , f2 = f3。 继续计算
α3 (即步骤 3) );如此重复该过程,总能找到相继3试点 的函数值符合“大-小-大” 变化的要求。左端点为a,
右端点为b,从而找到了搜索区间[a, b]。
f (? )
f (? 1) f (? 2 )
f (? 3 )
a=min( α1 ,α3 ), b=max ( α1 ,α3 )
h=2h, α3= α2+h, 计算f(α3)
N
作代换 α1 =α2 , α2 =α3 , f(α1)= f(α2) , f(α2)= f( α3) , α3= α2+h, 计算f(α3)
结束
10
? 进退法确定搜索区间的步骤:
2. 方法二 (1) 给定初始点α0和初始步长h0; (2) 令α1 =α0, h=h0, α2 =α1+h, 得: 两试点α1 ,α2 ,计算 f1 =f(α1), f2 =f(α2);
一维搜索的最优方法(黄金分割法)
![一维搜索的最优方法(黄金分割法)](https://img.taocdn.com/s3/m/9a49f45111a6f524ccbff121dd36a32d7375c7bc.png)
05 黄金分割法的应用举例
在函数优化中的应用
一元函数优化
黄金分割法可用于一元函数的极值求解,通过不断缩小搜索区间来逼近最优解。
多元函数优化的辅助手段
在多元函数优化中,黄金分割法可作为辅助手段,用于一维搜索或线搜索过程。
在工程问题中的应用
结构设计优化
在结构设计中,黄金分割法可用于寻 找最优的结构参数,如梁、柱的截面 尺寸等,以实现结构性能和经济性的 平衡。
二分法每次迭代将搜索区间减半,而黄金分割法每次迭代将搜索区间缩小为原来的约 0.618倍。在收敛速度上,二分法通常比黄金分割法更快。但二分法要求函数在搜索区间 内连续且单调,而黄金分割法则没有这样的限制。
与牛顿法相比
牛顿法是一种基于导数信息的搜索方法,具有较快的收敛速度。但在一维搜索问题中,当 导数信息不可用或难以获取时,黄金分割法则更为适用。此外,牛顿法对初始点的选择较 为敏感,而黄金分割法则相对稳健。
解决一维搜索问题的方法有多种,其中黄金分割法是一种较为常用且有效的方法。
黄金分割法简介
黄金分割法是一种通过不断缩小搜索 区间来逼近函数极小值点的方法。
黄金分割法具有简单、快速、稳定等 优点,适用于单峰函数的一维搜索问 题。
它在每次迭代中,通过比较区间两个 端点处的函数值,来确定下一步的搜 索区间。
黄金分割点
在一条线段上,按照黄金分割比 例将线段分割成两部分,分割点
即为黄金分割点。
函数图像
对于一元函数,可以将其图像视 为一条曲线。黄金分割法通过不 断在曲线上选取试探点来逼近最
优解。
搜索区间缩小
每次迭代后,根据试探点的函数 值比较结果,将搜索区间缩小,
使得下一步的搜索更加精确。
黄金分割法的算法步骤
3.一维搜索方法
![3.一维搜索方法](https://img.taocdn.com/s3/m/dd7cb32058fb770bf78a5533.png)
P(x)的系数确定与极小点的计算
a1
x22
x
2 3
f1
x
2 3
x12 f2
x12 x22 f3
x1 x2 x2 x3 x3 x1
a2
x2 x3 f1 x3 x1 f2 x1 x2 f3 x1 x2 x2 x3 x3 x1
x
a1
1 x22 x32 f1
x32 x12 f2
x12 x22 f3
2a2 2 x2 x3 f1 x3 x1 f2 x1 x2 f3
9
一维搜索方法的分类
• 为了每次缩短区间,只需要在区间内再插入一点并计 算其函数值。然而,对于插入点的位置,是可以用不 同的方法来确定的。
• 黄金分割法 • 一类称作解析法或函数逼近法:构造一个插值函数来
逼近原来函数,用插值函数的极小点作为区间的插入 点
– 牛顿法、二次插值法等
10
一维搜索的试探方法 黄金分割法
f (x)
(a) f a0
f a0 a a0
1 2
f
a0 a
a0 2
• 然后以二次函数的极小点作为极小点的一个新近似点,根据极值 必要条件
对a求偏导 (a1) 0
f a0 f a0 a1 a0 0
ak 1
ak
f ak f ak
k
0, 1, 2,
依此继续可得 牛顿法迭代公式
a1
a0
f a0 f a0
17
• 是最常用的一维搜索试探方法,又称作0.618法 • 适用于区间上的任何单谷函数求极小值问题
– 对函数除要求“单谷”外不作其他要求,甚至可以 不连续
• 基本思路:在搜索区间内适当插入两点,并计算其函 数值。将区间分成三段。应用函数的单谷性质,通过 函数值大小的比较,删去其中一段,使搜索区间得以 缩短。然后再在保留下来的区间上作同样的处置,如 此迭代下去,使搜索区间无限缩小,从而得到极小点 的数值近似解。
一维搜索方法
![一维搜索方法](https://img.taocdn.com/s3/m/120f594abe1e650e52ea9912.png)
一维搜索方法:(方法比较)“成功—失败”法、二分法、0.618法(黄金分割法)、牛顿法、二次插值法、D.S.C法、Powell法、D.S.C—Powell组合法。
1、“成功—失败”法:主要思想:从一点出发,按一定的步长搜索新点,若成功,加大步长继续搜索,否则,缩短步长小步后退。
此方法可以求最优解所在区间,称为“搜索区间”。
2、二分法:主要思想:区间[a,b]的中间值x0,判断f(x)的导数在三个点处的值,舍去一部分区间再求f(x)的极小值。
3、0.618法:等比例收缩原则,每次留下来的区间长度是上次留下来的区间长度的w倍。
以及对称原则、去坏留好原则。
W=0.6184、牛顿法:基本思想:在极小值点附近用目标函数的二阶泰勒多项式近似代替目标函数,从而求得目标函数的极小值点的近似值。
5、二次插值法:牛顿法是在x k附近的目标函数用泰勒多项式近似代替,而此法是将f(x)用二次插值多项式p(x)近似代替。
把p(x)的极小值点作为f(x)极小值点的代替,从来求得函数的极小值。
6、D.S.C法:主要思想:利用成功—失败法寻找靠近极小值点的三点,进行二次插值。
优点是:收敛速度快,且不要求函数可微。
7、Powell法:基本思想:在搜索方向开始得到三点x0,x1,x2后,作二次插值,求得最小值x,在四点中去坏留好,在余下的三点中再作二次插值……8、D.S.C—Powell组合法:几种方法比较:D.S.C—Powell组合法是非常好的一种方法,它比任何一个单个方法都好D.S.C—Powell组合法与0.618法比较:D.S.C—Powell法中函数值的计算要比黄金分割法少得多,一般来讲它优于黄金分割法。
但:D.S.C—Powell法不一定能收敛到最优解。
最速下降法与修正牛顿法:对于正定二次函数,牛顿法一步可以求得最优解,对于非二次函数,牛顿法并不能保证有限次求得其最优解,但由于目标函数在极小值的附近近似于二次函数,故当初始点靠近极小值时,牛顿法收敛的速度比较快。
04第三章 第四节一维搜索
![04第三章 第四节一维搜索](https://img.taocdn.com/s3/m/81ad7288bceb19e8b8f6ba8c.png)
现在分析该法是如何进行寻优的:设已知单峰函数 f(t) 的 峰点t*(最小点)处在t =[a,b]区间(见图a) 在区间 [a , b]中,任取两点 a1、 b1且 a1<b1 ,并计算 f(a1)和 f(b1),则可出现下列结果: 1)f(a1) <f(b1),则t*必在区间[a,b1]中,如图(a)所示。
(二)黄金分割法(0.618法) 1、0.618数字的由来:
L1 x11 L2 x12 x21 x22 L3 r1 r2 r3
如f(x11)>f(x12),则[L2,r2]=[x11,r1] x11=L1+(1- 1 )(r1-L1) x12=L1+ 1(r1-L1 ) 如f(x21)>f(x22),则[L3,r3]=[x21,r2] x21=L2+(1- 2 )(r2-L2 ) x22=L2+ 2(r2-L2 ) 要使x12=x21 =?
f(b) f(a) f(x1 ) f(x2 )
则x*必在[x1,b]内。
a x1
x*x2
b
因而应舍去[a, x1],保 留[x1,b]并继续在[x1,b] 内任选一点,再对比决 定新一轮区间的取舍。
§3.4 一维搜索
一、基本概念
二、一维搜索原理
三、“成功-失败”法 四、斐波那契法(Fibonacci)与黄金 分割法(0.618法) 五、切线法(牛顿法)
n 1 ln / ln 1 2.1ln
③按0.618法则在[a,b]内取对称的两点:
左点: x1 a (1 )(b a) 右点: x2 a (b a)
④决定[a,b]内取舍区间
已知点 函数值
a<x1<x2< b f(a)>f(x1)<f(x2)>f(b)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
解: f ′ (x) =arctan x , f ″(x)=1/(1+ x2) 迭代公式: xk +1= xk - (1+ xk 2) arctan xk 取 x1= 1,计算结果: f′ (xk) 1/f″(xk ) k xk 1 1 0.7854 2 2 -0.5708 -0.5187 1.3258 3 0.1169 -0.1164 1.0137 4 -0.001095 -0.001095 x4≈ x* =0 取 x1=2,计算结果如下:
Proof. 1°反证法:设 x* ∈[a, b]为最小点, z 若x* ∈[a, x1],由定义 知 f (x1)< f (x2 ),矛盾 (假设); 2 °若x* ∈[x2 , b ],由定义知 f (x1 ) > f (x2 ), 矛盾(条件); 结论成立。 注:上述定理为缩短区间的算法提供了理论根据。
( x12 − x22 ) g ( x3 ) + ( x22 − x32 ) g ( x1 ) + ( x32 − x12 ) g ( x2 ) b= ( x1 − x2 )( x2 − x3 )( x3 − x1 )
x = −
−
b 2a
算法思路: 1. 寻找满足如下条件的点,成为两头大中间小的点: x 1 < x 2 < x3,f (x1 ) > f (x2 ), f (x2 ) < f (x3 ) 2. 两头大中间小,可得a>0, 则 x 为g(x)的极小值 点,且 x ∈ [ x1 , x3 ] 3.若 x2 − x < ε ,则迭代结束,取 x* = x ,否则在点 中 x1 , x2 , x3 , x ,选取使f (x) 最小的点作为新的x2, 并使新的x 1 , x3各是新的x2近旁的左右两点,继续 进行迭代,直到满足终止准则。
h=− , 4
缺点:效率低。优点:可以求搜索区间 注意:初始步长不能选得太小
例1:设给定初始点为 a 及初始步长为 h, 求搜索区间[c, d] 1) 前进运算 首先计算 f (a), f (a+h), 如果 f (a)> f (a+h), 则步长加倍, 计 算f (a+3h). 若 f (a+h)<= f (a+3h), 则c=a, d=a+3h; 否则将步 长再加倍,并重复上面运算. 2) 后退运算 如果 f (a)< f (a+h), 则将步长缩为原来的1/4并改变符号,即 将步长改为-h/4, 如果 f (a)< f (a-h/4),则c=a-h /4,d=a+h; 否则 将步长加倍,并继续后退。 注意: 1. h 选择要适当.(太大含多个单峰区间,太小迭代次数多); 2. f (x)单调时无结果, (加迭代次数限制); 3. 可与中点法结合寻找单调区间(思考)。
a+b 取 x0 = ,若 f ' ( x0 ) < 0 则在 2
用 [ a, x0 ] 作新的区间[a,b],继续这个过程,逐步将区间 [a,b]缩小,当区间[a,b]的长度充分小时,或者当 f ' ( x0 ) 充分小时,即可将[a,b]的中点取做极小点的近似点,这 时有估计: a+b b−a < x* − 2 2
[ a, x0 ]中有极小点,这时
至于区间[a, b]的确定,一般可采用下述方法: 首先取初始点 x0 ,若 f ' ( x0 ) < 0 ,则在 x0 右方取点 x1 = x0 +∆x, ( ∆x也是事先给定的步长);若 f ' ( x1 ) > 0 , 则 令 a = x0, b = x1 ;若仍然有 f ' ( x0 ) < 0 ,则取 x2 = x1 +∆x (或将 ∆x 放大一倍,再取 x2 = x + ∆x ),若 f '( x2 ) > 0 , 则以 [ x 1 , x 2 ] 作区间[a,b];否则继续下去。 对于 f '( x0 ) > 0的情况,可类似于上面在 x0 左侧取点,此 时 ∆x < 0 . 优点:计算量较少,而且总能收敛到一个局部极小点。 缺点:收敛速度较慢
工程优化设计中的数学方法
硕士研究生课程
理学院数学系:穆学文 Tel:88207669 E-mail:mxw1334@
第三章 常用的一维搜索方法
一元函数求极小及线性搜索均为一维搜索。常用于求: min f(x(k)+ λd(k))=φ(λ) s.t. λ∈S S 有3种情况(-∞,+∞)或(0, +∞ )或 [a, b]。一般 地, 我们总可以考虑 x ∈ (-∞,+∞), 例 对问题 min f ( x)
a a≤ ≤x x≤ ≤b b
令: 则:
f ( x), a ≤ x ≤ b F ( x) = +∞, others
a a≤ ≤x x≤ ≤b b
min f ( x) = min F ( x) −∞≤ x ≤+∞
−∞≤ x ≤+∞
我们主要介绍如下一些搜索方法:
z z z z z
“成功—失败”法 0.618法(黄金分割法) 二分法 牛顿法(Newton)和插值法 非精确搜索算法
tg α>0 tg α<0
α α
x
f′ ( x )
α
b
f′ ( x )
α
x
b
* * * x 我们知道,在极小点 处,f ' ( x ) = 0,且 x < x 时, * f ( x ) 递减,即 f ' ( x ) < 0 ,而当 x > x*,函数递增,即 f '( x) > 0 。若找到一个区间[a, b], 满足性质 f ' ( a) < 0, f ' ( b) > 0 * * f ' x ( ) = 0 ,为找此 x* 则[a,b]内必有 f ( x) 的极小点 x ,且
§4
牛顿法(Newton)和插值法
§4 .1、Newton法: 对 f (x) 在 x k 点展开: f (x )= f (xk )+ f ′(xk )( x-xk ) +(1/2) f ″(xk )(x-xk )2 + o ||(x- xk) 2 || 取二次式(略去高阶项) g(x) = f (xk) +f ′(xk)(x-xk) + (1/2)f ″(xk)(x-xk)2 用 g(x)作为f (x)的近似,当 f ″(xk) > 0时,其驻点为极小点: g′ (x)= f ′(xk) +f ″(xk)(x - xk )=0 得 xk +1= xk –f ′(xk) /f ″(xk). 取 xk +1为新的迭代点。 以上过程即Newton法。 特点:收敛速度快,二阶收敛。缺点:须计算二次导数,对初 始点要求高、局部收敛。
Newton法算法框图:
初始 x1 ,ε1, ε2 >0 k=1
— f '(xk ) —<ε1?
y
停;解 xk
N
停,失败
N
f ″(xk ) >0?
k=k+1
Y
xk +1= xk - f′ (xk ) / f″(xk )
Y
| xk +1 - xk |< ε2
N
例1: 求 min f (x)=
∫ arctan t d t
设二次插值多项式:a x2 +b x +c= g(x) a x12 +bx1 +c= g (x1 ) a x22 +bx2 +c= g (x2 ) ax32 +bx3 + c= g (x3 ) 解得: a , b
( x1 − x2 ) g ( x3 ) + ( x2 − x3 ) g ( x1 ) + ( x3 − x1 ) g ( x2 ) a=− ( x1 − x2 )( x2 − x3 )( x3 − x1 )
§2
0.618法(黄金分割法)
0.618法是求单峰函数极值的一种试探法.所谓的单 峰函数是指只有一个峰值的函数,其严格定义有 定义1:设 f(x) 是定义在[a, b]上的函数,如果 1) ∃ x* ∈[a, b] 是φ在[a, b]上的最小点 , 2) 若对任意x1 ,x2, a≤ x1 < x2 ≤b , 满足: 1º 若x2 ≤ x* ,则 f (x1) > f (x2); 2º 若x1 ≥x* ,则 f (x1) <f (x2). 则称 f(x) 为[a, b]上的单峰函数。
通过上述定理,选二点 x1 < x2 , 比较 f (x1 ) 与 f (x2 ) ,可去掉 [a , x1 ] 或者[x2 , b]. 考虑条件: 1°对称: x1 – a = b- x2 ……① (使“坏”的情况去掉,区间长度不小于“好”的情况) 2°保持缩减比 t =(保留的区间长度/原区间长度) 不变。 (使每次保留下来的节点, x1或 x2 ,在下一次的比较中成 为一个相应比例位置的节点 )。 推导缩减比 t : 如图设第一次保留[a, x2 ] (去掉[x2 , b]), 那么第 二次保留的长度为[α, x1 ], 则
b= x2 , x2 = x1 x1 = α + (1-t)( b -α ) No
b
yes
α α= x1 , x1 = x2 x2 =α +t ( b –α)
x1
x2 x1
b
α
黄金分割法(0.618 法)的优缺点 优点:不要求函数可微,且每次迭代只需计算一 个函数值,计算量小,程序简单 缺点:收敛速度慢。
α
x1
x2
b