圆锥曲线中的轨迹方程(带答案)

圆锥曲线中的轨迹方程(带答案)
圆锥曲线中的轨迹方程(带答案)

第六讲 求轨迹方程的六种常用技法

1.直接法

根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是

4

9

,求点M 的轨迹方程。

练习:

1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。

2.设动直线l 垂直于x 轴,且与椭圆2

2

24x y +=交于A 、B 两点,P 是l 上满足1PA PB ?=的点,求点P 的轨迹方程。

3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法

通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。

例2.若(8,0),(8,0)B C -为ABC ?的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ?的重

心轨迹方程是_______________。

练习:

4.方程|2|x y ++表示的曲线是 ( ) A .椭圆 B .双曲线 C .线段 D .抛物线

3.点差法

圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,

122y y y =+且直线AB 的斜率为

21

21

y y x x --,由此可求得弦AB 中点的轨迹方程。

例3.椭圆22

142

x y +=中,过(1,1)P 的弦恰被P 点平分,则该弦所在直线方程为_________________。

练习:

5.已知以(2,2)P 为圆心的圆与椭圆2

2

2x y m +=交于A 、B 两点,求弦AB 的中点M 的轨迹方程。

6.已知双曲线2

2

12

y x -=,过点(1,1)P 能否作一条直线l 与双曲线交于,A B 两点,使P 为线段AB 的中点?

4.转移法

转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。 当题目中的条件同时具有以下特征时,一般可以用转移法求其轨迹方程: ①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化; ③在变化过程中P 和M 满足一定的规律。

例4. 已知P 是以12,F F 为焦点的双曲线

22

1169

x y -=上的动点,求12F F P ?的重心G 的轨迹方程。

练习:

7.已知(1,0),(1,4)A B -,在平面上动点Q 满足4QA QB ?=,点P 是点Q 关于直线2(4)y x =-的对称点,求动点P 的轨迹方程。

5.参数法

求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为寻求变量间的关系。在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。

例6.过点(2,0)M -作直线l 交双曲线2

2

1x y -=于A 、B 两点,已知OP OA OB =+。

(1)求点P 的轨迹方程,并说明轨迹是什么曲线;

(2)是否存在这样的直线l ,使OAPB 矩形?若存在,求出l 的方程;若不存在,说明理由。

8.设椭圆方程为14

2

2

=+y x ,过点(0,1)M 的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21+=

,点N 的坐标为)2

1

,21(,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)||的最小值与最大值。

9.设点A 和B 为抛物线2

4(0)y px p =>上原点O 以外的两个动点,且OA OB ⊥,过O 作

OM AB ⊥于M ,求点M 的轨迹方程。

6.交轨法

若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的方程,也可以解方程组先求出交点的参数方程,再化为普通方程。

例7.已知MN 是椭圆12222=+b

y a x 中垂直于长轴的动弦,A 、B 是椭圆长轴的两个端点,求直线MA 和NB 的交点P 的轨迹方程。

10.两条直线01=++y ax 和)1(01±≠=--a ay x 的交点的轨迹方程是___ ______。

总结归纳

1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明,x y 的取值范围。

2.“轨迹”与“轨迹方程”既有区别又有联系,求“轨迹”时首先要求出“轨迹方程”,然后再说明方程的轨迹图形,最后“补漏”和“去掉增多”的点,若轨迹有不同的情况,应分别讨论,以保证它的完整性。

练习参考答案

1.

22

(2)11648

x y --= 2.解:设P 点的坐标为(,)x y ,则由方程2

2

24x y +=

,得y =由于直线l 与椭圆交于两点A 、B ,故22x -<<

即A 、B

两点的坐标分别为((,A x B x

∴24(0,),(0,)x PA y PB y -

=-=-

由题知1PA PB ?=即)(0,)1y y ?=

∴22

412x y --=即22

26x y +=所以点P 的轨迹方程为221(22)63

x y x +=-<< 3.D 【解析】在长方体1111ABCD A B C D -中建立如图所示的空间直角坐标系,易

知直线AD 与11D C 是异面垂直的两条直线,过直线AD 与11D C 平行的平面是面ABCD ,设在平面ABCD 内动点(,)M x y 满足到直线AD 与11D C 的距离相等,作1MM MP =于1M ,MN CD ⊥于N ,11NP D C ⊥于P ,连结MP ,

易知MN ⊥平面111,CDD C MP D C ⊥,则有1MM MP =,222

||y x a =+(其

中a 是异面直线AD 与11D C 间的距离),即有222

y x a -=,因此动点M 的轨迹是双曲线,选D. 4.A

5.解 设(,)M x y ,1122(,),(,)A x y B x y

则12122,2x x x y y y +=+=,由m y x =+21221

x +22两式相减并同除以12()x x -得

121212121122y y x x x

x x y y y -+=-=--+ , 而1212

AB y y k x x -=-2

2

PM y k x -=

-, 又因为PM AB ⊥所以1AB PM k k ?=- 12

122

x y y x --

?=-- 化简得点M 的轨迹方程240xy x y +-= 6.先用点差法求出210x y --=,但此时直线与双曲线并无交点,所以这样的直线不存在。中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。

7.解:设(,)Q x y ,则(1,),(1,4)QA x y QB x y =---=--

由4(1,)(1,4)4(1)(1)()(4)4QA QB x y x y x x y y ?=?---?--=?---+--= 即2

2

2

(2)3x y +-=

所以点Q 的轨迹是以(0,2)C 为圆心,以3为半径的圆。 ∵点P 是点Q 关于直线2(4)y x =-的对称点。

∴动点P 的轨迹是一个以000(,)C x y 为圆心,半径为3的圆,其中000(,)C x y 是点(0,2)C 关于直线

2(4)y x =-的对称点,即直线2(4)y x =-过0CC 的中点,且与0CC

垂直,于是有00

002

210202422

y x y x -??=-?-???++=?-??即000000240821802

y x x y x y +-==???????

-+==-???? 故动点P 的轨迹方程为2

2

(8)(2)9x y -++=。

8.解:(1)解法一:直线l 过点(0,1)M ,设其斜率为k ,则l 的方程为1y kx =+

记),(11y x A 、),,(22y x B 由题设可得点A 、B 的坐标),(11y x 、),(22y x 是方程组

??

?

??=++=141

2

2y x kx y 的解 将①代入②并化简得,032)4(2

2

=-++kx x k ,所以

???

????

+=++-=+.48,42221221k y y k

k x x 于是 ).44,4()2,2()(21222121k k k y y x x ++-=++=+= 设点P 的坐标为),,(y x 则???

????

+=+-=.44,422

k y k k x 消去参数k 得0422=-+y y x ③

当k 不存在时, A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为

2240x y y +-=

解法二:设点P 的坐标为),(y x ,因),(11y x A 、),(22y x B 在椭圆上,所以

,14212

1

=+y x ④ .142

22

2=+y x ⑤

④—⑤得0)(412

2212

221=-+

-y y x x ,所以 .0))((4

1))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(41

2

1212121=--?++

+x x y y y y x x ⑥ ①

并且???

?

?

?

?

??--=-+=+=.

1,2,2212121

21x x y y x y y y y x x x ⑦ 将⑦代入⑥并整理得 .0422=-+y y x ⑧ 当21x x =时,点A 、B 的坐标为(0,2),(0,2)-,这时点P 的坐标为(0,0)

也满足⑧,所以点P 的轨迹方程为2

2

1

()2111164y x -+= (2)解:由点P 的轨迹方程知2116x ≤,即11

44

x -≤≤所以

12

7

)61(3441)21()21()21(||222222++-=-+-=-+-=x x x y x NP

故当41=x ,||取得最小值,最小值为61;41-=x 当时,||取得最大值,

6

9.解法1 :(常规设参)设(,)M x y ,1122(,),(,)A x y B x y ,则

???

??-=+-=??????????

??-=?---=?==x py y y p y y x

y x x y

y x y x y px

y px

y 42

12162112121

1221124221421 (※)由,,A M B 共线得)421(2141p y x y y p y y -+=

- 则2

121214y y y y x y y p y ++

+=把(※)代入上式得y px

y x y 42+-=化简得M 的轨迹方程为2240(0)x y px x +-=≠)

解法2: (变换方向) 设OA 的方程为(0)y kx k =≠,则OB 的方程为1y x k

=- 由???==px y kx y 22 得222(,)p p A k k , 由??

???

=-=px

y x k y 221 得2

(2,2)B pk pk -

所以直线AB 的方程为 2

(2)1k

y x p k

=

--① 因为OM AB ⊥,所以直线OM 的方程为2

1k y x k

-=- ② ①×②即得M 的轨迹方程: 2

2

40(0)x y px x +-=≠

解法3: (转换观点) 视点M 为定点,令00(,)M x y ,由OM AB ⊥可得直线AB 的方程为

0000()x y y x x y -=-

-, 与抛物线24y px =联立消去y 得222

00000

44()0py p y y x y x x +-+=,设1122(,),(,)A x y B x y ,则22

12000

4()p y y x y x =-

+ 又因为OA OB ⊥,所以21621p y y -= 故22

2000

4()16p x y p x -

+=-即220

0040x y px +-=所以M 点的轨迹方程为2240(0)x y px x +-=≠ 10.)0,0(02

2

≠≠=+-+y x y x y x

完整的圆锥曲线轨迹方程求法

圆锥曲线轨迹方程的解法 目录 一题多解 (2) 一.直接法 (3) 二. 相关点法 (6) 三. 几何法 (10) 四. 参数法 (12) 五. 交轨法 (14) 六. 定义法 (16)

一题多解 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ ,求所对弦的中点P 的轨迹方程。 一.直接法 设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0,设 OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=41 (x ≠0),即点P 的 轨迹方程是(x -21)2+y 2=41 (0<x ≤1)。 二.定义法 ⊥⊥OPC =90°,⊥动点P 在以M (0,2 1 )为圆心,OC 为直径的圆(除去原点 O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=41 (0<x ≤1) 三.相关点法 设P (x,y ),Q (x 1,y 1),其中x 1≠0, ⊥x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ⊥(2x -1)2+2y 2=1,又x 1≠0, ⊥x ≠0,即(x -21)2+y 2=41 (0<x ≤1) 四.参数法 ①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1, 即(1+k 2)x 2-2x =0,⊥.12 221k x x +=+ 设点P (x,y ),则2 2211],1,0(112k k kx y k x x x +==∈+=+= 消去k 得(x - 21)2+y 2=4 1 (0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ), 则,2sin ],1,0(2cos 1θθ=∈+= y x 消去θ得(x -21)2+y 2=4 1 (0<x ≤1)

圆锥曲线大题十个大招——轨迹问题

招式八:轨迹问题 轨迹法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为122=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2 222)2(1y x y x +-=-+λ 化简得0)41(4))(1(2 2 2 2 2 =++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 2 22 222) 1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y , ,则 2222(2)12[(2)1]x y x y ++-=-+-, y x Q M N O

即22(6)33x y -+=.(或221230x y x +-+=) 评析: 1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。 2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 例2、已知动圆过定点,02p ?? ??? ,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程; 【解析】如图,设M 为动圆圆心,,02p ?? ??? 为记为F ,过点M 作直线2p x =-的垂线, 垂足为N ,由题意知:MF MN = 即动点M 到定点F 与定直线2 p x =- 的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ?? ??? 为焦点, 2 p x =- 为准线,所以轨迹方程为2 2(0)y px P =>; ◎◎ 已知圆O 的方程为 x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上任一点,AM 的垂直平分线交OM 于点P ,求点P 的方程。 【解析】由中垂线知,PM PA =故10==+=+OM PO PM PO PA ,即P 点的轨迹为以A 、 O 为焦点的椭圆,中心为(-3,0),故P 点的方程为 12516 25)3(2 2=++y x ,02p ?? ??? 2 p x =-

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆: 1、 长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 2、 线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 3如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 4在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. 5(2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型: 3、 定义法:点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为2 1 ,求点M 的轨迹方程.

高中数学圆锥曲线轨迹问题题型分析

有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数 )0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点) ,使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

最新圆锥曲线轨迹问题(教师版)

第四讲 有关圆锥曲线轨迹问题(教师版) 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这 种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为 12 2=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则 2 22ON MO MN -=。),(y x M ,则 2 222)2(1y x y x +-=-+λ化简得 0)41(4))(1(2 2222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。 当1≠λ时,方程化为2 2 22 222)1(31)12(-+=+--λλλλy x 表示一个圆。 【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN , (M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -, ,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) y x Q M N O

圆锥曲线中的轨迹问题(含解析)

圆锥曲线中的轨迹问题 一、单选题 1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B .一个圆 C .一个椭圆 D .曲线的一支 2.棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有 1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( ) A .3 B .32 C . 32 D .1 3.如图,正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1 3 AM = ,点P 是平面ABCD 上的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是( ) A .圆 B .抛物线 C .双曲线 D .直线 二、填空题 4.已知分别过点(1,0)A -和点(1,0)B 的两条直线相交于点P ,若直线PA 与PB 的斜率之积为-1,则动点P 的轨迹方程是________. 5.动圆经过点(3,0)A ,且与直线:3l x =-相切,求动圆圆心M 的轨迹方程是____________. 三、解答题 6.圆C 过点()60A , ,()1,5B ,且圆心在直线:2780l x y -+=上. (1)求圆C 的方程;

(2)P 为圆C 上的任意一点,定点()8,0Q ,求线段PQ 中点M 的轨迹方程. 7.若平面内两定点(0,0)O ,(3,0)A ,动点P 满足||1 ||2 PO PA =. (1)求点P 的轨迹方程; 8.点(,)M x y 与定点(3,0)F 的距离和它到直线25:3 l x = 的距离之比是常数3 5,求点 M 的轨迹方程. 9.在圆:C 223x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当P 在 圆上运动时,线段PD 上有一点M ,使得DM =, (1)求M 的轨迹的方程; 10.已知点()1,0F ,点P 到点F 的距离比点P 到y 轴的距离多1,且点P 的横坐标非负,点()1,M m (0m <); (1)求点P 的轨迹C 的方程;. (2)过点M 作C 的两条切线,切点为A ,B ,设AB 的中点为N ,求直线MN 的斜率.

2021届高考数学圆锥曲线中必考知识专题9 圆锥曲线中的轨迹问题(解析版)

专题9:圆锥曲线中的轨迹问题(解析版) 一、单选题 1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B .一个圆 C .一个椭圆 D .曲线的一支 【答案】A 【分析】 先找出定点A 和直线l 确定的一个平面,结合平面相交的特点可得轨迹类型. 【详解】 如图,设l 与l '是其中的两条任意的直线,则这两条直线确定一个平面β,且α的斜线 AB β⊥,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直 所有直线都在这个平面内,故动点C 都在平面β与平面α的交线上. 【点睛】 本题主要考查轨迹的类型确定,熟悉平面的基本性质及推论是求解的关键,侧重考查直观想象的核心素养. 2.棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有 1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( ) A 3 B .32 C 3 D .1 【答案】C 【分析】 本题首先可以根据题意确定当1PC BD ⊥时直线PC 所在平面区域,然后结合图像即可

得出动点P 的轨迹所围成图形为1AB C ,然后求出1AB C 面积即可得出结果. 【详解】 如图,易知直线1BD ⊥平面1ACB , 故动点P 的轨迹所围成图形为1AB C , 因为1AB C 为边长为2的正三角形, 所以其面积() 2 3 32S =?= , 故选:C. 【点睛】 本题考查线面垂直的相关性质,若直线与平面垂直,则直线垂直这个平面内的所有直线,考查推理能力,考查数形结合思想,是中档题. 3.如图,正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1 3 AM = ,点P 是平面ABCD 上的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是( ) A .圆 B .抛物线 C .双曲线 D .直线 【答案】B 【分析】 作PQ AD ⊥,11QR A D ⊥,PR 即为点P 到直线11A D 的距离,由勾股定理得

“圆锥曲线平行弦中点轨迹问题”说题

圆锥曲线平行弦中点轨迹问题”说题 说题”是近年来涌现出的一种新型教学研究模式 简单地讲:说题是执教者或受教育者在精心做题的基础上,阐述对习题解答时所采用的思维方式,解题策略及依据,进而总结出经验性解题规律. “说题”使教研活动更入微了,可以说是教研活动的一次创新 般说来,说题应从以下几个方面进行分析:数学思想 与数学方法,命题变化的自然思维,小结、归纳与应用,题多解、发散思维,常规变式,多种变式、融会贯通,从特殊到一般寻找规律.要求数学教师不但对题目进行深层次的 挖掘,说出题目的本质、新意、特色,还要说出题目的编制、演变过程以及该题目的潜在价值 面是本人的一次说题研究,在此抛砖引玉供各位参考、说问题 背景 问题来源于2005 年上海市普通高等学校春季招生考试 数学试卷第22 题: 1)求右焦点坐标是(2,0),且经过点(-2,-2)的 椭圆的标准方程; (2)已知椭圆C的方程是x2a2+y2b2=1 (a>b>0), 设 斜率为k的直线I,交椭圆C于A、B两点,AB的中点为M.证

明:当直线l 平行移动时,动点M 在一条过原点的定直线上; 3)利用(2)所揭示的椭圆几何性质,用作图方法找 出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心. 二、说问题立意 1.考查椭圆的标准方程和性质;中心对称等; 2.考查数 学思想有:从特殊到一般思想;数形结合思想;分类讨论思 想;数学方法:判别式法;函数与方程转化等;引导将双 曲线问题与相应的椭圆问题开展类比研究的思想方法.3.通 过研究椭圆的平行弦的中点轨迹,对直线与曲线位置关系研究方法有更深刻的理解;这是将知识、方法、思想、能力素质融于一体的命题,也看出高校选拔人才对学生的直觉思维能力、逻辑推理能力、运算能力和自主探索能力等提出了较高的要求. 、说问题解法 解法1(1)略(2)设直线I的方程为y=kx+m,与椭圆C的交点A(x1, y1 )、B (x2, y2),则有y=kx+m, x2a2+y2b2=1,解得( b2+a2k2)x2+2a2kmx+a2m2-a2b2=0. ???△ >0,二m2vb2+a2k2,即-b2+a2k2vmvb2+a2k2.则 x1+x2=-2a2kmb2+a2k2,y1+y2=kx1+m+kx2+m=2b2mb2+a2k2. ??? AB 中点M 的坐标为(-a2kmb2+a2k2 , b2mb2+a2k2 ).

圆锥曲线轨迹方程的常用方法

圆锥曲线轨迹方程的求法 知识归纳 求轨迹方程的常用方法: ⒈直接法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法。 ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 ⒊相关点法:用动点M 的坐标x ,y 表示相关点P 的坐标(X o 、Y o ),然后代入点P 的坐标(X o 、Y o )所满足的曲线方程,整理化简便得到动点Q 轨迹方程,这种求轨迹方程的方法叫做相关点法。(用未知表示已知,带入已知求未知) ⒋参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变数t 的关系,得再消去参变数t ,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 类型一 直接法求轨迹方程 【例1】已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN ??????? |?|MP ?????? |+MN ??????? ?NP ?????? =0 ,则动点P (x ,y )的轨迹方程为 。 【解析】设P (x ,y ),x >0,y >0,M (﹣2,0),N (2,0),|MN → |=4, 则MP → =(x +2,y),NP → =(x ?2,y)由|MN → |?|MP → |+MN → ?NP → =0, 则4√(x +2)2+y 2+4(x ?2)=0,化简整理得y 2=﹣8x . 【点评】直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简这四个步骤,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程。 【变式训练】 1.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.

圆锥曲线之轨迹问题例题习题(精品)

x 专题:圆锥曲线之轨迹问题 一、 临阵磨枪 1?直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些 几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含 x,y 的等式就得到曲线 的轨迹方程。这种求轨迹的方法称之为直接法。 2?定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线 的定义),则可根据定义直接求出动点的轨迹方程。 3?坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随 着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的, 或是可分析的, 这时我们可以用动点坐标表示相关点坐标, 根据相关点所满足的方程即可求得动点的轨迹方 程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。 4. 参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现 (或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间 等)的制约,即动点坐标(x, y )中的x, y 分别随另一变量的变化而变化, 我们可以把这个变 量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程, 只要消去参变量即可。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可 通过解方程组得出交点含参数的坐标, 再消去参数得出所求轨迹方程,此种方法称为交轨法。 二、 小试牛刀 1. _________________________________________________________________________ 已知M (-3,0),N ( 3,0) PM PN 6,则动点P 的轨迹方程为 ______________________________ 析:Q MN PM PN ???点P 的轨迹一定是线段 MN 的延长线。 故所求轨迹方程是 y 0(x 3) 圆所引的切线长相等,则动点 P 的轨迹方程为 __________________________ 析:???圆O 与圆o 外切于点M (2,0) ?两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为 x 2 2 2 x y 一 3.已知椭圆 — 亍1(a b 0) ,M 是椭圆上一动点,F i 为椭圆的左焦点,贝U 线段MF i a b 的中点P 的轨迹方程为 _____________________________ 析:设P (x, y ) M (x °,y °)又F , ( c,0)由中点坐标公式可得: 2 2.已知圆0的方程为x 2 2 y 2,圆0的方程为x 2 y 8x 10 0 ,由动点P 向两

圆锥曲线轨迹

圆锥曲线-----轨迹 一 基础热身 1.点M 与点(4,0)F 的距离比它到直线:50l x +=的距离小1,则点M 的轨迹方程是______________. 2.一动圆与圆2 2 1x y +=外切,而与圆2 2 680x y x +-+=内切,则动圆圆心的轨迹方程是 _______ 3.已知椭圆13 42 2=+y x 的两个焦点分别是F 1, F 2,P 是这个椭圆上的一个动点,延长F 1P 到Q ,使得|PQ |=|F 2P |,求Q 的轨迹方程是. 4.倾斜角为4 π 的直线交椭圆1422=+y x 于B A ,两点,则线段AB 中点的轨迹方程是 _______. 5.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC OA OB αβ=+,其中,R αβ∈,且1αβ+=,则点C 的轨迹方程为____________________. 二 典例回放 1.⊙C :16)3(22=++y x 内部一点A (3,0)与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 2.一条曲线在x 轴上方,它上面的每一个点到点(0,2)A 的距离减去它到x 轴的距离的差都是2,求这条曲线的方 程。 3.△ABC 中,B (-3,8)、C (-1,-6),另一个顶点A 在抛物线y 2 =4x 上移动,求此三角形重心G 的轨迹方程. 4.抛物线 y 2=2px(p>0),O 为坐标原点,A 、B 在抛物线上,且OA ⊥OB ,求弦AB 中点M的轨迹方程.

三 水平测试 1.与两点)0,3(),0,3(-距离的平方和等于38的点的轨迹方程是( ) ()A 1022=-y x ()B 1022=+y x ()C 3822=+y x ()D 3822=-y x 2.过椭圆4x 2 +9y 2 =36内一点P(1,0)引动弦AB,则AB 的中点M 的轨迹方程是() (A)4x 2+9y 2-4x=0 (B)4x 2+9y 2+4x=0 (C)4x 2+9y 2-4y=0 (D)4x 2+9y 2 +4y=0 3.若 ()()031322=+---++y x y x ,则点()y x M ,的轨迹是( ) (A)圆 (B)椭圆 (C)双曲线 (D)抛物线 4.已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是:() ()A 双曲线 ()B 双曲线左支 ()C 一条射线 ()D 双曲线右支 5.已知三角形ABC 中,2, 2,AB BC AC ==则点A 的轨迹是________________.6.抛物线y=x 2+2mx+m 2+1-m 的顶点的轨迹方程为_________________________. 7.线段AB 的两端点分别在两互相垂直的直线上滑动,且||2AB a =,求AB 的中点P 的轨迹方程。 8.已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。 (1)、点P 的轨迹是什么曲线? (2)、若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ。 答案:一 基础热身

2021高考数学圆锥曲线轨迹方程问题解法指导

2021高考数学圆锥曲线轨迹方程问题解法指导 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目.分析原因除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是山东卷高考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨迹方程,求得方程就可

以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型(定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;②简化条件式;③转化化归。 解题方法荟萃 1.直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间距离公式、点到直线距离公式、夹角公式等)进行整理、化简。这种求轨迹方程的过程不需要特殊的技巧,它是求轨迹方程的基本方法。 直接法一般有下列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。 3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

圆锥曲线轨迹方程问题

圆锥曲线轨迹方程问题 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高, 主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目. 分析原因除了这类题目的入手确实不易之外,主要是学生没 有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是 ft东卷高 考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生 心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其 实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类 问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同 时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨 迹方程,求得方程就可以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型 (定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处 理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问 题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理 解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要 等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;② 简化条件式; ③转化化归。 解题方法荟萃

圆锥曲线之轨迹方程的求法

圆锥曲线之轨迹方程的求法(一) (制卷:周芳明) 【复习目标】 □1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤; □2. 会用直接法、定义法、相关点法(坐标代换法)求方程。 【基础练习】 1.到两坐标轴的距离相等的动点的轨迹方程是( ) A .y x = B .||y x = C .22y x = D .220x y += 2.已知点(,)P x y 4,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .两条射线 D .以上都不对 3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a +=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段 4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________. 【例题精选】 一、直接法求曲线方程 根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。 例1.已知ABC ?中,2,AB BC m AC ==,试求A 点的轨迹方程,并说明轨迹是什么图形. 练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。点P 的轨迹是什么曲线?

二定义法 若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。 例1.⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12 。记点P 的轨迹为 曲线C 求点P 的轨迹方程; 练习.若动圆与圆1)2(:2 21=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 . 三代入法 有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。如果相关点所满足的条件是明显的,或是可分析,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法。这种方法是一种极常用的方法,连续好几年高考都考查。 例1、已知定点A ( 3, 0 ),P 是圆x 2 + y 2 = 1上的动点,∠AOP 的平分线交AP 于M , 求M 点的轨迹。

圆锥曲线中轨迹方程的求法

圆锥曲线中轨迹方程的求法 临沂——李宝峰 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. 一:直接法: 是求轨迹方程最基本的方法,如果动点P 满足的等量关系易于建立,可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,构成F (x ,y )=0,即可得到轨迹方程。一般有设点,列式,代换,化简,证明(可省略)五个步骤。但要注意“挖”与“补”。 直接根据等量关系式建立方程. 例1已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是() A.圆 B.椭圆 C.双曲线 D.抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,, 由2PA PB x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D. 例1:两个定点的距离为6,点M 到两个定点的距离的平方和为26,求点M 的轨迹。 分析:根据题意建立合适的坐标系,列出等量关系即可。 二:定义法(待定系数法):适用于根据条件可直接判断轨迹是什么曲线,且知道其方程形式的情形(如圆、椭圆、双曲线、抛物线),运用解析几何中定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 ,例2在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b ∴. ∴所求ABC △的重心的轨迹方程为22 1(0)16925 x y y +=≠. 注意:求轨迹方程时要注意轨迹的纯粹性与完备性. 例2:已知:⊙c 1(x+3)2+y 2=1和⊙c 2(x-3)2+y 2=9,动圆M 与⊙c 1,⊙c 2相外切,求动圆 圆心M 的轨迹方程。 三:相关点法(代入法):若所求动点随另一动点(称为相关点,该点坐标满足某已知曲线方程)有规律运动,根据条件找出它们坐标间的关系,用动点坐标表示相关点坐标,由相关点坐标满足的方程可求得动点轨迹方程。本法关键找出动点与相关点间的坐标关系。 即设出

神奇的圆锥曲线问题探究

神奇的圆锥曲线动态结构 目录 一、神奇曲线,定义统一 01.距离和差,轨迹椭双 02.距离定比,三线统一 二、过焦半径,相关问题 03.切线焦径,准线作法 04.焦点切线,射影是圆 05.焦半径圆,切于大圆 06.焦点弦圆,准线定位 07.焦三角形,内心轨迹 三、焦点之弦,相关问题 08.焦点半径,倒和定值 09.正交焦弦,倒和定值 10.焦弦中垂,焦交定长 11.焦弦投影,连线截中 12.焦弦长轴,三点共线 13.对焦连线,互相垂直 14.相交焦弦,轨迹准线 15.相交焦弦,角分垂直 16.定点交弦,轨迹直线 17.焦弦直线,中轴分比

四、相交之弦,蝴蝶特征19.横点交弦,竖之蝴蝶20.纵点交弦,横之蝴蝶21.蝴蝶定理,一般情形五、切点之弦,相关问题22.主轴分割,等比中项23.定点割线,倒和两倍24.定点割线,内外定积25.主轴交点,切线平行六、定点之弦,张角问题26.焦点之弦,张角相等27.定点之弦,张角仍等28.对称之点,三点共线29.焦点切点,张角相等30.倾角互补,连线定角七、动弦中点,相关问题31.动弦中点,斜积定值32.切线半径,斜积仍定33.动弦中垂,范围特定34.定向中点,轨迹直径35.定点中点,轨迹同型八、向量内积,定值问题

37.存在定点,内积仍定九、其它重要性质38.光线反射,路径过焦39.切线中割,切弦平行40.直周之角,斜过定点41.正交半径,斜切定圆42.直径端点,斜积定值43.垂弦端点,交轨对偶44.准线动点,斜率等差45.焦点切线,距离等比46.共轭点对,距离等积47.正交中点,连线定点48.顶点切圆,切线交准49.平行焦径,交点轨迹50.内接内圆,切线永保51.切线正交,顶点轨迹52.斜率定值,弦过定点53.直线动点,切弦定点54.与圆四交,叉连互补55.交弦积比,平行方等56.补弦外圆,切于同点57、焦点切长,张角相等

圆锥曲线求点的轨迹方程

求点的轨迹问题 一、基础知识: 1、求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 2、求点轨迹方程的方法 (1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可 (2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程 (3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程。常见的曲线特征及要素有: ① 圆:平面上到定点的距离等于定长的点的轨迹 直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上 确定方程的要素:圆心坐标(),a b ,半径r ② 椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹 确定方程的要素:距离和2a ,定点距离2c

③ 双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹 注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支 确定方程的要素:距离差的绝对值2a ,定点距离2c ④ 抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹 确定方程的要素:焦准距:p 。若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程 (4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变 量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()() x f k y g k =???=??, 即曲线的参数方程,消去参数k 后即可得到轨迹方程。 二、典型例题: 例1:设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 ,则动点P 的轨迹方程是( ) A. 22132x y += B. 22 132 x y -= C. ()2 2 413 6 x y --= D. 22123x y += 思路:设(),P x y ,则可直接利用已知条件列出关于,x y 的等式,化简即可

相关文档
最新文档