圆锥曲线中的轨迹方程(带答案)
圆锥曲线的轨迹方程问题(教师版)
圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.【答案】(1)y 2=4x ;(2)x 2+y 2-2x =0x ≠0【解析】(1)当PF 与x 轴垂直时,P p 2,p ,故S △OFP =12×p 2×p =1,故p =2,故抛物线的方程为:y 2=4x .(2)设A y 214,y 1 ,B y 224,y 2,直线AB :x =ty +m ,因为OA ⋅OB =-4,故y 21y 2216+y 1y 2=-4,整理得到:y 21y 22+16y 1y 2+64=0,故y 1y 2=-8.由x =ty +my 2=4x可得y 2-4ty -4m =0,故-4m =-8即m =2,故直线AB :x =ty +2,此直线过定点M 2,0 .因为OG ⊥GM ,故G 的轨迹为以OM 为直径的圆,其方程为:x -0 x -2 +y -0 y -0 =0即x 2+y 2-2x =0.因为直线AB :x =ty +2与x 轴不重合,故G 不为原点,故G 的轨迹方程为:x 2+y 2-2x =0x ≠0 .2.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率e =233,且经过点P 3,1 .(1)求双曲线C 的方程;(2)设A ,B 在C 上,PA ⊥PB ,过P 点向AB 引垂线,垂足为M ,求M 点的轨迹方程.【答案】(1)x 26-y 22=1;(2)x -92 2+y +122=92(去掉点P )【解析】(1)∵双曲线的离心率e =c a =233,∴c 2=43a 2=a 2+b 2,即a 2=3b 2,将P 3,1 代入C :x 23b 2-y 2b 2=1,即93b 2-1b2=1,解得b 2=2,a 2=6,故双曲线C 的方程为x 26-y 22=1;(2)当直线AB 斜率不存在时,不满足PA ⊥PB ,故不满足题意;当直线AB 斜率存在时,设A x 1,y 1 ,B x 2,y 2 ,AB :y =kx +m ,代入双曲线方程整理得:3k 2-1 x 2+6kmx +3m 2+6 =0.Δ>0,则x 1+x 2=-6km 3k 2-1,x 1x 2=3m 2+63k 2-1,∵PA ⊥PB ,∴x 1-3 x 2-3 +y 1-1 y 2-1 =0,即x 1-3 x 2-3 +kx 1+m -1 kx 2+m -1 =0,整理得18k 2+9km +m 2+m -2=0,即3k +m -1 6k +m +2 =0,当3k +m -1=0时,AB 过P 点,不符合题意,故6k +m +2=0,直线AB 化为y +2=k x -6 ,AB 恒过定点Q 6,-2 ,∴M 在以PQ 为直径的圆上且不含P 点,即M 的轨迹方程为x -92 2+y +12 2=92(去掉点P ).3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【答案】(1)x -y +1=0;(2)2x -y -2=0【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2, 可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.4.已知圆C 与y 轴相切,圆心C 在直线x -2y =0上且在第一象限内,圆C在直线y =x 上截得的弦长为214.(1)求圆C 的方程;(2)已知线段MN 的端点M 的横坐标为-4,端点N 在(1)中的圆C 上运动,线段MN 与y 轴垂直,求线段MN 的中点H 的轨迹方程.【答案】(1)x -4 2+y -2 2=16;(2)4x 2+y -2 2=16【解析】(1)依题意,设所求圆C 的方程为x -a 2+y -b 2=r 2a >0 .所以圆心a ,b 到直线x -y =0d =a -b2,则有d 2+14 2=r 2,即a -b 2+28=2r 2.①由于圆C 与y 轴相切,所以r 2=a 2.②又因为圆C 的圆心在直线x -2y =0上,所以a -2b =0.③联立①②③,解得a =4,b =2,r =4,故所求圆C 的方程为x -4 2+y -2 2=16.(2)设点H 的坐标为x ,y ,点N 的坐标为x 0,y 0 ,点M 的坐标为-4,y ,因为H 是线段MN 的中点,所以x =x 0-42,y =y 0,于是有x 0=2x +4,y 0=y .①因为点N 在第(1)问中圆C 上运动,所以点N 满足x 0-4 2+y 0-2 2=16.②把①代入②,得2x +4-4 2+y -2 2=16,整理,得4x 2+y -2 2=16.此即为所求点H 的轨迹方程.5.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴ x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45,∴k1=k AP=-45-0-65+2=-1,k2=k AS=-45-065+2=-14,∴k1=4k2;②当直线l的斜率存在时,设直线l的方程为:x=my-6 5,,由x=my-65,与x24+y2=1联立可得(m2+4)y2-12m5y-6425=0,其中Δ=144m225+4×(m2+4)×6425>0,设P(x1,y1),Q(x2,y2),则S(-x2,-y2),则y1+y2=12m5m2+4,y1y2=-6425m2+4,∴k1=k AP=y1-0x1+2=y1x1+2,k2=k AS=-y2-0-x2+2=y2x2-2,则k1k2=y1x1+2⋅x2-2y2=y1my2-165my1+45y2=my1y2-165y1my1y2+45(y1+y2)-45y1=-6425m2+4-165y1-6425mm2+4+45⋅125mm2+4-45y1=-6425m2+4-165y1-1625m2+4-45y1=4,∴k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.【答案】(1)x2+y2=1;(2)655-1,655+1.【解析】(1)设A(x,y),因为|AE|=2|AF|,所以(x-2)2+(y-0)2=2×x-2 22+(y-0)2,平方化简,得x2+y2=1;(2)直线l:y=kx+m与双曲线:x24-y29=1的方程联立,得y=kx+mx2 4-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),所以有4k2-9≠0(8km)2-4⋅(4k2-9)(4m2+36)>0⇒m2+9>4k2且k≠±32,所以x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9,因为∠MON =π2,所以OM ⊥ON⇒x 1x 2+y 1y 2=0⇒x 1x 2+(kx 1+m )(kx 2+m )=0,化简,得(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)⋅4m 2+364k 2-9+km ⋅-8km 4k 2-9 +m 2=0,化简,得m 2=36(k 2+1)5,因为m 2+9>4k 2且k ≠±32,所以有36(k 2+1)5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =mk 2+1=65k 2+1k 2+1=655>1,所以点A 到直线距离的最大值为655+1,最小值为655-1,所以点A 到直线距离的取值范围为655-1,655+1 ,7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【答案】(1)x 24+y 2=1x ≠±2 ;(2)-1,-12 ∪12,1 【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x 24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8kmx +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1,又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.【答案】(1)x 23+y 22=1x ≠±3 ;(2)62【解析】(1)由已知设点P 的坐标为x ,y ,由题意知k AP ⋅k BP =y x +3⋅y x -3=-23x ≠±3 ,化简得P 的轨迹方程为x 23+y 22=1x ≠±3(2)证明:由题意M 、N 是椭圆C 上非顶点的两点,且AP ⎳OM ,BP ⎳ON ,则直线AP ,BP 斜率必存在且不为0,又由已知k AP ⋅k BP =-23.因为AP ⎳OM ,BP ⎳ON ,所以k OM k ON =-23设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得3+2m 2 y 2+4mty +2t 2-6=0....①,设M ,N 的坐标分别为x 1,y 1 ,x 2,y 2 ,则y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2又k OM ⋅k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2 +t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m2=-23,得2t 2=2m 2+3又S △MON =12t y 1-y 2 =12t -24t 2+48m 2+723+2m 2,所以S △MON =26t t 24t 2=62,即△MON 的面积为定值62.9.在平面直角坐标系xOy 中,已知直线l :x =1,点F 4,0 ,动点P 到点F 的距离是它到直线l 的距离的2倍,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 且斜率大于3的直线交C 于两点,点Q -2,0 ,连接QA 、QB 交直线l 于M 、N 两点,证明:点F 在以MN 为直径的圆上.【答案】(1)x 24-y 212=1;(2)证明见解析【解析】(1)设P x ,y ,由题意得x -4 2+y 2=2x -1 化简得x 24-y 212=1,所以曲线C 的方程为x 24-y 212=1.(2)证明:设A x 1,y 1 、B x 2,y 2 、M 1,m 、N 1,n ,设直线AB 的方程为y =k x -4 且k >3,联立y =k x -4 x 24-y 212=1得3-k 2 x 2+8k 2x -16k 2-12=0,3-k 2≠0,Δ=64k 4+43-k 2 16k 2+12 =144k 2+1 >0,由韦达定理可得x 1+x 2=8k 2k 2-3,x 1x 2=16k 2+12k 2-3,因为点M 在直线QA 上,则k QM =k QA ,即m3=y 1x 1+2,可得m =3y 1x 1+2=3k x 1-4x 1+2,同理可得n =3k x 2-4 x 2+2,FM=-3,m ,FN =-3,n ,所以,FM ⋅FN =9+mn =9+9k 2x 1x 2-4x 1+x 2 +16x 1x 2+2x 1+x 2 +4=9+9k 216k 2+12-32k 2+16k 2-4816k 2+12+16k 2+4k 2-12=0,故点F 在以MN 为直径的圆上.10.已知圆C :x 2+y 2-2x -2y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(2,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.【答案】(1)x =2或3x -4y +6=0;(2)2x +2y -1=0.【解析】(1)把圆C 的方程化为标准方程为(x -1)2+(y -1)2=1,∴圆心为C (1,1),半径r =1.当l 的斜率不存在时,此时l 的方程为x =2,C 到l 的距离d =1=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -2),即kx -y +3-2k =0,则k -1+3-2k1+k 2=1,解得k =34.∴l 的方程为y -3=34(x -2),即3x -4y +6=0.综上,满足条件的切线l 的方程为x =2或3x -4y +6=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x -1)2+(y -1)2-1,|PO |2=x 2+y 2,∵|PM |=|PO |.∴(x -1)2+(y -1)2-1=x 2+y 2,整理,得2x +2y -1=0,∴点P 的轨迹方程为2x +2y -1=0.11.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ .(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1)证明见解析;(2)y 2=x -1.【解析】(1)由题意可知F 12,0 ,设l 1:y =a ,l 2:y =b 且ab ≠0,A a 22,a ,B b 22,b ,P -12,a ,Q -12,b ,R -12,a +b 2 ,直线AB 方程为2x -(a +b )y +ab =0,∵点F 在线段AB 上,∴ab +1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,∴k 1=a -b 1+a 2,k 2=b-12-12=-b ,又∵ab +1=0,∴k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b =k 2,∴AR ∥FQ ;(2)设l 1:y =a ,l 2:y =b ,A a 22,a ,B b 22,b ,设直线AB 与x 轴的交点为D x 1,0 ,∴S △ABF =12a -b FD =12a -b x 1-12,又S△PQF=a-b2,∴由题意可得S△PQF=2S△ABF,即a-b2=2×12·a-b⋅x1-12,解得x1=0(舍)或x1=1.设满足条件的AB的中点为E(x,y),则x=a2+b24y=a+b2,当AB与x轴不垂直时,由k AB=k DE可得a-ba22-b22=yx-1,即2a+b=yx-1(x≠1),∴y2=x-1x≠1.当AB与x轴垂直时,E与D重合,也满足y2=x-1.∴AB中点的轨迹方程为y2=x-1.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.【答案】(1)x24+y2=1,离心率为32;(2)x-322+y+3102=2125【解析】(1)由题意可得:2a=4,a2+b2=5,a2=b2+c2,可得a=2,c=3,b=1,所以椭圆C的方程为x24+y2=1,离心率为e=ca=32.(2)当直线斜率存在时,可设l:y=kx+m代入椭圆方程x24+y2=1,得:4k2+1x2+8kmx+4m2-1=0.设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8km4k 2+1x 1x 2=4m 2-1 4k 2+1.因为直线BM ,BN 垂直,斜率之积为-1,所以k BM ⋅k BN =-1,所以k BM ⋅k BN =k 2x 1x 2+k m -1 x 1+x 2 +m -1 2x 1x 2=-1.将x 1+x 2=-8km 4k 2+1x 1x 2=4m 2-1 4k 2+1代入,整理化简得:m -1 5m +3 =0,所以m =1或m =-35.由直线l :y =kx +m ,当m =1时,直线l 经过0,1 ,与B 点重合,舍去,当m =-35时,直线l 经过定点E 0,-35,当直线斜率不存在时,可设l :x =t ,则M t ,1-t 24 ,N t ,-1-t 24,因为k BM ⋅k BN =-1,所以1-t 24-1t ×-1-t 24+1t=-1,解得t =0,舍去.综上所述,直线l 经过定点E 0,-35,而F 在l 上的射影H 的轨迹为以EF 为直径的圆,其E 0,-35 ,F 3,0 ,所以圆心32,-310 ,半径r =215,所以圆的方程为x -32 2+y +310 2=2125,即为点H 的轨迹方程.13.在平面直角坐标系xOy 中,A (-3,0),B (3,0),C 是满足∠ACB =π3的一个动点.(1)求△ABC 垂心H 的轨迹方程;(2)记△ABC 垂心H 的轨迹为Γ,若直线l :y =kx +m (km ≠0)与Γ交于D ,E 两点,与椭圆T :2x 2+y 2=1交于P ,Q 两点,且|DE |=2|PQ |,求证:|k |>2.【答案】(1)x 2+(y +1)2=4(y ≠-2);(2)证明见解析.【解析】设△ABC 的外心为O 1,半径为R ,则有R =AB 2sin ∠ACB=2,又∠OO 1B =∠OO 1C =π3,所以OO 1=R cos π3=1,即O 1(0,1),或O 1(0,-1),当O 1坐标为(0,1)时.设C (x ,y ),H x 0,y 0 ,有O 1C =R ,即有x 2+(y -1)2=4(y >0),由CH ⊥AB ,则有x 0=x ,由AH ⊥BC ,则有AH ⋅BC=x 0+3 (x -3)+y 0y =0,所以有y 0=-x 0+3 (x -3)y =3-x 2y =(y -1)2-1y=y -2,y >0,则y 0=y -2>-2,则有x 20+y 0+1 2=4(y 0>-2),所以△ABC 垂心H 的轨迹方程为x 2+(y +1)2=4(y >-2).同理当O 1坐标为(0,-1)时.H 的轨迹方程为x 2+(y -1)2=4(y <2).综上H 的轨迹方程为x 2+(y +1)2=4(y >-2)或x 2+(y -1)2=4(y <2).(2)若取x 2+(y +1)2=4(y >-2),记点(0,-1)到直线l 的距离为d ,则有d =|m +1|1+k 2,所以|DE |=24-d 2=24-(m +1)21+k 2,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +m 2x 2+y 2=1,有2+k 2 x 2+2kmx +m 2-1=0,所以Δ=4k 2+2-2m 2 >0,|PQ |=1+k 2⋅Δ2+k 2=21+k 2 k 2+2-2m 2 2+k 2,由|DE |=2|PQ |,可得4-(m +1)21+k 2=4k 2+1 k 2+2-8m 2k 2+1 2+k 2 2≤4k 2+1 k 2+2-8m 2k 2+22,所以4k 2+2+8m 22+k 22≤(m +1)2k 2+1,即有4k 2+1 k 2+2+8k 2+1 m 22+k 22≤(m +1)2,所以2+2m 2-4k 2+1 k 2+2-8k 2+1 m 2k 2+22≥(m -1)2,即2k 2k 2+2k 2m 2k 2+2-1 =(m -1)2⇒k 2m 2k 2+2-1≥0⇒m 2≥1+2k2又Δ>0,可得m 2<1+k 22,所以1+2k2<1+k 22,解得k 2>2,故|k |>2.同理,若取x 2+(y -1)2=4(y <2),由对称性,同理可得|k |> 2.综上,可得|k |> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.【答案】(1)x 2+y 23=1(y ≠0);(2)3,92.【解析】(1)设C x ,y ,G x 0,y 0 ,M x M ,y M ,圆锥曲线的轨迹方程问题第11页因为M 是△ABC 的外心,所以MA =MB ,所以M 在线段AB 的中垂线上,所以x M =-1+12=0.因为GM ⎳AB ,所以y M =y 0.又G 是△ABC 三条边中线的交点,所以G 是△ABC 的重心,所以x 0=-1+1+x 3=x 3,y 0=0+0+y 3=y 3,所以y M =y 0=y 3.又MA =MC ,所以0+1 2+y 3-0 2=0-x 2+y 3-y 2,化简得x 2+y 23=1(y ≠0),所以顶点C 的轨迹方程为x 2+y 23=1(y ≠0).(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0,设所在直线的方程为y =k x -2 ,联立y =k x -2 ,x 2+y 23=1,得k 2+3 x 2-4k 2x +4k 2-3=0.由Δ=4k 2 2-4k 2+3 4k 2-3 >0,得k 2<1.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=4k 2k 2+3,x 1⋅x 2=4k 2-3k 2+3.所以PE ⋅PF =1+k 22-x 1 ⋅1+k 22-x 2 =1+k 2 ⋅4-2x 1+x 2 +x 1⋅x 2=1+k 2 ⋅4k 2+3 -8k 2+4k 2-3 k 2+3=91+k 2 k 2+3=9-18k 2+3.又0<k 2<1,所以3<k 2+3<4,所以3<PE ⋅PF <92.故PE ⋅PF 的取值范围为3,92 .15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.【答案】(1)AB =10;(2)x 2+y -1 2=5(除掉点-2,0 ).【解析】(1)由抛物线方程知:F 1,0 ,准线方程为:x =-1.圆锥曲线的轨迹方程问题第12页∵AF =x 1+1=y 214+1,BF =x 2+1=y 224+1,∴AB =AF +BF =y 21+y 224+2=10.(2)依题意可设直线AB :x =ty +m ,由y 2=4x x =ty +m得:y 2-4ty -4m =0,则Δ=16t 2+16m >0,∴y 1+y 2=4t y 1y 2=-4m ⋯①∵k PA +k PB =y 1-2x 1+2+y 2-2x 2+2=y 1-2ty 1+m +2+y 2-2ty 2+m +2=-1,∴2ty 1y 2+m +2 y 1+y 2 -2t y 1+y 2 -4m +2 t 2y 1y 2+t m +2 y 1+y 2 +m +2 2=-1⋯②由①②化简整理可得:8t -4m +m 2-4=0,则有m +2-4t m -2 =0,解得:m =2或m =4t -2.当m =4t -2时,Δ=16t 2+64t -32=16t +2 2-96>0,解得:t >-2+6或t <-2-6,此时AB :x =ty +4t -2=t y +4 -2过定点-2,-4 ,不符合题意;当m =2时,Δ=16t 2+32>0对于∀t ∈R 恒成立,直线AB :x =ty +2过定点E 2,0 ,∴m =2.∵PD ⋅AB =0,∴PD ⊥AB ,且A ,B ,D ,E 四点共线,∴PD ⊥DE ,则点D 的轨迹是以PE 为直径的圆.设D x ,y ,PE 的中点坐标为0,1 ,PE =25,则D 点的轨迹方程为x 2+y -1 2=5.当D 的坐标为-2,0 时,AB 的方程为y =0,不符合题意,∴D 的轨迹方程为x 2+y -1 2=5(除掉点-2,0 ).圆锥曲线的轨迹方程问题第13页。
圆锥曲线 习题及答案
金材教育 圆锥曲线未命名一、解答题1.过抛物线L :x y 42=的焦点F 的直线l 交此抛物线于A 、B 两点, ①求||||||||FB FA FB FA ⋅+;②记坐标原点为O ,求△OAB 的重心G 的轨迹方程.③点),(00y x P 为抛物线L 上一定点,M 、N 为抛物线上两个动点,且满足0=⋅,当点M 、N 在抛物线上运动时,证明直线MN 过定点。
【答案】①||||1||||FA FB FA FB +=⋅②98342-=x y ③证明见解析。
【解析】①由F (1,0),设直线l 的方程为 x y x k y 4)1(2=-=与联立得1,42 0422122212222=+=+∴=+--x x k k x x k x x k x k ……2分由222121242||||1||1||kk x x FB FA x FB x FA +=++=++=+=,得, 1||||||||44||||22=⋅++=⋅FB FA FB FA kk FB FA ,所以 …………4分②设3,3423),(212221y y y k k x x x y x G +=+=+=,则 …………5分 由kk x x k x k x k y y 42)()1()1(212121=-+=-+-=+ ……7分 化简得轨迹方程为 98342-=x y …………9分 ③证明:由直线MN 的方程不可能与x 轴平行可设直线MN 的方程为),(),,(),,(,002211y x P y x N y x M a my x +=202221214,4,4x y x y x y ===分别相减得202020101014,4y y x x y y y y x x y y +=--+=--由 1002020101-=--⋅--=⋅x x y y x x y y PM 有,∴1440201-=+⋅+y y y y即 016)(2021021=++++y y y y y y (*式) …………11分联立 044422=--⎩⎨⎧=+=a my y x xy amy x 得,消去 有01644 )*(442002121=++⋅+-⎩⎨⎧-==+y m y a ay y m y y 得式,代入,所以 44020++=my y a ,代入直线MN 的方程有 44020=++=my y my x 2.如图,DP y ⊥轴,点M 在DP 的延长线上,且3DM DP=.当点P 在圆221x y +=上运动时,(1)求点M 的轨迹方程.(2)过点1(1,)3Q 作直线l 与点M 的轨迹相交于A 、B 两点,使点Q 被弦AB 平分,求直线l 的方程.【答案】(1)221(0)9x y x +=≠(2)320x y +-=【解析】 【分析】(1)设()()00,,,M x y P x y ,3DMDP =,所以03x x =,()0,D y ,0y y =,003x x y y⎧=⎪⎨⎪=⎩,代入圆的方程得到轨迹方程,抠掉不满足题意的点即可;(2)设出直线l 的方程为()113y k x =-+,联立直线和椭圆,根据韦达定理列式即可.【详解】(1)解析:设()()00,,,M x y P x y ,则()0,D y ,0y y =,0DP x =,DM x = ∵3DM DP=,所以03x x =∵003x x y y =⎧⎨=⎩∴003x x y y⎧=⎪⎨⎪=⎩①∵P 在圆221x y +=上,∴2201x y +=,代入①得2219x y +=3,0DM DP DP=∴≠Q,∴0x ≠,∴()22109x y x +=≠.(2)由题意知直线l 的斜率存在,l 过点11,3⎛⎫ ⎪⎝⎭,设直线l 的方程为()113y k x =-+,设()()1122,,,A x y B x y ,联立()2211319y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得,()22211191899033k x k k x k ⎛⎫⎛⎫++-++-+-= ⎪ ⎪⎝⎭⎝⎭∵点11,3⎛⎫⎪⎝⎭在椭圆内部,∴不论k 取何值,必定有0∆>.由韦达定理知212218619k kx x k -++=-+ ∵()()1122,,,A x y B x y 的中点是11,3⎛⎫ ⎪⎝⎭,∴122x x +=,即2122186219k kx x k-++=-=+,解得13k =-, ∴直线l 的方程为320x y +-=. 【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.3.设抛物线的顶点在坐标原点,焦点F 在y 轴上,过点F 的直线交抛物线于,A B两点,线段AB 的长度为8, AB 的中点到x 轴的距离为3. (1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且抛物线交于,P Q 两点,连结QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.【答案】(1)24x y =; (2)162y x =±+. 【解析】【试题分析】(1)依据题设条件,直接运用抛物线的定义分析求解;(2)依据题设建立直线方程,再与抛物线方程联立,借助坐标之间的关系,建立方程求解:(1)设所求抛物线方程为()()211222(0),,,,x py p A x y B x y =>, 则128AB AF BF y y p =+=++=,又1232y y +=,所以2p =. 即该抛物线的标准方程为24x y =.(2)由题意,直线m 的斜率存在,不妨设直线:6m y kx =+,()()3344,,,P x y Q x y ,由26{4y kx x y =+=消y 得24240x kx --=,即34344{·24x x k x x +==-(*) 抛物线在点233,4x P x ⎛⎫ ⎪⎝⎭处的切线方程为()233342x xy x x -=-, 令1y =-,得23342x x x -=,所以2334,12x R x ⎛⎫--⎪⎝⎭, 而,,Q F R 三点共线,所以QFFR k k =及()0,1F ,得242343111442x x x x ---=-. 即()()22343444160x x x x --+=,整理得()()22343434344216160x x x x x x x x ⎡⎤-+-++=⎣⎦,将(*)式代入上式得214k =,即12k =±, 所以所求直线m 的方程为162y x =±+.4.已知椭圆)0(12222>>=+b a by a x 长轴上有一顶点到两个焦点之间的距离分别为:3+,3-. (1)求椭圆的方程;(2)如果直线 )(R t t x ∈=与椭圆相交于A,B ,若C (-3,0),D(3,0),证明:直线CA 与直线BD 的交点K 必在一条确定的双曲线上;(3)过点Q(1,0 )作直线l (与x 轴不垂直)与椭圆交于M,N 两点,与y 轴交于点R ,若RM μλ==,,求证:μλ+为定值.【答案】(1)1922=+y x (2)直线CA 与直线BD 的交点K 必在双曲线1922=-y x 上. (3)49-=+μλ 【解析】(1)由题意可知a+c,和a-c,所以可求出a,c 的值,进而求出b 的值.(2) 依题意可设),(,),(,),(00y x K y t B y t A ,且有19202=+y t ,然后求出CA 、DB 的方程,解出它们的交点再证明交点坐标是否满足双曲线1922=-y x 的方程即可.(3) 设直线l 的方程为)1(-=x k y ,再设),(33y x M 、),(44y x N 、),0(5y R ,然后直线方程与椭圆C 的方程联立,根据λ=,可找到)1(33x x -λ=,331x x -=λ,同理441x x -=μ,则443311x x x x -+-=μ+λ34343434()21()x x x x x x x x +-=-++,然后再利用韦达定理证明(1)由已知⎪⎩⎪⎨⎧-=-+=+223223c a c a ,得⎪⎩⎪⎨⎧==223c a ,1222=-=c a b ,所以椭圆方程为1922=+y x 4分(2)依题意可设),(,),(,),(00y x K y t B y t A ,且有19202=+y t ,又)3(3:0++=x t y y CA ,)3(3:0---=x t y y DB ,)9(922202---=x t y y , 将19202=+y t 代入即得19,)9(912222=--=y x x y 所以直线CA 与直线BD 的交点K 必在双曲线1922=-y x 上. 9分(3)依题意,直线l 的斜率存在,则设直线l 的方程为)1(-=x k y ,设),0(,),(,),(54433y R y x N y x M ,则N M ,两点坐标满足方程组⎪⎩⎪⎨⎧=+-=19)1(22y x x k y , 消去y 整理得9918)91(2222=-+-+k x k x k ,所以224322439199,9118k k x x k k x x +-=+=+,① 因为RM λ=,所以()[]),(0,1),(33533y x y y x -=-λ,即⎩⎨⎧-=--=35333)1(y y y x x λλ,因为l 与x 轴不垂直,所以13≠x ,则331x x -=λ,又μ=,同理可得441x x -=μ,所以434343434433)(1211x x x x x x x x x xx x ++--+=-+-=+μλ由①式代人上式得49-=+μλ 5.在平面直角坐标系xOy 中, ,M N 是x 轴上的动点,且228OM ON +=,过点,M N分别作斜率为22-的两条直线交于点P ,设点P 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)过点()1,1Q 的两条直线分别交曲线E 于点,A C 和,B D ,且//AB CD ,求证直线AB 的斜率为定值.【答案】(Ⅰ)22143x y +=;(Ⅱ)直线AB 的斜率为定值34-. 【解析】试题分析:(Ⅰ)设(),P m n,直线):PM y n x m -=-,令0y =,得,0M m ⎛⎫- ⎪ ⎪⎝⎭,同理得,0N m ⎛⎫ ⎪ ⎪⎝⎭,根据22228OM ON m m ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r 化简可得结果;(Ⅱ) 设,,(0)AQ QC BQ QD λλλ==>u u u r u u u r u u u r u u u r,可得1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②,以上两式结合点差法,可得34C D C D y y x x -=--.试题解析:(Ⅰ)设(),P m n ,直线():2PM y n x m -=-,令0y =,得,0M m ⎛⎫- ⎪ ⎪⎝⎭直线):PN y n x m -=-,令0y =,得,0N m ⎛⎫ ⎪ ⎪⎝⎭.∴22222222828133343n m n OM ON m n m n m ⎛⎫⎛⎫+=-++=+=⇒+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r . ∴曲线E 的方程是22143x y +=; (Ⅱ)∵//AB CD,设,,(0)AQ QC BQ QD λλλ==>u u u r u u u r u u u r u u u r,()()()(),,,,,,,A A B B C C D D A x y B x y C x y D x y ,则()()1,11,1A A C C x y x y λ--=--,即1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②将()(),,,A A B B A x y B x y ,代入椭圆方程得2222143{143A AB B x y x y+=+=,化简得()()()()34A B A B A B A B x x x x y y y y +-=-+-③ 把①②代入③,得()()()()()()()()()3223422422C D C D C D C D C D C D x x x x x x y y y y y y λλλλλ+--+-=-+-+++-将()(),,,C C D D C x y D x y ,代入椭圆方程,同理得()()()()34C D C D C D C D x x x x y y y y +-=-+-代入上式得()()34C D C D x x y y -=--.即34C D C D y y x x -=--,∴直线AB 的斜率为定值34-. 【方法点睛】本题主要考查椭圆标准方程、直线的斜率、韦达定理、圆锥曲线的定值问题以及点在曲线上问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.6.已知圆22:4O x y +=,点(F ,以线段FP 为直径的圆内切于圆O ,记点P 的轨迹为C .(1)求曲线C 的方程;(2)若()()1122,,,A x y B x y 为曲线C 上的两点,记11,2y m x ⎛⎫= ⎪⎝⎭v, 22,2y n x ⎛⎫= ⎪⎝⎭v ,且m n ⊥v v,试问AOB ∆的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.【答案】(1) 2214y x +=;(2)答案见解析. 【解析】试题分析:(1)取(0,F ',连结PF ',设动圆的圆心为M ,由两圆相内切,得122OM FP =-,又12OM PF =',从而得4PF PF FF +=>'',由椭圆定义得椭圆方程;(2)当AB x ⊥轴时,易得1AOB S ∆=,当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,与椭圆联立得()2224240k x kmx m +++-=,由0m n ⋅=v v,得121240y y x x +=,结合韦达定理得2224m k =+,由1212AOB S m x x ∆=⋅-利用韦达定理求解即可. 试题解析:(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切, ∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',∴点P 的轨迹是以,F F '为焦点的椭圆,其中24,2a c ==2,a c ==,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=. (2)当AB x ⊥轴时,有12x x =, 12y y =-,由m n ⊥v v,得112y x =,又221114y x +=,∴1x =1y =∴11112122AOB S x y ∆=⨯⨯=⨯=. 当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,由22{ 14y kx my x =++=得()2224240k x kmx m +++-=,则12224kmx x k -+=+, 212244m x x k -=+,由0m n ⋅=v v,得121240y y x x +=,∴()()121240kx m kx m x x +++=, 整理得()()22121240k x x km x x m ++++=,∴2224m k =+,∴1212AOBS m x x ∆=⋅-12=21m==, 综上所述, AOB ∆的面积为定值1.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.7.已知椭圆E 的中心在原点,焦点在x 轴上,且其焦点和短轴端点都在圆C :222x y +=上.(1)求椭圆E 的标准方程;(2)点P 是圆C 上一点,过点P 作圆C 的切线交椭圆E 于A ,B 两点,求|AB |的最大值.【答案】(1)22142x y +=;(2)2 【解析】 【分析】(1)由题意设出椭圆的标准方程,由于椭圆焦点和短轴端点都在圆C :222x y +=上,可得到b ,c 的值,即可求出椭圆方程。
圆锥曲线中动点的轨迹方程的求法
知识导航有关圆锥曲线的题型较多,有求圆锥曲线的离心率、轨迹方程、判定两图形的位置关系、求弦长等,其中,求动点的轨迹方程比较常见.本文总结了求圆锥曲线中动点的轨迹方程的三种方法,供大家参考.一、直接法直接法主要应用于解答题目中所给的有关动点的几何条件较为明显的问题.运用直接法求动点的轨迹方程的主要步骤是:(1)建立合适的直角坐标系,设出所求动点的坐标;(2)根据题意,列出相关关系式;(3)将相关的点代入,化简并整理关系式即可得到动点的轨迹方程.例1.已知点Q (2,0)在圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程并说明它是什么曲线.分析:通过分析可知,动点M 到圆C 的切线长与|MQ |的比等于常数λ,所以可以考虑运用直接法求解.设出动点M 的坐标,根据题设建立关系式,化简便可得到动点的轨迹方程.解:设M (x ,y ),由直线MN 切圆于N ,MN|MQ |=λ,可得22=λ,整理得则(λ1)x 2+(λ2-1)y 2-4λ2x +(1+4λ2)=0,若λ=1,方程可化为x =54,它代表过点(54,0),与x 轴垂直的一条直线;若λ≠1,方程可化为æèçöø÷x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2,它代表以æèçöø÷2λ2λ2-1,0为半径的圆.二、代入法若动点M 依赖已知曲线上的另一动点N 而运动,就可以运用代入法来求动点的轨迹方程.首先设出两动点的坐标,建立两动点的关系式,然后将转化后的动点N 的坐标代入已知曲线的方程或条件中,从而得到动点M 的轨迹方程.例2.已知点B 是椭圆x 2a 2+y 2b2=1上的动点,A (2a ,Q )为定点,求线段AB 的中点M 的轨迹方程.分析:动点M 是线段AB 的中点,M 随着动点B 而运动,本题需采用代入法来求解.解:设动点M 的坐标为(x ,y ),B 点坐标为(x 0,y 0),由M 为线段AB 的中点,可得ìíîïïïïx 0+2a2=x ,y 0+02=y ,则点B 的坐标为(2x -2a ,2y ),则(2x -2a )2a 2+(2y )2b2=1,故动点M 的轨迹方程为4(x -a )2a 2+4y 2b2=1.三、参数法参数法是指通过引入一些新变量(参数)为媒介来解答问题的方法.运用参数法求圆锥曲线中动点的轨迹方程的基本思路是,设出合适的参数,根据题意列出参数方程,通过消参将方程化为普通方程即可解题.但在解题的过程中需注意参数的取值范围.例3.如图,过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB的中点M 的轨迹方程.解:设M (x ,y ),直线l 1的方程为y -4=k (x -2),(k ≠0),由l 1⊥l 2,得直线l 2的方程为y -4=-1k(x -2),∴l 1与x 轴焦点A 的坐标为(2-4k,0),l 2与y 轴焦点B 的坐标为(0,4+2k),∵M 为AB 的中点,∴ìíîïïïïx =2-4k 2=1-2k ,y =4+2k 2=2+1k ,消去k ,得到x +2y -5=0,当k =0时,AB 的中点为M (1,2),满足上述方程,当k 不存在时,AB 的中点为M (1,2),也满足上述方程,综上所述,M 的轨迹方程为x +2y -5=0.这里通过引入参数k ,得到两条直线的方程,然后结合题意建立关于k 的关系式,通过消参得到动点的轨迹方程.相比较而言,直接法较为简单,是最常用也是适用范围最广的方法;代入法的适用范围较窄,只适用于两个动点相关的题型;运用参数法解题的运算量较大.无论采用什么方法求动点的轨迹方程,都要关注轨迹方程中变量的取值范围.(作者单位:江苏省南通市海门四甲中学)蒋秋霞39Copyright©博看网 . All Rights Reserved.。
圆锥曲线——轨迹方程
圆锥曲线技巧——轨迹方程一、直接翻译法题型:动点M 满足。
条件,可由M 坐标直接翻译为等式关系。
即设M (x ,y ),f(x,y)=01、已知点A(-2,0),B(2,0),动点M 满足直接AM 与 直线BM 的斜率之积为-21,记M 的轨迹为曲线C ,求C 的轨迹方程。
(*:斜率要注意存在问题;本题答案:x 2/4+y 2/2=1(x ≠±2))2、已知点A (0,-1),点B 在直线y=-3上,动点M 满足MB ∥OA 且AB MA •=BA MB •,求动点M 轨迹方程。
(本题答案:0842=--y x )3、已知圆O :0222=-+y x ,圆O ':010822=+-+x y x ,由点P 向两圆引切线长相等,求点P 的轨迹方程。
二、四大定义法如果吻合曲线四大定义,则直接写出曲线方程即可。
例题1:已知点)0,2(),0,2(21F F -,动点P 满足421=+PF PF ,则P 点的轨迹为() 答案:线段例题2:已知点)0,2(),0,2(21F F -,动点P 满足221=-PF PF ,则P 点的轨迹为() 答案:双曲线的一支例题3:已知动点M 到点)1,2(F 的距离和到直线01043:=-+y x l 的距离相等,则M 点的轨迹为()答案:直线1、已知动圆P 过定点A (-3,0),且与圆64)3(:22=+-y x B 相切,求动圆圆心P 的轨迹方程。
2、已知圆25)1(:22=++y x C ,Q 为圆C 上任意一点,点A (1,0),线段AQ 的垂直平分线与CQ 的连接线相交于点M ,求点M 的轨迹方程。
(提示:垂直平分线的性质定理,即垂直平分线上的点到线段两边的距离相等)3、已知动圆P 与圆1)3(:221=++y x O 外切,与圆1)3(:222=+-y x O 内切,求动圆圆心P 的轨迹方程。
4、已知动圆P 与定圆1)2(:22=++y x C 外切,又与定直线1:=x l 相切,求动圆圆心P 的轨迹方程。
100道圆锥曲线大题综合
圆锥曲线大题综合----学而思黎根飞老师一、轨迹方程(10道)1.动圆P 与定圆22:4320B x y y +--=相内切,且过点()02A -,,求动圆圆心P 的轨迹方程.【解析】 如图所示,设动圆P 的半径为r ,圆B 的方程可化为()22236x y +-=.又动圆P 过点()02A -,,从而r PA =, 6PB PA +=.则点P 的轨迹是以A ,B 为焦点的椭圆, 且26a =,24c =, 即3a =,2c =,b =.故所求点P 的轨迹方程为22195y x +=.2.求到两不同定点距离之比为一常数(0)λλ≠的动点的轨迹方程.【解析】 以两不同定点A B ,所在的直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系.设()P x y ,是轨迹上任一点,(0)(0)(0)A a B a a ->,,,. 由题设得PA PB λ==∴22222(1)()(1)20x y a ax λλ-++++=.当1λ=时,方程0x =表示一条直线. 当1λ≠时,方程为2222221211a x a y λλλλ⎛⎫+⎛⎫++= ⎪ ⎪--⎝⎭⎝⎭,表示一个圆. 所以当1λ=时,点的轨迹是一条直线;当1λ≠时,点的轨迹是一个圆.3.已知定点(30),B ,点A 在圆221x y +=上运动,M 是线段AB 上的一点,且13AM MB =,则点M 的轨迹方程是___________.【解析】 设11()(),,,M x y A x y .∵13AM MB = ,∴111()(3)3,,x x y y x y --=--,∴111(3)313x x x y y y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,∴1141343x x y y ⎧=-⎪⎪⎨⎪=⎪⎩.∵点A 在圆221x y +=上运动,∴22111x y +=,∴22441133x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即2239416x y ⎛⎫-+= ⎪⎝⎭,∴点M 的轨迹方程是2239416x y ⎛⎫-+= ⎪⎝⎭.4.已知点A B ,分别是射线()1:0l y x x =≥,()2:0l y x x =-≥上的动点,O 为坐标原点,且OAB ∆的面积为定值2,求线段AB 中点M 的轨迹C 的方程.【解析】 由题可设()11A x x ,,()22B x x -,,()M x y ,,其中1200x x >>,.则121222x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩,①,②∵OAB ∆的面积为定值2,∴)121211222OAB S OA OB x x ∆=⋅===.22-①②,消去12x x ,,得:222x y -=.由于1200x x >>,,∴0x >,所以点M 的轨迹方程为222x y -=(0x >).5.一条变动的直线l 与椭圆24x +22y =1交于P 、Q 两点,M 是l 上的动点,满足关系2MP MQ ⋅=.若直线l 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.【解析】 设动点(,)M x y ,动直线l :y x m =+,并设11(,)P x y ,22(,)Q x y 是方程组22,240y x m x y =+⎧⎨+-=⎩的解,消去y ,得2234240x mx m ++-=, 其中221612(24)0m m ∆=-->,∴m <<且1243m x x +=-,212243m x x -=,又∵1MP x =-,2MQ x =-.由2MP MQ ⋅=,得121x x x x -⋅-=, 也即21212()1x x x x x x -++=,于是有22424133mx m x -++=. ∵m y x =-,∴22243x y +-=.由22243x y +-=,得椭圆222177x x +=夹在直线y x =且不包含端点.由22243x y +-=-,得椭圆2221x y +=.6. 已知点(30)P -,,点A 在y 轴上,点Q 在x 轴的正半轴上,且0PA AQ ⋅=.点M 在直线AQ 上,满足32AM MQ =-.当点A 在y 轴上移动时,求动点M 的轨迹C 的方程.【解析】 设点M 的坐标为()x y ,,则由32AM MQ =- 得(0)2yA -,由0PA AM ⋅= 得23(3)()0422y x y y x -⋅=⇒=,,∴所求动点M 的轨迹C 的方程为24y x =.7.已知ABC ∆中,A B C ∠∠∠,,所对的边分别为a b c ,,,且a c b >>成等差数列,2AB =,求顶点C 的轨迹方程.【解析】 由2c =,2a b c +=得:4a b +=,以AB 所在直线为x 轴,以AB 的中垂线所在的直线为y 轴建立直角坐标系,则A 点坐标为(10)-,,B 点坐标为(10),, 设()C x y ,,则有4AC BC +=,即4+=,4x =-,两边再次平方化简得:223412x y +=;要构成三角形,必须满足C 点不在x 轴上,即0y ≠,故2x ≠±, 又a b >,即BC AC >>,解得0x <, 故所求的C 点的轨迹方程为223412x y +=(0x <且2)x ≠-.8.设()0A a -,,()0B a ,()0a >,已知直线MA 与MB 的斜率乘积为定值m ,求动点M 的轨迹方程,并根据m 地不同值讨论曲线的形状.【解析】 设动点M 的坐标为()x y ,,则直线MA 与MB 的斜率分别为MA yk x a=+, MB yk x a=-,依题意,得 222MA MBy y y k k m x a x a x a ⋅=⋅==+--, 化简,得222mx y a m -=,即为所求. 显然,当0m =时,方程表示直线0y =; 当0m <时,方程可化为22221x y a a m +=;1m =-时,方程表示圆222x y a +=; 1m <-时,方程表示焦点在y 轴上的椭圆; 10m -<<时,方程表示焦点在x 轴上的椭圆.当0m >时,方程可化为22221x y a a m-=,方程表示焦点在x 轴上的双曲线.9.如图,过()24P ,作互相垂直的直线1l 、2l ,若1l 交x 轴于点A ,2l 交y 轴于点B ,求线段AB 的中点轨迹方程.【解析】 解法一:(直接法)设()M x y ,是所求轨迹上任意一点,则A 、B 两点的坐标分别为()20A x ,、()02B y ,,∵M 为线段AB 的中点,连接PM ,∵PA PB ⊥,∴2PM AB =,∴=250x y +-=,即为所求轨迹方程. 解法二:(直接法)设M 的坐标为()x y ,,∵M 为线段AB 的中点,∴A B 、两点的坐标分别为()20A x ,、()02B y ,,∵PA PB ⊥,∴1PA PB k k ⋅=-,即()404211220yx x --⋅=-≠-2-整理得:()2501x y x +-=≠,当1x =时,A 、B 两点的坐标分别为()20A ,、()04B ,,线段AB 的中点为()12,仍满足250x y +-=.综上所述,所求轨迹方程为250x y +-=. 解法三:(直接法)设M 的坐标为()x y ,,∵PA PB ⊥,OA OB ⊥,且M 为线段AB 的中点,∴四边形OAPB 是圆内接四边形,且M 为圆心,∴OM MP =,∴x=,整理得:250x y +-=,即为所求轨迹方程. 解法四:(相关点法)设M 的坐标为()x y ,,A 、B 两点的坐标分别为()0A a ,,()0B b ,,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩,∴22a xb y =⎧⎨=⎩, ∵PA PB ⊥,∴222PA PB AB +=,∴()()()()22222222422422x y x y -+++-=+,整理得:250x y +-=,即为所求轨迹方程. 解法五:(参数法)设直线1l 的方程为:()()420y k x k -=-≠,因为12l l ⊥,且2l 过点()24P ,,所以2l 的方程为:()142y x k -=--,所以420A k ⎛⎫- ⎪⎝⎭,、204B k ⎛⎫+ ⎪⎝⎭,,设A B 、的中点M 的坐标为()x y ,,则42022242k x k y ⎧-+⎪=⎪⎪⎨⎪++⎪=⎪⎩,即2112x k y k⎧=-⎪⎪⎨⎪=+⎪⎩消去参数k 得:250x y +-=,即为所求轨迹方程.10.已知动点P 与双曲线221x y -=的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值为13-,求动点P 的轨迹方程.【解析】∵221x y-=,∴c . 设1PF m =,2PF n =,则2m n a +=(常数0a >),所以点P 是以12F F 、为焦点,2a 为长轴的椭圆,22a c>=,∴a >. 由余弦定理,有()222222121212224cos 122m n F F m n mn F F a F PF mn mn mn +=+---===-∠.∵222m n mn a +⎛⎫= ⎪⎝⎭≤,∴当且仅当m n -时,mn 取得最大值2a .此时12cos F PF ∠取得最小值22241a a --.由题意2224113a a --=-,解得23a =. ∴222321b a c =-=-=.∴P 点的轨迹方程为2213x y +=.二、弦长面积(30道)11.已知椭圆22:14y C x +=,过点(03)M ,的直线l 与椭圆C 相交于不同的两点A 、B .⑴若l 与x 轴相交于点N ,且A 是MN 的中点,求直线l 的方程;⑵设P 为椭圆上一点, 且OA OB OP λ+=(O 为坐标原点).求当AB <时,实数λ的取值范围.【解析】 ⑴设11()A x y ,,因为A 为MN 的中点,且M 的纵坐标为3,N 的纵坐标为0,所以, 又因为点11()A x y ,在椭圆C 上所以221114y x +=,即219116x +=,解得1x =,则点A的坐标为342⎛⎫ ⎪ ⎪⎝⎭,或42⎛⎫3 ⎪ ⎪⎝⎭,, 所以直线l的方程为7210y -+=或7210y +-=.⑵设直线AB 的方程为3y kx =+或0x =,11()A x y ,,22()B x y ,,33()P x y ,,当AB 的方程为0x =时,4AB => 当AB 的方程为3y kx =+时:由题设可得A 、B 的坐标是方程组22314y kx y x =+⎧⎪⎨+=⎪⎩的解,消去y 得22(4)650k x kx +++=,所以22(6)20(4)0k k =-+>△即25k >,则12264k x x k -+=+,12254x x k ⋅=+,1212224(3)(3)4y y kx kx k +=+++=+,因为AB =<<,解得216813k -<<, 所以258k <<.因为OA OB OP λ+=,即112233()()()x y x y x y λ+=,,,,所以当0λ=时,由0OA OB +=,得122604k x x k -+==+,1222404y y k +==+, 上述方程无解,所以此时符合条件的直线l 不存在;当0λ≠时,12326(4)x x k x k λλ+-==+,123224(4)y y y k λλ+==+, 因为点33()P x y ,在椭圆上,所以222261241(4)4(4)k k k λλ⎡⎤⎡⎤-+=⎢⎥⎢⎥++⎣⎦⎣⎦, 化简得22364k λ=+,因为258k <<,所以234λ<<,132y =则()22λ∈-,.综上,实数λ的取值范围为()22-,.12.设椭圆22221(0)x y C a b a b+=>>∶,其相应于焦点(20)F ,的准线方程为4x =.⑴求椭圆C 的方程;⑵已知过点()120F -,倾斜角为θ的直线交椭圆C 于A B ,两点,求证:22cos AB θ=-;⑶过点()120F -,作两条互相垂直的直线分别交椭圆C 于A B 、和D E 、,求AB DE +的最小值.【解析】 ⑴由题意得:222224c a c a b c=⎧⎪⎪=⎨⎪⎪=+⎩∴2284a b ⎧=⎪⎨=⎪⎩∴椭圆C 的方程为22184x y +=⑵方法一:由⑴知()120F -,是椭圆C的左焦点,离心率e 设l 为椭圆的左准线.则4l x =-∶作1AA l ⊥于1A ,1BB l ⊥于1B ,l 与x 轴交于点H (如图) ∵点A 在椭圆上∴11AF =)11cos 2F H AF θ=+1cos θ=∴1AF =,同理1BF =∴1122cos AB AF BF θ=+=+=-. 方法二:当π2θ≠时,记tan k θ=,则直线AB 方程为(2)y k x =+将其代入方程:2228x y +=得:2222(12)88(1)0k x k x k +++-= 设()11A x y ,,()22B x y , ,则1x ,2x 是此二次方程的两个根. ∴2122812k x x k +=-+,()21228112k x x k -=+AB ===)22112k k +==+① B A∵22tan k θ=,代入①式得AB =②当π2θ=时,AB =仍满足②式.∴AB = ⑶设直线AB 的倾斜角为θ,由于DE AB ⊥,由⑵可得AB =,DE =22sin 24AB DE θ+===+ 当π4θ=或3π4θ=时,AB DE +取得最小值3.13.设A 、B分别是直线5y x =和5y x =-上的两个动点,并且AB = 点P 满足OP OA OB =+.记动点P 的轨迹为C .⑴ 求轨迹C 的方程;⑵ 若点D 的坐标为()016,,M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.【解析】 ⑴ 设()P x y ,,∵A ,B分别为直线5y x =和5y x =-上的点,故可设11A x x ⎛⎫ ⎪ ⎪⎝⎭、22B x ⎛⎫⎪ ⎪⎝⎭,. ∵OP OA OB =+ ,∴)1212x x x y x x =+⎧⎪⎨-⎪⎩,∴12122x x x x x y +=⎧⎪⎨-=⎪⎩又AB =∴()()2212124205x x x x -++=. ∴22542045y x +=, 即轨迹C 的方程为2212516x y +=.⑵ 设()N s t ,,()M x y ,,则由DM DN λ=,可得()()1616x y s t λ-=-,,.故x s λ=,()1616y t λ=+-. ∵点M 、N 在曲线C 上, ∴()2222212516161612516s t t s λλλ⎧+=⎪⎪⎨-+⎪+=⎪⎩ 消去s 得()()22216161611616t t λλλ--++=.由题意知0λ≠,且1λ≠, 得17152t λλ-=. 又4t ≤, ∴171542λλ-≤,解得()35153λλ≠≤≤. 故实数λ的取值范围是()35153λλ≠≤≤.14.已知:圆221x y +=过椭圆22221x y a b+=(0a b >>)的两焦点,与椭圆有且仅有两个公共点;直线y kx m =+与圆221x y +=相切,与椭圆22221x y a b+=相交于A ,B 两点.记OA OB λ=⋅ ,且2334λ≤≤.(1)求椭圆的方程;(2)求k 的取值范围;(3)求OAB △的面积S 的取值范围.【解析】 (Ⅰ)由题意知22c =,1c =,因为圆与椭圆有且只有两个公共点,从而1b =.故a所求椭圆方程为2212x y +=(Ⅱ)因为直线l :y kx m =+与圆221x y +=相切所以原点O 到直线l1=,即:221m k =+又由2212y kx m x y =+⎧⎪⎨+=⎪⎩,()222124220k x kmx m +++-=设()11A x y ,,()22B x y ,,则122412km x x k -+=+,21222212m x x k -=+()()22121212121OA OB x x y y k x x km x x m λ=⋅=+=++++22112k k λ+=+,且2334λ≤≤,故2112k ≤≤, 即k的范围为1122⎡⎤--⎢⎢⎥⎣⎦⎣⎦,∪, (Ⅲ)()()()()222221212121214AB x x y y k x x x x ⎡⎤=-+-=++-⎣⎦()222221k =-+,由2112k ≤≤,得:423AB ≤ 1122S AB d AB ==,所以:243S ≤≤ 15.已知点M 、N的坐标分别是()0、)0,直线PM 、PN 相交于点P ,且它们的斜率之积是12-.⑴ 求点P 的轨迹方程;⑵ 直线:l y kx m =+与圆22:1O x y +=相切,并与点P 的轨迹交于不同的两点A 、B.当43AB ⎫∈⎪⎪⎣⎭,时,求OA OB ⋅ 的取值范围. 【解析】 ⑴设()P x y ,,则(12MP NP k k x ⋅==-≠,整理得(2212x y x +=≠⑵∵圆O 与直线l 相切,1=,即221m k =+当直线l 过M 或N点时,有0k m +=,由2201k m m k ⎧+=⎪⎨=+⎪⎩,,解得1k =±, ∵直线l 与点P 的轨迹交于不同的两点A 、B ,且M 、N 不在点P 的轨迹上, ∴1k ≠± ①由2212x y y kx m ⎧+=⎪⎨⎪=+⎩消去y ,得222(12)4220k x kmx m +++-=,设11()A x y ,,22()B x y ,,122412km x x k +=-+,21222212m x x k -⋅=+,AB ===将221m k =+代入上式得AB =又43AB ⎫∈⎪⎪⎣⎭,,424238()1624()19k k k k +<++≤,得 424242428()164()198()34()12k k k k k k k k ⎧+<⎪++⎪⎨+⎪⎪++⎩,,≥22220(2)(1)0(21)(23)k k k k ⎧+-<⎪⇒⎨-+⎪⎩,,≥2112k ⇒<≤.② 由①和②得2112k <≤,22121212121212()()(1)()+OA OB x x y y x x kx m kx m k x x km x x m ⋅=+=+++=+++22222224(1)1212m mkk km m k k--=+⋅+⋅+++,将221m k =+代入,得 222111112221k OA OB k k +⎛⎫⋅==+ ⎪++⎝⎭,∵2112k <≤∴2334OA OB ⎛⎤⋅∈ ⎥⎝⎦,.16.已知圆C 的方程为224x y +=,过点(24)M ,作圆C 的两条切线,切点分别为A 、B 直线恰好经过椭圆2222:1(0)x y T a b a b+=>>的右顶点和上顶点.⑴ 求椭圆T 的方程⑵已知直线:0)l y kx k =+>与椭圆T 相交于P ,Q 两点,O 为坐标原点,求OPQ △面积的最大值.【解析】 ⑴由题意:一条切线方程为:2x =,设另一条切线方程为:4(2)y k x -=-则2=,解得:34k =,此时切线方程为:3542y x =+切线方程与圆方程联立得:65x =-,85y =,则直线AB 的方程为22x y +=令0x =,解得1y =,∴1b =;令0y =,得2x =,∴2a = 故所求椭圆方程为2214x y +=⑵联立221.4y kx x y ⎧=+⎪⎨+=⎪⎩整理得22(14)80k x +++=,令11()P x y ,,22()Q x y ,,则12214x x k -+=+,122814x x k=+,()2232(14)0k =-+>△,即:2210k ->原点到直线l的距离为d =,12PQ x =-,∴1212OPQS PQ d x =⋅=-==△1==当且仅当2k =时取等号,则OPQ △面积的最大值为117.如图,已知定点(10)F -,,(10)N ,,以线段FN为对角线作周长是边形MNEF .平面上的动点G 满足2OG =(O 为坐标原点). ⑴ 求点E 、M 所在曲线1C 的方程及动点G 的轨迹2C 的方程;⑵ 已知过点F 的直线l 交曲线1C 于点P 、Q ,交轨迹2C 于点A 、B,若(||AB ∈,求NPQ △的内切圆的半径的取值范围.【解析】 ⑴因为四边形MNEF为周长为E 到点F 、N的距离之和是又2NF =<,故由椭圆的定义知,曲线1C为椭圆,a 1c =,1b =.故曲线1C 的方程为2212x y +=.由2OG =,动点G 的轨迹为以坐标原点O 为圆心,2为半径的圆,其方程为224x y +=.⑵当l x ⊥轴时,将1x =-代入224x y +=得y =所以(AB =, 所以直线l 不垂直于x 轴,设直线l 的方程为(1)y k x =+, 圆2C 的圆心(00)O ,到直线l的距离d =,由圆的几何性质得,||AB ===由(||AB ∈,解得213k >. 联立方程22(1)12y k x x y =+⎧⎪⎨+=⎪⎩,消去x 得2212210y y k k ⎛⎫+--= ⎪⎝⎭.设11()P x y ,,22()Q x y ,,NPQ 内切圆半径为R , 则1222221122k ky y k k +==++,2122211122k y y k k-=-=++,因为()121122NF y y R PN PQ QN ⋅-=⋅⋅++, 其中,2NF =,PN PQ QN ++=,所以12R y -.而12y y -=== 因为213k >,所以221161(12)25k ->+,所以,NPQ △的内切圆半径的取值范围为2152⎛⎫⎪⎝⎭,.18.已知1F 、2F 是椭圆22221(0)x y a b a b +=>>的左、右焦点,且离心率12e =,点P 为椭圆上的一个动点,12PF F △的内切圆面积的最大值为4π3. ⑴ 求椭圆的方程;⑵ 若A 、B 、C 、D 是椭圆上不重合的四个点,满足向量1F A 与1FC共线,1F B 与1F D 共线,且0AC BD ⋅=,求AC BD + 的取值范围.【解析】 ⑴由几何性质可知:当12PF F △内切圆面积取最大值时,即12PF F S △取最大值,且12max 1()22PF F S c b bc ⋅⋅=△. 由24ππ3r =得3r =又1222PF F C a c =+△为定值,12122PF F PF F rS C =△△,综上得22bc a c =+;又由12c e a ==,可得2a c =,即b =,经计算得2c =,b =4a =, 故椭圆方程为2211612x y +=.①⑵当直线AC 与BD 中有一条直线垂直于x 轴时,6814AC BD +=+=. ②当直线AC 斜率存在但不为0时,设AC 的方程为:(2)y k x =+,由22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222(34)1616480k x k x k +++-=,代入弦长公式得:2224(1)34k AC k +=+ ,同理由221(2)11612y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 可得2222111341616480x x k k k ⎛⎫+++-= ⎪⎝⎭, 代入弦长公式得:2224(1)34k BD k +=+ ,所以2222222168(1)16811(34)(43)121(1)k AC BD k k k k ++==+++-++ 令21(01)1t k =∈+,,则24912124t t ⎛⎤-++∈ ⎥⎝⎦,,所以96147AC BD ⎡⎫+∈⎪⎢⎣⎭,,由①②可知,AC BD + 的取值范围是96147⎡⎤⎢⎥⎣⎦,.19.已知点A是圆(221:16F x y ++=上任意一点,点2F 与点1F 关于原点对称.线段2AF 的中垂线m 分别与12,AF AF 交于M 、N 两点.⑴ 求点M 的轨迹C 的方程;⑵ 设不过原点O 的直线l 与该椭圆交于P 、Q 两点,满足直线OP 、PQ 、OQ 的斜率依次成等比数列,求OPQ △面积的取值范围.【解析】 ⑴由题意得,()10F,)20F ,圆1F 的半径为4,且2MF MA =从而121112||||||||||4||MF MF MF MA AF F F +=+==>∴点M 的轨迹是以1F 、2F 为焦点的椭圆,其中长轴24a =,得到2a =,焦距2c =1b =, 椭圆方程为:2214x y +=⑵由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为(0)y kx m m =+≠,11()P x y ,,22()Q x y ,,由22440y kx m x y =+⎧⎨+-=⎩,消去y 得222(14)8km 4(1)0k x x m +++-=, 则22222226416(14)(1)16(41)0k m k m m k m =-+-=-+>△,且122814km x x k -+=+,21224(1)14m x x k -=+,故2212111212()()()y y kx m kx m k x x km x x m =++=+++, 因为直线OP ,PQ ,OQ 的斜率依次成等比数列,所以2221212121212()y y k x x km x x m k x x x x +++⋅==,即22228014k m m k-+=+,又0m ≠, 所以214k =,即12k =±, 由于直线OP ,OQ 的斜率存在,且0>△,得202m <<且21m ≠, 原点到O 到PQ的距离d,1122OPQ S PQ d =⋅⋅=△12m ==202m <<∵且21m ≠,∴OPQ S △的取值范围为(01),.综上所述OPQ S △的取值范围为(]01,.20.已知椭圆C :22221x y a b +=(0a b >>)的离心率2e =,以坐标原点O 为圆心,半径为c (c 为椭圆的半焦距)的圆与直线l:3y =+相切.(1)求椭圆的方程;(2)若直线l 与圆O 的公共点为M ,与椭圆C 的公共点为N ,求OMN △的面积.【解析】 根据题意,圆的方程为222x y c +=.于是可得圆心()00O ,到直线l30y +-=的距离为c , 2分c =,c =.又∵c e a ==,∴2a =. 4分 ∴2221b a c =-=.6分 ∴椭圆的方程为2214x y +=.6分(Ⅱ)由22314y x y ⎧=+⎪⎨+=⎪⎩,,得29320x -+=.8分设()11N x y ,,则13x =,113y =,即直线与椭圆相切,N 为切点.∴3ON =.又OM =∴3MN ===, 10分∴112232OMN S MN OM =⋅⋅=⨯=△.12分21.已知点()44P ,,圆C :()()2253x m y m -+=<与椭圆E :22221x y a b+=(0a b >>)有一个公共点()31A ,,1F ,2F 分别是椭圆的左、右焦点,直线1PF 与圆C 相切. (Ⅰ)求m 的值与椭圆E 的方程;(Ⅱ)设Q 为椭圆E 上的一个动点,求AP AQ ⋅的范围.【解析】 (Ⅰ)点A 代入圆C 方程,得()2315m -+=.∵3m <,∴1m =圆C :()2215x y -+=.设直线1PF 的斜率为k ,则1PF :()44y k x =-+,即440kx y k --+=. ∵直线1PF 与圆C=.解得112k =,或12k =. 当112k =时,直线1PF 与x 轴的交点横坐标为3611,不合题意舍去. 当12k =时,直线1PF 与x 轴的交点横坐标为4-, ∴4c =.()140F -,,()240F ,.122a AF AF =+==,a =,218a =,22b =.椭圆E 的方程为:221182x y += (Ⅱ)()13AP = ,,设()Q x y ,,()()33136AP AQ x y x y ⋅=-+-=+-.∵221182x y +=,即()22318x y +=, 而()22323x y x y +⋅≥,∴18618xy -≤≤.则()()22336186x y x y xy xy 2+=++=+的取值范围是[]036,3x y +的取值范围是[]66-,.∴36AP AQ x y ⋅=+-的取值范围是[]120-,22. 已知椭圆22:14y C x +=,过点(01)M ,的直线l 与椭圆C 相交于两点A 、B .⑴若l 与x 轴相交于点P ,且P 为AM 的中点,求直线l 的方程;⑵设点102N ⎛⎫ ⎪⎝⎭,,求NA NB + 的最大值.【解析】 ⑴设11()A x y ,,因为P 为AM 的中点,且P 的纵坐标为0,M 的纵坐标为1,所以1102y +=,解得11y =-,又因为点11()A x y ,在椭圆C 上,所以221114y x +=,即21114x +=,解得12x =,则点A的坐标为1⎫-⎪⎪⎝⎭或1⎛⎫- ⎪ ⎪⎝⎭,所以直线l的方程为330y -+=,或330y +-=.⑵设11()A x y ,,22()B x y ,,则1112NA x y ⎛⎫=- ⎪⎝⎭ ,,2212NB x y ⎛⎫=- ⎪⎝⎭ ,,所以1212(1)NA NB x x y y +=++-,,则NA NB +=,当直线AB 的斜率不存在时,其方程为0x =,(02)A ,,(02)B -,,此时1NA NB +=;当直线AB 的斜率存在时,设其方程为1y kx =+, 由题设可得A 、B 的坐标是方程组22114y kx y x =+⎧⎪⎨+=⎪⎩的解,消去y 得22(4)230k x kx ++-=所以22(2)12(4)0k k =++>△,12224kx x k -+=+,则121228(1)(1)4y y kx kx k +=+++=+, 所以22222222281211144(4)k k NA NB k k k --⎛⎫⎛⎫+=+-=+ ⎪ ⎪+++⎝⎭⎝⎭≤, 当0k =时,等号成立,即此时NA NB +取得最大值1.综上,当直线AB 的方程为0x =或1y =时,NA NB +有最大值1.23.如图,四边形ABCD 的顶点都在椭圆22163x y +=上,对角线AC 、BD 互相垂直且平分于原点O .⑴若点A 在第一象限,直线AB 的斜率为1,求直线AB 的方程; ⑵求四边形ABCD 面积的最小值.【解析】 ⑴设()11A x y ,,()22B x y ,,直线AB 的方程为y x b =+∵四边形ABCD 的顶点都在椭圆22163x y +=上∴2226y x b x y =+⎧⎨+=⎩,∴()2226x x b ++=, 即2234260x bx b ++-=则()()222161226890b b b ∆=--=-> 1243b x x +=-,212263b x x -=∴()()()212121212y y x b x b x x b x x b =++=+++ 2222264633b b b b ---=+=又OA OB ⊥,所以12120OA OB x x y y ⋅=+=∴231203b -=∴24b =,2b =±∵点A 点在第一象限∴2b =- 所以直线AB 的方程为2y x =-⑵①若直线AB x ⊥轴,设其方程为0x x =,此时易知直线AC 、BD 的方程分别为y x =,y x =-,且四边形ABCD 是正方形,则()00A x x ,,()00B x x -,,2200163x x +=,202x =,四边形ABCD 的面积()2200248S x x ===②若直线AB 的斜率存在,设其方程为y kx m =+,()11A x y ,,()22B x y ,,2226y kx m x y =+⎧⎨+=⎩,∴()2226x kx m ++=, 即()222214km 260k x x m +++-=则()()()2222222222164212682263k m k m k m k m m k ⎡⎤∆=-+-=-+--⎣⎦()228630k m =+->122421km x x k +=-+,21222621m x x k -=+∴()()()2212121212km y y kx m kx m k x x x x m =++=+++()22222222222264262121k m k m k m m m k k k --++-==++又OA OB ⊥,所以2222212122226636602121m m k m k OA OB x x y y k k -+---⋅=+===++∴2222m k =+所以12AB x x ==-===直角三角形OAB 斜边AB 上的高h =所以12OABS h AB ∆===2==, 当且仅当0k =时取得此最小值,此时min 8S =综上所述,四边形ABCD 面积的最小值为8.24.已知椭圆2222:1x y M a b +=(0)a b >>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+.⑴求椭圆M 的方程;⑵设直线l 与椭圆M 交于A B ,两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC △面积的最大值.【解析】 ⑴因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+所以226a c +=+,又椭圆的离心率为3,即3c a =,所以3c =,所以3a =,c =所以1b =,椭圆M 的方程为2219x y +=.⑵法一:不妨设BC 的方程()()30y n x n =->,,则AC 的方程为1(3)y x n=--.由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得2222169109n x n x n ⎛⎫+-+-= ⎪⎝⎭, 设()11A x y ,,()22B x y ,,因为222819391n x n -=+,所以22227391n x n -=+,同理可得2122739n x n -=+,所以26||91BC n =+,22266||99n AC n n =++, 2222121136(1)||||22(91)(9)1649ABC n n n n S BC AC n n n n ⎛⎫+ ⎪+⎝⎭=⋅⋅=⋅=++⎛⎫++⎪⎝⎭△, 设12t n n =+≥,则22236464899t S t t t ==++≤,当且仅当83t =时取到等号,所以ABC △面积的最大值为38.法二:不妨设直线AB 的方程x ky m =+.由2219x ky m x y =+⎧⎪⎨+=⎪⎩,消去x 得222(9)290k y kmy m +++-=, 设11()A x y ,,22()B x y ,,则有12229km y y k +=-+,212299m y y k -=+. ①因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=.由 ()()112233CA x y CB x y =-=- ,,,,得 1212(3)(3)0x x y y --+=. 将1122x ky m x ky m =+=+,代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍)所以125m =(此时直线AB 经过定点1205D ⎛⎫⎪⎝⎭,,与椭圆有两个交点),所以121||||2ABC S DC y y ∆=-12= 设211099t t k =<+,≤,则ABC S ∆. 所以当25102889t ⎛⎤=∈ ⎥⎝⎦,时,ABC S △取得最大值38.25.已知椭圆W 的中心在原点,焦点在x 轴上,离心率为3,两条准线间的距离为6.椭圆W 的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆W 交于不同的两点A 、B ,点A 关于x 轴的对称点为C . ⑴求椭圆W 的方程;⑵求证:CF FB λ=(λ∈R ); ⑶求MBC ∆面积S 的最大值.【解析】 ⑴ 设椭圆W 的方程为22221x y a b+=,由题意可知2222,26,c a a b c a c ⎧=⎪⎪⎪=+⎨⎪⎪⋅=⎪⎩解得a =,2c =,b , 所以椭圆W 的方程为22162x y +=.⑵ 解法1:因为左准线方程为23a x c=-=-,所以点M 坐标为(30)-,.于是可设直线l 的方程为(3)y k x =+.22(3),162y k x x y =+⎧⎪⎨+=⎪⎩得2222(13)182760k x k x k +++-=. 由直线l 与椭圆W 交于A 、B 两点,可知2222(18)4(13)(276)0k k k ∆=-+->,解得223k <.设点A ,B 的坐标分别为11(,)x y ,22(,)x y ,则21221813k x x k -+=+,212227613k x x k-=+,11(3)y k x =+,22(3)y k x =+. 因为(2,0)F -、11(,)C x y -,所以11(2,)FC x y =+- ,22(2,)FB x y =+.又因为1221(2)(2)()x y x y +-+- 1221(2)(3)(2)(3)x k x x k x =+++++ 1212[25()12]k x x x x =+++2222541290[12]1313k k k k k --=++++2222(5412901236)013k k k k k --++==+,所以CF FB λ=.解法2:因为左准线方程为23a x c=-=-,所以点M 坐标为(30)-,.于是可设直线l 的方程为(3)y k x =+,点A ,B 的坐标分别为11(,)x y ,22(,)x y , 则点C 的坐标为11(,)x y -,11(3)y k x =+,22(3)y k x =+. 由椭圆的第二定义可得 22113||||||3||x y FB FC x y +==+, 所以B ,F ,C 三点共线,即CF FB =. ⑶ 由题意知1211||||||||22S MF y MF y =+121||||2MF y y =⋅+ 121|()6|2k x x k =++ 23||13k k =+313||||k k =≤=+,当且仅当213k =时“=”成立,所以MBC ∆面积S的最大值为2.26.如图,椭圆()222210x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A 、B 两点,当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. ⑴ 求该椭圆的离心率;⑵ 设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于D 、E 两点,记GFD △的面积为1S ,OED △(O 为原点)的面积为2S ,求12S S 的取值范围.【解析】 ⑴依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒设 (,0)F c -,则tan 60bc︒==.将 b = 代入 222a b c =+,解得 2a c =. 所以椭圆的离心率为 12c e a ==.⑵由⑴,椭圆的方程可设为2222143x y c c+=.设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得222222(43)84120k x ck x k c c +++-=.则 2122843ck x x k -+=+, 121226(2)43ck y y k x x c k +=++=+,22243(,)4343ck ckG k k -++.因为 GD AB ⊥,所以 2223431443Dck k k ck x k +⨯=---+,2243D ck x k -=+. 因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ 222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>.所以12S S 的取值范围是(9,)+∞. 27.已知1F ,2F 分别是椭圆15:22=+y x E 的左、右焦点,1F ,2F 关于直线02=-+y x 的对称点是圆C 的一条直径的两个端点.⑴求圆C 的方程;⑵设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.【解析】 ⑴ 先求圆C 关于直线02=-+y x 对称的圆D,由题知圆D 的直径为12F F ,所以圆D 的圆心0,0D (),半径2r c ===,圆心0,0D ()与圆心C 关于直线02=-+y x 对称(2,2)C ⇒⇒圆C 的方程为:22(2)(2)4x y -+-=.⑵由⑴知2F (2,0), ,据题可设直线l 方程为: x = my +2,m∈R. 这时直线l 可被圆和椭圆截得2条弦,符合题意.圆C:4)2()2(22=-+-y x 到直线l 的距离=.⇒在圆中,有勾股定理得: 22222444(41m 1m m b =-=++.设直线与椭圆相交于点1122(,),(,)E x y F x y ,联立直线和椭圆方程,整理得:5204544)(0145(22212122+=++-=++=+⇒=-++m m m my y m x x my y m )由椭圆的焦半径公式 得:51525)(210)(5252222121++⋅=+-=+-=m m x x x x a5158m 14515222222++⋅=+⋅++⋅=∴m m m m ab .令()0()5f x x y f x x =≥⇒=+在[0,3]上单调递增,在[3,)+∞上单调递减令()(3)f x f ≤⇒当23m =时,ab 取最大值,这时直线方程为: 2.x =+所以当ab 取最大值,直线方程为2x =+。
圆锥曲线的动弦中点轨迹方程
圆锥曲线的动弦中点轨迹方程圆锥曲线的动弦中点轨迹方程圆锥曲线的动弦中点轨迹方程问题主要有以下三种类型:一、过定点的动弦中点的轨迹方程例1:已知椭圆x22+y2=1,过点P(2,0)引椭圆的割线,求割线被椭圆截得的弦的中点的轨迹方程。
⎧y=k(x-2)⎧解法一:设过点P(2,0)的直线方程为y=k(x-2),联立方程⎧x2,消去y,整理得2+y=1⎧⎧2⎧12⎧222+k⎧x-4kx+4k-1=0,设弦的两个端点为A(x1,y1)、B(x2,y2),中点M(x,y),⎧2⎧则x=2x1+x222=4k221+2k2,kx2=x4-2x2,代入y=k(x-2)12x(x-2),即(x-1)+2y22得y=k(x-2)=4-2x(x-2)=-2=1又过点P(2,0)的直线与椭圆相交,所以∆=(-4k2)-4 2⎧12⎧2+k⎧4k-1>0 ⎧2⎧()解得0≤k≤12,即0≤x4-2x≤12,解得0≤x当k不存在时,不满足题设要求,舍去。
所以割线被椭圆截得的弦的中点的轨迹方程是(x-1)2+2y2=1(0≤x2+y1=1⎧⎧2解法二:设弦的两个端点为A(x1,y1)、B(x2,y2),中点M(x,y),则⎧2 x2⎧2+y2=1⎧⎧2两式相减得x1-x2222+y1-y2=0,整理得(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0,22由题意知x1≠x2,所以y1-y2x1-x2=x1+x2-2(y1+y2)=x-2y=kAB,又kAB=yx-2,所以yx-2=x-2y,22整理得(x-1)+2y=1。
又过点P(2,0)的直线与椭圆相交,与解法一同理可得0≤x22所以割线被椭圆截得的弦的中点的轨迹方程是(x-1)+2y=1(0≤x注意:⑴当定点在圆锥曲线外的时候一定要验证直线与圆锥曲线相交的条件∆>0,并求出x(或y)的取值范围;⑵验证斜率不存在的情况是否符合题意。
二、斜率为定值的平行弦的中点轨迹方程例2:斜率为2的直线与双曲线x2-y2=12相交于两点P1、P2,求动弦P1P2中点轨迹方程。
圆锥曲线的轨迹方程经典题型训练含参考答案
圆锥曲线的轨迹方程1.已知直线2:220(1)l x ay a a --=>椭圆222:1x C y a+=,1F ,2F 分别为椭圆的左右焦点.(Ⅰ)当直线l 过右焦点2F 时,求C 的标准方程;2.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,P 是椭圆上的一点,I 为△12PF F 的内切圆圆心,11222PIF IF F PIF S S S =-V V V ,且△12PF F 的周长为6. (1)求椭圆C 的方程.3.椭圆2222:1(1)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,椭圆E 上两动点P ,Q 使得四边形12PFQF为平行四边形,且平行四边形12PFQF 的周长和最大面积分别为8和 (1)求椭圆E 的标准方程;4.已知(2,0)A -,(2,0)B ,点P 在平面内运动,14PA PB k k =-g .(Ⅰ)求点P 的轨迹方程;5.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F ,2F ,且1F 是圆2270x y +-+=的圆心,点H 的坐标为(0,)b ,且△12HF F 的面积为 (1)求椭圆C 的方程.6.设1F ,2F 分别是椭圆2222:1(0,0)x y C a b a b+=>>的左,右焦点,A ,B 两点分别是椭圆C 的上,下顶点,△12AF F 是等腰直角三角形,延长1AF 交椭圆C 于D 点,且2ADF ∆的周长为 (1)求椭圆C 的方程;7.已知点F 为椭圆22221(0)x y a b a b+=>>的一个焦点,点A 为椭圆的右顶点,点B 为椭圆的下顶点,椭圆上任意一点到点F 距离的最大值为3,最小值为1. (Ⅰ)求椭圆的标准方程;8.已知椭圆2222:1(0)x y C a b a b+=>>,左右焦点分别为1F 、2F ,A 为椭圆上一点,1AF 与y 轴交于点B ,2||||AB F B =,||OB =. (1)求椭圆C 的方程;9.已知椭圆2222:1(0,0)x y E a b a b+=>>的左,右焦点分别为1(1,0)F -,2(1,0)F ,点P 在椭圆E 上,212PF F F ⊥,且12||3||PF PF =.(Ⅰ)求椭圆E 的标准方程;10.在平面直角坐标系xOy 中,点(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过F 的直线与椭圆E交于A 、B 两点,线段AB 的中点为21(,)33P .(1)求椭圆E 的方程;11.已知抛物线C 的顶点为原点,其焦点(0F ,)(0)c c >关于直线:20l x y --=的对称点为M ,且||FM =P 为C 的准线上的任意一点,过点P 作C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;12.已知1F ,2F 为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,点P 在椭圆上,且过点2F 的直线l 交椭圆于A ,B 两点,△1AF B 的周长为.(Ⅰ)求椭圆E 的方程;13.有一种曲线画图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且12DN ON ==,1DM =.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动,M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的轨迹方程;14.已知圆22(4)(4)25x y -+-=经过抛物线2:2(0)E y px p =>的焦点F ,且与抛物线E 的准线l 相切. (1)求抛物线E 的标准方程;15.已知焦点为F 的抛物线2:2(0)C y px p =>与圆222:1O x y p +=+交于点0(1,)P y . (1)求抛物线C 的方程;16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,焦距为2,点P 为椭圆上异于A ,B的点,且直线PA 和PB 的斜率之积为34-.(Ⅰ)求C 的方程;17.已知椭圆2222:1(0)x y C a b a b+=>>过点M ,且焦距为4.(1)求椭圆C 的标准方程;18.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为28y x =的焦点重合.(1)求椭圆C 的标准方程;19.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,圆22:4C x y '+=与y 轴的正半轴交于点A ,与C 有且仅有两个交点且都在x 轴上||,||OB O OA =为坐标原点). (1)求椭圆C 的方程;20.已知椭圆E 的中心为坐标原点O ,焦点在x ,1F ,2F 分别为椭圆E 的左、右焦点,点P 在椭圆E 上,以线段12F F 为直径的圆经过点P ,线段1F P 与y 轴交于点B ,且11||||6F P F B =g . (1)求椭圆E 的方程;21.已知(0,2)P -,点A ,B 分别为椭圆2222:1(0)x y E a b a b+=>>的左、右顶点,直线BP 交E 于另一点Q ,ABP ∆为等腰直角三角形,且||:||3:2PQ QB =.(Ⅰ)求椭圆E 的方程;22.已知圆221:(3)16F x y ++=,圆心为1F ,定点2(3,0)F ,P 为圆1F 上一点,线段2PF 上一点K 满足222PF KF =u u u r u u u r,直线1PF 上一点Q 满足20QK KF =u u u r u u u r g .(1)求点Q 的轨迹E 的方程;23.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,F 是椭圆C 的一个焦点,点(0,2)M ,直线MF 的斜率为2.(1)求椭圆C 的方程;24.、已知椭圆2222:1(0)x y E a b a b +=>>的离心率12e =,左、右焦点分别为1F 、2F ,(4,0)P -,过点P 的直线斜率为k ,交椭圆E 于A ,B 两点,12211221sin sin sin()BF F BF F a BF F BF F ∠+∠=∠+∠. (1)求椭圆E 的方程;25.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,过椭圆右焦点F 的直线l 与椭圆交于A ,B 两点,当直线l 与x 轴垂直时,||3AB =. (Ⅰ)求椭圆C 的标准方程;26.已知椭圆2222:1x y C a b +=,右顶点为A ,右焦点为F ,O 为坐标原点,2OA OF =u u u r u u u r ,椭圆C 过点3(1,)2-.(Ⅰ)求椭圆C 的方程;27.已知椭圆2222:1(0)x y E a b a b+=>>的焦距为1:4l x =与x 轴的交点为G ,过点(,0)M l 且不与x 轴重合的直线2l 交E 于点A ,B .当2l 垂直x 轴时,ABG ∆. (1)求E 的方程;28.已知点M 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 分别是椭圆的左、右焦点,1260F MF ∠=︒,△12MF F 的面积为12.(1)求椭圆的方程;29.已知Q ,R 是椭圆2222:1(0)x y C a b a b +=>>的左右顶点,P 点为椭圆C 上一点,点P 关于x 轴的对称点为H ,且12PQ RH k k =g .(1)若椭圆C 经过圆22(1)4x y +-=的圆心,求椭圆C 的方程;30.已知1F ,2F 分别为椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,离心率为12,P 是椭圆上异于左右顶点的一动点,已知△12F PF 的内切圆半径的最大值为3. (Ⅰ)求椭圆E 的方程;31.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1:bl y x c=与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 恰好在椭圆上.(1)求椭圆的标准方程;32.已知点3(1,)2P ,(1,)a x y =-r ,(1,)b x y =+r ,且||||4a b +=r r ,满足条件的点(,)Q x y 的轨迹为曲线C . (1)求曲线C 的方程;33.已知抛物线2:2(0)C y px p =>的焦点为F ,P 为抛物线上一点,当P 的横坐标为1时,3||2PF =. (1)求抛物线C 的方程;34.已知过点(4,0)A -的动直线l 与抛物线2:2(0)G x py p =>相交于B 、C 两点.当直线l 的斜率是12时,4AC AB =u u u r u u u r .(1)求抛物线G 的方程;35.已知抛物线2:2(0)C y px p =>的焦点为F ,Q 是抛物线上的一点,FQ =u u u r.(Ⅰ)求抛物线C 的方程;36.已知椭圆2222:1(0)x y C a b a b+=>>与抛物线2:4D y x =-有共同的焦点F ,且两曲线的公共点到F 的距离是它到直线4x =-(点F 在此直线右侧)的距离的一半. (1)求椭圆C 的方程;37.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,点3(1,)2P 在椭圆C 上,满足1294PF PF =u u u r u u u u r g . (Ⅰ)求椭圆C 的标准方程;38.直角坐标系xOy 中,1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左右焦点,A 为椭圆的右顶点,点P 为椭圆C 上的动点(点P 与C 的左右顶点不重合),当△12PF F 为等边三角形时,123PF F S =V . (1)求椭圆C 的方程;(2)如图,M 为AP 的中点,直线MO 交直线4x =-于点D , 过点O 作//OE AP 交直线4x =-于点E ,证明11OEF ODF ∠=∠.39.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为1F ,过点1F 且与x 轴垂直的直线被椭圆截得的线段长为2,且1F 与短轴两端点的连线相互垂直.(1)求椭圆C 的方程;40.已知椭圆2222:1(0)x y a b a bΓ+=>>的离心率为2,过椭圆Γ的焦点且垂直于x 轴的直线被椭圆Γ截得的弦长为2. (1)求椭圆Γ的方程;41.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点1F 的直线与C 交于M ,N 两点.2MNF ∆的周长为8,且||MN 的最小值为3. (Ⅰ)求椭圆C 的标准方程;42.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B ,2B ,F 为其右焦点,1111B A B F =u u u u r u u u u r g ,且该椭圆的离心率为12.(Ⅰ)求椭圆C 的标准方程;43.已知椭圆2222:1(0)x y C a b a b+=>>,与x 轴交于点1A ,2A ,过x 轴上一点Q 引x 轴的垂线,交椭圆C 于点1P ,2P ,当Q 与椭圆右焦点重合时,12||1PP =. (1)求椭圆C 的方程;44.在平面直角坐标系内,点(1,0)F ,过点P 作直线:l x m =的垂线,垂足为M ,MF 的中点H 在y 轴上,且()0PM PF FM +=u u u u r u u u r u u u u rg .设点P 的轨迹为曲线Q .(1)求曲线Q 的方程;45.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点坐标为(,A ,B 分别是椭圆的左,右顶点,P 是椭圆上异于A ,B 的一点,且PA ,PB 所在直线斜率之积为14-.(1)求椭圆C 的方程;46.已知椭圆E 的中心为坐标原点O ,焦点在x ,1F 、2F 分别为楠圆E 的左、右焦点,点P 在椭圆E 上,以线段12F F 为直径的圆经过点P ,线段1F P 与y 轴交于点B ,且11||||6F P F B =g . (1)求椭圆E 的方程;47.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,经过左焦点1F 的最短弦长为3,离心率为12. (1)求椭圆的标准方程;48.点(1,1)A 是抛物线2:2C x py =内一点,F 是抛物线C 的焦点,Q 是抛物线C 上任意一点,且已知||||QA QF +的最小值为2.(1)求抛物线C 的方程;圆锥曲线的轨迹方程参考答案1.【解答】(Ⅰ)由题可得:22222,12,12a c a c a c =-=⇒==,所以椭圆C 的方程为2212x y +=.2.【解答】(1)因为11222PIF IF F PIF S S S =-V V V ,所以1212||||2||PF PF F F +=,即2a c =①, 又因为△12PF F 的周长为6,所以1212||||||6PF PF F F ++=,即226a c +=②,由①②可得2a =,1c =,则3b =,所以椭圆的方程为22143x y +=.3.【解答】(1)由平行四边形12PFQF 的周长为8,可知48a =,即2a =.由平行四边形的最大面积为23,可知3bc =,又1a b >>,解得3,1b c ==.所以椭圆方程为22143x y +=.4.【解答】(Ⅰ)设(,)P x y ,0y ≠,则2124n yy x x -=-+g ,22221(4)144x y x y =--⇒+=;所以点P 的轨迹方程:221(0)4x y y +=≠;5.【解答】(1)由224270x y x +-+=,可得22(22)1x y -+=,则圆心坐标为(22,0), 即1F (22,0),22c ∴=,Q △12HF F 的面积为22,∴12222c b ⨯⨯=, 1b ∴=,2229a b c ∴=+=,∴椭圆C 的方程为:2219x y +=;6.【解答】(1)2ADF ∆Q 的周长为42,由椭圆的定义可知,12||||2AF AF a +=,12||||2DF DF a +=, 442a ∴=,2a ∴=,又Q △12AF F 是等腰直角三角形,且222a b c =+,1b c ∴==,∴椭圆C 的方程为:2212x y +=;7.【解答】(Ⅰ)由题意可知,31a c a c +=⎧⎨-=⎩,解得21a c =⎧⎨=⎩,2223b a c ∴=-=,∴椭圆的标准方程为:22143x y +=; 8.【解答】(1)连接2AF ,如图所示:, 由题意得21||||||AB F B F B ==, 所以BO 为△12F AF 的中位线, 又因为12BO F F ⊥,所以212AF F F ⊥,且222||2||2b AF OB a ===, 又22c e a ==,222a b c =+,得22a =,21b =, ∴椭圆C 的方程为:2212x y +=;9.【解答】(Ⅰ)因为P 在椭圆上,所以12||||2PF PF a +=,又因为12||3||PF PF =, 所以2||2a PF =,13||2aPF =,因为212PF F F ⊥,所以2222121||||||PF F F PF +=,又12||2F F =,所以22a =,2221b a c =-=,所以椭圆的标准方程为:2212x y +=;10.【解答】(1)由题意可知,1c =,设1(A x ,1)y ,2(B x ,2)y ,∴1243x x +=,1223y y +=, 又Q 点A ,B 在椭圆上,∴22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得:1212121222()()()()0x x x x y y y y a b +-+-+=, ∴2122122y y b x x a -=--,即直线AB 的斜率为:222b a -,又Q 直线AB 过右焦点(1,0)F ,过点21(,)33P , ∴直线AB 的斜率为:1031213-=--,2221b a ∴-=-,222a b ∴=,又222a b c =+Q ,1c =,22a ∴=,21b =,∴椭圆E 的方程为:2212x y +=;11.【解答】(1)由题意可知,焦点(0,)F c 到直线:20l x y --=的距离d =∴=1c =(负根舍去),∴抛物线C 的方程为:24x y =; 12.【解答】(Ⅰ)根据椭圆的定义,可得12||||2AF AF a +=,12||||2BF BF a +=,∴△1AF B 的周长为111122||||||||||||||4AF BF AB AF BF AF BF a ++=+++=,∴4a =,a =∴椭圆E 的方程为22213x y b +=,将P 代入得22b =,所以椭圆的方程为22132x y +=. 13.【解答】(1)设(,)M x y 则(,0)2x D1,即2214x y +=;14. 【解答】(1)由已知可得:圆心(4,4)到焦点F 的距离与到准线l 的距离相等,即点(4,4)在抛物线E 上,168p ∴=,解得2p =.∴抛物线E 的标准方程为24y x =.15.【解答】(1)将点0(1,)P y 代入得20220211y p y p ⎧=⎪⎨+=+⎪⎩,解得2p =,则抛物线C 的方程为24y x =; 16.【解答】(1)已知点P 在椭圆上,设0(P x ,0)y ,即有2200221x y a b+=,又2200022200034AP BPy y y b k k x a x a x a a ===-=-+--g ,且22c =,可得椭圆的方程为22143x y +=; 17.【解答】(1)由题意可知,2222242124a b c a b c ⎧+=⎪⎪=⎨⎪=+⎪⎩,解得22a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为:22184x y +=;18.【解答】(1)由抛物线的方程可得抛物线的焦点坐标为(2,0),所以由题意可得椭圆的右焦点(2,0),即2c =,2a =a =222642b a c =-=-=,所以椭圆的标准方程为:22162x y +=; 19.【解答】(1)Q 圆22:4C x y '+=与C 有且仅有两个交点且都在x 轴上,所以2a =, 又Q ||||OB OA =∴2b,解得b =C 的方程为22143x y +=;20.【解答】(1)设椭圆E 的方程为22221(0)x y a b a b+=>>,12||2F F c =,112BFO PF F ∠=∠Q ,1122FOB F PF π∠=∠=,∴△1F BO ∽△12F F P ,∴11121||||||||F B FO F F F P =, 即211112||||||||26F P F B FO F F c ===,c ∴=c e a ==,解得2a =,所以2221b a c =-=, 则椭圆E 的方程为2214x y +=;21.【解答】(Ⅰ)根据题意ABP ∆是等腰直角三角形,2a ∴=,(2,0)B ,设0(Q x ,0)y ,由||:||3:2PQ QB =,得32PQ QB =u u u r u u u r ,则006545x y ⎧=⎪⎪⎨⎪=-⎪⎩,代入椭圆方程得21b =,∴椭圆E 的方程为:2214xy +=;22.【解答】(1)Q 222PF KF =u u u r u u u r,K ∴是线段2PF 的中点.又20QK KF =u u u r u u u r g ,QK ∴为线段2PF 的中垂线,则2||||QP QF =,1112||||||||||4F P FQ QP FQ QF =+=+=Q , ∴由椭圆的定义可知,点Q 的轨迹是以1F ,2F 为焦点,长轴为4的椭圆,则2a =,c ,21b ∴=,故点Q 的轨迹C 的方程为2214x y +=;23.【解答】(1)由题意,可得1222c a c⎧=⎪⎪⎨⎪=⎪⎩,解得21a c =⎧⎨=⎩,则2223b a c =-=,故椭圆C 的方程为22143x y +=;24.【解答】(1)由正弦定理得2112||||||BF BF a F F +=,由椭圆的定义可得22a ac =,1c ∴=, 又Q 离心率12e =,∴12c a =,2a ∴=,2223b a c ∴=-=,∴椭圆E 的方程为:22143x y +=;25.【解答】(Ⅰ)由题意得:222223,1,2,b a c a a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得:2,1a b c ===.所以椭圆的标准方程为:22143x y +=;26.【解答】(Ⅰ)由2OA OF =u u u r u u u r ,可得,2a c =,且过点3(1,)2-,则221914a b +=,焦解得:2a =,b =,所以椭圆的方程为:22143x y+=;27.【解答】(1)由焦距为2c =c =,即2223a b c -== ①;由题意可得(4,0)G,13||||||22AB MG AB ==g可得||AB =,由在椭圆上可得221314a b+=②; 由①②解得2a =,1b =,则椭圆的方程为2214xy +=;28.【解答】(1)设1(,0)F c -,2(,0)F c ,1||MF m =,2||MF n =可得2m n a +=,1sin 602mn ︒=,即8mn =, 又2222cos604m n mn c +-︒=,即22()24m n mn mn c +--=,即222444324a c b mn -===,可得b =,由12c e a ==,即2a c =,又2226b a c =-=,解得a =,c 22186x y +=;29.【解答】(1)设(,)P x y ,因为(,0)P a -,(,0)Q a ,则点P 关于x 轴的对称点(,)H x y -, PQy k x a =+,RH y k a x=-,因为22221x y a b +=,所以22222222(1)()x b y b a x a a =-=-, 所以2222212PQ RH y b k k a x a ===-g ,又椭圆C 过圆22(1)4x y +-=的圆心(0,1),∴22011a b+=, 所以22a =,21b =,所以椭圆C 的标准方程为2212x y +=;30.【解答】(Ⅰ)由题意知:12c a =,2a c ∴=,222b a c =-,∴b =,设△12PF F 的内切圆半径为r ,则12121211(||||||)(22)()22PF F S PF PF F F r a c r a c r =++=+=+V g g g ,故当△12PF F 面积最大时,r 最大,即P点位于椭圆短轴顶点时r ,)a c bc +=,把2a c =,b =代入,解得:2a =,b =,所以椭圆方程为22143x y +=; 31.【解答】(1)Q 焦距为4,2c ∴=,2(2,0)F ∴,Q 点2F 关于直线1:bl y x c=的对称点E 恰好在椭圆上,∴由椭圆的对称性可知,当b c =时,点2(2,0)F 关于直线1:l y x =的对称点E 坐标为(0,2),恰在椭圆上, 2b c ∴==,2228a b c =+=,∴椭圆的标准方程为:22184x y +=; 32.【解答】(1)设1(1,0)F -,2(1,0)F ,由(1,)a x y =-r,(1,)b x y =+r ,||||4a b +=r r ,4,即为12||||4QF QF +=,由124||F F >,可得Q 的轨迹是以1(1,0)F -,2(1,0)F 为焦点,且24a =的椭圆,由1c =,2a =,可得b ==,可得曲线C 的方程为22143x y +=;33.【解答】(1)由抛物线的方程可得准线方程为:2px =-,由抛物线的性质,到焦点的距离等于到准线的距离,3||2PF =,又P 的横坐标为1,所以3122p +=,所以1p =,所以抛物线的方程为:22y x =;34.【解答】(1)设1(B x ,1)y ,2(C x ,2)y ,当直线l 的斜率是12时,l 的方程为1(4)2y x =+,即24x y =-,由2224x py x y ⎧=⎨=-⎩得22(8)80y p y -++=,∴21212(8)640424p p y y y y ⎧=+->⎪⎪+=+⎨⎪=⎪⎩V ,①;又4AC AB =u u u r u u u r .214y y ∴=,②; 由①②和0p >得11y =,24y =,2p =,则抛物线的方程为24x y =;35.【解答】(Ⅰ)由题意可知,(2p F ,0),Q 点Q 在物线2:2C y px =上,∴设20(2y Q p ,0)y ,∴200(,)22y p FQ y p =-=u u u r ,∴200122y pp y ⎧-=⎪⎨⎪=⎩,解得2p =,∴抛物线C 的方程为:24y x =;36.【解答】(1)由题意知(1,0)F -,因而1c =,即221a b =+,又两曲线在第二象限内的交点(Q Q x ,)Q y 到F 的距离是它到直线4x =-的距离的一半,即42(1)Q Q x x +=-+,得23Q x =-,则283Q y =,代入到椭圆方程,得2248193a b+= .由2222481931a ba b ⎧+=⎪⎨⎪=+⎩,解得24a =,23b =, ∴所求椭圆的方程为22143x y +=.37.【解答】(1)设1F (,0)c -,2(,0)F c ,0c >,则12(1PF PF c =--u u u r u u u u r g ,3)(12c --g ,2399)1244c -=-+=,1c ∴=,∴2222219141a b a b c c ⎧+=⎪⎪=+⎨⎪=⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩∴椭圆C 的标准方程为:22143x y +=; 38.【解答】(1设椭圆的半个焦距c ,因为△12PF F 是等边三角形,所以P 此时在上顶点或下顶点,所以2a c =,所以bc 222a b c =+,解得24a =,23b =,所以椭圆的方程为:22143x y +=;39.【解答】(1)设右焦点为1(,0)F c ,令x c =,可得2b y a =±=±,可得22b a=1F 与短轴两端点的连线相互垂直,可得b c =,且222a b c -=,解得a 1b c ==,则椭圆方程为2212x y +=;40.【解答】(1)根据题意得22c ab a ⎧=⎪⎪⎨⎪=⎪⎩,又因为222b ac =-,解得22a =,则21b =, 所以椭圆Γ的方程为:2212x y +=;41.【解答】(1)根据椭圆的定义可得:122MF MF a +=,122NF NF a +=,则2MNF ∆的周长22112248MN MF NF MF NF MF MF a =++=+++==,解得2a =,又因为||MN 的最小值为3,所以223b a=,解得23b =,所以椭圆的标准方程为22143x y +=,42.【解答】(Ⅰ)1(,0)A a -,1(0,)B b ,(,0)F c ,11(,)B A a b =--u u u u r ,1(,)B F c b =-u u u u r ,由1111B A B F =u u u u r u u u u rg ,得21b ac -=,又12c a =,222a b c =+,解得:2a =,b =1c =.∴椭圆C 的标准方程为22143x y +=;43.【解答】(1)由题意可得离心率c e a ==x c =代入椭圆方程可得2||b y a =,所以221b a=,222c a b =-可得22a =,21b =,所以椭圆的方程为:2214x y +=;44.【解答】(1)设点(,)P x y ,依题意可得||||PM PF =,则222(1)(1)x x y +=-+,整理可得:24y x =,所以曲线Q 的方程24y x =;45.【解答】(1)设(,)P x y ,有题意可得(,0)A a -,(,0)B a ,由PA ,PB 所在直线斜率之积为14-,可得14y y x a x a =-+-g ,即22214y x a =--, 而P 在椭圆上可得:22222222(1)()x b y b a x a a =-=-g ,所以2214b a =,即224a b =,2223c a b ==-,解得:24a =,21b =,所以椭圆的方程为:2214x y +=;46.【解答】(1)设椭圆的方程为:22221(0)x y a b a b+=>>,12||2F F c =,因为112BFO PF F ∠=∠,1122FOB F PF π∠=∠=,所以△1F BO ∽△12F F P ,所以 11121||||||||F B FO F F F P =, 所以211112||||||||26F P F B FO F F c ===g g,可得c =,又c e a ==2a =,2221b a c =-=, 所以椭圆的方程为:2214x y +=;47.【解答】(1)由题意可得:12c a =,223b a =,222c a b =-,解得24a =,23b =,所以椭圆的标准方程为22143x y +=;48.【解答】(1)抛物线的准线方程为:2py =-,因为A 点在抛物线内部,过A 做AN 垂直于准线交于N ,抛物线于Q ,由抛物线的性质可得||||||||||QA QF QA QN AN +=+…,当且仅当,A ,Q ,N 三点共线时||||QA QF +最小,即||2AN =,即122p +=,解得:2p =,所以抛物线的方程为:24x y =;。
轨迹方程的 几种求法整理(例题+答案)
轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。
设点。
列式。
化简。
说明等,圆锥曲线标准方程的推导。
1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。
26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).2、一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠.注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q 是圆x 2+y 2=4上动点另点A (3。
圆锥曲线之轨迹问题(有答案)
圆 锥 曲 线 之 轨 迹 问 题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。
这种求轨迹的方法称之为直接法。
2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。
3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。
4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。
5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。
二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =-Q ∴点P 的轨迹一定是线段MN 的延长线。
故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x ,圆O '的方程为010822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x =3.已知椭圆)0(12222>>=+b a by a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a b y a x 上 ∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++= 4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P 是动点,若[)+∞∈+=-,0),21(λλBC AB OA OP ,则点P 的轨迹一定过三角形ABC 的 重 心。
圆锥曲线 第二讲 轨迹方程的求法
例2.(湖北) 设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是 直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m≠1). 当点A在圆上运动时,记点M的轨迹为曲线C. (Ⅰ)求曲线C的方程; (Ⅱ)略.
例3.(福建) 如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为 (0,10),分别将线段OA和OB十等分,分点分别记为A1,A2,…,A9和B1,B2,…, * B9 ,连接OBi,过作轴的垂线与交于点P( . i i N ,1 i 9) (Ⅰ)求证:点Pi( i N * ,1 i 9) 都在同一条抛物线上,并求抛物线E的方程; (Ⅱ)略 【答案】 (Ⅰ) x2 y1 )在椭圆上,有 2 2 1 a b y12 2 2 从而 x1 a (1 2 ) 代入③得 b x2 y2 1( x a , y 0) a 2 b2
备考指津
考点预测: 预计高考对本考点考查的可能性非常大.既可以 以小题的形式考查,也可以以解答题第一问的
例4.(辽宁)
x2 y2 如图,椭圆C0: a 2 b 2 1 (a>b>0,a,b为常数),动圆C1: x2+y2=t12,
b<t1<a.点A1,A2分别为C0的左、右顶点,C1与C0相交于A,B,C,D四点. (1)求直线AA1与直线A2B交点M的轨迹方程;(2) 略
y12 2 2 由①②得 y 2 2 (x a )③ x1 a
能力突破
例1.(四川) 如图,动点M到两定点A(-1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB , 设动点M的轨迹为C. (Ⅰ)求轨迹C的方程;(Ⅱ)略
圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编
圆锥曲线1(新课标全国Ⅱ卷)已知曲线C :x 2+y 2=16(y >0),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A.x 216+y 24=1(y >0)B.x 216+y 28=1(y >0)C.y 216+x 24=1(y >0)D.y 216+x 28=1(y >0)【答案】A【分析】设点M (x ,y ),由题意,根据中点的坐标表示可得P (x ,2y ),代入圆的方程即可求解.【详解】设点M (x ,y ),则P (x ,y 0),P (x ,0),因为M 为PP 的中点,所以y 0=2y ,即P (x ,2y ),又P 在圆x 2+y 2=16(y >0)上,所以x 2+4y 2=16(y >0),即x 216+y 24=1(y >0),即点M 的轨迹方程为x 216+y 24=1(y >0).故选:A2(全国甲卷数学(理))已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上、下焦点分别为F 10,4 ,F 20,-4 ,点P -6,4 在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.2【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,F 10,-4 、F 20,4 、P -6,4 ,则F 1F 2 =2c =8,PF 1 =62+4+4 2=10,PF 2 =62+4-4 2=6,则2a =PF 1 -PF 2 =10-6=4,则e =2c 2a =84=2.故选:C .3(新高考天津卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=1【答案】C【分析】可利用△PF 1F 2三边斜率问题与正弦定理,转化出三边比例,设PF 2 =m ,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,∠F 1PF 2=90°,设PF 2 =m ,∠PF 2F 1=θ1,∠PF 1F 2=θ2,由k PF 2=tan θ1=2,求得sin θ1=25,因为∠F 1PF 2=90°,所以k PF 1⋅k PF 2=-1,求得k PF 1=-12,即tan θ2=12,sin θ2=15,由正弦定理可得:PF 1 :PF 2 :F 1F 2 =sin θ1:sin θ2:sin90°=2:1:5,则由PF 2 =m 得PF 1 =2m ,F 1F 2 =2c =5m ,由S △PF 1F 2=12PF 1 ⋅PF 2 =12m ⋅2m =8得m =22,则PF 2 =22,PF 1 =42,F 1F 2 =2c =210,c =10,由双曲线第一定义可得:PF 1 -PF 2 =2a =22,a =2,b =c 2-a 2=8,所以双曲线的方程为x 22-y 28=1.故选:C4(新课标全国Ⅰ卷)(多选)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于-2,到点F (2,0)的距离与到定直线x =a (a <0)的距离之积为4,则()A.a =-2B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD【分析】根据题设将原点代入曲线方程后可求a,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.【详解】对于A:设曲线上的动点P x,y,则x>-2且x-22+y2×x-a=4,因为曲线过坐标原点,故0-22+02×0-a=4,解得a=-2,故A正确.对于B:又曲线方程为x-22+y2×x+2=4,而x>-2,故x-22+y2×x+2=4.当x=22,y=0时,22-22×22+2=8-4=4,故22,0在曲线上,故B正确.对于C:由曲线的方程可得y2=16x+22-x-22,取x=32,则y2=6449-14,而6449-14-1=6449-54=256-24549×4>0,故此时y2>1,故C在第一象限内点的纵坐标的最大值大于1,故C错误.对于D:当点x0,y0在曲线上时,由C的分析可得y20=16x0+22-x0-22≤16x0+22,故-4x0+2≤y0≤4x0+2,故D正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.5(新课标全国Ⅱ卷)(多选)抛物线C:y2=4x的准线为l,P为C上的动点,过P作⊙A:x2+(y-4)2=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则()A.l与⊙A相切B.当P,A,B三点共线时,|PQ|=15C.当|PB|=2时,PA⊥ABD.满足|PA|=|PB|的点P有且仅有2个【答案】ABD【分析】A选项,抛物线准线为x=-1,根据圆心到准线的距离来判断;B选项,P,A,B三点共线时,先求出P 的坐标,进而得出切线长;C选项,根据PB=2先算出P的坐标,然后验证k PA k AB=-1是否成立;D选项,根据抛物线的定义,PB=PF,于是问题转化成PA=PF的P点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P点坐标进行求解.【详解】A选项,抛物线y2=4x的准线为x=-1,⊙A的圆心(0,4)到直线x=-1的距离显然是1,等于圆的半径,故准线l和⊙A相切,A选项正确;B选项,P,A,B三点共线时,即PA⊥l,则P的纵坐标y P=4,由y2P=4x P,得到x P=4,故P(4,4),此时切线长PQ=PA2-r2=42-12=15,B选项正确;C选项,当PB=2时,xP=1,此时y2P=4x P=4,故P(1,2)或P(1,-2),当P(1,2)时,A(0,4),B(-1,2),k PA=4-20-1=-2,k AB=4-20-(-1)=2,不满足k PA k AB=-1;当P(1,-2)时,A(0,4),B(-1,2),k PA=4-(-2)0-1=-6,k AB=4-(-2)0-(-1)=6,不满足k PA k AB=-1;于是PA⊥AB不成立,C选项错误;D选项,方法一:利用抛物线定义转化根据抛物线的定义,PB=PF,这里F(1,0),于是PA=PB时P点的存在性问题转化成PA=PF时P点的存在性问题,A(0,4),F(1,0),AF中点12,2,AF中垂线的斜率为-1kAF =14,于是AF的中垂线方程为:y=2x+158,与抛物线y2=4x联立可得y2-16y+30=0,Δ=162-4×30=136>0,即AF的中垂线和抛物线有两个交点,即存在两个P点,使得PA=PF,D选项正确.方法二:(设点直接求解)设Pt24,t,由PB⊥l可得B-1,t,又A(0,4),又PA=PB,根据两点间的距离公式,t416+(t-4)2=t24+1,整理得t2-16t+30=0,Δ=162-4×30=136>0,则关于t的方程有两个解,即存在两个这样的P点,D选项正确.故选:ABD6(新课标全国Ⅰ卷)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.【答案】3 2【分析】由题意画出双曲线大致图象,求出AF2,结合双曲线第一定义求出AF1,即可得到a,b,c的值,从而求出离心率.【详解】由题可知A ,B ,F 2三点横坐标相等,设A 在第一象限,将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,即A c ,b 2a ,B c ,-b 2a ,故AB =2b 2a =10,AF 2 =b 2a=5,又AF 1 -AF 2 =2a ,得AF 1 =AF 2 +2a =2a +5=13,解得a =4,代入b 2a=5得b 2=20,故c 2=a 2+b 2=36,,即c =6,所以e =c a =64=32.故答案为:327(新高考北京卷)已知抛物线y 2=16x ,则焦点坐标为.【答案】4,0【分析】形如y 2=2px ,p ≠0 的抛物线的焦点坐标为p2,0,由此即可得解.【详解】由题意抛物线的标准方程为y 2=16x ,所以其焦点坐标为4,0 .故答案为:4,0 .8(新高考北京卷)已知双曲线x 24-y 2=1,则过3,0 且和双曲线只有一个交点的直线的斜率为.【答案】±12【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立x =3与x 24-y 2=1,解得y =±52,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点3,0 且斜率为k 的直线方程为y =k x -3 ,联立x 24-y 2=1y =k x -3 ,化简并整理得:1-4k 2x 2+24k 2x -36k 2-4=0,由题意得1-4k 2=0或Δ=24k 2 2+436k 2+4 1-4k 2 =0,解得k =±12或无解,即k =±12,经检验,符合题意.故答案为:±12.9(新高考天津卷)(x -1)2+y 2=25的圆心与抛物线y 2=2px (p >0)的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆(x -1)2+y 2=25的圆心为F 1,0 ,故p2=1即p =2,由x -12+y 2=25y 2=4x可得x 2+2x -24=0,故x =4或x =-6(舍),故A 4,±4 ,故直线AF :y =±43x -1 即4x -3y -4=0或4x +3y -4=0,故原点到直线AF 的距离为d =45=45,故答案为:4510(新高考上海卷)已知抛物线y 2=4x 上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.【答案】42【分析】根据抛物线的定义知x P =8,将其再代入抛物线方程即可.【详解】由y 2=4x 知抛物线的准线方程为x =-1,设点P x 0,y 0 ,由题意得x 0+1=9,解得x 0=8,代入抛物线方程y 2=4x ,得y 20=32,解得y 0=±42,则点P 到x 轴的距离为42.故答案为:42.11(新课标全国Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【分析】(1)代入两点得到关于a ,b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设B x 0,y 0 ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线y =kx +3,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设PB :y -32=k (x -3),利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得b=39a2+94b2=1,解得b2=9a2=12,所以e=1-b2a2=1-912=12.(2)法一:k AP=3-320-3=-12,则直线AP的方程为y=-12x+3,即x+2y-6=0,AP=0-32+3-3 22=352,由(1)知C:x212+y29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B 23cos θ,3sin θ ,其中θ∈0,2π ,则有23cos θ+6sin θ-6 5=1255,联立cos 2θ+sin 2θ=1,解得cos θ=-32sin θ=-12或cos θ=0sin θ=-1,即B 0,-3 或-3,-32,以下同法一;法四:当直线AB 的斜率不存在时,此时B 0,-3 ,S △PAB =12×6×3=9,符合题意,此时k l =32,直线l 的方程为y =32x -3,即3x -2y -6=0,当线AB 的斜率存在时,设直线AB 的方程为y =kx +3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32 k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k 2x 2-8k 3k -32x +36k 2-36k -27=0,其中Δ=8k 23k -322-43+4k 2 36k 2-36k -27 >0,且k ≠-12,则3x B =36k 2-36k -273+4k 2,x B =12k 2-12k -93+4k 2,则S =12AQ x P -x B =123k +32 12k +183+4k 2=9,解的k =12或k =32,经代入判别式验证均满足题意.则直线l 为y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.12(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.【答案】(1)x 2=3,y 2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P 2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明S n 的取值为与n 无关的定值即可.【详解】(1)由已知有m =52-42=9,故C 的方程为x 2-y 2=9.当k =12时,过P 15,4 且斜率为12的直线为y =x +32,与x 2-y 2=9联立得到x 2-x +322=9.解得x =-3或x =5,所以该直线与C 的不同于P 1的交点为Q 1-3,0 ,该点显然在C 的左支上.故P 23,0 ,从而x 2=3,y 2=0.(2)由于过P n x n ,y n 且斜率为k 的直线为y =k x -x n +y n ,与x 2-y 2=9联立,得到方程x 2-k x -x n +y n 2=9.展开即得1-k 2 x 2-2k y n -kx n x -y n -kx n 2-9=0,由于P n x n ,y n 已经是直线y =k x -x n +y n 和x 2-y 2=9的公共点,故方程必有一根x =x n .从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW =c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW =12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.13(全国甲卷数学(理)(文))设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,点M 1,32 在C 上,且MF ⊥x 轴.(1)求C 的方程;(2)过点P 4,0 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ ⊥y 轴.【答案】(1)x 24+y 23=1(2)证明见解析【分析】(1)设F c ,0 ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,联立直线方程和椭圆方程,用A ,B 的坐标表示y 1-y Q ,结合韦达定理化简前者可得y 1-y Q =0,故可证AQ ⊥y 轴.【详解】(1)设F c ,0 ,由题设有c =1且b 2a =32,故a 2-1a =32,故a =2,故b =3,故椭圆方程为x 24+y 23=1.(2)直线AB 的斜率必定存在,设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12y =k (x -4) 可得3+4k 2 x 2-32k 2x +64k 2-12=0,故Δ=1024k 4-43+4k 2 64k 2-12 >0,故-12<k <12,又x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,而N 52,0 ,故直线BN :y =y 2x 2-52x -52 ,故y Q =-32y 2x 2-52=-3y 22x 2-5,所以y 1-y Q =y 1+3y 22x 2-5=y 1×2x 2-5 +3y 22x 2-5=k x 1-4 ×2x 2-5 +3k x 2-42x 2-5=k 2x 1x 2-5x 1+x 2 +82x 2-5=k2×64k 2-123+4k 2-5×32k 23+4k 2+82x 2-5=k128k 2-24-160k 2+24+32k 23+4k 22x 2-5=0,故y 1=y Q ,即AQ ⊥y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.14(新高考北京卷)已知椭圆方程C :x 2a 2+y 2b 2=1a >b >0 ,焦点和短轴端点构成边长为2的正方形,过0,t t >2 的直线l 与椭圆交于A ,B ,C 0,1 ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .【答案】(1)x 24+y 22=1,e =22(2)t =2【分析】(1)由题意得b =c =2,进一步得a ,由此即可得解;(2)说明直线AB 斜率存在,设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立椭圆方程,由韦达定理有x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,而AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,令x =0,即可得解.【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)显然直线AB 斜率存在,否则B ,D 重合,直线BD 斜率不存在与题意不符,同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t ,化简并整理得1+2k 2x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.15(新高考天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC=12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k 2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t-3≤t ≤32 ,使得TP ⋅TQ ≤0恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.16(新高考上海卷)已知双曲线Γ:x 2-y 2b2=1,(b >0),左右顶点分别为A 1,A 2,过点M -2,0 的直线l 交双曲线Γ于P ,Q 两点.(1)若离心率e =2时,求b 的值.(2)若b =263,△MA 2P 为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若A 1R ⋅A 2P=1,求b 的取值范围.【答案】(1)b =3(2)P 2,22 (3)0,3 ∪3,303【详解】(1)由题意得e =c a =c1=2,则c =2,b =22-1=3.(2)当b =263时,双曲线Γ:x 2-y 283=1,其中M -2,0 ,A 21,0 ,因为△MA 2P 为等腰三角形,则①当以MA 2为底时,显然点P 在直线x =-12上,这与点P 在第一象限矛盾,故舍去;②当以A 2P 为底时,MP =MA 2 =3,设P x ,y ,则 x 2-3y 28=1(x +2)2+y 2=9, 联立解得x =-2311y =-81711 或x =-2311y =81711或x =1y =0 ,因为点P 在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知MP >MA 2 ,矛盾,舍去);③当以MP 为底时,A 2P =MA 2 =3,设P x 0,y 0 ,其中x 0>0,y 0>0,则有x 0-1 2+y 20=9x 20-y 2083=1,解得x 0=2y 0=22,即P 2,22 .综上所述:P 2,22 .(3)由题知A 1-1,0 ,A 21,0 , 当直线l 的斜率为0时,此时A 1R ⋅A 2P=0,不合题意,则k l ≠0,则设直线l :x =my -2,设点P x 1,y 1 ,Q x 2,y 2 ,根据OQ 延长线交双曲线Γ于点R ,根据双曲线对称性知R -x 2,-y 2 , 联立有x =my -2x 2-y 2b2=1⇒b 2m 2-1 y 2-4b 2my +3b 2=0,显然二次项系数b 2m 2-1≠0,其中Δ=-4mb 2 2-4b 2m 2-1 3b 2=4b 4m 2+12b 2>0,y 1+y 2=4b 2m b 2m 2-1①,y 1y 2=3b 2b 2m 2-1②,A 1R =-x 2+1,-y 2 ,A 2P=x 1-1,y 1 ,则A 1R ⋅A 2P=-x 2+1 x 1-1 -y 1y 2=1,因为P x 1,y 1 ,Q x 2,y 2 在直线l 上,则x 1=my 1-2,x 2=my 2-2,即-my 2-3 my 1-3 -y 1y 2=1,即y 1y 2m 2+1 -y 1+y 2 3m +10=0,将①②代入有m 2+1 ⋅3b 2b 2m 2-1-3m ⋅4b 2m b 2m 2-1+10=0,即3b 2m 2+1 -3m ⋅4b 2m +10b 2m 2-1 =0化简得b 2m 2+3b 2-10=0,所以 m 2=10b 2-3, 代入到 b 2m 2-1≠0, 得 b 2=10-3b 2≠1, 所以 b 2≠3,且m 2=10b 2-3≥0,解得b 2≤103,又因为b >0,则0<b 2≤103,综上知,b 2∈0,3 ∪3,103 ,∴b ∈0,3 ∪3,303.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设l :x =my -2,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.一、单选题1(2024·福建泉州·二模)若椭圆x 2a 2+y 23=1(a >0)的离心率为22,则该椭圆的焦距为()A.3B.6C.26或3D.23或6【答案】D【分析】分焦点在x 轴或y 轴两种情况,求椭圆的离心率,求解参数a ,再求椭圆的焦距.【详解】若椭圆的焦点在x 轴,则离心率e =a 2-3a =22,得a 2=6,此时焦距2c =26-3=23,若椭圆的焦点在y 轴,则离心率e =3-a 23=22,得a 2=32,此时焦距2c =23-32=6,所以该椭圆的焦距为23或6.故选:D2(2024·河北衡水·三模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),圆O 1:(x -2)2+y 2=4与圆O 2:x 2+(y -1)2=1的公共弦所在的直线是C 的一条渐近线,则C 的离心率为()A.3B.2C.5D.6【答案】C【详解】因为O 1:(x -2)2+y 2=4,O 2:x 2+(y -1)2=1,所以两圆方程相减可得y =2x ,由题意知C 的一条渐近线为y =2x ,即ba =2,双曲线C 的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=5.故选:C .3(2024·北京·三模)已知双曲线E :3mx 2-my 2=3的一个焦点坐标是0,2 ,则m 的值及E 的离心率分别为()A.-1,233B.-1,2C.1,2D.102,10【答案】A【详解】依题意,双曲线E :3mx 2-my 2=3化为:y 2-3m -x 2-1m=1,则-3m +-1m =22,解得m =-1,双曲线y 23-x 2=1的离心率e =23=233.故选:A4(2024·贵州贵阳·三模)过点A (-3,-4)的直线l 与圆C :(x -3)2+(y -4)2=9相交于不同的两点M ,N ,则线段MN 的中点P 的轨迹是()A.一个半径为10的圆的一部分B.一个焦距为10的椭圆的一部分C.一条过原点的线段D.一个半径为5的圆的一部分【答案】D【详解】设P (x ,y ),根据线段MN 的中点为P ,则CP ⊥MN ,即CP ⊥AP ,所以CP ⋅AP =0,又A (-3,-4),C (3,4),AP =(x +3,y +4),CP =(x -3,y -4),所以(x +3)(x -3)+(y +4)(y -4)=0,即x 2+y 2=25,所以点P 的轨迹是以(0,0)为圆心,半径为5的圆在圆C 内的一部分,故选:D .5(2024·湖南·模拟预测)已知点A 1,0 ,点B -1,0 ,动点M 满足直线AM ,BM 的斜率之积为4,则动点M 的轨迹方程为()A.x 24-y 2=1B.x 24-y 2=1(x ≠±1)C.x 2-y 24=1D.x 2-y 24=1(x ≠±1)【答案】D【详解】设动点M (x ,y )由于A 1,0 ,B -1,0 ,根据直线AM 与BM 的斜率之积为4.整理得y x +1⋅y x -1=4,化简得:x 2-y 24=1(x ≠±1).故选:D6(2024·陕西榆林·三模)在平面直角坐标系xOy 中,把到定点F 1-a ,0 ,F 2a ,0 距离之积等于a 2(a >0)的点的轨迹称为双纽线.若a =2,点P x 0,y 0 为双纽线C 上任意一点,则下列结论正确的个数是()①C 关于x 轴不对称②C 关于y 轴对称③直线y =x 与C 只有一个交点④C 上存在点P ,使得PF 1 =PF 2 A.1个 B.2个C.3个D.4个【答案】C【详解】①设M x ,y 到定点F 1-2,0 ,F 22,0 的距离之积为4,可得(x +2)2+y 2.(x -2)2+y 2=4,整理得x 2+y 2 2=8x 2-y 2 ,即曲线C 的方程为x 2+y 2 2=8x 2-y 2 ,由x 用-x 代换,方程没变,可知曲线C 关于y 轴对称,由y 用-y 代换,方程没变,可知曲线C 关于x 轴对称,由x 用-x 代换,y 用-y 同时代换,方程没变,可知曲线C 关于原点对称,图象如图所示:所以①不正确,②正确;③联立方程组x 2+y 2 2=8x 2-y 2y =x,可得x 4=0,即x =0,所以y =0,所以直线y =x 与曲线C 只有一个交点O (0,0),所以③正确.④原点O 0,0 满足曲线C 的方程,即原点O 在曲线C 上,则OF 1 =OF 2 ,即曲线C 上存在点P 与原点O 重合时,满足PF 1 =PF 2 ,所以④正确.故选:C .7(2024·福建泉州·二模)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),左、右顶点分别为A ,B ,O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于P ,Q 两点,与其两条渐近线分别交于R ,S 两点,则下列命题正确的是()A.存在直线l ,使得BQ ⎳OSB.当且仅当直线l 平行于x 轴时,|PR |=|SQ |C.存在过(0,b )的直线l ,使得S △ORB 取到最大值D.若直线l 的方程为y =-22(x -a ),BR =3BS ,则双曲线C 的离心率为3【答案】D【详解】解:对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线l :y =kx +t ,与双曲线联立y =kx +tx 2a2-y 2b2=1,得:b 2-a 2k 2 x 2-2a 2ktx -a 2t 2+a 2b 2 =0,其中b 2-a 2k 2≠0,设P x 1,y 1 ,Q x 2,y 2 ,由根与系数关系得:x 1+x 2=2a 2kt b 2-a 2k 2,x 1x 2=-a 2b 2+a 2t 2b 2-a 2k 2,所以线段PQ 中点N x 1+x 22,y 1+y 22 =a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,将直线l :y =kx +t ,与渐近线y =b a x 联立得点S 坐标为S at b -ak ,btb -ak,将直线l :y =kx +t 与渐近线y =-b a x 联立得点R 坐标为R -at b +ak ,btb +ak ,所以线段RS 中点M a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,所以线段PQ 与线段RS 的中点重合.所以,对任意的直线l ,都有|PR |=|PQ |-|RS |2=|SQ |,故B 项不正确;对于C 项:因为|OB |为定值,当k 越来越接近渐近线y =-b a x 的斜率-ba 时,S △ORB 趋向于无穷,所以S △ORB 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线y =bax ,解得Sa 22b +a ,ab2b +a,联立直线l 与渐近线y =-b a x ,解得R a 2-2b +a ,ab2b -a由题可知,BR =3BS ,3y S =y R +2y B ,3ab2b +a =ab2b -a ,解得b =2a ,所以e =1+b 2a2=1+(2a )2a 2=3,故D 项正确.故选:D .【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得a ,c 得值,根据离心率的定义求解离心率e ;②齐次式法:由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8(2024·河南·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,O 为坐标原点,焦距为82,点P 在双曲线C 上,OP =OF 2 ,且△POF 2的面积为8,则双曲线的离心率为()A.2B.22C.2D.4【答案】C【详解】因为△POF 2的面积为8,所以△PF 1F 2的面积为16.又OP =OF 2 ,所以OP =OF 2 =OF 1 =12F 1F 2,所以△PF 1F 2为直角三角形,且PF 1⊥PF 2.设PF 1 =m ,PF 2 =n ,所以m -n =2a ,m 2+n 2=4c 2,所以mn =m 2+n 2 -(m -n )22=4c 2-4a 22=2b 2,所以S △PF 1F 2=12mn =b 2=16,又b >0,所以b =4.焦距为2c =82,所以c =42,则a 2=c 2-b 2=(42)2-16=16,所以a =4,则离心率e =424=2.故选:C .9(2024·重庆·三模)已知抛物线y 2=4x 的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,点A 在第一象限,点O 为坐标原点,且S △AOF =2S △BOF ,则直线l 的斜率为()A.22B.3C.1D.-1【答案】A 【详解】如图:设直线倾斜角为α,抛物线的准线l :x =-1作AM ⊥l 于M ,根据抛物线的定义,AM =AF =DF +AF ⋅cos α=2+AF ⋅cos α,所以|AF |=21-cos α,类似的|BF |=21+cos α.由S △AOF =2S △BOF 知|AF |=2|BF |,得cos α=13,故k =tan α=22.故选:A10(2024·黑龙江齐齐哈尔·三模)设F 为抛物线C :y =ax 2的焦点,若点P (1,2)在C 上,则|PF |=()A.3B.52C.94D.178【答案】D【详解】依题意,2=a ×12,解得a =2,所以C :x 2=y 2的准线为y =-18,所以|PF |=2+18=178,故选:D .11(2024·山东泰安·二模)设抛物线x 2=4y 的焦点为F ,过抛物线上点P 作准线的垂线,设垂足为Q ,若∠PQF =30°,则PQ =()A.43B.433C.3D.233【答案】A【详解】如图所示:设 M 为准线与x 轴的交点,因为∠PQF =30°,且PF =PQ ,所以∠PFQ =30°,∠QPF =120°,因为FM ⎳PQ ,所以∠QFM =30°,而在Rt△QMF中,QF=FMcos30°=232=433,所以PF=PQ=QF2÷cos30°=233÷32=43.故选:A.二、多选题12(2024·江西·模拟预测)已知A-2,0,B2,0,C1,0,动点M满足MA与MB的斜率之积为-3 4,动点M的轨迹记为Γ,过点C的直线交Γ于P,Q两点,且P,Q的中点为R,则()A.M的轨迹方程为x24+y23=1B.MC的最小值为1C.若O为坐标原点,则△OPQ面积的最大值为32D.若线段PQ的垂直平分线交x轴于点D,则R点的横坐标是D点的横坐标的4倍【答案】BCD【详解】对于选项A,设M x,y,因为A-2,0,B2,0,所以k MA⋅k MB=yx+2⋅yx-2=-34,化简得x24+y23=1x≠±2,故A错误;对于选项B,因为x24+y23=1x≠±2,则a=2,b=3,则c=a2-b2=1,所以C1,0为椭圆的右焦点,则MCmin=a-c=2-1=1,故B正确;对于选项C,设PQ的方程 x=my+1,代入椭圆方程,得3m2+4y2+6my-9=0,设P x1,y1,Q x2,y2,则y1+y2=-6m3m2+4,y1y2=-93m2+4,Δ=36m2+363m2+4>0,所以S△OPQ=12OCy1-y2=12y1+y22-4y1y2=12-6m3m2+42+363m2+4=6m2+13m2+4,令m2+1=t≥1,则S△OPQ=6t3t2+1=63t+1t,令g t =3t+1tt≥1,则S△OPQ=6g t,t≥1,g t =3-1t2=3t2-1t2>0,g t 在1,+∞为增函数,g t ≥g1 =4,g t min=4,所以S△OPQmax=64=32,当且仅当t=1时即m=0等号成立,故C正确;对于选项D,因为Rx1+x22,y1+y22,x1+x22=m y1+y22+1=-3m23m2+4+1=43m2+4,y1+y22=-3m3m2+4,所以R43m2+4,-3m3m2+4,则x R=43m2+4,设D x D ,0 ,则k PQ ⋅k RD =1m ⋅3m3m 2+4x D -43m 2+4=-1,则x D =13m 2+4,所以x R x D=43m 2+413m 2+4=4,则R 点的横坐标是D 点的横坐标的4倍,故D 正确.故选:BCD .【点睛】关键点点睛:本题求解的关键有两个:一是利用面积公式得出面积表达式,结合导数得出最值;二是根据垂直平分得出点之间的关系.13(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线E :x 24-y 26=1的左、右焦点分别为F 1,F 2,从F 2发出的两条光线经过E 的右支上的A ,B 两点反射后,分别经过点C 和D ,其中AF 2 ,BF 2共线,则()A.若直线AB 的斜率k 存在,则k 的取值范围为-∞,-62 ∪62,+∞ B.当点C 的坐标为210,10 时,光线由F 2经过点A 到达点C 所经过的路程为6C.当AB ⋅AD =AB 2时,△BF 1F 2的面积为12D.当AB ⋅AD =AB 2时,cos ∠F 1F 2A =-1010【答案】ABD【详解】如图所示,过点F 2分别作E 的两条渐近线的平行线l 1,l 2,则l 1,l 2的斜率分别为62和-62,对于A 中,由图可知,当点A ,B 均在E 的右支时,k <-62或k >62,所以A 正确;对于B 中,光线由F 2经过点A 到达点C 所经过的路程为F 2A +AC =F 1A -2a +AC =F 1C -2a =(210+10)2+(10-0)2-4=6,所以B 正确;对于C 中,由AB ⋅AD =AB 2,得AB ⋅AD -AB =0,即AB ⋅BD=0,所以AB ⊥BD ,设BF 1 =n ,则BF 2 =n -2a =n -4,因为∠ABD =π2,所以n 2+(n -4)2=(2c )2=40,整理得n 2-4n -12=0,解得n =6或n =-2(舍去),所以BF 1 =6,BF 2 =2,所以△BF 1F 2的面积S =12BF 1 ⋅BF 2 =6,所以C 错误;对于D 项,在直角△F 1BF 2中,cos ∠F 1F 2B =BF 2 F 1F 2=2210=1010,所以cos ∠F 1F 2A =-cos ∠F 1F 2B =-1010,所以D 正确.故选:ABD .14(2024·重庆·三模)已知双曲线C :x 2a 2-y 216=1(a >0)的左,右焦点分别为F 1,F 2,P 为双曲线C 上点,且△PF 1F 2的内切圆圆心为I (3,1),则下列说法正确的是()A.a =3B.直线PF 1的斜率为14C.△PF 1F z 的周长为643D.△PF 1F 2的外接圆半径为6512【答案】ACD【详解】如图1,由条件,点P 应在双曲线C 的右支上,设圆I 分别与△PF 1F 2的三边切于点M 、N 、A ,则由题A 3,0 ,且PM =PN ,F 1M =F 1A ,F 2N =F 2A ,又∵PF 1 -PF 2 =F 1M -F 2N =AF 1 -F 2A =x A +c -c -x A =2x A =2a ∴a =x A =3,A 选项正确;由选项A 得F 1-5,0 ,F 25,0 ,连接IF 1、IF 2、IA ,则tan ∠IF 1A =IA AF 1=18,所以k PF 1=tan ∠PF 1A =tan2∠IF 1A =2tan ∠IF 1A 1-tan 2∠IF 1A=1663,B 选项错误;同理,tan ∠PF 2A =tan2∠IF 2A =43,∴tan ∠F 1PF 2=-tan ∠PF 1A +∠PF 2A =-125,∴⇒tan∠F 1PF 22=32,所以由焦三角面积公式得S △F 1PF 2=b 2tan∠F 1PF 22=323,又S △F 1PF 2=PF 1+PF 2+F 1F 2 r2,故得PF 1 +PF 2 +F 1F 2 =643,∴△PF 1F 2的周长为643,C 选项正确;由tan ∠F 1PF 2=-125⇒sin ∠F 1PF 2=1213,由正弦定理F 1F 2sin ∠F 1PF 2=2R 得R =6512,D 选项正确.故选:ACD .【点睛】关键点睛:求直线PF 1的斜率、△PF 1F z 的周长、△PF 1F 2的外接圆半径的关键是根据已知条件F 1A 、F 2A 、IA 以及与各个所需量的关系即可求出∠PF 1A =2∠IF 1A 、∠PF 2A =2∠IF 2A 和∠F 2PF 1.15(2024·湖北襄阳·二模)抛物线C :x 2=2py 的焦点为F ,P 为其上一动点,当P 运动到(t ,1)时,|PF |=2,直线l 与抛物线相交于A 、B 两点,下列结论正确的是()A.抛物线的方程为:x 2=8yB.抛物线的准线方程为:y =-1。
高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题
高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题本文介绍了解动点轨迹问题的四种方法:直译法、定义法、代入法和参数法。
其中,直译法包括建系、设点、列式、代换和证明五个步骤;定义法则是根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;代入法和参数法则是在特定条件下使用的方法。
此外,文章还提到了解轨迹问题时需要注意的两点:求点的轨迹与求轨迹方程是不同的要求,要验证曲线上的点是否都满足方程。
接下来,文章以一个例题为例,介绍了利用代点法求轨迹方程的具体步骤。
该例题要求求出点P的轨迹方程,通过设点、列式、代换和证明四个步骤,最终得出了轨迹方程x2+y2=2.此外,文章还介绍了如何利用轨迹方程验证曲线上的点是否都满足方程,以及如何去掉满足方程的解而不再曲线上的点。
最后,文章介绍了另一种解轨迹问题的方法:定义法。
该方法是先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程。
I)设圆心C的坐标为(x,y),则圆方程为(x-1)^2+y^2=1,又因为在y轴上截得的弦长为2,所以C到y轴的距离为1,即x^2+y^2=1.联立两式可得圆心C的轨迹方程为x^2+y^2-x-1=0.II)由题意可知,直线l的斜率为k,且过点Q(1,0),则直线方程为y=k(x-1)。
将直线方程代入圆的方程中,得到方程x^2+(k(x-1))^2-x-1=0,化简可得x^2(1+k^2)-2xk^2+k^2-1=0.由于直线l与轨迹C有交点A、B,所以方程有两个不同的实根,即Δ=4k^4-4(k^2+1)(k^2-1)≥0.解得-1≤k≤1.再将k带入直线方程可求出交点A、B的坐标,进而证明AR//FQ。
求AB中点的坐标为((k^2-1)/(1+k^2),k(k^2-2)/(1+k^2)),将其代入x^2+y^2-x-1=0中得到轨迹方程为x^4-2x^3+6x^2-2x+1-4y^2=0.1.定点、定值问题的解法定点、定值问题通常可以通过设定参数或取特殊值来确定“定点”是什么、“定值”是多少。
圆锥曲线大题全攻略含答案详解
圆锥曲线大题全攻略含答案详解本文介绍了圆锥曲线中常见的问题和解题技巧,包括求轨迹方程问题、定点问题、定值问题、最值问题、点差法解决中点弦问题、常见几何关系的代数化方法、非对称“韦达定理”问题处理技巧、三点共线问题、巧用曲线系方程解决四点共圆问题、抛物线中阿基米德三角形的常见性质及应用、双切线题型等。
求轨迹方程问题是圆锥曲线中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。
直译法的步骤是设求轨迹的点为P(x,y),由已知条件建立关于x,y的方程,化简整理;相关点法的步骤是设求轨迹的点为P(x,y),相关点为Q(xO,yO),根据点的产生过程,找到(x,y)与(xO,yO)的关系,并将xO,yO用x和y表示,将(xO,yO)代入相关点的曲线,化简即得所求轨迹方程;定义法的步骤是分析几何关系,由曲线的定义直接得出轨迹方程;参数法的步骤是引入参数,将求轨迹的点(x,y)用参数表示,消去参数,研究范围。
本文还给出了四个例题,分别是求点P的轨迹方程、求动点M的轨迹方程、求动点Q的轨迹方程、求AB中点M的轨迹方程。
最后,给出两道专题练题,帮助读者巩固所学知识。
3.抛物线C的焦点为F,点A在抛物线上运动,点P满足AP=-2FA,求动点P的轨迹方程。
改写:已知抛物线C的焦点为F,点A在抛物线上运动,设点P的坐标为(x,y),则有AP=-2FA,求P的轨迹方程。
4.已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),动圆P过定点F且与定圆M内切,求动圆圆心P的轨迹方程。
改写:已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),设动圆P的圆心坐标为(x,y),则P过定点F且与定圆M内切,求P的轨迹方程。
5.已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,动圆H与直线l相切,与定圆A外切,求动圆圆心H的轨迹方程。
改写:已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,设动圆H的圆心坐标为(x,y),则H与直线l相切,与定圆A外切,求H的轨迹方程。
圆锥曲线轨迹问题(解析版)
第四讲 有关圆锥曲线轨迹问题根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。
该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。
求轨迹方程的的基本步骤:建设现代化(检验)建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”)求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为122=+y x ,动点M 到圆C 的切线长与MQ的比等于常数)0(>λλ,求动点M 的轨迹。
【解析】设MN 切圆C 于N ,则222ONMO MN -=。
),(y x M ,则2222)2(1y x y x +-=-+λ化简得0)41(4))(1(22222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。
当1≠λ时,方程化为2222222)1(31)12(-+=+--λλλλy x 表示一个圆。
【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程.【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以221212(1)PO PO -=-.设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=)评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的y xQMNO证明可以省略,但要注意“挖”与“补”。
圆锥曲线中两垂直切线的交点的轨迹方程.docx
圆锥曲线中两垂直切线的交点的轨迹方程圆锥曲线的两条垂直切线交点轨迹问题,有以下几个结论:结论1:椭圆x2a2+y2b2=1两条互相垂直的切线的交点的轨迹方程是x2+y2=a2+b2证明:设M(x0,y0)为椭圆x2a2+y2b2=1①两条互相垂直的切线的交点,k为过M点所作这椭圆的切线的斜率,则切线的方程为y−y0=k(x−x0)②由①②可得b2x2+a2[k(x−x0)+y0]2−a2b2=0即(a2k2+b2)·x2+2a2k(y0−kx0)·x+a2[(y0−kx0)2−b2]=0③由题意可得:∆=0化简得:a2k2+b2−(y0−kx0)2=0整理得:(a2−x02)·k2+2x0y0·k+b2−y02=0当a2≠x02时,设此方程的二根为k1,k2,则k1·k2=−1,即b2−y02a2−x02=−1,故得x2+y2=a2+ b2.当a2=x02时,此时切线MT⊥x轴,切线MT′⊥y轴,即x0=a,y0=b,故点M的轨迹方程依然满足x2+y2=a2+b2综上所述,点M的轨迹是以原点为圆心,√a2+b2为半径的圆.结论2:双曲线x2a2−y2b2=1两条互相垂直的切线的交点的轨迹是x2+y2=a2−b2当a>b时,轨迹是以原点为圆心,√a2−b2为半径的圆;当a=b时,轨迹是原点(0,0);当a<b时,轨迹不存在.证明:双曲线的两切线若垂直,则斜率必然存在,且不为零设M(x0,y0)为双曲线x2a2−y2b2=1①两条互相垂直的切线的交点,k为过M点所作这双曲线的切线的斜率,则切线的方程为y−y0=k(x−x0)②由①②可得b2x2−a2[k(x−x0)+y0]2−a2b2=0即(a2k2−b2)·x2+2a2k(y0−kx0)·x+a2[(y0−kx0)2+b2]=0③由题意可得:∆=0化简得:a2k2−b2−(y0−kx0)2=0整理得:(a2−x02)·k2+2x0y0·k−b2−y02=0设此方程的二根为k1,k2,则k1·k2=−1,即−b2−y02a2−x02=−1,故得x2+y2=a2−b2.当a>b时,轨迹是以原点为圆心,√a2−b2为半径的圆;当a=b时,轨迹是原点(0,0);当a<b时,轨迹不存在.结论3:抛物线y2=2px两条互相垂直的切线的交点的轨迹是x=−p2.证明:抛物线的两切线若垂直,则斜率必然存在,且不为零设M(x0,y0)为双曲线y2=2px①两条互相垂直的切线的交点,1m为过M点所作这椭圆的切线的斜率,则切线的方程为x−x0=m(y−y0)②由①②可得y2−2pm·y+2p(my0−x0)=0由题意可得:∆=0化简得:4p2m2−4·2p(my0−x0)=0整理得:p2·m2−2py0·m+2px0=0设此方程的二根为1m1,1m2,则1m1·1m2=−1,即m1m2=−1∴2px0p2=−1,∴x0=−p22p=−p225届雅礼高三入学考试原题及解答:同类题及解答:。
圆锥曲线轨迹方程经典例题
轨迹方程经典例题一、轨迹为圆的例题:1、必修2课本P 124B 组2:长为2a 的线段的两个端点在 x 轴和y 轴上移动,求线段 AB 的中点M 的轨迹方程:1必修2课本P 124B 组:已知M 与两个定点(0,0),A ( 3,0 )的距离之比为 _ ,求点M 的轨迹方程;(一般地:必修 2课2本P i4启组2:已知点M(x , y )与两个定点 的距离之比为一个常数 m ;讨论点M(x ,y )的轨迹方程(分 m =i .为22,在y 轴上截得线段长为 2・..3。
( 1)求圆心的P 的轨迹方程;(2)若P 点到直线y = x 的距离为—,求圆P 的方程。
2如图所示,已知 R4 , 0)是圆x 2+y 2=36内的一点,A B 是圆上两动点,且满足/ APB 90°,求矩 形APBQ 勺顶点Q 的轨迹方程.解:设AB 的中点为R 坐标为(x ,y ),则在Rt △ ABP 中,|AR =| PR .又因为R 是弦AB 的中点, 依垂径定理:在 Rt △ OAF 中,| AR 2=|AQ 2—| OR 2=36— (x 2+y 2)又| AR =| PR = - (^4)2 y 2 所以有(x — 4)2+y 2=36 — (x 2+y 2),即x 2+y 2 — 4x — 10=0因此点R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求的轨迹上运 动.设 Qx , y ) , Rx 1,y 1),因为 R 是 PQ 的中点,所以X 1= _ , y 1= ―,代入方程 ^+y 2 — 4x — 10=0,得 2 2(宁)2 •(寸)2 -4 —10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.在平面直角坐标系 xOy 中,点A(0,3),直线丨:y = 2x-4 •设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直 线y = x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA =2MQ ,求圆心C 的横坐标a 的取值范围.与2进行讨论)戈(2013陕西卷理20)已知动圆过定点 A (4,0),且在y 轴上截得弦 MN 的长为8. (1) 求动圆圆心的轨迹C 的方程;(2) 已知点B (_1,0),设不垂直于x 轴的直线|与轨迹C 交于不同的两点 P,Q ,若x 轴是.PBQ 的角平分线,证明直线l 过定点。
圆锥曲线(求轨迹方程)
专题 圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1)直接法:直接利用条件建立x ,y 之间的关系或F (x ,y )=0;(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入转移法(相关点法):动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而变化,并且Q (x 0,y 0)又在某已知曲线上,则可先用x ,y 的代数式表示x 0,y 0,再将x 0,y 0代入已知曲线得要求的轨迹方程.1.一个区别——“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的.前者只须求出轨迹的方程,标出变量x ,y 的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据.2.双向检验——求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.考向一 直接法求轨迹方程【例1】 已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).(1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.【解】 (1)由题意可知,直线PM 与PN 的斜率均存在且均不为零,所以k PM ·k PN =y x +1·y x -1=λ,整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点,焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中心在原点,焦点在x 轴上的椭圆(除去长轴的两个端点); ③当λ=-1时,轨迹C 为以原点为圆心,1为半径的圆除去点(-1,0),(1,0).④当λ<-1时,轨迹C 为中心在原点,焦点在y 轴上的椭圆(除去短轴的两个端点).【对点练习1】已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,是圆的轨迹方程;当λ>0且λ≠1时,是椭圆的轨迹方程;当λ<0时,是双曲线的轨迹方程;当λ=0时,是直线的轨迹方程.综上,方程不表示抛物线的方程.【答案】 C图8-8- 2 图8-8- 1考向二 定义法求轨迹方程【例2】已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.【解】 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2.∴|MO 2|-|MO 1|=3.∴点M 的轨迹是以O 1,O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1⎝ ⎛⎭⎪⎫x ≤-32.【对点练习2】如图8-8-1所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).【解】(1)根据题意,知|P A |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r ,因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4. 因此其轨迹方程为y 2=-8x .考向三 代入法(相关点法)求轨迹方程【例3】如图8-8-2所示,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.【解】(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P=x ,y P =54y . ∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.图8-8-5(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2=⎝ ⎛⎭⎪⎫1+1625(x 1-x 2)2=4125×41=415.【对点练习2】(2014·合肥模拟)如图8-8-5所示,以原点O 为圆心的两个同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于点Q ,P 在y 轴上的射影为M .动点N 满足PM →=λPN →且PM →·QN→=0. (1)求点N 的轨迹方程;(2)过点A (0,3)作斜率分别为k 1,k 2的直线l 1,l 2与点N 的轨迹分别交于E ,F 两点,k 1·k 2=-9.求证:直线EF 过定点.【解】(1)由PM →=λPN →且PM →·QN →=0可知N ,P ,M 三点共线且PM ⊥QN . 过点Q 作QN ⊥PM ,垂足为N ,设N (x ,y ),∵|OP |=3,|OQ |=1,由相似可知P (3x ,y ).∵P 在圆x 2+y 2=9上,(3x )2+y 2=9,即y 29+x 2=1. 所以点N 的轨迹方程为y 29+x 2=1.(2)证明:设E (x E ,y E ),F (x F ,y F ),依题意,由⎩⎪⎨⎪⎧ y =k 1x +3,y 29+x 2=1⇒(k 21+9)x 2+6k 1x =0,① 解得x =0或x =-6k 1k 21+9. 所以x E =-6k 1k 21+9,y E =k 1⎝ ⎛⎭⎪⎫-6k 1k 21+9+3=27-3k 21k 21+9, ∴E ⎝ ⎛⎭⎪⎫-6k 1k 21+9,27-3k 21k 21+9. ∵k 1k 2=-9,∴k 2=-9k 1.用k 2=-9k 1替代①中的k 1, 同理可得F ⎝ ⎛⎭⎪⎫6k 1k 21+9,3k 21-27k 21+9. 显然E ,F 关于原点对称,∴直线EF 必过原点O .【达标训练】一、选择题1.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线3.(2014·天津模拟)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )图8-8-4 A .直线 B .椭圆 C .圆 D .双曲线4.(2014·合肥模拟)如图8-8-4所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线5.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2P A →, 且OQ →·AB →=1,则点P 的轨迹方程是 ( )A.32x 2+3y 2=1(x >0,y >0)B.32x 2-3y 2=1(x >0,y >0)C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)6.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1二、填空题7.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程是_______________________.8.动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹是_______________________.9.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为_______________________.10.(2014·佛山模拟)在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是_____________.三、解答题11.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于P ,Q 两点,交直线l 1于点R ,求RP →·RQ →的最小值.12.(2011·课标全国卷)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.13.(2013·课标全国卷Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.【达标训练】 参考答案一、选择题1.A. 【解析】∵PM →·PN →=0,∴PM ⊥PN ,∴点P 的轨迹是以线段MN 为直径的圆.2.D. 【解析】由已知:|MF |=|MB |,由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线.3.A .【解析】设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎨⎧ x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧ λ1=y +3x 10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x 10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.4.B .【解析】由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆,故选B.5.A. 【解析】设P (x ,y ),A (x A,0),B (0,y B ),则BP →=(x ,y -y B ),P A →=(x A -x ,-y ),∵BP →=2P A →,∴⎩⎨⎧ x =2(x A -x ),y -y B =-2y ,即⎩⎪⎨⎪⎧ x A =32x ,y B=3y .∴A ⎝ ⎛⎭⎪⎫32x ,0,B (0,3y ). 又Q (-x ,y ),∴OQ →=(-x ,y ),AB →=⎝ ⎛⎭⎪⎫-32x ,3y ,∴OQ →·AB →=32x 2+3y 2=1, 则点P 的轨迹方程是32x 2+3y 2=1(x >0,y >0).6.C .【解析】设AP 中点M (x ,y ),P (x ′,y ′),则x =x ′2,y =y ′-12,∴⎩⎨⎧x ′=2x ,y ′=2y +1, 代入2x 2-y =0,得2y =8x 2-1,故选C.二、填空题7.y 2=8x 。
圆锥曲线轨迹方程的求法
圆锥曲线轨迹方程的求法
一、直接法求轨迹方程
利用动点运动的条件得到等量关系,表示为x和y的等式。
例如,已知点A(-2,0)和B(3,0),动点P(x,y)满足PA·PB=x²,
那么点P的轨迹是抛物线。
二、有定义法求轨迹方程
根据圆锥曲线的基本定义解题。
例如,已知圆O的方程
为x²+y²=100,点A的坐标为(-6,0),M为圆O上的任意一点,AM的垂直平分线交OM于点P,那么点P的轨迹方程为
25/16=(x+3)²/y²,即椭圆。
三、用相关点法求轨迹方程
当动点M随着已知方程的曲线上另一动点C(x,y)运动时,找出点M与点C之间的坐标关系式,用(x,y)表示(x,y),再将
x和y代入已知曲线方程,即可得到点M的轨迹方程。
例如,从双曲线x²-y²=1上一点Q引直线x+y=2的垂线,垂足为N,
求线段QN的中点P的轨迹方程。
设动点P的坐标为(x,y),点
Q的坐标为(x₁,y₁),则N点的坐标为(2x-x₁,2y-y₁)。
因为N
点在直线x+y=2上,所以2x-x₁+2y-y₁=2.又因为PQ垂直于直线x+y=2,所以x-y+y₁-x₁=0.将两个方程联立,得到
x₁=2x+2y-1和y₁=2x+2y-1.因为点Q在双曲线上,所以x₁²-y₁²=1.将x₁和y₁代入公式中,得到动点P的轨迹方程式为2x²-2y²-2x+2y-1=0.
四、用参数法求轨迹方程
选取适当的参数,分别用参数表示动点坐标得到动点轨迹的普通方程。
圆锥曲线中的轨迹方程问题-(解析版)
专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。
首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。
直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。
经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 求轨迹方程的六种常用技法1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。
2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=的点,求点P 的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.若(8,0),(8,0)B C -为ABC ∆的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ∆的重心轨迹方程是_______________。
练习:4.方程|2|x y ++表示的曲线是 ( ) A .椭圆 B .双曲线 C .线段 D .抛物线3.点差法圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程。
例3.椭圆22142x y +=中,过(1,1)P 的弦恰被P 点平分,则该弦所在直线方程为_________________。
练习:5.已知以(2,2)P 为圆心的圆与椭圆222x y m +=交于A 、B 两点,求弦AB 的中点M 的轨迹方程。
6.已知双曲线2212y x -=,过点(1,1)P 能否作一条直线l 与双曲线交于,A B 两点,使P 为线段AB 的中点?4.转移法转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。
当题目中的条件同时具有以下特征时,一般可以用转移法求其轨迹方程: ①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化; ③在变化过程中P 和M 满足一定的规律。
例4. 已知P 是以12,F F 为焦点的双曲线221169x y -=上的动点,求12F F P ∆的重心G 的轨迹方程。
练习:7.已知(1,0),(1,4)A B -,在平面上动点Q 满足4QA QB ⋅=,点P 是点Q 关于直线2(4)y x =-的对称点,求动点P 的轨迹方程。
5.参数法求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为寻求变量间的关系。
在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。
例6.过点(2,0)M -作直线l 交双曲线221x y -=于A 、B 两点,已知OP OA OB =+。
(1)求点P 的轨迹方程,并说明轨迹是什么曲线;(2)是否存在这样的直线l ,使OAPB 矩形?若存在,求出l 的方程;若不存在,说明理由。
8.设椭圆方程为1422=+y x ,过点(0,1)M 的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最小值与最大值。
9.设点A 和B 为抛物线24(0)y px p =>上原点O 以外的两个动点,且OA OB ⊥,过O 作OM AB ⊥于M ,求点M 的轨迹方程。
6.交轨法若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的方程,也可以解方程组先求出交点的参数方程,再化为普通方程。
例7.已知MN 是椭圆12222=+by a x 中垂直于长轴的动弦,A 、B 是椭圆长轴的两个端点,求直线MA 和NB 的交点P 的轨迹方程。
10.两条直线01=++y ax 和)1(01±≠=--a ay x 的交点的轨迹方程是___ ______。
总结归纳1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明,x y 的取值范围。
2.“轨迹”与“轨迹方程”既有区别又有联系,求“轨迹”时首先要求出“轨迹方程”,然后再说明方程的轨迹图形,最后“补漏”和“去掉增多”的点,若轨迹有不同的情况,应分别讨论,以保证它的完整性。
练习参考答案1.22(2)11648x y --= 2.解:设P 点的坐标为(,)x y ,则由方程2224x y +=,得242x y -=±由于直线l 与椭圆交于两点A 、B ,故22x -<<即A 、B 两点的坐标分别为2244(,),(,)22x x A x B x ---∴2244(0,),(0,)22x x PA y PB y --=-=--由题知1PA PB ⋅=即2244(0,)(0,)122x x y y ---⋅--=∴22412x y --=即2226x y +=所以点P 的轨迹方程为221(22)63x y x +=-<< 3.D 【解析】在长方体1111ABCD A B C D -中建立如图所示的空间直角坐标系,易知直线AD 与11D C 是异面垂直的两条直线,过直线AD 与11D C 平行的平面是面ABCD ,设在平面ABCD 内动点(,)M x y 满足到直线AD 与11D C 的距离相等,作1MM MP =于1M ,MN CD ⊥于N ,11NP D C ⊥于P ,连结MP ,易知MN ⊥平面111,CDD C MP D C ⊥,则有1MM MP =,222||y x a =+(其中a 是异面直线AD 与11D C 间的距离),即有222y x a -=,因此动点M 的轨迹是双曲线,选D. 4.A5.解 设(,)M x y ,1122(,),(,)A x y B x y则12122,2x x x y y y +=+=,由m y x =+21221,m y x =+2222 两式相减并同除以12()x x -得121212121122y y x x xx x y y y -+=-=--+ , 而1212AB y y k x x -=-22PM y k x -=-, 又因为PM AB ⊥所以1AB PM k k ⋅=- 12122x y y x --•=-- 化简得点M 的轨迹方程240xy x y +-= 6.先用点差法求出210x y --=,但此时直线与双曲线并无交点,所以这样的直线不存在。
中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。
. M O .PBA yx7.解:设(,)Q x y ,则(1,),(1,4)QA x y QB x y =---=--由4(1,)(1,4)4(1)(1)()(4)4QA QB x y x y x x y y ⋅=⇒---⋅--=⇒---+--= 即222(2)3x y +-=所以点Q 的轨迹是以(0,2)C 为圆心,以3为半径的圆。
∵点P 是点Q 关于直线2(4)y x =-的对称点。
∴动点P 的轨迹是一个以000(,)C x y 为圆心,半径为3的圆,其中000(,)C x y 是点(0,2)C 关于直线2(4)y x =-的对称点,即直线2(4)y x =-过0CC 的中点,且与0CC垂直,于是有00002210202422y x y x -⎧⨯=-⎪-⎪⎨⎪++=⨯-⎪⎩即000000240821802y x x y x y +-==⎧⎧⎪⎪⇒⎨⎨-+==-⎪⎪⎩⎩ 故动点P 的轨迹方程为22(8)(2)9x y -++=。
8.解:(1)解法一:直线l 过点(0,1)M ,设其斜率为k ,则l 的方程为1y kx =+记),(11y x A 、),,(22y x B 由题设可得点A 、B 的坐标),(11y x 、),(22y x 是方程组⎪⎩⎪⎨⎧=++=14122y x kx y的解 将①代入②并化简得,032)4(22=-++kx x k ,所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y kk x x 于是 ).44,4()2,2()(21222121k k k y y x x OB OA OP ++-=++=+= 设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得0422=-+y y x ③当k 不存在时, A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为2240x y y +-=解法二:设点P 的坐标为),(y x ,因),(11y x A 、),(22y x B 在椭圆上,所以,142121=+y x ④ .142222=+y x ⑤④—⑤得0)(4122212221=-+-y y x x ,所以 .0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥ ①②并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y x y y y y x x x ⑦ 将⑦代入⑥并整理得 .0422=-+y y x ⑧ 当21x x =时,点A 、B 的坐标为(0,2),(0,2)-,这时点P 的坐标为(0,0)也满足⑧,所以点P 的轨迹方程为221()2111164y x -+= (2)解:由点P 的轨迹方程知2116x ≤,即1144x -≤≤所以127)61(3441)21()21()21(||222222++-=-+-=-+-=x x x y x NP故当41=x ,||NP 取得最小值,最小值为61;41-=x 当时,||NP 取得最大值,69.解法1 :(常规设参)设(,)M x y ,1122(,),(,)A x y B x y ,则⎪⎩⎪⎨⎧-=+-=⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=•---=•==x py y y p y y xy x x yy x y x y pxy pxy 42121621121211221124221421 (※)由,,A M B 共线得)421(2141p y x y y p y y -+=- 则2121214y y y y x y y p y +++=把(※)代入上式得y pxy x y 42+-=化简得M 的轨迹方程为2240(0)x y px x +-=≠)解法2: (变换方向) 设OA 的方程为(0)y kx k =≠,则OB 的方程为1y x k=- 由⎩⎨⎧==px y kx y 22 得222(,)p p A k k , 由⎪⎩⎪⎨⎧=-=pxy x k y 221 得2(2,2)B pk pk -所以直线AB 的方程为 2(2)1ky x p k=--① 因为OM AB ⊥,所以直线OM 的方程为21k y x k-=- ② ①×②即得M 的轨迹方程: 2240(0)x y px x +-=≠解法3: (转换观点) 视点M 为定点,令00(,)M x y ,由OM AB ⊥可得直线AB 的方程为0000()x y y x x y -=--, 与抛物线24y px =联立消去y 得2220000044()0py p y y x y x x +-+=,设1122(,),(,)A x y B x y ,则22120004()p y y x y x =-+ 又因为OA OB ⊥,所以21621p y y -= 故2220004()16p x y p x -+=-即2200040x y px +-=所以M 点的轨迹方程为2240(0)x y px x +-=≠ 10.)0,0(022≠≠=+-+y x y x y x。