平方差公式教案(公开课)上课讲义
用平方差公式因式分解公开课教案
用平方差公式因式分解公开课教案一、教学目标:1. 让学生掌握平方差公式的概念和应用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力。
二、教学内容:1. 平方差公式的定义和特点。
2. 平方差公式的记忆方法。
3. 运用平方差公式进行因式分解的方法和步骤。
三、教学重点:1. 平方差公式的记忆和应用。
2. 运用平方差公式进行因式分解的方法和技巧。
四、教学难点:1. 平方差公式的灵活运用。
2. 因式分解中的特殊情况的处理。
五、教学方法:1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与、积极思考。
2. 通过例题和练习题,让学生巩固所学知识,提高解题能力。
3. 鼓励学生提问和发表自己的观点,培养学生的思维能力和创新能力。
一、平方差公式的定义和特点1. 引入平方差公式:a^2 b^2 = (a + b)(a b)2. 解释平方差公式的概念和特点3. 让学生熟记平方差公式二、平方差公式的记忆方法1. 平方差公式记忆口诀:平方差,加减号,乘积不变性质牢2. 讲解记忆方法,引导学生自主记忆3. 进行记忆测试,检查学生掌握情况三、运用平方差公式进行因式分解的方法和步骤1. 讲解因式分解的方法和步骤2. 示例题:因式分解ax^2 + bx + c3. 让学生独立完成练习题,巩固所学知识四、平方差公式的灵活运用1. 讲解平方差公式的灵活运用方法2. 示例题:解决实际问题中的应用3. 让学生尝试解决实际问题,提高应用能力五、因式分解中的特殊情况1. 讲解特殊情况:完全平方公式和平方差公式的结合2. 示例题:因式分解中含有完全平方项的题目3. 让学生练习特殊情况下的因式分解,巩固知识点六、练习题讲解和分析1. 讲解练习题,分析解题思路和方法2. 引导学生总结解题规律,提高解题能力3. 鼓励学生提问和发表自己的观点,培养思维能力七、课堂小结1. 总结本节课所学知识:平方差公式、因式分解的方法和步骤2. 强调平方差公式的记忆和应用重要性3. 布置课后作业,巩固所学知识八、课后作业布置1. 布置练习题:因式分解和应用平方差公式2. 提醒学生按时完成作业,加强练习3. 鼓励学生自主学习,提高解题能力九、作业讲解和反馈1. 讲解作业题目,分析学生解题情况2. 针对学生错误进行讲解和指导3. 给予学生鼓励和反馈,提高学习积极性十、课程总结和反思1. 总结本节课的教学目标和内容2. 反思教学过程中的优点和不足3. 提出改进措施,为下一节课做好准备六、教学活动设计:1. 导入新课:通过复习完全平方公式,引导学生发现平方差公式的规律。
数学--平方差公式名师公开课获奖课件百校联赛一等奖课件
例3 先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y -x),其中x=1,y=2.
解:原式=4x2-y2-(4y2-x2) =4x2-y2-4y2+x2 =5x2-5y2.
当x=1,y=2时,
原式=5×12-5×22=-15.
例4:先化简,再求值:(x+1)(x-1)+x2(1-x)+ x3,其中x=2.
(2)根据你旳猜测计算: ①(1-2)(1+2+22+23+24+25)=___-6_3____; ②2+22+23+…+2n=_2_n+__1-__2__(n为正整数); ③(x-1)(x99+x98+x97+…+x2+x+1)=_x_1_00_-__1__;
备用复习题
例4 对于任意旳正整数n,整式(3n+1)(3n-1)- (3-n)(3+n)旳值一定是10旳整数倍吗?
平方差公式;对于不能直接
应用公式旳,可能要经过变
形才能够应用
拓展提升 8.已知x≠1,计算:(1+x)(1-x)=1-x2,(1-x)(1+ x+x2)=1-x3,(1-x)(1+x+x2+x3)= (1)观察以上各式并猜测:(1-x)(1+x+x2+…+xn) =__1_-__x_n_+1_;(n为正整数)
(1)(a-2)(a+2)(a2 + 4) 解:原式=(a2-4)(a2+4)
=a4-16.
(2) (x-y)(x+y)(x2+y2)(x4+y4).
解:原式=(x2-y2)(x2+y2)(x4+y4) =(x4-y4)(x4+y4) =x8-y8.
(3)经过以上规律请你进行下面旳探索: ①(a-b)(a+b)=_a_2_-__b_2__; ②(a-b)(a2+ab+b2)=_a_3_-__b_3__; ③(a-b)(a3+a2b+ab2+b3)=__a_4-__b_4__.
《平方差公式》经典 公开课一等奖 教案1
1.7 平方差公式(一)●教学目标(一)教学知识点1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.(二)能力训练要求1.在探索平方差公式的过程中,开展学生的符号感和推理能力.2.培养学生观察、归纳、概括等能力.(三)情感与价值观要求在计算的过程中发现规律,并能用符号表达,从而体会数学语言的简捷美.●教学重点平方差公式的推导和应用.●教学难点用平方差公式的结构特征判断题目能否使用公式.●教学方法探究与讲练相结合.使学生在计算的过程中发现规律,并运用自己的语言进行表达,用符号证明这个规律,并探索出平方差公式的结构特点,在老师的讲解和学生的练习中学会应用.●教具准备投影片四张第一张:做一做,记作(§1.7.1 A)第二张:例1 ,记作(§ B)第三张:例2 ,记作(§ C)第四张:练一练,记作(§ D)●教学过程Ⅰ.创设情景,引入新课[师]你能用简便方法计算以下各题吗?(1)2001×1999;(2)992-1[生]可以.在(1)中2001×1999 =(2000 +1)(2000-1) =20002-2000 +2000-1×1 =20002-12=4000000-1 =3999999,在(2)中992-1 =(100-1)2-1 =(100-1)(100-1)-1 =1002-100-100 +1-1 =10000-200 =9800.[师]很好!我们利用多项式与多项式相乘的法那么,将(1)(2)中的2001 ,1999 ,99化成为整千整百的运算,从而使运算很简便.我们不妨观察第(1)题,2001和1999 ,一个比2000大1 ,于是可写成2000与1的和,一个比2000小1 ,于是可写成2000与1的差,所以2001×1999就是2000与1这两个数的和与差的积,即(2000 +1)(2000-1);再观察利用多项式与多项式相乘的法那么算出来的结果为:20002-12 ,恰为这两个数2000与1的平方差.即(2000 +1)(2000-1) =20002-12.那么其他满足这个特点的运算是否也有类似的结果呢?我们不妨看下面的做一做.Ⅱ.使学生在计算的过程中,通过观察、归纳发现规律,并用自己的语言和符号表示其规律[师]出示投影片(§1.7.1 A)做一做:计算以下各题:(1)(x +2)(x-2);(2)(1 +3a)(1-3a);(3)(x +5y)(x-5y);(4)(y +3z)(y-3z).观察以上算式,你发现什么规律?运算出结果,你又发现什么规律?再举两例验证你的发现?[生]上面四个算式都是多项式与多项式的乘法.[生]上面四个算式每个因式都是两项.[生]除上面两个同学说的以外,更重要的是:它们都是两个数的和与差的积.例如:算式(1)是"x〞与"2〞这两个数的和与差的积;算式(2)是"1〞与"3a〞这两个数的和与差的积;算式(3)是"x〞与"5y〞的和与差的积;算式(4)是"y〞与"3z〞这两个数的和与差的积.[师]我们观察出了算式的结构特点.像这样的多项式与多项式相乘,它们的结果如何呢?只要你肯动笔、动脑,相信你一定会探寻到答案.[生]解:(1)(x +2)(x-2)=x2-2x +2x-4 =x2-4;(2)(1 +3a)(1-3a)=1-3a +3a-9a2 =1-9a2;(3)(x +5y)(x-5y)=x2-5xy +5xy-25y2=x2-25y2;(4)(y +3z)(y-3z)=y2-3yz +3zy-9z2=y2-9z2(如有必要的话可以让学生利用乘法分配律将多项式与多项式相乘转化成单项式与多项式相乘,进一步体会乘法分配律的重要作用以及转化的思想) [生]从刚刚这位同学的运算,我发现:即两个数的和与差的积等于这两个数的平方差.这和我们前面的一个简便运算得出同样的结果.即[师]你还能举两个例子验证你的发现吗?[生]可以.例如:(1)101×99 =(100 +1)(100-1) =1002-100 +100-12=1002-12=10000-1 =9999;(2)(-x +y)(-x-y) =(-x)(-x) +xy-xy-y2 =(-x)2-y2 =x2-y2.即上面两个例子,同样可以验证:两个数的和与差的积,等于它们的平方差.[师]为什么会有这样的特点呢?[生]因为利用多项式与多项式相乘的运算法那么展开后,中间两项是同类项且系数互为相反数,所以相加后为零.只剩下这个数的平方差.[师]很好!你能用一般形式表示上述规律,并对规律进行证明吗?[生]可以.上述规律用符号表示为:(a +b)(a -b) =a 2-b 2①其中a,b 可以表示任意的数 ,也可以表示代表数的单项式、多项式.利用多项式与多项式相乘的运算法那么可以对规律进行证明 ,即(a +b)(a -b) =a 2-ab +ab -b 2 =a 2-b 2 [师]同学们确实不简单用符号表示和证明我们发现的规律简捷明快. 你能给我们发现的规律(a +b)(a -b) =a 2-b 2起一个名字吗 ?能形象直观地反映出此规律的.[生]我们可以把(a +b)(a -b) =a 2-b 2叫做平方差公式.[师]大家同意吗 ?[生]同意.[师]好了 !这节课我们主要就是学习讨论这个公式的.你能用语言描述这个公式吗 ?[生]可以.这个公式表示两数和与差的积 ,等于它们的平方差.[师]平方差公式是多项式乘法运算中一个重要的公式.用它直接运算会很简单 ,但要注意必须符合公式的结构特点才能利用它进行运算.Ⅲ.体会平方差公式的应用 ,感受平方差公式给多项式乘法运算带来的方便 ,进一步熟悉平方差公式.出示投影片(§ B)[例1](1)以下多项式乘法中 ,能用平方差公式计算的是( )A.(x +1)(1 +x)B.(21a +b)(b -21a)C.(-a +b)(a -b)D.(x 2-y)(x +y 2)E.(-a -b)(a -b)F.(c 2-d 2)(d 2 +c 2)(2)利用平方差公式计算:(5 +6x)(5-6x);(x -2y)(x +2y);(-m +n)(-m -n).[生](1)中只有B 、E 、F 能用平方差公式.因为B.(21a +b)(b -21a)利用加法交换律可得(21a +b)(b -21a) =(b +21a)(b -21a),表示b 与21a 这两个数的和与差的积 ,符合平方差公式的特点;E.(-a -b)(a -b),同样可利用加法交换律得(-a -b)(a -b) =(-b -a)(-b +a),表示-b 与a 这两个数和与差的积 ,也符合平方差公式的特点;F.(c 2-d 2)(d 2 +c 2)利用加法和乘法交换律得(c 2-d 2)(d 2 +c 2) =(c 2 +d 2)(c 2-d 2) ,表示c 2与d 2这两个数和与差的积 ,同样符合平方差公式的特点.[师]为什么A 、C 、D 不能用平方差公式呢 ?[生]A 、C 、D 表示的不是两个数的和与差的积的形式.[师]下面我们就来做第(2)题 ,首先分析它们分别是哪两个数和与差的积的形式.[生](5 +6x)(5-6x)是5与6x 这两个数的和与差的形式;(x -2y)(x +2y)是x 与2y 这两个数的和与差的形式;(-m +n)(-m -n)是-m 与n 这两个数的和与差的形式.[师]很好 !下面我们就来用平方差公式计算上面各式.[生](5 +6x)(5-6x) =52-(6x)2 =25-36x 2;(x -2y)(x +2y) =x 2-(2y)2 =x 2-4y 2;(-m +n)(-m -n) =(-m)2-n 2 =m 2-n 2.[师]这位同学的思路非常清楚.下面我们再来看一个例题.出示投影片(记作§ C)[例2]利用平方差公式计算:(1)(-41x -y)(-41x +y); (2)(ab +8)(ab -8);(3)(m +n)(m -n) +3n 2.[师]同学们可先交流、讨论 ,然后各小组派一代表到黑板上演示.然后再派一位同学讲评.[生]解:(1)(-41x -y)(-41x +y) - -(-41x)与y 的和与差的积 =(-41x)2-y 2 - -利用平方差公式得(-41x)与y 的平方差 =161x 2-y 2 - -运算至最后结果(2)(ab +8)(ab -8) - -ab 与8的和与差的积=(ab)2-82 - -利用平方差公式得ab 与8的平方差=a 2b 2-64 - -运算至最后结果(3)(m +n)(m-n) +3n2 - -据运算顺序先计算m与n的和与差的积=(m2-n2) +3n2 - -利用平方差公式=m2-n2 +3n2 - -去括号=m2 +2n2 - -合并同类项至最简结果[生]刚刚这位同学的运算有条有理,有根有据,我觉得利用平方差公式计算必须注意以下几点:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法外表上不能应用公式,但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.[生]还需注意最后的结果必须最简.[师]同学们总结的很好!下面我们再来练习一组题.投影片(§ D)1.计算:(1)(a +2)(a-2);(2)(3a +2b)(3a-2b);(3)(-x +1)(-x-1);(4)(-4k +3)(-4k-3).2.把以下图左框里的整式分别乘(a +b),所得的积写在右框相应的位置上.解:1.(1)(a +2)(a-2) =a2-22 =a2-4;(2)(3a +2b)(3a-2b) =(3a)2-(2b)2 =9a2-4b2;(3)(-x +1)(-x-1) =(-x)2-12 =x2-1;(4)(-4k +3)(-4k-3) =(-4k)2-32 =16k2-9.2.(a +b)(a +b) =a(a +b) +b(a +b) =a2 +ab +ab +b2 =a2 +2ab +b2;(a-b)(a +b) =a2-b2;(-a +b)(a +b) =(b +a)(b-a) =b2-a2;(-a-b)(a +b) =-a(a +b)-b(a +b)=-a2-ab-ab-b2=-a2-2ab-b2(教师在让学生做练习,可巡视练习的情况,对确实有困难的学生要给以指导)Ⅳ.课时小结[师]同学们有何体会和收获呢?[生]今天我们学习了多项式乘法运算中的一个重要公式- -平方差公式即(a +b)(a-b) =a2-b2.[生]应用这个公式要明白公式的特征:(1)左边为两个数的和与差的积;(2)右边为两个数的平方差.[生]公式中的a、b可以是数,也可以是代表数的整式.[生]有些式子外表上不能用公式,但通过适当变形实质上能用公式.[师]同学们总结的很好!还记得刚上课的一个问题吗?计算992-1 ,现在想一想,能使它运算更简便吗?[生]可以.992-1可以看成99与1的平方差,从右往左用平方差公式可得:992-1 =992-12 =(99 +1)(99-1) =100×98 =9800.[师]我们发现平方差公式的应用是很灵活的,只要你准确地把握它的结构特征,一定能使你的运算简捷明了.Ⅴ.课后作业课本习题,第1题.Ⅵ.活动与探究有10位乒乓球选手进行单循环赛(每两人间均赛一场) ,用x1,y1顺次表示第1号选手胜与负的场数,用x2,y2顺次表示第2号选手胜与负的场数,……用x10,y10顺次表示第10号选手胜与负的场数.那么10名选手胜的场数的平方和与他们负的场数的平方和相等,即x12 +x22+… +x102 =y12 +y22+… +y102,为什么?经过:由于是单循环赛,每名运发动恰好参加9局比赛,即x i+y i=9(其中i =1、2、3、…10) ,在比赛中一人胜了,另一人自然败了,那么x1 +x2+… +x10 =y1 +y2 +… +y10,这两个隐含条件是解题的关键,从作差比拟入手.[结果]由题意知x i +y i =9(i =1、2、3、…10)且x1 +x2+… +x10 =y1 +y2+… +y10(x12 +x22+… +x102)-(y12 +y22+… +y102)=(x12-y12) +(x22-y22) +… +(x102-y102)=(x1 +y1)(x1-y1) +(x2 +y2)(x2-y2) +… +(x10 +y10)(x10-y10)=9[(x1-y1) +(x2-y2) +(x3-y3) +… +(x10-y10)]=9[(x1 +x2+… +x10)-(y1 +y2+… +y10)]=0所以,x12 +x22+… +x102 =y12 +y22+… +y102.●板书设计§平方差公式(一)解:(1)(x +2)(x-2) =x2-2x +2x-4 =x2-4;(2)(1 +3a)(1-3a) =1-3a +3a-9a2 =1-9a2;(3)(x +5y)(x-5y) =x2-5xy +5xy-25y2 =x2-25y2;(4)(y +3z)(y-3z) =y2-3yz +3zy-9z2 =y2-9z2.(a +b)(a-b) =a2-b2两数和与这两数差的积,等于它们的平方差.(a +b)(a-b) =a2-ab +ab-b2 =a2-b2.例1.(抓住平方差公式的特征,准确地利用平方差公式计算)例2.(对公式中a、b含义的理解,既可以是具体的数也可以是整数)随堂练习(熟悉平方差公式).●备课资料参考例题[例1]用简便方法计算:(1)79×81 (2)99×101×10001解:(1)原式 =(80-1)(80 +1) =802-1 =6399;(2)原式 =(100-1)(100 +1)(10000 +1)=(1002-12)(10000 +1)=(10000-1)(10000 +1)=100002-12=100000000-1 =99999999.[例2]计算:(1)(b -2)(b 2 +4)(b +2)(2)[2a 2-(a +b)(a -b)][(c -a)(a +c) +(-c +b)(c +b)]分析:(1)题可利用乘法交换律和结合律 ,先求(b -2)与(b +2)的积 ,所得结果再与(b 2 +4)相乘 ,可两次运用平方差公式;(2)题根据混合运算的运算顺序 ,先算括号里的其中(a +b)(a -b),(c -a)(a +c),(-c +b)(c +b)都可直接运用平方差公式计算.解:(1)(b -2)(b 2 +4)(b +2)=[(b -2)(b +2)](b 2 +4)=(b 2-4)(b 2 +4)=(b 2)2-42=b 4-16(2)[2a 2-(a +b)(a -b)][(c -a)(a +c) +(-c +b)(c +b)]=[2a 2-(a 2-b 2)][(c +a)(c -a) +(b -c)(b +c)]=[2a 2-a 2 +b 2][c 2-a 2 +b 2-c 2]=(a 2 +b 2)(b 2-a 2)=(b 2)2-(a 2)2=b 4-a 4[例3]计算: (1)(4x +32y)(-4x +32y) (2)(a +b -c)(a -b +c)(3)(x +3y)2(x -3y)2(x 2 +9y 2)2分析:(1)题中 ,可把相同的项放在对应的位置上 ,再把互为相反数的项放在对应的位置上 ,使之满足(a +b)(a -b),然后用平方差公式;(3)题先逆用积的乘方公式 ,然后用平方差公式.解:(1)(4x +32y)(-4x +32y) =(32y +4x )(32y -4x ) =(32y)2-(4x )2 =94y 2-161x 2(2)(a +b -c)(a -b +c)=[a +(b -c)][a -(b -c)]=a 2-(b -c)2=a 2-(b 2-2bc +c 2)=a 2-b 2 +2bc -c 2(3)(x +3y)2(x -3y)2(x 2 +9y 2)2=[(x +3y)(x -3y)(x 2 +9y 2)]2=[(x 2-9y 2)(x 2 +9y 2)]2=[x 4-81y 4]2=x 8-162x 4y 4 +6561y 8.。
平方差公式公开课课件
证明方法三:归纳法证明
总结词:逻辑递推
详细描述:利用归纳法的思想,通过递推关系逐步推导,最终得出平方差公式。
PART 04
平方差公式的扩展与变形
REPORTING
WENKU DESIGN
PART 04
平方差公式的扩展与变形
REPORTING
WENKU DESIGN
平方差公式的扩展形式
平方差公式
证明方法二:代数证明
总结词:严谨推导
详细描述:通过代数恒等式的推导,逐步简化证明过程,最终得出平方差公式。
证明方法二:代数证明
总结词:严谨推导
详细描述:通过代数恒等式的推导,逐步简化证明过程,最终得出平方差公式。
证明方法三:归纳法证明
总结词:逻辑递推
详细描述:利用归纳法的思想,通过递推关系逐步推导,最终得出平方差公式。
平方差公式具有简洁的形式,易于记忆和应用。
详细描述
平方差公式由两个部分组成,即 (a^2 - b^2) 和 ((a+b)(a-b))。这两个部分通 过等号连接,表示它们之间的相等关系。在形式上,这是一个标准的代数恒等 式。
平方差公式的形式
总结词
平方差公式具有简洁的形式,易于记忆和应用。
详细描述
平方差公式由两个部分组成,即 (a^2 - b^2) 和 ((a+b)(a-b))。这两个部分通 过等号连接,表示它们之间的相等关系。在形式上,这是一个标准的代数恒等 式。
总结词:提升学生对平方 差公式的理解和应用能力
利用平方差公式计算 $(a+b+c)^2$和$(a-bc)^2$的值。
详细描述
计算$(a+2b+3c)^2$和 $(a-4b-5c)^2$的值。
平方差公式教案(公开课)
《平方差公式》教学设计教学目标:1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;2、掌握平方差公式的结构特征,能运用公式进行简单的运算;3、会用几何图形说明公式的意义,体会数形结合的思想方法.教学重点:1、 学会平方差公式的推导和应用2、 理解和掌握平方差公式,并能灵活运用公式进行简单运算。
教学难点:能灵活运用公式进行运算.教学课时:一课时教学过程复习回顾:复习多项式乘法法则提问:(a+b )(m+n )=_____举例:计算(x + 2)( x +5)创设情境,导入新课问题:王剑同学去商店买了单价是9.8元/千克的糖块10.2千克,售货员刚拿起计算器,王剑就说出应付99.96元,结果与售货员计算出的结果相同。
售货员惊讶地问:“这位同学,你怎么算得这么快?”王剑同学说:“我利用了数学课上刚学过的一个公式。
”你知道王剑同学用的是什么数学公式吗?学了本节之后,你就能解决这个问题了.探索新知,尝试发现一、拼图游戏1、边长为45的正方形去掉一个小正方形(边长为15)后剩下的面积=452-152=2025-225=18002、用割补的方法得右边长方形,其面积=(45+15)(45-15)=60×30=1800由此得:(45+15)(45-15)= 452-152二、计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)= _____________ ;(2)(2+ m)(2- m)=____________ ;(3)(2x+3)(2x-3)=____________ .依照以上三道题的计算回答下列问题:①式子的左边具有什么共同特征?②它们的结果有什么特征?③能不能用字母表示你的发现?教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:(a+b)(a- b)=a²- b².三、总结归纳,发现规律你能用文字语言表示所发现的规律吗?两个数的和与这两个数的差的积,等于这两个数的平方差.22a-=b+-())(baab四、剖析公式,发现本质在平方差公式中,其结构特征为:(a+b)(a- b)=a²- b²(1)公式左边两个二项式必须是相同两数的和与差相乘;且左边两括号内的第一项相等、第二项符号相反[互为相反数(式)];(2) 公式右边是这两个数的平方差;即右边是左边括号内第一项的平方减去第二项的平方.(3) 公式中的a和b 可以代表数,也可以是代数式.五、巩固运用,内化新知例1 利用平方差公式计算:(1)(5+6x)(5−6x); (2) (x+2y)(2y−x); (3) (−a+2b)(−a−2b).解: (1)(5+6x)(5−6x) (2) (x+2y)(2y−x) (3)(−a+2b)(−a−2b) =5 ²-(6x)² =(2y+x)(2y-x) =(-a) ²-(2b) ²=25-36x ² =(2y) ²-x² =a²-4b²=4y²-x²注意:当“第一(二)数”是一分数或是数与字母的乘积时, 要用括号把这个数整个括起来,最后的结果又要去掉括号。
用平方差公式因式分解公开课教案
用平方差公式因式分解公开课教案第一章:引言1.1 课程背景平方差公式是初高中数学中的重要知识点,广泛应用于因式分解、求解代数方程等领域。
本节课将通过生活中的实例,引导学生发现平方差公式的规律,并运用该公式进行因式分解。
1.2 教学目标(1)了解平方差公式的概念及应用;(2)掌握平方差公式的因式分解方法;(3)培养学生的观察、思考、归纳能力。
第二章:平方差公式的探究2.1 实例分析(1)展示实例:投掷骰子问题;(2)引导学生观察实例中的规律;(3)让学生尝试解释规律背后的数学原理。
2.2 平方差公式的发现(1)引导学生总结实例中的规律;(2)给出平方差公式的定义;(3)解释平方差公式的推导过程。
第三章:平方差公式的应用3.1 因式分解(1)展示因式分解问题;(2)引导学生运用平方差公式进行因式分解;(3)让学生总结因式分解的步骤及注意事项。
3.2 求解代数方程(1)展示代数方程问题;(2)引导学生运用平方差公式求解;(3)让学生总结求解代数方程的步骤及方法。
第四章:巩固练习4.1 填空题(1)填空题训练学生对平方差公式的掌握;(2)引导学生运用平方差公式进行填空。
4.2 解答题(1)解答题巩固学生对平方差公式的应用;(2)让学生独立运用平方差公式解决问题。
第五章:拓展与思考5.1 平方差公式的拓展(1)引导学生探索平方差公式的推广;(2)介绍平方差公式在其他领域的应用。
5.2 思考与讨论(1)引导学生思考:平方差公式在实际生活中的应用;(2)组织学生进行小组讨论,分享各自的观点。
教学评价:通过本节课的学习,学生能掌握平方差公式的概念及应用,并能运用该公式进行因式分解和求解代数方程。
学生还能了解平方差公式在其他领域的拓展应用,提高观察、思考、归纳能力。
第六章:综合练习6.1 应用题(1)展示应用题,引导学生运用平方差公式解决问题;(2)让学生独立解答应用题,培养实际应用能力。
6.2 综合性练习(1)设计综合性练习题,涵盖平方差公式的各个方面;(2)组织学生进行练习,巩固所学知识。
平方差公式的公开课教案
平方差公式的公开课授课教师:付壮教材出处:义务教育教科书(苏教版七下)授课时间:2016年4月21日教学目标:1、知识目标:理解平方差公式的本质,即结构的不变性,字母的可变性;掌握平方差公2、能力目标:培养学生动手、归纳的能力和推理论证的能力。
3、情感目标:纠正片面观点:“数学只是一些枯燥的公式、规定,没有什么实际意义!学了数学没有用!”体会数学源于实际,高于实际,运用于实际的科学价值与文化价值。
教学重点:1.平方差公式的本质的理解与运用;2.数学是什么。
教学难点:平方差公式的本质,即结构的不变性,字母的可变性。
教学方法:动手操作,讲练结合法。
教学过程:1.课堂导入速算王比拼:智力抢答1. 21×19=3992.103×97=99913.26×24=6244. 55×45=24755. 32×28=896通过“速算王的绝招”这一故事的情境创设,引发学生学习的兴趣,同时激发了学生的好奇心和求知欲,顺利引入新课。
2.活动探究将长为(a+b),宽为(a-b)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系.通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想,让学生体会到代数与几何的内在联系.引导学生学会从多角度、多方面来思考问题.对于任意的a 、b ,由学生运用多项式乘法计算:,验证了其公式的正确性.3.总结归纳,发现新知你能用文字语言表示所发现的规律吗?两个数的和与这两个数的差的积,等于这两个数的平方差.22)()(b a b a b a -=-+一、 问题情境,导入新课:二、探究新知:1、根与系数关系:(1)关于x 的方程220(40)x px q p q q ++=-≥、为常数,p 的两根1x ,2x 与系数p ,q 的关系是:12x x p +=-,12x x q =。
用平方差公式因式分解公开课教案
用平方差公式因式分解公开课教案一、教学目标1. 知识与技能:(1)让学生掌握平方差公式的推导过程;(2)培养学生运用平方差公式进行因式分解的能力。
2. 过程与方法:(1)通过探究平方差公式的特点,引导学生发现规律;(2)利用平方差公式,将多项式进行因式分解。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习热情;(2)培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:(1)平方差公式的推导过程;(2)运用平方差公式进行因式分解的方法。
2. 教学难点:(1)平方差公式的灵活运用;(2)因式分解过程中,找出合适的平方差公式。
三、教学准备1. 教师准备:(1)平方差公式的相关知识;(2)例题及练习题;(3)多媒体教学设备。
2. 学生准备:(1)预习平方差公式;(2)准备笔记本,记录重点知识。
四、教学过程1. 导入新课(1)回顾上节课内容,引导学生复习平方差公式;(2)提问:平方差公式是什么?它能解决哪些问题?2. 探究新知(1)引导学生发现平方差公式的特点,推导出平方差公式;(2)讲解平方差公式的内涵和外延;(3)举例说明如何运用平方差公式进行因式分解。
3. 课堂练习(1)出示例题,引导学生独立完成;(2)讲解答案,分析解题过程;(3)布置课后练习题,巩固所学知识。
五、教学反思1. 课堂表现:(1)学生参与度;(2)学生对平方差公式的掌握程度;(3)教学方法的适用性。
2. 改进措施:(1)针对学生掌握不足的地方,进行针对性讲解;(2)调整教学方法,提高学生学习兴趣;(3)关注学生个体差异,给予不同程度的学生更多关爱和支持。
六、教学延伸1. 拓展知识:(1)介绍平方差公式的应用领域,如物理学、工程学等;(2)引导学生思考:还有哪些类似的公式可以进行因式分解?2. 小组讨论:(1)让学生分组讨论,分享各自发现的类似平方差公式的应用;(2)每组选代表进行汇报,总结小组讨论成果。
《§1.7 平方差公式(一)》教学案(公开课)
“§1.7 平方差公式(第一课时)”教学案(公开课)作者:吉利中学数学组 王水运一、学习目标:1、经历探索平方差公式的过程,进一步发展学生的符号感和推理能力、归纳能力;2、会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算;3、了解平方差公式的几何背景,体会数形结合的思想方法。
【学习重点】1、弄清平方差公式的来源及其结构特点,能用自己的语言说明公式及其特点;2、会用平方差公式进行运算。
【学习难点】 会用平方差公式进行运算二、自主学习步骤:1、内容一:温故而知新(1)“a 与b 的平方差”用代数式可以表示成 ;“a 与b 的和”乘以“a 与b 的差” 用代数式可以表示成 ;(2)“ 1 与a 的平方差” 用代数式可以表示成 ;“1与a 的和”乘以“1与a 的差” 用代数式可以表示成 ;(3) 代数式22y x -可以读成“ ”;(4)一个数的平方等于81,这个数是 ;(5)计算:①=2)3(a ; ②=2)y 5( ; ③ 2)32(x -= ; (6) 填空: ① 2)(64= ② 2)(971= ③ 22)(4=m2、内容二:关于“平方差公式”的推导(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)若将阴影部分裁剪下来,重新拼成一个矩形如右图,它的宽是 ,长是 ,面积是 (写成整式乘法的形式);(3) 比较左、右两图的阴影部分面积,可以得到公式 (用式子表达),这个公式叫做 ;对应练习:当3,2-==y x 时,求下列代数式的值,并比较它们的值得大小。
①224y x -; ② )2)(2(y x y x -+3、内容三:例题1 利用平方差公式计算:(1)_____________)()()65)(65(22=-=-+x x ; (2)_____________)()()2)(2(22=-=+-y x y x (3)_____________)()())((22=-=--+-n m n m(4)________________________________________))(22(===-+n m n m 对应练习:(1)填空:① 22))((d a d a -=+ ②2221))(1(-=-y x xy (2)练一练:课本P 36 随堂练习1:①)2)(2(-+a a ②)23)(23(b a b a -+ 解: 原式 =22)()(- =③)1)(1(--+-x x ④)34)(34(--+-k k4、内容4:例题2利用平方差公式计算:(1))41)(41(y x y x +--- (2))8)(8(-+ab ab (3)()()23n m n m n +-+ 解: 原式=22)()(-=对应练习:(1)))((2x y x y x +-+ (2))1)(1)(1(2+-+a a a5、归纳与小结:(1)本节课学习的内容是利用“ ”进行多项式的乘法运算;(2)平方差公式22))((b a b a b a -=-+的特点:①左边是两个 的积,并且这两个多项式的两个项里有一项 ,另一项 ;②右边是两个数的 ;③ 公式可以逆向使用。
《平方差公式》教学教案
《平方差公式》教学教案第一章:导入1.1 教学目标让学生理解平方差公式的概念及意义。
培养学生对平方差公式的兴趣和好奇心。
1.2 教学内容平方差公式的定义和表达式。
平方差公式的推导过程。
1.3 教学步骤1. 引入平方差公式的概念,让学生回顾已学的平方和乘法运算。
2. 通过示例,引导学生观察和总结平方差公式的规律。
3. 让学生尝试推导平方差公式,并提供必要的提示和指导。
1.4 教学评价观察学生在推导过程中的理解和应用能力。
评估学生对平方差公式的掌握程度。
第二章:平方差公式的应用2.1 教学目标培养学生应用平方差公式解决问题的能力。
培养学生运用平方差公式进行简便计算的能力。
2.2 教学内容平方差公式的应用场景和问题类型。
平方差公式在实际问题中的应用方法。
1. 引入平方差公式的应用场景,让学生理解平方差公式的实际意义。
2. 通过示例,展示平方差公式在实际问题中的应用方法。
3. 让学生尝试解决一些实际问题,应用平方差公式进行计算和解答。
2.4 教学评价观察学生在解决实际问题时的应用能力和计算准确性。
评估学生对平方差公式应用的理解和掌握程度。
第三章:平方差公式的拓展3.1 教学目标让学生理解平方差公式的拓展概念和性质。
培养学生运用平方差公式解决更复杂问题的能力。
3.2 教学内容平方差公式的拓展概念和性质。
平方差公式在其他数学领域的应用。
3.3 教学步骤1. 引导学生思考平方差公式的拓展概念和性质,让学生进行自主探索。
2. 通过示例,介绍平方差公式在其他数学领域的应用,如二次方程的解法等。
3. 让学生尝试解决一些更复杂的题目,运用平方差公式进行计算和解答。
3.4 教学评价观察学生在探索平方差公式拓展概念和性质时的理解和思考能力。
评估学生对平方差公式在解决更复杂问题中的运用能力和创造力。
第四章:巩固练习巩固学生对平方差公式的理解和掌握。
提高学生运用平方差公式解决问题的能力。
4.2 教学内容设计一些练习题目,让学生运用平方差公式进行计算和解答。
平方差公式PPT经典教学课件市公开课一等奖省优质课获奖课件
= x2− ( 2y )2
= x2 −4y2 ;
(3) (−m+nn)(−−mm−n )n = ( −m )2 − n2 = n2 −n2 .
阅读
p59例2.
注意 当“第
一(二)数”是一分数 或是数与字母乘积时, 要用括号把这个数整 个括起来,再平方;
最终结果又 要去掉括号。
第7页
随堂练习
随堂练习
(a+b+c)(a—b—c)。
第13页
本题是公式变式训练,以加 深对公式本质特征了解.
(4a−1)(4a−1)
利用加法交换律, =( −14a−−41a ) ( 4−a1 −+14a )
法一 变成公式标准形式。 =(1)2 −(4a)2 = 1−16a2。
提取两“−”号中“−”号 法二,
变成公式标准形式。
(4a−1)(4a−1) =−(4a+1)(4a−1) = [ (4a)2 −1]
这两个数平方差.
第5页
初识平方差公式
(a+b)(a−b)=a2−b2
特征 结构
(1) 公式左边两个二项式必须是 相同两数和与差相乘; 且左边两括号内第一项相等、 第二项符号相反[互为相反数(式)];
(2) 公式右边是这两个数平方差; 即右边是左边括号内第一项平方 减去第二项平方.
(3) 公式中 a和b 能够代表数, 也能够是代数式.
假如 (x+a)(x+b)中a、b再有某种特殊关系, 又将得到什么特殊结果呢? 这就是从本课起要学习内容.
第2页
a
试一试
a
a-b 将图中纸片只剪一刀,
再拼成一个长方形.
b
a-b b
平方差公式教案(公开课)
平方差公式教案(公开课)章节一:平方差公式的引入1. 教学目标让学生通过实际例子,感受平方差公式的实际意义,培养学生的数学思维能力。
2. 教学内容通过具体的数字例子,引导学生发现平方差公式的规律。
3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生计算它们的差值。
(2) 学生发现,这些差值都可以表示为平方差的形式,如2^2 1^2, 3^2 2^2, 4^2 3^2等。
4. 教学评价通过具体的数字例子,检查学生对平方差公式的理解和掌握程度。
章节二:平方差公式的应用1. 教学目标让学生掌握平方差公式的应用,能够灵活运用平方差公式解决实际问题。
2. 教学内容通过具体的数字例子,引导学生掌握平方差公式的应用。
3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生运用平方差公式计算它们的差值。
(2) 学生运用平方差公式,计算出这些差值,如2^2 1^2 = (2 + 1)(2 1) = 3,3^2 2^2 = (3 + 2)(3 2) = 5,4^2 3^2 = (4 + 3)(4 3) = 7等。
4. 教学评价通过具体的数字例子,检查学生对平方差公式的应用理解和掌握程度。
章节三:平方差公式的拓展1. 教学目标让学生掌握平方差公式的拓展,能够运用平方差公式解决更复杂的问题。
2. 教学内容通过具体的数字例子,引导学生掌握平方差公式的拓展。
3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生运用平方差公式计算它们的差值。
(2) 学生运用平方差公式,计算出这些差值,如2^2 1^2 = (2 + 1)(2 1) = 3,3^2 2^2 = (3 + 2)(3 2) = 5,4^2 3^2 = (4 + 3)(4 3) = 7等。
4. 教学评价通过具体的数字例子,检查学生对平方差公式的拓展理解和掌握程度。
章节四:平方差公式的运用1. 教学目标让学生能够灵活运用平方差公式解决实际问题,提高学生的数学应用能力。
《平方差公式》教学教案
《平方差公式》教学教案第一章:导入1.1 教学目标:让学生理解平方差公式的概念和意义。
引导学生通过实际例子发现平方差公式的规律。
1.2 教学内容:平方差公式的定义和表达式。
平方差公式的推导过程。
1.3 教学步骤:1.3.1 引入平方差的概念,让学生回顾平方的定义和性质。
1.3.2 通过实际例子,引导学生发现平方差的现象,并总结规律。
1.3.3 给出平方差公式的表达式,解释其含义和适用范围。
1.4 教学评估:提问学生对平方差公式的理解和应用。
让学生完成一些相关的练习题,检验其对平方差公式的掌握程度。
第二章:平方差公式的推导2.1 教学目标:让学生理解平方差公式的推导过程。
培养学生通过逻辑推理和数学思维解决问题的能力。
2.2 教学内容:平方差公式的推导方法。
平方差公式的证明过程。
2.3 教学步骤:2.3.1 引导学生回顾平方的定义和性质,复习平方差的概念。
2.3.2 引导学生通过实际例子和数学推理,推导出平方差公式。
2.3.3 给出平方差公式的证明过程,解释其逻辑和数学依据。
2.4 教学评估:提问学生对平方差公式的推导过程和证明的理解。
让学生完成一些相关的练习题,检验其对平方差公式的推导和证明的掌握程度。
第三章:平方差公式的应用3.1 教学目标:让学生掌握平方差公式的应用方法。
培养学生运用平方差公式解决实际问题的能力。
3.2 教学内容:平方差公式的应用场景和例题。
平方差公式的变形和扩展。
3.3 教学步骤:3.3.1 引导学生理解平方差公式的应用场景,例如解决几何问题、物理问题等。
3.3.2 给出一些例题,引导学生运用平方差公式进行计算和解决问题。
3.3.3 引导学生对平方差公式进行变形和扩展,探讨其适用范围和限制条件。
3.4 教学评估:提问学生对平方差公式的应用场景和例题的理解。
让学生完成一些相关的练习题,检验其对平方差公式的应用和解决问题的掌握程度。
第四章:练习与巩固4.1 教学目标:让学生通过练习题巩固对平方差公式的理解和应用。
人教版八年级数学上15.2.1平方差公式公开课说课稿
(一)学生特点
我所面对的八年级学生在年龄特征上正处于青少年阶段,他们具有较强的求知欲和好奇心,但也可能伴随着一定的叛逆心理。在认知水平上,他们已经掌握了基本的代数知识,具备一定的逻辑思维能力,但解决复杂数学问题仍需引导。学生们对新知识充满好奇,对数学学科有着不同的兴趣,但部分学生可能对数学学习缺乏积极性,需要激发他们的学习热情。在学习习惯方面,学生们习惯于被动接受知识,主动探究能力有待提高。
三、教学方法与手段
(一)教学策略
在本节课中,我将以“问题驱动”的教学策略为主,引导学生通过自主探究、合作交流的方式来学习和理解平方差公式。这种教学方法的理论依据是建构主义学习理论,它强调学习者主动建构知识,通过社会互动来发展自己的理解。此外,我还将会运用“任务驱动”教学策略,通过设计不同难度的任务,让学生在解决问题的过程中自然地运用平方差公式,从而达到理解并掌握知识的目的。
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生回顾本节课所学的知识点,让他们自己总结出平方差公式的含义和应用。然后,我会邀请学生分享他们的学习心得和遇到的困难。在这个过程中,我会给予积极的反馈,鼓励学生表达自己的观点。对于那些在学习过程中遇到困难的学生,我会提供额外的帮助和指导,让他们能够在课后更好地理解和掌握平方差公式。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性,培养学生的团队合作精神。
(三)教学重难点
1.教学重点:平方差公式的推导过程,以及公式的应用。
2.教学难点:平方差公式的灵活运用,以及解决实际问题。
在教学过程中,要注重让学生在理解的基础上掌握平方差公式,并通过大量的练习,使学生能够熟练地运用公式解决实际问题。同时,要关注学生的学习过程,引导学生积极参与课堂讨论,培养学生的思维能力和团队合作精神。
平方差公式公开课教案
韶关市第十三中学课程教学教学设计(课时)(20** ~ 20** 学年第一学期)课程名称:数学主备教师:罗红莲任课教师:罗红莲课题:§15.2.1 平方差公式课型:新授课课时:第课时(总第课时)授课班级:八年级(6)、(8)班授课时间: 20** 年月日(第周)教学目标:一、知识与技能1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、过程与方法1.在探索平方差公式的过程中,培养符号感和推理能力.2.培养学生观察、归纳、概括的能力三、情感、态度与价值观在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美.教学重点:平方差公式的推导和应用.教学难点:理解平方差公式的结构特征,灵活应用平方差公式.教学方法:讲练结合教学过程:Ⅰ、学生动手,归纳公式1.计算下列多项式的积.(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)解:(1)(x+1)(x-1)=x+x-x-1=x-1(2)(m+2)(m-2) =m+2m-2m-2×2=m-2(3)(2x+1)(2x-1) =(2x)+2x-2x-1=(2x)-12.观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?规律:等号的一边是两个数的和与这两个数的差的积,等号的另一边:是这两个数的平方差,它们都是形如(a+b)的多项式与形如(a-b)的多项式相乘,由于(a+b)(a−b) = a2−ab+ab−b2 = a2−b2所以,对于具有与此相同的形式的多项式相乘,我们可以直接写出运算结果即(a+b)(a−b) = a2−b2,两个数的和与这两个数的差的积等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.3.公式的特点:等号的左边:相乘的两个二项式中,有一项完全相同,另一项互为相反数,右边:完全相同项的平方减符号相反项的平方II、平方差公式的几何意义思考:你能根据右图中的面积说明平方差公式吗?学生讨论并回答,教师总结:(a+b)(a−b)为长方形①与③的面积和,a2−b2则是长方形①与②的面积和,而长方形②与③的是形状大小完全一样的两个长方形,面积相等所以(a+b)(a−b) = a2−b2III、熟悉公式: 下列哪些多项式相乘可以用平方差公式?①( a+2b)( a−2b);②(− a+2b)( a−2b)③(− a+2b)(− a+2b);④(− a−2b)( a−2b);学生讨论并回答,教师总结,其中①④可以用平方差公式Ⅳ、巩固新知:例1:运用平方差公式计算:(1)(3x+2)(3x-2)(2)(-x+2y)(-x-2y)(3)(y+2)(y-2)-(y-1)(y+5)解:(1)(3x+2)(3x-2)=(2)(-x+2y)(-x-2y)=(3)(y+2)(y-2)-(y-1)(y+5)=y-2-(y+4y-5)=y-2-y-4y+5=-4y+1练习:1.下面各式的计算对不对?如果不对应怎样改正?(1)(x+2)(x-2)=(2)(-3a-2)(-3a-2)=2.计算:(1)(a+3b)(a-3b)(2)(3+2a)(-3+2a)(3)(3x+4)(3x-4)-(2x+3)(3x-2)例2:用简便计算(1)102×98;(2)48×52解:①102×98 = (100+2)(100−2) (2)48×52=(50-2)(50+2)= 10000−4=50-2= 9996=2496应注意以下几点:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,•但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.练习:(1)51×49 (2)101×99V.课时小结:(1)平方差公式两个数的和与这两个数的差的积等于这两个数的平方差.这个公式叫做乘法的平方差公式.即(a+b)(a-b)=a-b.(2)公式的结构特征:①公式的字母a、b可以表示数,也可以表示单项式、多项式;②要符合公式的结构特征才能运用平方差公式;ⅤI.课后作业 :1.课本P112习题1.ⅤII. 教学后记:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平方差公式》教学设计
教学目标:1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;
2、掌握平方差公式的结构特征,能运用公式进行简单的运算;
3、会用几何图形说明公式的意义,体会数形结合的思想方法.
教学重点:1、 学会平方差公式的推导和应用
2、 理解和掌握平方差公式,并能灵活运用公式进行简单运算。
教学难点:能灵活运用公式进行运算.
教学课时:一课时
教学过程
复习回顾:复习多项式乘法法则
提问:(a+b )(m+n )=_____
举例:计算(x + 2)( x +5)
创设情境,导入新课
问题:王剑同学去商店买了单价是9.8元/千克的糖块10.2千克,售货员刚拿起计
算器,王剑就说出应付99.96元,结果与售货员计算出的结果相同。
售货员惊讶地问:“这位同学,你怎么算得这么快?”王剑同学说:“我利用了数学课上刚学过的一个公式。
”你知道王剑同学用的是什么数学公式吗?学了本节之后,你就能解决这个问题了.
探索新知,尝试发现
一、拼图游戏
1、边长为45的正方形去掉一个小正方形(边长为15)后剩下的面积=452-152=2025-225=1800
2、用割补的方法得右边长方形,其面积=(45+15)(45-15)=60×30=1800
由此得:(45+15)(45-15)= 452-152
二、计算下列多项式的积,你能发现什么规律?
(1)(x+1)(x-1)= _____________ ;
(2)(2+ m)(2- m)=____________ ;
(3)(2x+3)(2x-3)=____________ .
依照以上三道题的计算回答下列问题:
①式子的左边具有什么共同特征?
②它们的结果有什么特征?
③能不能用字母表示你的发现?
教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:(a+b)(a- b)=a²- b².
三、总结归纳,发现规律
你能用文字语言表示所发现的规律吗?
两个数的和与这两个数的差的积,等于这两个数的平方差.
2
2
a-
=
(
b
-
+
)
)(b
a
a
b
四、剖析公式,发现本质
在平方差公式中,其结构特征为:(a+b)(a- b)=a²- b²
(1)公式左边两个二项式必须是相同两数的和与差相乘;且左边两括号内的第一项相等、
第二项符号相反[互为相反数(式)];
(2) 公式右边是这两个数的平方差;即右边是左边括号内第一项的平方减去第二项的平方.
(3) 公式中的a和b 可以代表数,也可以是代数式.
五、巩固运用,内化新知
例1 利用平方差公式计算:
(1)(5+6x)(5−6x); (2) (x+2y)(2y−x); (3) (−a+2b)(−a−2b).
解: (1)(5+6x)(5−6x) (2) (x+2y)(2y−x) (3)(−a+2b)(−a−2b) =5 ²-(6x)² =(2y+x)(2y-x) =(-a) ²-(2b) ²=25-36x ² =(2y) ²-x² =a²-4b²
=4y²-x²
注意:当“第一(二)数”是一分数或是数与字母的乘积时, 要用括号把这个数整个括起来,最后的结果又要去掉括号。
情系中考
1、【上海】(a-2b)(a+2b)=____________
2、【宁夏】(x-y)(-y-x)的结果是()
A.-x²+y²
B.-x²-y²
C.x²-y²
D.x²+y²
例2 利用平方差公式计算:102×98
解: 102×98
= (100 +2) ×(100-2 )
精品文档
=1002−22
=10000 − 4
=9996
利用例2的方法解决引人中的问题,揭露王剑同学算的又快又准的奥秘。
随堂练习,巩固所学
计算:(1)(a+2)(a−2) (2)51×49
(3)(−2x+y)(2x+y) (4)(x−y)(−x−y)
课堂小结(学生总结):
本节课你学到了什么?
1、平方差公式
两个数的和与这两个数的差的积等于这两个数的平方差.这个公式叫做乘法的平方差公式.即(a+b)(a−b)=a²−b²
2、公式的结构特征
①公式的字母a、b可以表示数,也可以表示单项式、多项式;
②要符合公式的结构特征才能运用平方差公式。
3、运用平方差公式的步骤:先比形式,再套公式
作业:1.课本习题15.3-1题第(1)(3)(5)题
2.计算:1234567 ×1234569-1234568²。