盈亏问题(五年级教师版)

合集下载

五年级下册奥数较复杂的盈亏问题人教版

五年级下册奥数较复杂的盈亏问题人教版

答:有7名少先队员,一共无要挖人38个坑挖。 ;如果其中2人各挖4个坑,其余每人挖6个坑,那么恰
Hale Waihona Puke (大亏-小亏)÷每份数的差=份数
好将坑挖完。问:有多少名少先队员?一共要挖几个坑? 如果每分钟走100米可提早10分钟到达;
同学们暑假前到图书馆借书,如果每人借4本,则最后少2本;
如果只分给男生,每人分8支钢笔,则少3支钢笔;
答:一共有12辆汽车,有550名学生去秋游。
即学即练
少先队员参观航天展,如果每车坐30人,则有5人不能乘车; 如果每车多坐5人,恰好多余1辆车。全体少先队员有多少人?
车:(35+5)÷5=8(辆) 人数:30×8+5=245(人)
答:全体少先队员有245人。
例4:金博士将若干支钢笔分给四年级(3)班的学生,如 果只分给女生,每人分6支钢笔,则多5支钢笔;如果只分给男 生,每人分8支钢笔,则少3支钢笔;已知四年级(3)班的女 生比男生多4人。那么,四年级(3)班共有多少名学生?这些 钢笔共多少支?
书本数:4×12-2=46(本)
答:书的总数是46本。
例3:鲁巷小学组织学生去秋游,如果每辆车坐45人,
例1:某班学生去划船,有如果增1加0一人条船不,那么能每条坐船正车好坐6;人;如果每辆车多坐5人,又多出一辆车。一
答:家到学校有1600米。
共有多少辆汽车?该校又有多少名学生去秋游? 如果每人挖5个坑,多3个坑。
两盈: 人数:6×5=30(人)
例5:小明从家到学校,如果步行速度是每分钟50米,就要迟到3分钟。 答:家到学校有1400米。 准时:(150+350)÷(70-50)=25(分) 答:探险队一共有30人。
(大盈-小盈)÷每份数的差=份数 5+6×4=29(支)

思维拓展第4讲《盈亏问题》(教案)五年级上册数学人教版

思维拓展第4讲《盈亏问题》(教案)五年级上册数学人教版

思维拓展第4讲《盈亏问题》教案一、教学目标1. 让学生理解盈亏问题的概念,掌握盈亏问题的解题方法。

2. 培养学生运用盈亏问题的解题方法解决实际问题的能力。

3. 培养学生分析问题、解决问题的能力,提高学生的数学思维水平。

二、教学内容1. 盈亏问题的概念。

2. 盈亏问题的解题方法。

3. 盈亏问题在实际生活中的应用。

三、教学重点与难点1. 教学重点:盈亏问题的解题方法。

2. 教学难点:盈亏问题在实际生活中的应用。

四、教学过程1. 导入新课通过一个实例引入盈亏问题,激发学生的学习兴趣。

实例:小明去商店买苹果,每斤苹果3元,他买了5斤,共支付15元。

请问小明买苹果的过程中,商店是盈利还是亏损?2. 探究新知(1)引导学生理解盈亏问题的概念。

盈亏问题是指在实际生活中,由于价格、数量等因素的变化,导致收入和支出之间的差额问题。

(2)引导学生掌握盈亏问题的解题方法。

解题方法:盈亏问题的解题方法是通过计算收入和支出的差额,来判断是盈利还是亏损。

如果收入大于支出,则为盈利;如果收入小于支出,则为亏损。

(3)通过例题,让学生掌握盈亏问题的解题方法。

例题1:小明去商店买苹果,每斤苹果3元,他买了5斤,共支付15元。

请问小明买苹果的过程中,商店是盈利还是亏损?解答:商店的收入为15元,支出为5斤苹果的成本,即5斤 3元/斤 = 15元。

收入等于支出,所以商店既没有盈利也没有亏损。

例题2:小明去商店买苹果,每斤苹果3元,他买了5斤,共支付16元。

请问小明买苹果的过程中,商店是盈利还是亏损?解答:商店的收入为16元,支出为5斤苹果的成本,即5斤 3元/斤 = 15元。

收入大于支出,所以商店盈利1元。

3. 巩固练习让学生独立完成一些盈亏问题的练习题,巩固所学知识。

4. 课堂小结对本节课所学内容进行小结,让学生明确盈亏问题的概念和解题方法。

五、课后作业1. 让学生完成一些盈亏问题的练习题,巩固所学知识。

2. 让学生观察生活中的盈亏问题,并尝试运用所学知识解决。

五年级盈亏问题教案

五年级盈亏问题教案

五年级盈亏问题教案1、熟练掌握盈亏问题的本质2、运用盈亏问题的解题方法解决一些生活中的实际问题教学重点:盈亏问题的四类问题教学难点:盈亏问题中的这四类问题该怎样解决教学过程:1、开门见山,例题导入例3:某校乒乓球队有若干名学生,如果少一个女生,增加一个男生,则男生为总数的一半;如果少一个男生,增加一个女生,则男生为女生女生总数的一半,乒乓球队共有多少个学生?【思路导航】(1)由“少一个女生,增加一个男生,则男生为总人数的一半”可知,女生比男生多2人。

(2)“少一个男生,增加一个女生”后,女生就比男生多2+2=4(人),这时男生为女生人数的一半,即现在女生有42=8(人)。

原来女生有8-1=7(人),男生有7-2=5(人),共有7+5=12(人)。

(2+2)2-1=7(人)7+7-2=12(人)答:乒乓球队共有12人。

举一反三3:1、学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍、学校买来两种粉笔各多少盒?由“如果白色粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多”可知,白粉笔比彩色粉笔多10+8=18(盒),根据“如果再买10盒白粉笔”可知白粉笔比彩色粉笔多18+10=28(盒),这时白粉笔的盒数是彩色粉笔的5倍,彩色粉笔的盒数为28(5-1)=7盒,白色粉笔的盒数为7+18=25(盒)答:白色粉笔有25盒。

2、操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;若甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的三倍。

求这两堆货物一共有多少吨?由“如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重”可知,甲堆比乙堆少80-25=55(吨),根据“甲、乙两堆各运走5吨”可知,甲堆还比乙堆少55吨,这时乙堆正好是甲堆的3倍,则这时甲堆的重量为552=27、5(吨),甲堆原来重27、5吨,甲堆原来重27、5+5=32、5(吨),乙堆原来重32、5+55=87、5(吨),这两堆货物一共有32、5+87、5=120(吨)答:这两堆货物一共有120(吨)例4:幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块,如果只分给中班的小朋友,平均每人可多分4块。

(教师版)小学奥数6-1-16 盈亏问题(二).专项检测题及答案解析

(教师版)小学奥数6-1-16 盈亏问题(二).专项检测题及答案解析

1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.利用条件关系转换解盈亏问题——转化分配单位数(接受分配的人数)【例 1】 小鸣用48元钱按零售价买了若干练习本。

如果按批发价购买,每本便宜2元,恰好多买4本。

问:零售价每本多少元?【考点】盈亏问题 【难度】3星 【题型】解答【关键词】华杯赛,初赛,第9题【解析】 见下图,以横线表示本数,纵线表示单价,因为黄色部分面积与绿色部分面积相等,所以黄色的宽是绿色高的2倍,设批发价为x 元(图中绿色长方形的高),则有:x ×(2x +4)=48,即x ×(x +2)=24=4×6=4×(4+2),所以,x =4(元),零售价为x +2=6(元)【答案】6元【例 2】 春节前夕,一富翁想丐帮帮众施舍一笔钱财,一开始他准备给每人100元,结果剩下350元,他决定每人多给20元。

这时从其它地方又闻讯赶来了5个乞丐,如果知识精讲教学目标6-1-7.盈亏问题(二)他们每个人拿到的钱和其它乞丐一样多,富翁还需要再增加550元。

原有( )名乞丐。

【考点】盈亏问题 【难度】3星 【题型】填空【关键词】走美杯,3年级,初赛【解析】 如果不来这五个乞丐,富翁能剩下120555050⨯-=元。

盈亏问题(五年级教师版)

盈亏问题(五年级教师版)

第8讲盈亏问题盈亏问题又叫盈不足问题,是指把固定数量的物品平均分给固定的对象,因为两种不同的分配标准,导致两种不同的分配结果:一种标准分配后有剩余(盈);另一种标准分配后不够分(亏或不足)。

此类问题,要求通过两种分配结果的比较,求出物品总数量和固定对象的个数。

标准的盈亏问题就是两次分配的结果一盈一亏,所以就叫盈亏问题。

基本的数量关系是:(盈+亏)三两种分配标准的数量之差=固定对象数量。

广义的盈亏问题一般还包括以下四种情况:一、两次分配都有余(两盈);二、两次分配都不够分(两亏);三、一次有余,一次刚好够分(盈适足);四、一次分配不够分,一次刚好够分(亏适足)。

解决盈亏问题常用比较的解题策略:通过两次分配盈亏总额与分配数量的比较,先求出固定对象的个数,再求出分配物品的总数量。

此类问题基本数量关系有:①盈适足问题:盈余部分三两种分配标准的数量之差=固定对象数量。

②亏适足问题:亏欠部分三两种分配标准的数量之差=固定对象数量。

③两盈问题:(盈多一盈少)三两种分配标准的数量之差=固定对象数量。

④两亏问题:(亏多一亏少)三两种分配标准的数量之差=固定对象数量。

⑤盈亏问题:(盈+亏)三两种分配标准的数量之差=固定对象数量。

比较常规的盈亏问题,一般可以直接套用上面的数量关系,解决问题。

较复杂的盈亏问题,一般需要先对题中的条件进行适当的转化,将相关问题先转化成典型的盈亏问题,再求解。

【例1】“雏鹰小队”的同学们参加植树活动,如果每人栽5棵树,还剩12棵树;如果每人栽7棵,就缺4棵。

问这个小队有多少人一共要栽多少棵树解析】:可以画出线段图帮助理解题意,如下图:观察上图,比较每人栽7棵与每人栽5棵的两种情况,雏鹰小队总人数是不变的。

雏鹰小队栽树总棵数多出:12+4=16(棵);而每个人多栽:7-5=2(棵);所以小队人数为:(12+4)三(7—5)=8(人)。

由小队人数和任意一种栽法,可以求出栽树总棵数:5X8+12=52(棵)或7X8—4=52(棵)。

【精品奥数】五年级下册数学思维训练讲义-第二讲 盈亏问题 人教版(含答案)

【精品奥数】五年级下册数学思维训练讲义-第二讲  盈亏问题  人教版(含答案)

第2讲盈亏问题第一部分:趣味数学盈亏问题《九章算术》第七章介绍了盈亏问题,这一类问题是把一定数量的物品平均分给若干对象,每个对象少分,则物品有余;如果每个对象多分,则物品不足。

所以分物时经常出现盈(有余)、亏(不足)、尽(恰好分完)的情况,所以古人把这类问题称为盈不足问题。

盈亏问题情况多样,解法巧妙,倍受古人重视,在许多古代算书上留下了不少好题。

下面选取其中的一个给同学欣赏:题目今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?题意:有一群人凑钱买一件物品。

如果每人出8枚钱币,就比物价多出3个钱币。

如果每人出7枚钱币,就比物价少4个钱币。

求人数和钱数各是多少?分析:这是属于“一盈一亏”类的问题。

当第一次每人出8枚钱币时多3枚,当第二次每人出7枚钱币时不但不多,还要少4枚,即第二次比第一次共少了4+3=7枚。

这是由于第二次比第一次每人少出了8-7=1枚钱币。

相差7枚,就说明有7÷1=7人。

这样物价也就可以算出来了。

解答:4+3=7(枚)8-7=1(枚)7÷1=7(人)7×8 – 3 = 53(枚)答:一共有7人,物价为53枚。

事实上,古代数学家发现,在计算人数(即分物对象的个数)时,还有一个简单易记、琅琅上口的口诀:“有余加不足,大减小来除”。

这种算法的绝妙之处在于它几乎可以不动脑筋,只要把几个数按口诀对号入座,马上可以得出答案。

同学们如果你学会了,有兴趣就试试下面这个题目吧!钱几何今有散钱不知其数,作七十七陌穿之,欠五十凑穿;第二部分:奥数小练盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。

一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。

解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。

小学奥数盈亏问题(一).教师版

小学奥数盈亏问题(一).教师版

1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.模块一、利用盈亏公式直接计算(一)盈+亏型【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块). 【答案】9人,搬43块【巩固】 把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有 人。

【考点】盈亏问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 盈亏问题:(12+2)÷(3-2)=14人【答案】14人知识精讲教学目标6-1-7.盈亏问题(一)【巩固】智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【考点】盈亏问题【难度】1星【题型】解答【解析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【答案】15位同学分69粒糖【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【考点】盈亏问题【难度】1星【题型】解答【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或4×28+48=160(个).【答案】160个萝卜吃28天【巩固】幼儿园的老师给小朋友们发梨。

五年级数学上册精品应用题及解析-类型5盈亏问题24页人教版

五年级数学上册精品应用题及解析-类型5盈亏问题24页人教版

类型五盈亏问题【知识讲解】一、盈亏问题:把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。

凡是研究盈和亏这一类算法的应用题就叫盈亏问题。

二、盈亏问题类型:(一)盈盈或亏亏(1)两次都有余(盈),可用公式: (大盈-小盈)÷(两次每人分配数的差)=人数例如:士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多280发。

问:有士兵多少人?有子弹多少发?士兵:(680-280)÷(50-45)=80(人)子弹:50×80+280=4280(发)答:有士兵80人,有子弹4280发。

(2)两次都不够(亏),可用公式: (大亏-小亏)÷(两次每人分配数的差)=人数例如:将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?学生:(90-8)÷(10-8)=41(人)本:10×41-90=320(本)答:有41学生和320本本子。

(二)盈+亏(3)一次有余(盈),一次不够(亏),可用公式: (盈+亏)÷(两次每人分配数的差)=人数例如:小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?小朋友:(7+9)÷(10-8)=8(人)桃子:10×8-9=71(个)答:有8个小朋友和71个桃子。

(三)一次盈或亏(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数例如:老师将一些练习本发给班上的学生。

如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完。

有多少个学生?多少本练习本?学生:10×2÷(10-8)=10(个)练习本:8×10=80(本)(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数例如:某校在植树活动中,把一批树苗分给各班,如果每班分18棵,就会有余下24棵;如果每班分20棵,正好分完。

列方程解决问题(四)—盈亏问题(教案)沪教版五年级下册数学

列方程解决问题(四)—盈亏问题(教案)沪教版五年级下册数学

列方程解决问题(四)—盈亏问题(教案)教学内容本课教学内容选自沪教版五年级下册数学,主要围绕盈亏问题的解决方法进行教学。

盈亏问题是指在实际生活中,由于各种因素导致的盈余或亏损现象,通过列方程来解决问题。

本节课将介绍盈亏问题的概念、特点及解决方法,并通过具体实例引导学生掌握盈亏问题的解题技巧。

教学目标1. 理解盈亏问题的概念,明确盈亏问题的特点;2. 学会运用列方程的方法解决盈亏问题;3. 培养学生的逻辑思维能力和实际问题解决能力;4. 培养学生合作交流、积极参与的学习态度。

教学难点1. 盈亏问题的概念及特点的理解;2. 列方程解决盈亏问题的方法及技巧;3. 学生在实际问题中运用所学知识解决盈亏问题的能力。

教具学具准备1. 教师准备:PPT课件、教学案例、练习题;2. 学生准备:练习本、笔。

教学过程1. 导入:通过PPT展示盈亏问题的实例,引导学生了解盈亏问题的概念及特点,激发学生的学习兴趣。

2. 新课导入:教师讲解盈亏问题的解决方法,引导学生学习列方程解决盈亏问题的步骤。

3. 案例分析:教师通过PPT展示盈亏问题的具体案例,引导学生分析问题、列方程、求解。

4. 练习巩固:学生分组讨论,共同解决练习题,巩固所学知识。

5. 课堂小结:教师总结本节课所学内容,强调盈亏问题的解决方法及注意事项。

6. 课后作业布置:教师布置课后作业,要求学生独立完成。

板书设计1. 盈亏问题的概念及特点;2. 列方程解决盈亏问题的方法及步骤;3. 具体案例展示;4. 练习题及答案解析。

作业设计1. 基础题:学生独立完成,巩固盈亏问题的基本概念及解决方法;2. 提高题:学生分组讨论,共同解决,培养合作交流能力;3. 拓展题:学生独立思考,提升实际问题解决能力。

课后反思1. 教师根据学生的课堂表现及作业完成情况,总结本节课的教学效果,发现存在的问题;2. 针对存在的问题,调整教学方法,提高教学效果;3. 关注学生的学习需求,不断优化教学内容,提升学生的数学素养。

苏教版五年级课后拓展第11 讲 盈亏问题2

苏教版五年级课后拓展第11 讲  盈亏问题2

第11 讲盈亏问题(二)【名师指点】上一讲我们一起讨论了盈亏问题的三种类型(一盈一亏、双亏、双盈),并总结了方法,其实解决盈亏问题的关键是找到“一共多分的”和“每份多分的”,然后用“一共要多分的个数÷每份多分的个数”求出份数,最后再求总数。

【例1】某校在植树活动中,把一批树苗分给各班,如果每班分18棵,就会余下24棵;如果每班分20棵,正好分完。

这个学校有多少个班?这批树苗共有多少棵?【思路点睛】这是一道盈亏问题的特例,关键是理解第二次分配的结果。

每班分20棵正好分完,我们可以把分配的结果看成“多0棵”或“少0棵”,即把第二次分配的盈或亏看作“0”。

解:(24-0)÷(20-18)=12(个);20×12=240(棵)。

答:这个学校有12个班,这批树苗共有240棵。

【例2】学校分配宿舍,每个房间住3人,则多出20人;每个房间住5人,则余下2个房间没人住,问:房间和学生各有多少?【思路点睛】第一次分配的结果是亏,第二次分配的结果是盈。

但是“盈”多少呢?2个房间没人住,就说明“盈”10人。

盈与亏两者相差20+10=30(人),每次分配的差是5-3=2(人),所以房间有30÷2=15(间),学生有15×3+20=65(人)。

解:(20+5×2)÷(5-3)=15(间);15×3+20=65(人)答:共有房间15间,学生65人。

[例3]友爱中心小学师生乘车到公园春游,如果每车坐65人,则有15人不能乘上车;如果每车坐70人,恰好可以少用一辆汽车。

问一共有几辆汽车?有多少人去春游?【思路点睛】可以这样想:每车坐70人,恰好少用一辆汽车,而这辆车还可以坐70人。

这辆车按原定计划开到公园总人数就少70人,也就是可以将这个数看作“亏”,也就是每辆车坐70人,总人数少70人,把第二种分配方案转化为盈亏问题的一般情形。

解:(15+70)÷(70-65)=17(辆); 70 ×(17-1)= 1120 (人)。

五年级奥数第11讲盈亏问题(教师版)

五年级奥数第11讲盈亏问题(教师版)

五年级奥数第11讲盈亏问题〈教师版〉x了解盈亏问题是什么,能够分辨出是属于盈亏问题类型掌握盈亏问题的几种基本情况,以及基本的解题方法熟悉复杂的盈亏问题,能用方法巧妙转化为基本盈亏问题一、基本方法盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余〈也就是盈〉,如果每人多分,则物品就不足〈也就是亏〉,凡研究这一类算法的应用题叫做“盈亏问题”。

可以得出盈亏问题的基本关系式:〈盈+亏〉÷两次分得之差=人数或单位数〈盈-盈〉÷两次分得之差=人数或单位数〈亏-亏〉÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。

二、方法技巧注意1.条件转换 2.关系互换考点一:直接计算型盈亏问题例⒈三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1〈块〉。

第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9〈块〉,每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9〈人〉.共有砖:4×9+7=43〈块〉例⒉明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4 元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【解析】“多8元”与“多4元”两者相差8-4=4〈元〉,每个人要多出8-7=1〈元〉,因此就知道,共有4÷1=4〈人〉,蛋糕价钱是8×4-8=24〈元〉例3、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃, 那么一共有多少只小猴子?老猴子一共有多少个桃子?【解析】老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏总和是9-2=7〈个〉,两次分配之差是11-10=1〈个〉,由盈亏问题公式得,有小猴子:7÷1=7=〈只〉,老猴子有7×10+9=79〈个〉桃子例⒋猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴〈不包括猴王〉比小猴多少只?【解析】当大猴分5个,小猴分3个时,猴王可留10个.若大、小猴都分4个,猴王能留下20个.也就是盈亏问题说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下20-10=10个,所以大猴比小猴多10只考点二:条件关系转换型盈亏问题例⒈一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是5-4=1〈粒〉,由盈亏问题公式得,参与分糖的同学有:9÷1=9〈人〉,有糖果9×5=45〈粒〉例⒉猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是 11-10=1〈条〉 ,由盈亏问题公式得,有小猫:8÷1=8〈只〉,猫妈妈有8×10+8=88〈条〉鱼例3、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人, 恰好多出一辆车.问一共有几辆车,多少个学生?【解析】每辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人。

第十四讲盈亏问题教师版

第十四讲盈亏问题教师版

第十三讲盈亏问题盈亏问题是一类生活中很常见的问题.按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.解盈亏问题的窍门可以用下面的公式来概括:(盈+亏)÷两次分得之差=人数或单位数;(盈-盈)÷两次分得之差=人数或单位数;(亏-亏)÷两次分得之差=人数或单位数.上面的公式不能盲目套用,在真正掌握其内涵以后再运用公式解题将会使你面临盈亏问题时而游刃有余,不可盲目套用公式.〖经典例题〗例1、妈妈买回一筐苹果,按方案吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,那么又少8个苹果.那么妈妈买回的苹果有多少个?方案吃多少天?分析:由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56〔个〕.方案吃的天数:56÷2=28〔天〕,共有苹果:6×28-8=160〔个〕。

〖方法总结〗例1是盈亏问题的基此题目,属于“直接计算型〞。

对于这类题目要多理解每一个算式的含义,不要死记公式。

象例1这类题目的条件被称作“标准条件〞。

对“标准条件〞要多加熟悉,对以后的学习会有很大帮助。

〖稳固练习〗练习1:阿姨给幼儿园小朋友分饼干.如果每人分3块,那么多出16块饼干;如果每人分5块,那么就缺4块饼干.问有多少小朋友,有多少块饼干?练习2:秋天到了,小白兔收获了一筐萝卜,它按照方案吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,那么又少8个萝卜.那么小白兔收获的萝卜有多少个?方案吃多少天?练习3:中关村一小合唱队的同学到会议室开会,假设每条长椅上坐3人那么多出9人,假设每条长椅上坐4人那么多出3人.问:合唱队有多少人?练习4:有一批香蕉要分给动物园的小猩猩,如果每只猩猩发10个,还差9个,每只猩猩发9个,还差2个,请问有多少小猩猩?多少个香蕉?练习5:老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵.问:参加栽树的有多少名同学?原有树苗多少棵?〖经典例题〗例2、学校为新生分配宿舍.每个房间住3人,那么多出23人;每个房间住5人,那么空出3个房间.问宿舍有多少间?新生有多少人?分析:每个房间住3人,那么多出23人,每个房间住5人,就空出3个房间,这3个房间如果住满人应该是5×3=15〔人〕.由此可见,每一个房间增加5-3=2〔人〕.两次安排人数总共相差23+15=38〔人〕,因此,房间总数是:38÷2=19〔间〕,学生总数是:3×19+23=80〔人〕。

小学五年级《盈亏问题》奥数教案

小学五年级《盈亏问题》奥数教案

阿博士将一筐香蕉分给小朋友,如果分给四年级的小朋友每人4根,则余11根;如果分给五年级的小朋友每人6根,则缺3根,并且四年级与五年级的人数不一样,四年级的人数比五年级多4人。

求这筐香蕉共有多少根?师:同学们,我们做盈亏问题的,都是在什么相等的情况下进行分配的呢?生:人数相等。

师:这里题中人数一样吗?生:不一样。

师:对,像这样的盈亏问题我们需要进行关系的转换,要先把人数转化成一样多的。

师:假设四年级与五年级人数一样多,可不可以算出总的盈亏数量?生:可以。

师:我们知道四年级每人分4根,会余11根,这11根是盈还是亏?生:盈。

师:那假设五年级与四年级人数一样多,每人分6根,会盈还是亏?生:会亏。

师:亏多少?生:6×4+3=27(根)。

师:对,所以盈亏总额是多少?生:11+27=38(根)。

师:两次分配差是多少?生:6-4=2(根)。

师:由此我们可以求出什么?生:四年级的人数。

师:四年级有多少人?生:(27+11)÷(6-4)=19(人)师:那有多少根香蕉呢?生:19×4+11=87(根)。

板书:6×4+3=27(根)(27+11)÷(6-4)=19(人)19×4+11=87(根)答:这筐香蕉共有87根。

练习五:卡尔将一筐苹果分给五年级同学,如果分给五(1)班的学生每人5个剩10个;如果分给五(2)班的学生每人8个少2个。

已知五(1)班比五(2)班多3个学生,那么这一筐苹果有多少个?分析:如果五(1)班的人数与五(2)班的人数相等,则缺3×8+2=26(个),盈亏总。

小学数学 盈亏问题(三).教师版

小学数学 盈亏问题(三).教师版

6-1-7.盈亏问题(三)教学目标1.熟练掌握盈亏问题的本质.2.运用盈亏问题的解题方法解决一些生活实际问题.知识精讲盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换;2.关系互换.模块一、利用条件关系转换解盈亏问题——转化被分配物质【例 1】王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?【考点】盈亏问题【难度】3星【题型】解答【解析】因为桔子每人分3个多4个,而苹果是桔子的2倍,因此苹果每人分6个就多8个.又已知苹果每人分7个少5个,所以应有(8+5)÷(6-5)=13(人).苹果个数为13×7-5=86(个).桔子数为 13×3+4=43(个).答:有13个小朋友,86个苹果和43个桔子.【答案】13个小朋友,苹果86个,桔子43个【巩固】学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?【考点】盈亏问题【难度】3星【题型】解答【解析】因为羽毛球拍是乒乓球拍的2倍,如果每次分羽毛球拍5×2=10(副),最后应余下15×2=30(副),因为14-5×2=4(副),分到最后还差30副,所以比每次分10副总共差30+30=60(副),所以有小组:60÷4=15(组),乒乓球拍有:5×15+15=90(副),羽毛球拍90×2=180(副).【答案】羽毛球拍180副,乒乓球拍90副【例 2】有若干个苹果和若干个梨.如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨.苹果和梨各有多少个?【考点】盈亏问题【难度】4星【题型】解答【解析】容易看出这是一道盈亏应用题,但是盈亏总额与两次分配数之差很难找到.原因在于第一种方案是1个苹果“搭配”2个梨,第二种方案是3个苹果“搭配”5个梨.如果将这两种方案统一为1个苹果“搭配”若干个梨,那么问题就好解决了.将原题条件变为“1个苹果搭配2个梨,缺4个梨;1个苹果搭配5/3个梨,多1个梨”,此时盈亏总额为415-=(个)梨.所以有苹+=(个)梨,两次分配数之差为25/31/3果(41)(25/3)15+÷-=(个),有梨152426⨯-=(个).【答案】苹果15个,梨26个【巩固】有若干梨和苹果,如果1个梨和3个苹果分成一堆,则多2个梨,如果2个梨和5个苹果分成一堆,则少2个苹果,则梨有个,苹果有个。

五年级奥数盈亏问题(二)教师版

五年级奥数盈亏问题(二)教师版

1. 五年级奥数盈亏问题(二)教师版2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.利用条件关系转换解盈亏问题——转化分配单位数(接受分配的人数)【例 1】 小鸣用48元钱按零售价买了若干练习本。

如果按批发价购买,每本便宜2元,恰好多买4本。

问:零售价每本多少元?【考点】盈亏问题 【难度】3星 【题型】解答【关键词】华杯赛,初赛,第9题【解析】 见下图,以横线表示本数,纵线表示单价,因为黄色部分面积与绿色部分面积相等,所以黄色的宽是绿色高的2倍,设批发价为x 元(图中绿色长方形的高),则有:x ×(2x +4)=48,即x ×(x +2)=24=4×6=4×(4+2),所以,x =4(元),零售价为x +2=6(元)【答案】6元知识精讲 教学目标6-1-7.盈亏问题(二)【例 2】 春节前夕,一富翁想丐帮帮众施舍一笔钱财,一开始他准备给每人100元,结果剩下350元,他决定每人多给20元。

这时从其它地方又闻讯赶来了5个乞丐,如果他们每个人拿到的钱和其它乞丐一样多,富翁还需要再增加550元。

原有( )名乞丐。

【考点】盈亏问题 【难度】3星 【题型】填空【关键词】走美杯,3年级,初赛【解析】 如果不来这五个乞丐,富翁能剩下120555050⨯-=元。

列方程解决问题(四)—盈亏问题(教学设计)沪教版五年级下册数学

列方程解决问题(四)—盈亏问题(教学设计)沪教版五年级下册数学

列方程解决问题(四)—盈亏问题(教学设计)教学目标1.理解盈亏的概念和计算方法。

2.能够通过列方程解决盈亏问题。

3.能够在日常生活中运用所学的知识解决实际问题。

教学内容本课将重点介绍盈亏的概念和解决问题的方法。

通过生动有趣的教学案例,让学生理解什么是盈亏,如何计算盈亏,并能够应用所学知识解决实际盈亏问题。

教学步骤第一步:导入新知识活动1:教师让学生观察下图并回答问题:“这是一家什么店?这家店在做什么生意?”店铺图片店铺图片教师引导学生思考和发散,让他们分别描述出店铺名称和特色,进而学会根据店铺名称和特色揣测所售卖商品并进行盈亏分析。

活动2:教师用实际盈亏的案例来说明盈亏的概念,以便学生更好地理解。

举个例子:小张在卖薯片,他一包薯片的成本是2元,售价为3元,那他每卖出一包薯片能获得多少的利润?学生可根据小张的情况来进行盈亏计算。

如果计算正确,利润则为1元。

教师帮助学生理解,得出每卖出一包薯片能获得1元的利润就是盈利,反之则为亏损。

第二步:解决问题活动1:教师通过生动有趣的教学案例,帮助学生解决盈亏问题。

例如:李阿姨收购了一批瓷器,每件成本是300元,她打算以500元的价格卖出去,那么她能获得多少的利润?如果她卖出去了40件瓷器,那么她的盈亏情况是怎样的呢?学生可以根据此情况列出方程,解决问题并得出答案。

教师通过此类案例的演示告诉学生,在解决盈亏问题中,列方程是一个非常好的方法。

活动2:教师让学生自己动手解决一些盈亏问题,以检验他们的掌握情况。

例如:小王在超市里买了一件裤子,他花了120元,现在他想以150元的价格将裤子转卖掉。

那么他将能获得多少利润?学生需要根据此情况列出方程,进行计算并给出答案。

教学评价教师通过观察学生在活动中的表现来评价他们的掌握程度。

同时,教师要对学生的进步和困难进行及时跟踪和反馈。

总结通过本课的学习,学生能够理解盈亏概念及计算方法,能够根据列方程解决实际问题,并能够在日常生活中应用所学知识解决盈亏问题。

小学数学 盈亏问题(二).教师版

小学数学 盈亏问题(二).教师版

1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”. 可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.利用条件关系转换解盈亏问题——转化分配单位数(接受分配的人数)【例 1】 小鸣用48元钱按零售价买了若干练习本。

如果按批发价购买,每本便宜2元,恰好多买4本。

问:零售价每本多少元?【考点】盈亏问题 【难度】3星 【题型】解答【关键词】华杯赛,初赛,第9题【解析】 见下图,以横线表示本数,纵线表示单价,因为黄色部分面积与绿色部分面积相等,所以黄色的宽是绿色高的2倍,设批发价为x 元(图中绿色长方形的高),则有:x ×(2x +4)=48,即x ×(x +2)=24=4×6=4×(4+2),所以,x =4(元),零售价为x +2=6(元)【答案】6元【例 2】 春节前夕,一富翁想丐帮帮众施舍一笔钱财,一开始他准备给每人100元,结果剩下350元,他决定每人多给20元。

这时从其它地方又闻讯赶来了5个乞丐,如果他们每个人拿到的钱和其它乞丐一样多,富翁还需要再增加550元。

原有( )名乞丐。

【考点】盈亏问题 【难度】3星 【题型】填空【关键词】走美杯,3年级,初赛【解析】 如果不来这五个乞丐,富翁能剩下120555050⨯-=元。

第七讲 盈亏问题2 教师版-五年级数学思维拓展

第七讲 盈亏问题2  教师版-五年级数学思维拓展

第7讲盈亏问题2有记载《九章算术》于公元前1世纪成书,是中国最重要的数学经典,也是世界古代数学史上一颗璀璨的明珠。

这一讲,我们将讨论复杂一些的盈亏问题。

例1友爱中心小学师生乘车到公园春游,如果每车坐65人,则有15人不能乘上车;如果每车坐70人,恰好可以少用一辆汽车。

问一共有几辆汽车? 有多少人去春游?解(15+70)÷(70-65)=17(辆);70×(17-1)=1120(人)。

答:一共有17辆汽车,有1120人去春游。

【思路点拨】第一种分配方案:“每车坐65人,多15人”,而第二种分配方案只告诉“每车坐70人,恰好少用一辆汽车”,分配的结果究竟是盈数还是亏数呢?可以这样想:每车坐70人,恰好少用一辆汽车,而这辆车还可以坐70人。

这辆车按原定计划开到公园总人数就少70人,也就是可以将这个数看作“亏”。

也就是每辆车坐70人,总人数少70人,把第二种分配方案转化为盈亏问题的一般情形。

例2少先队员去植树,如果每人挖5个树坑还有3个树坑没人挖;如果其中2人各挖4个树坑,其余的人每人各挖6个树坑,就恰好挖完所有树坑。

一共要挖多少个树坑?解 [3+(6-4)x2]÷(6-5)=7(人);5x7+3=38(个)。

答:少先队员一共要挖38个树坑。

【思路点拨】这道题与例1比较相似,关键是要把第二种分配方案转化成盈亏问题的一般情形。

转化第二种分配方案是这道题的关键。

可这样想:第二种方案中挖4个树坑的2人,也各挖6个,这样每人就多挖2个,共多挖4个,结果就会多挖4个树坑。

第二种分配方案就转化为:每人挖6个,总数就少4个树坑。

这样就可以用盈亏问题的方法求出一共挖多少个树坑。

例3一些学生搬一批砖,如果每人搬4块,其中5人要搬两次;如果每人搬5块,就有两人没有砖可搬。

搬砖的学生有多少人?这批砖一共有多少块?解(4x5+5x2)÷(5-4)=30(人);4x30+4x5=140(块)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲盈亏问题盈亏问题又叫盈不足问题,是指把固定数量的物品平均分给固定的对象,因为两种不同的分配标准,导致两种不同的分配结果:一种标准分配后有剩余(盈);另一种标准分配后不够分(亏或不足)。

此类问题,要求通过两种分配结果的比较,求出物品总数量和固定对象的个数。

标准的盈亏问题就是两次分配的结果一盈一亏,所以就叫盈亏问题。

基本的数量关系是:(盈+亏)÷两种分配标准的数量之差=固定对象数量。

广义的盈亏问题一般还包括以下四种情况:一、两次分配都有余(两盈);二、两次分配都不够分(两亏);三、一次有余,一次刚好够分(盈适足);四、一次分配不够分,一次刚好够分(亏适足)。

解决盈亏问题常用比较的解题策略:通过两次分配盈亏总额与分配数量的比较,先求出固定对象的个数,再求出分配物品的总数量。

此类问题基本数量关系有:①盈适足问题:盈余部分÷两种分配标准的数量之差=固定对象数量。

②亏适足问题:亏欠部分÷两种分配标准的数量之差=固定对象数量。

③两盈问题:(盈多-盈少)÷两种分配标准的数量之差=固定对象数量。

④两亏问题:(亏多-亏少)÷两种分配标准的数量之差=固定对象数量。

⑤盈亏问题:(盈+亏)÷两种分配标准的数量之差=固定对象数量。

比较常规的盈亏问题,一般可以直接套用上面的数量关系,解决问题。

较复杂的盈亏问题,一般需要先对题中的条件进行适当的转化,将相关问题先转化成典型的盈亏问题,再求解。

【例1】“雏鹰小队”的同学们参加植树活动,如果每人栽5棵树,还剩12棵树;如果每人栽7棵,就缺4棵。

问这个小队有多少人一共要栽多少棵树【解析】:可以画出线段图帮助理解题意,如下图:观察上图,比较每人栽7棵与每人栽5棵的两种情况,雏鹰小队总人数是不变的。

雏鹰小队栽树总棵数多出:12+4=16(棵);而每个人多栽:7-5=2(棵);所以小队人数为:(12+4)÷(7-5)=8(人)。

由小队人数和任意一种栽法,可以求出栽树总棵数:5×8+12=52(棵)或7×8-4=52(棵)。

【例2】学生春游,租了几条船让学生们划,每条船坐3人,则空2人的位置;如果每条船坐5人,则空出16人的位置,问有学生多少人共租了多少条船【解析】:这是两亏问题,每条船坐3人,空2个位置即少2人,每条船坐5人空16个位置少16人,每条船坐5人比每条船坐3人多空出了14个位置,即每条船坐5人比每条船做3人,可以多坐14人。

比较两种坐船方案,租船总条数是不变的。

可乘坐总人数相差:16-2=14(人);每条船乘坐人数相差:5-3=2(人);所以共租船:14÷2=7(条)。

根据船的条数和任意一种租船方案,可以求出学生人数,如:7×3-2=19(人)。

注:如果解题时,该题需要把题中的一种分配方案进行转化才能化为盈亏问题求解,通常在求题中的第二个未知数时,按另一种分配方案求解比较方便。

【例3】:解放军某部调动一批战士分乘一批车辆赶往汛地抗洪。

原计划每辆汽车乘32人,则多出5人,他们被安排乘坐在其中的某辆车上,行进中由于紧急任务调走一辆车,这时只好重新安排每辆车乘35人,这样多出7人,他们被安排在其中的某辆车上,问原来共有多少辆车共派出多少名战士【解析】:在重新安排时,每辆车35人,少了一辆车,多出7人。

如果补上这辆车,可以坐上这7个人,还可以再坐:35-7=28(人)。

所以这个条件可以转化为:仍然是原来的车辆数,每辆车35人,少了28人。

转化条件后,比较两种安排乘坐情况,车辆数是不变的。

乘坐总人数相差:5+28=33(人);每辆车乘坐人数相差:35-32=3(人);所以原来车辆数为:33÷3=11(辆)。

再根据原计划乘坐情况,可以求出战士人数为:11×32+5=357(人)。

【例4】:少先队员栽植一批树苗,如果每个队员栽6棵,还剩12棵;如果其中9个小队员每人栽4棵,而其余队员栽8棵,结果缺2棵。

问这批树苗有多少棵参加植树的少先队员有多少人【解析】:第二种方案中有9个小队员每人栽4棵树苗,假定这9个小队员每人也栽8棵,则需要再添树苗:9×(8-4)=36(棵)。

因此题中条件“如果其中9个小队员每人栽4棵,而其余队员栽8棵,结果缺2棵。

”可以转化为:如果所有队员每人栽8棵,就缺少树苗:36+2=38(棵)。

从而把原题转化为盈亏问题求解:少先队员人数为:(38+12)÷(8-6)=25(人);这批树苗总棵树为:25×6+12=162(棵)。

【例5】:猴子分桃子,如果有2只猴子各分5个,其余的各分3个,则还剩余9个桃子。

如果4只猴子各分3个,其余的各分6个,则剩余10个桃子。

问猴子有多少只桃子有多少个【解析】:第一种分配方案中,有2只猴子各分5个,假定这2只猴子和其余猴子一样也是分3个,在剩余的桃子就多出:2×(5-3)=4(个)。

因此题中条件“如果有2只猴子各分5个,其余的各分3个,则还剩余9个桃子。

”可以转化为:每只小猴分3个,则剩余:9+4=13(个)。

第二种分配方案中,有4只猴子各分3个,假定这4只猴子和其余猴子一样也是分6个,则需要再分掉:4×(6-3)=12(个)。

因此题中条件“如果4只猴子各分3个,其余的各分6个,则剩余10个桃子。

”可以转化为:每只小猴分6个,则缺少:12-10=2(个)。

从而把原题转化为盈亏问题求解:共有猴子:(13+2)÷(6-3)=5(个);共有桃子:2×5+(5-2)×3+9=28(个)。

【例6】:陈老师给小朋友分红花和黄花,黄花的朵数是红花的一半。

黄花每人分3朵,则多4朵;红花每人分7朵,则少5朵。

问有多少个小朋友共有多少朵花【解析】:因为黄花的朵数是红花的一半,即红花的朵数是黄花的2倍。

因此题中条件“黄花每人分3朵,则多4朵;”可以转化为:红花每人分6朵,则多8朵。

把题目转化成盈亏问题求解:小朋友的个数为:(8+5)÷(7-6)=13(个);共有红花:13×7-5=86(朵);共有花:86+86÷2=129(朵)。

习题81.小朋友分苹果,每人分18个,还多出2个;每人分20个,就有一位小朋友没分到苹果,问共有多少个小朋友共有多少个苹果2.全班同学分组劳动,每组8人。

劳动中觉得每组人数太少,因而重新编组,每组改为12人,这样减少了2组,问参加劳动的学生有多少人3.在一次大扫除中,老师分配若干人擦玻璃。

如果其中2人各擦4块,其余每人擦5块,则余22块;如果每人擦7块,正好擦完。

求擦玻璃的人数和玻璃的块数。

4.有若干个苹果和梨,如果按1个苹果配3个梨分一堆,那么苹果分完时还剩2个梨,如果按半个苹果配2个梨分一堆,那么梨分完时还剩半个苹果,那么梨有多少个5.学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副6.用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.习题8解答1.小朋友分苹果,每人分18个,还多出2个;每人分20个,就有一位小朋友没分到苹果,问共有多少个小朋友共有多少个苹果【解析】:转化题中条件“每人分20只,就有一位小朋友没分到苹果”,即每人分20个苹果,就少20个苹果。

可以画出与上题相似的线段图帮助理解题意,比较每人分20个苹果和每人分18个苹果两种情况,小朋友总人数是不变的。

分掉的苹果总数相差:2+20=22(个);每人多分:20-18=2(个);所以共有小朋友:22÷2=11(个)。

由小朋友总人数和任意一种分法,可以求出苹果总数,如:(11—1)×20=200(个)。

2.全班同学分组劳动,每组8人。

劳动中觉得每组人数太少,因而重新编组,每组改为12人,这样减少了2组,问参加劳动的学生有多少人【解析】:转化题中条件“每组12人,少2组”,即按原定组数分组,每组12人,少了24人。

转化条件后,比较第二次编组与第一次编组情况,编的组数没变。

总人数增加:12×2=24(人);每组人数增加:12-8=4(人);原定组数为:24÷4=6(人)。

再根据第一次分组情况,可以求出学生人数为:8×6=48(人)。

3.在一次大扫除中,老师分配若干人擦玻璃。

如果其中2人各擦4块,其余每人擦5块,则余22块;如果每人擦7块,正好擦完。

求擦玻璃的人数和玻璃的块数。

【解析】:第一种方案中,有2人擦4块玻璃,假定这两人也擦5块,就可以多擦:2×(5-4)=2(块)。

因此题中条件“如果其中2人各擦4块,其余每人擦5块,则余22块;”可以转化为:如果每人擦5块,则余:22-2=20(块)。

从而把原题转化为盈余问题求解:擦玻璃人数为:20÷(7-5)=10(人);玻璃的块数为:10×7=70(块)。

4.有若干个苹果和梨,如果按1个苹果配3个梨分一堆,那么苹果分完时还剩2个梨,如果按半个苹果配2个梨分一堆,那么梨分完时还剩半个苹果,那么梨有多少个【解析】:第二分配方案中,半个苹果配2个梨就相当于1个苹果配4个梨,还剩下半个苹果,还需要添2个梨正好配完。

因此题中条件“如果按半个苹果配2个梨分一堆,那么梨分完时还剩半个苹果,”可以转化为:如果按1 个苹果配4个梨,就缺2个梨。

从而把原题转化为盈亏问题求解:共有苹果:(2+2)÷(4-3)=4(个);共有梨:4×3+2=14(个)。

5.学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副【解析】:因为羽毛球拍是乒乓球拍的2倍,如果每次分羽毛球拍5×2=10(副),最后应余下15×2=30(副),因为14-5×2=4(副),分到最后还差30副,所以比每次分10副总共差30+30=60(副),所以有小组:60÷4=15(组),乒乓球拍有:5×15+15=90(副),羽毛球拍90×2=180(副).6.用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.【解析】:井的深度为:(5×2+4×3)÷(3-2)=22÷1=22(米).绳子长度为:(22+5)×2=27×2=54(米),或者(22-4)×3=18×3=54(米).。

相关文档
最新文档