第二章 纳米材料的基本性质综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.磁性能:由于纳米微粒的小尺寸效应、量子尺寸效 应、表面效应等使得它具有常规粗晶材料不具备的 磁特性。主要表现为: 超顺磁性:当纳米微粒尺寸小到一定临界值时进入超 顺磁状态,即矫顽力Hc 0, 如 原因:在小尺寸下,当 各向异性能减小到与热 运动能可相比拟时,磁 化方向就不再固定在一 个易磁化方向,易磁化 方向作无规律的变化, 结果导致超顺磁性的出 现。不同种类的纳米磁 性微粒显现超顺磁的临 界尺寸是不相同的。
2.2 纳米粉体的物化特性
1.热性能:纳米微粒的熔点、开始烧结温度和晶 化温度均比常规粉体低得多。
熔点下降
2T T LD
T和L为大块颗粒的熔点和熔化热,为表面张力
蒸汽压上升
P 2 M ln P RTD c
烧结温度:指把粉末先用高压压制成型,然后在低于 熔点的温度下使这些粉末互相结合成块,密度接近常 规材料的最低加热温度。
库仑阻塞效应造成了电子的单个传输,是单电 子晶体管、共振隧穿二极管和晶体管的基础。
表面效应(界面效应) 当微粒尺寸进入纳米领域时, 微粒比表面积(表面积与其质量的比)急剧增加,使处 于表面的原子数增多,如此多的表面原子一般处于一种 近邻缺位的状态,使得微粒的表面能增大,微粒活性增 强。
纳米粉体表面效应的宏观表现,如金属纳米粒 子在空气中燃烧,无机的纳米粒子暴露在空气 中会吸附气体,并与气体进行反应。 表面或界面效应使纳米材料具有很高的扩散速 率。对于多晶物质,扩散ቤተ መጻሕፍቲ ባይዱ沿自由表面、晶界 和晶格三种形式进行,其中沿表面的扩散系数 最大。对先进陶瓷、粉末冶金、特种合金等材 料非常重要。

能带理论表明,金属费米能级附近电子能级一 般是连续的,这一点只有在高温或宏观尺寸情 况下才成立。 当粒子尺寸下降到某一值时,金属费米能级附 近的电子能级由准连续变为离散能级的现象以 及纳米半导体微粒存在不连续的最高被占据分 子轨道和最低未被占据的分子轨道能级而使能 隙变宽现象均称为量子尺寸效应。

量子尺寸效应 当微粒尺寸进入纳米领域时, 电子运动受到束缚致使微粒的电子的能级结构 发生改变(通常是能级间距增大)而引起物性 的变化。类似的提法还有量子效应、量子限域 效应、量子尺寸限制等。
固体能带理论指出,传导电子在晶体的周期性势场 中运动时不再属于单个原子,而是属于整个晶体, 这种公有化的结果使电子在材料中的能量状态变成 准连续的能带,即相邻能级之间的能量差远小于热 起伏能(kBT),统计力学得到大块材料的比热与温度 呈线性关系 对于有限尺寸的固体颗粒,电子的能量状态将如何 改变呢?
由公式,随着d值下降,W增加。所以低温下热涨落很难改变超微 颗粒的电中性。
W kBT
当微粒的能隙大于电子的平均动能kBT时,热运动不能使电子跃过 能隙,电子的状态受到限制,即表现出量子效应。
当分立的能级间距大于热能,静磁能,静电能, 光子能量等,微粒将呈现量子尺寸效应,如微 粒的比热与温度将不再呈线性关系,而出现非 线性的指数关系,导体变绝缘体等
第二章 纳米材料的基本性质

基本效应 物化特性 应用实例


2.1 纳米微粒的基本效应
粉体的粒度 ( 即颗粒尺寸 ) 会对其物理、化学 特性起者关键性的影响。 纳米粒子只包含有限数目的晶胞,不再具有 周期性的条件,其表面振动模式占有较大比 重,表面原子的热运动比内部原子激烈,因 而表面原子能量一般为内部原子能量值的 1.5-2倍,德拜特征温度随粒径减小而下降。 另外由于粒径减小,微粒内部的电子运动受 到束缚导致电子能级结构与大块固体不同。 具体呈现出四个方面的效应,并由此派生出 传统粉体材料不具备的许多特殊性质
久保(Kubo)理论公式 1.相邻电子能级间隙
4 EF 1 1 V 3 3N d
EF费密能,金属为几个电子伏特,随温度变化极小,N颗粒内总电子数
2.超微颗粒电中性假设
Kubo认为,对于一个超微颗粒,取走或移入一个电子都是十分困难 的。他提出了一个著名公式:
e2 W k BT d
宏观量子隧道效应
微观粒子(电子)具有进入和穿透势垒的能力,称之为隧道效 应 微颗粒的宏观物理量如磁化强度、磁通量等,在纳米尺度时将 会受到微观机制的影响,微观的量子隧道效应在宏观物理量中 表现出来称之为宏观量子隧道效应。 它限定了磁带、磁盘进行信息存储的时间极限,将会是未来微 电子器件的基础,它确立了微电子器件进一步微型化的极限。 例如,在制造半导体集成电路时,当电路的尺寸接近电子波长 时,电子就通过隧道效应而溢出器件,使器件无法正常工作, 经典电路的极限尺寸大约在0.25微米。
纳米微粒尺寸小,表面能高,压制成块后的界面具有 高能量,在烧结中高的界面能成为原子运动的驱动力, 有利于界面中的孔洞收缩,因此在较低的温度下烧结 就能达到致密化的目的,即烧结温度降低。
明显的烧结活性,常规氧化铝粉, 2073-2173K,纳 米, 1423-1773K,致密度可达 99.7% ;传统氮化硅 Si3N4,1793K晶化成稳定的相,纳米,1673K
结构粉体材料的熔点下降,蒸汽压上升 ,如2nm金熔点600K,大块1337K 磁性材料当颗粒尺寸为单磁畴临界尺寸 时,具有很高的矫顽力,利用其强磁性 可制成信用卡、钥匙、车票等
库仑阻塞效应是纳米材料具有尺寸效应的又一 实例 将一个电子注入一个纳米粒子或纳米线等称之 为库仑岛的小体系时,该库仑岛的静电能将发 生变化,变化量与一个电子的库仑能大体相当, 即 Ec=e2/(2C) ,其中 e 为电子的电量, C 为库 仑岛的电容。体系越小,C越小,当C足够小时, 只要注入一个电子,它给库仑岛附加的充电能 Ec>kBT,从而阻止第二个电子进入该岛,这就 是库仑阻塞效应。
通常纳米微粒在 低温下才容易呈 现量子尺寸效应
小尺寸效应 当微粒尺寸进入纳米领域 时,其尺寸与光波波长、德布罗意波长 以及超导态的相干长度、单磁畴尺寸等 物理特征尺寸相当或更小(某一临界尺寸 ),晶格点阵周期性的边界条件将被破坏 ,微粒将处于一种不稳定的状态,从而 引起物性的发生明显的变化或突变。
相关文档
最新文档