基于51单片机的温度检测设计
《2024年基于51单片机的温度控制系统设计与实现》范文
《基于51单片机的温度控制系统设计与实现》篇一一、引言在现代工业控制领域,温度控制系统的设计与实现至关重要。
为了满足不同场景下对温度精确控制的需求,本文提出了一种基于51单片机的温度控制系统设计与实现方案。
该系统通过51单片机作为核心控制器,结合温度传感器与执行机构,实现了对环境温度的实时监测与精确控制。
二、系统设计1. 硬件设计本系统以51单片机为核心控制器,其具备成本低、开发简单、性能稳定等优点。
硬件部分主要包括51单片机、温度传感器、执行机构(如加热器、制冷器等)、电源模块等。
其中,温度传感器负责实时监测环境温度,将温度信号转换为电信号;执行机构根据控制器的指令进行工作,以实现对环境温度的调节;电源模块为整个系统提供稳定的供电。
2. 软件设计软件部分主要包括单片机程序与上位机监控软件。
单片机程序负责实时采集温度传感器的数据,根据设定的温度阈值,输出控制信号给执行机构,以实现对环境温度的精确控制。
上位机监控软件则负责与单片机进行通信,实时显示环境温度及控制状态,方便用户进行监控与操作。
三、系统实现1. 硬件连接将温度传感器、执行机构等硬件设备与51单片机进行连接。
具体连接方式根据硬件设备的接口类型而定,一般采用串口、并口或GPIO口进行连接。
连接完成后,需进行硬件设备的调试与测试,确保各部分正常工作。
2. 软件编程编写51单片机的程序,实现温度的实时采集、数据处理、控制输出等功能。
程序采用C语言编写,易于阅读与维护。
同时,需编写上位机监控软件,实现与单片机的通信、数据展示、控制指令发送等功能。
3. 系统调试在完成硬件连接与软件编程后,需对整个系统进行调试。
首先,对单片机程序进行调试,确保其能够正确采集温度数据、输出控制信号。
其次,对上位机监控软件进行调试,确保其能够与单片机正常通信、实时显示环境温度及控制状态。
最后,对整个系统进行联调,测试其在实际应用中的性能表现。
四、实验结果与分析通过实验测试,本系统能够实现对环境温度的实时监测与精确控制。
基于51单片机的温度监测系统(DS18B20)
DS18B20读时序
所有的读时隙都由拉低总线,持续至少1us后再释放总线(由于上拉电阻的作用,总线恢复为 高
配置寄存器
8 位 CRC 生成器
DS18B20的时序
DS18B20复位时序
DS18B20的所有通信都由由复位脉冲组成的初始化序列开始。该初始化序列由主 机发出,后跟由DS18B20发出的存在脉冲(presence pulse)。在初始化步骤中,总线 上的主机通过拉低单总线至少480μs来产生复位脉冲。然后总线主机释放总线并进入接收 模式。当总线释放后,5kΩ的上拉电阻把单总线上的电平拉回高电平。当DS18B20检测 到上升沿后等待15到60us,发出存在脉冲,拉低总线60-240us至此,初始化和存在时序 完毕。时序图如下:
1.主控制器电路和测温
电路的设计
主控制器电路由AT89S52 及外围时钟和复位电路构成, 测温电路由DS18B20、报警 电路组成。AT89C52是此硬 件电路设计的核心,通过 AT89S52的管脚P2.7与 DS18B20相连,控制温度的 读出和显示。硬件电路的功 能都是与软件编程相结合而 实现的。具体电路原理图如 右图2所示。
送1,以拉低总线的方式表示发送0.当发送0的时候,DS18B20在读时隙的末期将会释放总线,总线
将会被上拉电阻拉回高电平(也是总线空闲的状态)。DS18B20输出的数据在下降沿(下降沿产 生读时隙)产生后15us后有效。因此,主机释放总线和采样总线等动作要在15μs内完成。
基于51单片机环境温度检测及显示
摘要本次的温度检测设计及显示以AT89C51单片机系统进行温度采集,AT89C51单片机系统进行控制,温度信号由温度传感器18b20采集,通过8255键盘控制输入89C51,温度数据传输采用12864液晶显示模块来实现。
本次设计实现了:⏹检测温度范围:0℃--100℃。
⏹检测器单元可显示检测的温度值。
⏹采用12864液晶显示模块显示。
⏹采用8255控制键盘。
本次的温度检测及显示设计主要研究了单片机与12864液晶显示模块、温度检测芯片18b20接口之间的作用,学会根据外围电路设计进行软件编程及系统调试,练习撰写实训总结报告,培养我们运用专业知识设计智能仪器的能力。
为以后的改进和发展奠定了很好的基础。
关键词:温度检测、AT89C51单片机系统、温度传感器18b20、8255键盘、12864液晶显示模块目录第一章绪论 (3)1.1 环境温度检测的概述 (3)1.2 环境温度检测的现状和发展前景 (3)1.2.1 环境温度检测的现状 (3)1.2.2 环境温度检测的发展前景 (3)1.3 环境温度检测研究的主要内容 (4)第二章环境温度检测及显示总体的设计方案 (5)2.1 环境温度检测及显示的各个部分的设计方案 (5)2.1.1 测量部分 (5)2.1.2 远程通信部分 (5)2.1.3 显示部分 (5)2.2 环境温度检测及显示的总体的设计结构 (6)第三章环境温度检测及显示主要模块的组成 (7)3.1 温度检测芯片DS18B20模块 (7)3.1.1 DS18B20的技术参数 (7)3.1.2 DS18B20数字温度计的封装与外形尺寸 (7)3.1.3 DS1820使用中注意事项 (7)3.2 12864液晶显示模块 (7)3.2.1 OCM4X8C汉字液晶屏引脚表 (8)3.2.2 OCM4X8C接口方式与时序 (8)3.3 8255按键模块 (9)3.3.1 引脚说明 (9)3.3.2 内部结构 (10)3.3.3 工作方式控制电路 (10)3.3.4 总线数据缓冲器 (11)3.3.5 8255三种基本工作方式 (11)3.3.6 读/写控制逻辑电路 (11)第四章系统的软件实现 (12)4.1 主程序的流程图 (12)4.2 按键的流程图 (12)4.3 时间功能的流程图 (13)第五章环境温度检测系统显示 (14)5.1 应用DXP2004绘制环境温度检测及显示原理图 (14)5.1.1 电路原理图的PCB显示 (14)5.2 环境温度显示 (15)5.2.1 环境温度显示使用和操作说明 (15)第六章心得体会 ........................................................................错误!未定义书签。
单片机基于51单片机的温度传感器设计
未来展望
技术升级
智能化发展
应用拓展
安全性考虑
随着技术的进步,未来可以 采用更高精度的温度传感器 ,提高系统的监测和控制精 度。同时,可以采用更先进 的单片机,提高数据处理速 度和控制效果。
未来可以增加更多的人工智 能算法,如神经网络、模糊 控制等,以实现更智能的温 度调控。此外,可以通过增 加传感器种类和数量,实现 对环境因素的全面监测与调 控。
03
02
传感器接口
将DS18B20温度传感器与单片机相 连,实现温度信号的采集。
通讯接口
通过UART串口通讯,实现单片机与 上位机之间的数据传输。
04
软件设计
温度采集
通过DS18B20温度传感器采集 温度信号,并转换为数字信号 。
数据显示
将处理后的温度数据通过 LCD1602液晶显示屏实时显示 出来。
温度传感器选择
选用常用的DS18B20温度传感器, 具有测量精度高、抗干扰能力强等优 点。
显示模块
选用LCD1602液晶显示屏,用于实 时显示温度值。
通讯接口
采用UART串口通讯,实现单片机与 上位机之间的数据传输。
硬件设计
01
电源电路
为单片机和传感器提供稳定的电源 。
显示接口
将LCD1602液晶显示屏与单片机相 连,实现温度的实时显示。
它能够检测环境中的温度变化,并将 其转换为电信号或其他可测量的物理 量,以便进一步处理和控制。
温度传感器的工作原理
温度传感器通常由敏感元件和转换电路组成。敏感元件负责 感知温度变化,而转换电路则将温度变化转换为电信号。
常见的温度传感器工作原理有热电效应、热电阻、热敏电阻 等。
温度传感器的分类
基于51单片机的温度检测系统_单片机C语言课题设计报告
单片机C语言课题设计报告设计题目:温度检测电气系2011级通信技术一班级通信技术一班通才达识,信手拈来通才达识,信手拈来1摘要本课题以51单片机为核心实现智能化温度测量。
利用18B20温度传感器获取温度信号,将需要测量的温度信号自动转化为数字信号,利用单总线和单片机交换数据,最终单片机将信号转换成LCD 可以识别的信息显示输出。
基于STC90C516RD+STC90C516RD+的单片机的智能温度检测系统,的单片机的智能温度检测系统,设计采用18B20温度传感器,其分辨率可编程设计。
本课题设计应用于温度变化缓慢的空间,综合考虑,以降低灵敏度来提高显示精度。
设计使用12位分辨率,因其最高4位代表温度极性,故实际使用为11位半,位半,而温度测量范围为而温度测量范围为而温度测量范围为-55-55-55℃~℃~℃~+125+125+125℃,℃,则其分辨力为0.06250.0625℃。
℃。
设计使用LCD1602显示器,可显示16*2个英文字符,显示器显示实时温度和过温警告信息,和过温警告信息,传感器异常信息设。
传感器异常信息设。
传感器异常信息设。
计使用蜂鸣器做警报发生器,计使用蜂鸣器做警报发生器,计使用蜂鸣器做警报发生器,当温度超过当温度超过设定值时播放《卡农》,当传感器异常时播放嘟嘟音。
单片机C 语言课题设计报告语言课题设计报告电动世界,气定乾坤2目录一、设计功能一、设计功能................................. ................................. 3 二、系统设计二、系统设计................................. .................................3 三、器件选择三、器件选择................................. .................................3 3.1温度信号采集模块 (3)3.1.1 DS18B20 3.1.1 DS18B20 数字式温度传感器数字式温度传感器..................... 4 3.1.2 DS18B20特性 .................................. 4 3.1.3 DS18B20结构 .................................. 5 3.1.4 DS18B20测温原理 .............................. 6 3.1.5 DS18B20的读写功能 ............................ 6 3.2 3.2 液晶显示器液晶显示器1602LCD................................. 9 3.2.1引脚功能说明 ................................. 10 3.2.2 1602LCD 的指令说明及时序 ..................... 10 3.2.3 1602LCD 的一般初始化过程 (10)四、软件设计四、软件设计................................ ................................11 4.1 1602LCD 程序设计流程图 ........................... 11 4.2 DS18B20程序设计流程图 ............................ 12 4.3 4.3 主程序设计流程图主程序设计流程图................................. 13 五、设计总结五、设计总结................................. ................................. 2 六、参考文献六、参考文献................................. ................................. 2 七、硬件原理图及仿真七、硬件原理图及仿真......................... .........................3 7.1系统硬件原理图 ..................................... 3 7.2开机滚动显示界面 ................................... 4 7.3临界温度设置界面 ................................... 4 7.4传感器异常警告界面 (4)电气系2011级通信技术一班级通信技术一班通才达识,信手拈来通才达识,信手拈来3温度温度DS18B20 LCD 显示显示过温函数功能模块能模块传感器异常函数功能模块数功能模块D0D1D2D3D4D5D6D7XT XTAL2AL218XT XTAL1AL119ALE 30EA31PSEN29RST 9P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78P3.0/RXD 10P3.1/TXD11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD17P3.6/WR 16P3.5/T115U180C51X1CRYST CRYSTAL ALC122pFC222pFGNDR110kC31uFVCCGND234567891RP1RESPACK-8VCC0.0DQ 2VCC 3GND 1U2DS18B20R24.7K LCD1LM016LLS2SOUNDERMUC八、程序清单八、程序清单................................. .................................5 一、设计功能·由单片机、温度传感器以及液晶显示器等构成高精度温度监测系统。
基于51单片机的温度报警控制系统报告
报告评分批改老师《现代电子综合实验》课程设计报告基于单片机的温度检测控制系统设计学生姓名 学 号专 业 班 级同组学生 提交日期 年 月 日指导教师目录2一、实验目的 .....................................................................................2二、实验要求 .....................................................................................2三、实验开发环境及工具 ...........................................................................2四、按键扫描和液晶显示功能实现 ...................................................................24.1矩阵键盘电路 ...............................................................................4.1.1矩阵键盘电路简介 .....................................................................224.1.2矩阵式按键扫描原理 ...................................................................24.1.3 按键扫描子程序设计思想及流程图 ......................................................34.2 LCD1602显示电路 ..........................................................................34.2.1 LCD1602模块简介 ....................................................................34.2.2 LCD1602模块引脚说明 .................................................................4.2.3 LCD1602控制方式及指令 ..............................................................344.2.4 LCD1602液晶显示子程序设计思想及流程图 ..............................................5五、基于单片机的温度检测控制系统设计过程 .........................................................55.1 系统整体电路框图及功能说明 ................................................................55.2 DS18B20数字温度传感器电路 ..............................................................55.2.1 单总线通信方式简介 ..................................................................65.2.2 DS18B20简介 ......................................................................5.2.3 DS18B20读写操作 ..................................................................665.3 声光报警及控制电路 ........................................................................75.4 软件设计 ..................................................................................5.4.1 主程序设计流程图 ....................................................................775.4.2 DS18B20子程序设计思想及流程图 ...................................................85.4.3 声光报警子程序设计思想及流程图 .....................................................9七、 实验过程及实验结果 ...........................................................................9八、实验中遇到的问题及解决方法 ...................................................................10附件 ............................................................................................一、实验目的(1). 掌握单片机应用系统的设计方法与步骤;(2).掌握硬件电路各功能模块的工作原理、应用电路与编程方法;(3).熟练掌握单总线的应用及编程;(4). 掌握基于单片机的温度检测控制系统的设计与实现。
基于51单片机的温度检测系统程序及仿真概要
基于51单片机的温度检测系统程序及仿真概要
1. 系统概述
本系统采用51单片机作为控制核心,通过外接温度传感器进行温度检测,并在数码管上显示当前温度值。
同时,当温度超过设定阈值时,通过蜂鸣器进行警示。
2. 系统硬件设计
本系统采用DS18B20温度传感器作为温度检测模块,通过单总线连接到51单片机的
P2.0口,同时将P2.1口连接到蜂鸣器。
数码管采用共阳极数码管,通过P0口进行控制。
系统程序采用C语言编写,在主函数中进行如下操作:
(1) 初始化DS18B20,设置温度传感器工作模式。
(2) 读取温度传感器输出的温度值,进行温度判断。
(3) 将温度值转换为数码管显示的格式并显示在数码管上。
(4) 如果温度超过设定阈值,触发蜂鸣器进行警示。
(5) 循环执行以上操作。
4. 系统仿真
5. 总结
本系统基于51单片机实现了温度检测功能,并且能够进行数码管显示以及蜂鸣器警示,具有一定的实用价值。
本系统的设计和仿真过程对于初学者来说都是一个非常好的练手项目,也有助于掌握单片机的基本编程技能和原理知识。
基于51单片机的温度检测装置的设计
基于51单片机的温度检测装置的设计一、绪论温度检测是电子技术应用的一项基本工作之一。
无论在工业生产中还是家庭日常生活中,温度检测都有着重要的作用。
设计一种简单、实用的温度检测装置,对于提高生产效率、提高安全性等方面都有着重要的作用。
目前市面上有很多种温度检测装置,如数字式温度计、红外线温度计等。
而基于51单片机的温度检测装置,由于其设计简单、易于实现、成本低廉、可靠、灵活等优点,得到了广泛的应用和研究。
二、设计目标1.能实时采集并显示当前温度值;2.具备报警功能,当温度超出设定范围时,能够及时进行报警;3.能够保存历史最高温度值,并进行显示。
三、硬件设计1.温度传感器:DS18B20;2.单片机:STC89C52;3.显示器:1602液晶显示屏;4.报警器:有源蜂鸣器。
1.温度采集与显示模块;2.温度报警模块;3.历史最高温度显示模块。
具体实现如下:1.温度采集与显示模块DS18B20_Init(); //初始化温度传感器LcdIni(); //初始化液晶显示屏然后,在一个while循环中,不断采集温度值,并将其显示在液晶显示屏上,代码如下:while(1){Ds1820Convert(); //触发温度采集Ds1820ReadTemp(temp); //读取温度值LcdCommand(0x80); //光标定位到第一行第一列LcdShowStr("Temp:"); //显示“Temp:”字样LcdShowData(temp[1]); //显示温度值的百位数LcdShowData(temp[0]); //显示温度值的十位数LcdShowData(temp[2]); //显示温度值的个位数LcdShowStr("C "); //显示“C”字母和两个空格}2.温度报警模块为了实现温度报警功能,需要定义一个阈值,并比较当前温度值是否超过了这个阈值。
如果超过了阈值,则触发报警。
基于51单片机的数字温度计
引言:数字温度计是一种基于51单片机的温度测量装置,它通过传感器感知环境的温度,并使用单片机将温度值转换为数字形式,并显示在液晶屏上。
本文将详细介绍数字温度计的设计原理、硬件连接、软件编程以及应用领域。
概述:数字温度计基于51单片机的设计理念,其基本原理是通过传感器将温度转换为电信号,然后通过ADC(模数转换器)将电信号转换为数字信号,最后使用单片机将数字信号转换为温度值。
同时,数字温度计还将温度值显示在液晶屏上,方便用户直观地了解环境温度。
正文内容:1. 硬件连接:1.1 使用温度传感器感知环境温度:常用的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。
通过将传感器连接到51单片机的引脚上,可以实现对环境温度的感知。
1.2 连接ADC进行模数转换:ADC是将模拟信号转换为数字信号的关键部件。
通过将51单片机的引脚连接到ADC芯片的输入端,可以将模拟的温度信号转换为数字信号。
1.3 连接液晶屏显示温度值:通过将51单片机的引脚连接到液晶屏的控制引脚和数据引脚,可以将温度值以数字形式显示在液晶屏上。
2. 软件编程:2.1 初始化引脚和ADC:在软件编程中,需要初始化51单片机的引脚设置和ADC的工作模式。
通过设置引脚为输入或输出,以及设置ADC的参考电压和工作模式,可以确保硬件正常工作。
2.2 温度测量算法:根据传感器的工作原理和电压-温度特性曲线,可以编写相应的算法将ADC测得的电压值转换为温度值。
例如,对于NTC热敏电阻,可以使用Steinhart-Hart公式进行温度计算。
2.3 温度值显示:将温度值以数字形式显示在液晶屏上。
通过设置液晶屏的控制引脚和数据引脚,可以控制液晶屏的显示内容,并将温度值以数字形式显示在屏幕上。
3. 基于51单片机的数字温度计应用:3.1 家庭温度监测:数字温度计可以安装在家庭中的不同区域,实时监测室内温度,并通过数字显示提供直观的温度信息。
这对于家庭的舒适性和节能都有重要意义。
基于51单片机的温度报警器设计
基于51单片机的温度报警器设计引言:温度报警器是一种用来检测环境温度并在温度超过设定阈值时发出警报的装置。
本文将基于51单片机设计一个简单的温度报警器,以帮助读者了解如何利用单片机进行温度监测和报警。
一、硬件设计硬件设计包括传感器选择、电路连接以及报警装置的设计。
1.传感器选择温度传感器的选择非常重要,它决定了监测温度的准确性和稳定性。
常见的温度传感器有热敏电阻(如NTC热敏电阻)、热电偶以及数字温度传感器(如DS18B20)。
在本设计中,我们选择使用DS18B20数字温度传感器,因为它具有高精度和数字输出的优点。
2.电路连接将DS18B20与51单片机连接,可以采用一根三线总线(VCC、GND、DATA)的方式。
具体连接方式如下:-将DS18B20的VCC引脚连接到单片机的VCC引脚(一般为5V);-将DS18B20的GND引脚连接到单片机的GND引脚;-将DS18B20的DATA引脚连接到单片机的任意IO引脚。
3.报警装置设计报警装置可以选择发出声音警报或者显示警报信息。
在本设计中,我们选择使用蜂鸣器发出声音警报。
将蜂鸣器的一个引脚连接到单片机的任意IO引脚,另一个引脚连接到单片机的GND引脚。
二、软件设计软件设计包括温度读取、温度比较和报警控制的实现。
1.温度读取通过51单片机的IO引脚和DS18B20进行通信,读取DS18B20传感器返回的温度数据。
读取温度数据的具体步骤可以参考DS18B20的通信协议和单片机的编程手册。
2.温度比较和报警控制将读取到的温度数据和设定的阈值进行比较,如果温度超过阈值,则触发报警控制。
可以通过控制蜂鸣器的IO引脚输出高电平或低电平来控制蜂鸣器是否发出声音警报。
三、工作原理整个温度报警器的工作原理如下:1.首先,单片机将发出启动信号,要求DS18B20开始温度转换。
2.单片机等待一段时间,等待DS18B20完成温度转换。
3.单片机向DS18B20发送读取信号,并接收DS18B20返回的温度数据。
基于51单片机的DS18B20温度检测_设计报告
课程名称:微机原理课程设计题目:温度检测课程设计随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的温度检测仪。
本设计使用简便,功能丰富。
可以实现温度采集,温度报警,重设上下限温度值等功能。
在现代化的工业生产中,需要对周围环境的温度进行检测和控制。
本设计对温控报警问题展开思考,设计一个能根据需求设置低温到高温进行报警并通过数码管显示的系统。
该系统使用STC89C51单片机,同时运用单线数字温度传感器DS18B20,四位共阴数码管显示,按键控制等模块可实现温度的检测与设置。
课题经过实验验证达到设计要求,具有一定的使用价值和推广价值。
本作品使用四位共阴数码管显示,可以清晰地显示当前的报警温度,一定程度避免使用者使用时出错,安全可靠,可使用于各种食品储存室,植物养殖所等地方,实用性很高。
关键字:温度报警器 STC89C51单片机数码管 DS18B20一、课程设计目的和要求 (1)1.1 设计目的 (1)1.2 设计要求 (1)二、总体设计方案 (1)三、硬件设计 (2)3.1 DS18B20传感器 (2)3.2 STC89C51功能介绍 (6)3.3 时钟电路 (8)3.4 复位电路 (8)3.5 LED显示系统电路 (9)3.6 按键控制电路 (11)3.7 蜂鸣器电路 (11)3.8 总体电路设计 (12)四、软件设计 (14)4.1 keil软件 (14)4.2 系统主程序设计 (14)4.3 系统子程序设计 (15)五、仿真与实现 (18)5.1 PROTEUS仿真软件 (18)5.2 STC-ISP程序烧录软件 (19)5.3 使用说明 (20)六、总结 (21)一、课程设计目的和要求1.1 设计目的熟悉典型51单片机,加深对51单片机课程的全面认识和掌握,对51单片机及其接口的应用作进一步的了解,掌握基于51单片机的系统设计的一般流程、方法和技巧,为我们解决工程实际问题打下坚实的基础。
基于51单片机的温湿度检测系统设计与实现
3、无线通信模块
本系统的无线通信模块采用nRF24L01无线通信芯片。nRF24L01是一款具有 2.4GHz全球开放频率的无线通信芯片,具有低功耗、高速率、高稳定性等特点。 它将主控制器处理后的数据通过无线方式发送给接收器。
4、电源模块
本系统的电源模块采用9V电池供电。我们将9V电池通过稳压器转换为5V电源, 为整个系统提供稳定的电力支持。
三、测试与结果分析
为了验证本系统的可靠性和准确性,我们进行了一系列的测试。测试结果表 明,本系统能够准确快速地采集环境中的温湿度数据,并且能够稳定地将数据上 传至计算机或其他数据采集设备。同时,本系统的按键电路和液晶显示电路也表 现良好,用户可以通过按键调整系统的参数设置,并直观地查看温湿度数据。
2、液晶显示屏
为了方便用户直观地查看温湿度数据,本系统选用了一块16×2字符型液晶 显示屏。液晶屏的驱动电路简单易懂,且具有较低的功耗。
3、按键电路
为了便于用户对温湿度检测系统的参数进行设置,本系统加入了一个按键电 路。用户可以通过按键对系统的采样间隔、数据上传频率等参数进行设置。
4、串口通信电路
图1主程序流程图
2.温湿度采集模块
温湿度采集模块主要负责通过DHT11传感器采集环境中的温湿度数据。该模 块首先对DHT11传感器进行初始化,然后通过单总线接口接收传感器输出的温湿 度数据,最后对数据进行处理并存储。
3、液晶显示模块
液晶显示模块主要负责将温湿度数据显示在液晶屏上。该模块首先对液晶屏 进行初始化,然后根据主程序传递过来的温湿度数据,控制液晶屏的字符输出。
三、软件设计
本系统的软件设计主要分为以下几个步骤:
1、系统初始化:在系统上电后,首先进行各模块的初始化操作,包括DHT11 传感器、AT89C51单片机、nRF24L01无线通信芯片等。
基于51单片机的温度测量系统
目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1选题的背景 (1)1.2课题研究的目的和意义 (1)1.3本文的结构 (1)2 系统总体方案设计 (1)2.1总体方案设计 (2)2.2部分模块方案选择 (3)2.2.1单片机的选择 (3)2.2.2温度检测方式的选择 (3)2.2.3显示部分的选择 (4)2.2.4电源模块的选择 (4)3 硬件电路的设计 (4)3.1 硬件电路设计软件 (4)3.2系统整体原理图 (5)3.3单片机最小系统电路 (6)3.4单片机的选型 (7)3.5温度测量模块 (8)3.5.1 DS18B20概述 (8)3.5.2 DS18B20测温工作原理 (11)3.5.3 DS18B20温度传感器与单片机的接口电路 (12)3.6 显示模块 (13)3.7 按键以及无线遥控模块 (15)3.7.1按键的相关知识 (15)3.7.2 5伏带解码四路无线接收板模块 (16)3.8 报警及指示灯模块 (18)3.9 电源模块 (19)4 系统软件设计及仿真部分 (20)4.1软件设计的工具 (20)4.1.1程序编写软件 (20)4.1.2仿真软件 (21)4.2各模块对应的软件设计 (22)4.2.1显示模块的程序 (22)4.2.2温度测量的程序 (26)4.2.3报警系统程序 (32)4.2.4按键程序 (33)4.2.5总体程序 (35)5 实物制作 (37)5.1电源部分 (37)5.2单片机最小系统部分 (37)5.3 总体实物 (37)6 总结 (38)7 致谢 (39)参考文献 (40)附录一 (41)附录二 (49)基于单片机的温度测量系统摘要随着测温系统的极速的发展,国外的测量系统已经很成熟,产品也比较多。
近几年来,国内也有许多高精度温度测量系统的产品,但是对于用户来说价格较高。
随着市场的竞争越来越激烈,现在企业发展的趋势是如何在降低成本的前提下,有效的提高生产能力。
基于51单片机的数字温度计设计及应用
基于51单片机的数字温度计设计及应用数字温度计是一种测量环境温度的设备,它使用数字技术来转换和显示温度值。
基于51单片机的数字温度计设计及应用,我们将使用51单片机作为主控芯片,采集传感器的温度数据并将其转换为数字信号,然后通过数码管显示出来。
首先,我们需要选择合适的温度传感器。
常见的温度传感器有热敏电阻、热电偶和数字温度传感器等。
在本设计中,我们将使用DS18B20数字温度传感器。
DS18B20具有高精度、数字输出、通信简单等优点,非常适合于数字温度计的设计。
接下来,我们需要设计硬件电路。
首先,将DS18B20传感器连接到51单片机的GPIO引脚,并通过一条数据线进行通信。
接下来,将51单片机的引脚连接到数码管显示模块,用于将温度值显示出来。
此外,还可以添加其他功能,如按键开关用于控制菜单切换、蜂鸣器用于报警等。
在软件设计上,首先需要初始化51单片机的GPIO引脚,配置为输入或输出模式,通信时需要配置为模拟输入模式。
然后,利用51单片机的定时器模块生成一定频率的时钟信号,用于与DS18B20传感器通信。
在温度读取过程中,我们需要发送一系列的指令给DS18B20传感器,然后接收传感器返回的温度值。
根据DS18B20传感器的数据手册,我们可以编写相应的C语言代码进行数据的读取和解析。
接着,我们需要将读取到的温度值进行转换和显示。
由于DS18B20传感器输出的温度值为16位二进制补码形式,我们可以使用移位和逻辑运算等操作进行转换。
转换后的温度值可以直接显示在数码管上,通过扫描显示的方式实时更新温度数值。
在应用方面,基于51单片机的数字温度计可以广泛应用于各种温度测量场景。
例如,可以应用于室内温度测量,工业过程控制,农业温室监测等。
由于51单片机具有低功耗、成本低廉等优点,这种数字温度计可以在各种资源有限的环境中使用。
除了基本功能外,我们还可以进行功能扩展。
例如,可以添加存储功能,将温度数据保存到外部存储器中,以便进行后续分析和处理。
基于51单片机的数字温度计设计
基于51单片机的数字温度计设计数字温度计是一种广泛使用的电子测量设备,通过传感器将温度转化为数字信号,并显示出来。
本文将介绍基于51单片机的数字温度计的设计。
该设计将使得使用者能够准确、方便地测量温度,并实时显示在液晶显示屏上。
1. 硬件设计:- 传感器选择:在设计数字温度计时,我们可以选择使用NTC(负温度系数)热敏电阻或者DS18B20数字温度传感器作为温度传感器。
这里我们选择DS18B20。
- 信号转换:DS18B20传感器是一种数字传感器,需要通过单总线协议与51单片机进行通信。
因此,我们需要使用DS18B20专用的驱动电路,将模拟信号转换为数字信号。
- 51单片机的选择:根据设计要求选择合适的51单片机,如STC89C52、AT89S52等型号。
单片机应具备足够的IO口来与传感器和液晶显示屏进行通信,并具备足够的计算和存储能力。
- 显示屏选择:为了实时显示温度,我们可以选择使用1602型字符液晶显示屏。
该显示屏能够显示2行16个字符,足够满足我们的需求。
通过与51单片机的IO口连接,我们可以将温度数据显示在屏幕上。
2. 软件设计:- 采集温度数据:通过51单片机与DS18B20传感器进行通信,采集传感器传输的数字温度数据。
通过解析传感器发送的数据,我们可以获得当前的温度数值。
- 数据处理:获得温度数据后,我们需要对其进行处理。
例如,可以进行单位转换,从摄氏度到华氏度或者开尔文度。
同时,根据用户需求,我们还可以对数据进行滤波、校准等处理。
- 显示数据:通过与液晶显示屏的连接,我们可以将温度数据显示在屏幕上。
可以使用51单片机内部的LCD模块库来控制液晶显示屏,显示温度数据以及相应的单位信息。
- 用户交互:可以设置一些按键,通过与51单片机的IO口连接,来实现用户与数字温度计的交互。
例如,可以设置一个按钮来进行温度单位的切换,或者设置一个按钮来启动数据保存等功能。
3. 功能拓展:- 数据存储:除了实时显示当前温度,我们还可以考虑增加数据存储功能。
基于51单片机的数字温度计-毕业设计
数字测温计设计摘要:随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。
在工业生产中温度是常用的被控参数,而采用单片机来对这些被控参数进行控制已成为当今的主流。
本文介绍了基于AT89S51单片机的测温系统,描述了利用DS18B20开发测温系统的过程,对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详实的分析,对各部分的电路也逐一进行了介绍,该系统灵活的实现了温度采集和显示,且可设定上下限报警温度,使用起来十分方便,适合于我们日常生活和生产中的温度测量,该系统结构相对简单,抗干扰能力较强,适合于不同环境下温度测量,有着广阔的应用前景。
关键词:AT89S51单片机DS18B20 温度测量Abstract:With the progress and development of era,microcontroller technology has become popular in our life,in the work,the scientific research and various fields,has become a relatively mature technology.The temperature measurement method and device of the highlights is very important.Posed by the single chip temperature sensor and temperature measurement system can be widely applied in many fields.目录第1章绪论 (1)1.2 选题的目的和意义 (1)1.2.1选题的目的 (1)1.2.2选题的意义 (1)第2章数字温度计的设计方案 (4)2.1 设计方案的确立及论证 (4)2.1.1 温度传感器DS18B20的选择 (4)2.1.2 显示器的选择 (5)2.1.3 单片机STC89C52的选择 (5)第3章系统硬件电路的设计 (4)3.1 主控制器 (4)3.1.1 AT89S51的介绍 (4)3.1.2 DS18B20的介绍 (9)3.1.3 DS18B20使用的注意事项 ......................................... 错误!未定义书签。
基于51单片机数字温度计的设计与实现
基于51单片机数字温度计的设计与实现数字温度计是一种能够测量环境温度并显示数值的设备。
基于51单片机的数字温度计设计与实现是指利用51单片机作为核心,结合温度传感器和其他辅助电路,实现一个能够测量温度并通过数码管显示温度数值的系统。
本文将从硬件设计和软件实现两个方面介绍基于51单片机数字温度计的具体设计与实现过程。
一、硬件设计1. 温度传感器选取在设计数字温度计时,首先需要选取合适的温度传感器。
市面上常用的温度传感器有热敏电阻、功率型温度传感器(如PT100)、数字温度传感器(如DS18B20)等。
根据设计需求和成本考虑,我们选择使用DS18B20数字温度传感器。
2. 电路设计基于51单片机的数字温度计的电路设计主要包括单片机与温度传感器的连接、数码管显示电路和电源电路。
(1)单片机与温度传感器的连接在电路中将51单片机与DS18B20数字温度传感器相连接,可采用一线总线的方式。
通过引脚的连接,实现单片机对温度传感器的读取控制。
(2)数码管显示电路为了能够显示温度数值,我们需要设计一个数码管显示电路。
根据温度传感器测得的温度值,通过数字转换和数码管驱动,将温度数值显示在数码管上。
(3)电源电路电源电路采用稳压电源设计,保证整个系统的稳定供电。
根据实际需求选择合适的电源电压,并添加滤波电容和稳压芯片,以稳定电源输出。
3. PCB设计根据电路设计的原理图,进行PCB设计。
根据电路元件的布局和连线的走向,绘制PCB板的线路、元件和连接之间。
二、软件实现1. 单片机的编程语言选择对于基于51单片机的数字温度计的软件实现,我们可以选择汇编语言或者C语言进行编程。
汇编语言的效率高,但编写难度大;C语言的可读性好,开发效率高。
根据实际情况,我们选择使用C语言进行编程。
2. 温度传感器数据获取利用单片机的IO口与温度传感器相连,通过一线总线协议进行数据的读取。
根据温度传感器的通信规则,编写相应的代码实现数据的读取。
基于51单片机的温度检测报警系统与时钟课程设计
基于单片机的温度检测报警与万年历系统目录摘要〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1一、设计要求与方案论证1.1设计要求〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1 1.2系统方案选择和论证〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1 1.3电路最终方案确定〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1二、电子万年历与温度采集报警硬件设计和实现2.1系统设计〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 2 2.1.1系统设计框图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 22.1.2系统硬件需求介绍〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 3 2.2系统硬件各模块作用〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 3 2.2.1单片机核心控制模块〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 42.2.2数字温度传感器模块〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃42.2.3彩屏显示电路模块〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 52.2.4蜂鸣器电路模块〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃5 2.3系统电路图设计〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃6 2.3.1系统电路原理框图和原理图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃7三、软件设计与分析3.1系统软件流程图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃8 3.1.1DS18B20程序流程图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃8四、系统测试4.1测试工具〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃9 4.2软件测试〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃9 4.3硬件测试〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃10 参考文献〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃11 附录一:程序清单〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃12 附录二:PCB电路图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃13基于单片机的温度检测报警与万年历系统摘要温度检测报警系统也是在日常生活和工业应用非常广泛的工具,能实时采集周围的温度信息进行显示,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。
基于51单片机数字温度计设计与实现
基于51单片机数字温度计设计与实现数字温度计是一种常见的电子仪器,用于测量和显示温度。
本文将介绍如何基于51单片机设计和实现一个数字温度计。
首先,我们需要了解51单片机的基本原理和工作方式。
51单片机是一款广泛应用于嵌入式系统中的微控制器,具有低成本、易编程、可扩展等特点。
它由中央处理器、存储器、输入输出端口和定时器等组成,可以实现各种功能。
接下来,我们可以开始设计数字温度计的硬件部分。
首先,我们需要一个温度传感器,如DS18B20数字温度传感器。
该传感器具有高精度和数字输出的特点,可以直接与51单片机进行通信。
然后,将传感器与51单片机的引脚相连,通过读取传感器输出的温度值,即可得到实时的温度数据。
为了方便用户查看温度,我们可以通过数码管或LCD显示屏显示温度值。
数码管是一种7段显示器件,可以显示数字0-9的字符。
我们可以通过将温度值拆分成各个位数,然后将对应的数字发送到数码管上,实现温度的显示。
此外,我们还可以为温度计添加一些附加功能。
例如,可以通过按键切换温度的单位,从摄氏度切换到华氏度。
还可以设置温度报警功能,当温度超过一定阈值时,触发蜂鸣器或LED灯进行报警。
在软件设计方面,我们需要编写51单片机的固件程序来实现温度计的功能。
首先,我们需要初始化51单片机的引脚和定时器。
然后,可以设置一个定时器中断,用于定时读取温度传感器的数值。
在定时器中断的处理函数中,读取温度传感器的数值,并将其转换为摄氏度或华氏度,然后发送到数码管或LCD显示屏上。
此外,我们还可以添加一些交互功能,例如按键实现温度单位切换或报警阈值的设置功能。
通过按键检测的方式,可以在主循环中判断按键的按下和释放,并根据按键的状态进行相应的操作。
最后,我们需要将编写好的固件程序下载到51单片机的存储器中。
可以使用ISP编程器或者串口下载方式进行下载。
下载完成后,将51单片机与硬件连接好,就可以通过操作按键和观察数码管或LCD显示屏来实现数字温度计的功能了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于51单片机的温度检测设计一.基本功能
利用AT89c51作为主控器和温度检测芯片DS18B20组成一个温度检测系统,实现温度的实时监控并由数码管显示。
二.硬件设计
图1.总设计图
1.单片机最小系统
1.1选用AT89C51的引脚功能
图2. AT89C51
XTAL1:单芯片系统时钟的反向放大器输入端。
XTAL2:系统时钟的反向放大器输出端,一般在设计上只要在XTAL1和XTAL2上接上一只石英震荡晶体系统就可以工作了,此外可以在两引脚与地之间加入20PF的小电容,可以使系统更稳定,避免噪音干扰而死机。
RESET:重置引脚,高电平动作,当要对晶体重置时,只要对此引脚电平提升至高电平并保持两个及其周期以上的时间便能完成系统重置的各项动作,使得内部特殊功能寄存器内容均被设成已知状态。
I/O:端口3是具有内部提升电路的双向I/O端口,通过控制各个端口的高低电平来控制数码管得位选。
端口2用来控制数码管的段选。
1.2复位电路
如图所示,当按下按键时,就能完成整个系统的复位,使得程序从新运行。
图3.复位电路
1.3时钟电路
时钟电路用于产生单片机工作所需要的时钟信号,单片机本身就是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号控制下严格地按时序进行工作。
在AT89C51芯片内部有一个高增益反相放大器,其输入端为芯片引脚X1,输出端为引脚X2,在芯片的外部跨接晶体振荡器和微调电容,形成反馈电路,就构成了一个稳定的自激振荡器。
此电路采用12MHz的石英晶体。
图4.时钟电路
2.数码管部分
图5.数码管电路3.DS18B20部分
图5.
三.软件设计
3.1编程语言及编程软件的选择
本设计选择C语言作为编程语言。
C语言虽然执行效率没有汇编语言高,但语言简洁,使用方便,灵活,运算丰富,表达化类型多样化,数
据结构类型丰富,具有结构化的控制语句,程序设计自由度大,有很好
的可重用性,可移植性等特点。
而汇编语言使用起来并没有这么方便。
本设计选用了Keil作为编程软件,.Keil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。
在开发大型软件时更能体现高级
语言的优势。
3.2 DS18B20工作原理
DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。
DS18B20测温原理如图2-6-1所示。
图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。
高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。
计数器1和温度寄存器被预置在-55℃所对应的一个基数值。
计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。
图6: DS18B20测温原理框图
3.3 数码管显示原理
本设计使用的是共阴极的八段式LED数码管,每个数码管是由8个小LED灯组成,通过控制每个小LED灯的亮灭来显示不同的数字。
通过控制相应I/O的电平变化就可以控制数码管的显示。
四.程序
#include<reg52.h>
#define uchar unsigned char
#define uint unsigned int
#define dx P2
#define wx P3
sbit ds=P3^7;
uint temp;
float f_temp;
uchar code t[]={ 0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x80
};
void delayms(uchar xms)
{
uint i,j;
for(i=xms;i>0;i--)
for(j=120;j>0;j--);
}
void delayus(uint time)
{
while(time--);
}
void dsreset(void) //DS18B20复位,初始化函数{
ds=0;
delayus(103);
ds=1;
delayus(4);
}
bit tempreadbit(void) //读一位数据的函数
{
uint x;
bit dat;
ds=0;x++; //起延时用
ds=1;x++;x++;
dat=ds;
delayus(8);
return(dat);
}
uchar tempread(void) // 读一个字节的函数
{
uchar i,j,dat;
dat=0;
for(i=1;i<=8;i++)
{
j=tempreadbit();
dat=(j<<7)|(dat>>1); // 读出的数据最低位在前面}
return(dat);
}
void tempwritebyte(uchar dat) //向DS18B20写一个字节数据{
uint i;
uchar j;
bit testb;
for(j=1;j<=8;j++)
{
testb=dat&0x01;
dat=dat>>1;
if(testb)
{
ds=0;
i++;i++;
ds=1;
delayus(8);
}
else
{
ds=0;
delayus(8);
ds=1;
i++;i++;
}
}
}
void tempchange(void) //开始获取温度并转换
{
dsreset();
delayms(1);
tempwritebyte(0xcc); //跳过读ROM指令
tempwritebyte(0x44); //写温度指令指令
}
uint get_temp() //读取寄存器中的温度数据
{
uchar a,b;
dsreset();
delayms(1);
tempwritebyte(0xcc); //跳过读ROM指令
tempwritebyte(0xbe); //写暂存器
a=tempread(); //读低八位
b=tempread(); // 读高八位
temp=b;
temp<<=8;
temp=temp|a;
f_temp=temp*0.0625;
temp=f_temp*10+0.5;
f_temp=f_temp+0.05;
return temp;
}
void dis_temp(uint t) //显示温度{
uchar i;
wx=0x08;
i=t/100;
dx=t[i];
delayms(100);
wx=0x04;
i=t%100/10;
dx=t[i];
ddelayms(100);
wx=0x01;
i=t%100%10;
dx=t[i];
delayms(100);
}
void main()
{
uchar i;
while(1)
{
tempchange();
for(i=10;i>0;i--)
{
dis_temp(get_temp());
}
}
}。