5.1振幅调制的基本原理

合集下载

第5章 振幅调制及解调

第5章   振幅调制及解调

uSSB (t)

Um0 2
cos t
cosCt

Um0 2
sin t
sin C t
第5章 振幅调制及解调
H()
C C4 滤波法框图
第5章 振幅调制及解调
第一项是载波与调制信号相乘项,第二项是调制信号 的正交信号与载波的正交信号的乘积项,两项相加得下边 带信号,如图5.15所示。
第5章 振幅调制及解调
第5章 振幅调制及解调
5.1 概述 5.2 振幅调制信号分析 5.3 振幅调制方法 5.4 振幅调制电路 5.5 振幅解调方法 5.6 振幅解调电路
第5章 振幅调制及解调
5.1 概 述
5.1.1 连续波模拟调制 连续波模拟调制的载波是连续的等幅高频正弦波, 用uC表示
uC=UCmcos(ωCt+φ) 将调制信号uΩ寄载在载波上的方法有三种。一种是把 调制信号寄载在载波的幅度上,叫做振幅调制,简称 调幅(AM)。已调波用uAM表示,如图5.1所示。
第5章 振幅调制及解调
采样
量化
编码
信道
解码
滤波
u(t)
uo(t)
s(t) Ts
定时
发射
接收
同步
图5.4 脉冲数字调制系统框图
第5章 振幅调制及解调
脉冲调制信号的传输方式有两种。一种是直接将 脉冲调制信号送入信道进行传输,这种方式叫基带传 输。这种传输方式适用于短距离通信。另一种是载波 传输。载波传输是两次调制方式。
uAM UC KM uuC uC (1 KM u )
UCm (1 KMUΩm cos t) cosCt
与式(5.2-1)对照可见
U m0
Ucm , ma

幅调制的原理详解PPT课件

幅调制的原理详解PPT课件

湖南省衡阳市2023届第五中学高三模拟政治试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2022年上半年,我国国内生产总值达到56万亿元,同比增长2.5%,国民经济延续恢复发展态势,经济企稳回升。

下图为2022年1至8月我国财政收支情况(单位:亿元)。

从材料可以看出()①我国实施积极的财政政策①我国经济结构持续优化①经济发展是财政收入的基础①国家各项职能的实现以税收为物质基础A.①①B.①①C.①①D.①①2.2022年10月,《鼓励外商投资产业目录(2022年版)》正式发布。

该目录充分挖掘了中西部、东北各省份在劳动力成本、土地成本方面的比较优势和潜力,新增了相关条目,实施针对性鼓励政策,支持劳动密集型外资企业向中西部、东北地区投资。

这有利于()①推动外资企业全面融入各地产业体系,发挥协同共进作用①发挥投资地生产要素优势,提高生产要素的综合利用效率①运用产业政策,引导外资企业更好促进我国区域协调发展①形成中西部产业集聚效应,率先实现中西部地区优化发展A.①①B.①①C.①①D.①①3.我国养老保险体系包括基本养老保险、企业年金、个人养老金等三部分。

2022年4月,《国务院办公厅关于推动个人养老金发展的意见》提出,推动发展适合中国国情、政府政策支持、个人自愿参加、市场化运营的个人养老金,实现养老保险补充功能。

我国推动个人养老金发展是基于()①个人养老金是保障社会成员生活安全的“最后一道防线”①个人养老金通过发挥社会互助功能推动社会持续健康发展①个人养老金可以满足人民群众多层次多样化养老保险需求①推动个人养老金发展有利于我国社会保障事业高质量发展A.①①B.①①C.①①D.①①4.党的十九届五中全会通过的《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》指出,要探索宅基地所有权、资格权、使用权分置实现形式。

什么是振幅调制电路它在电子电路中的作用是什么

什么是振幅调制电路它在电子电路中的作用是什么

什么是振幅调制电路它在电子电路中的作用是什么振幅调制电路在电子电路中扮演着重要的角色,它用于将基带信号调制到载波信号上,以实现信号的传输和处理。

本文将介绍振幅调制电路的基本原理、作用和应用。

一、振幅调制电路的基本原理振幅调制电路主要由振幅调制器和功率放大器组成。

振幅调制器用于将基带信号通过调制器的调制作用,调制到高频载波信号上,以实现信息信号的传递。

而功率放大器则用于将调制后的信号进行放大,以便在传输过程中保持信号的稳定性和传输距离。

二、振幅调制电路的作用振幅调制电路在电子电路中起到了至关重要的作用,其主要作用包括以下几点:1. 信号传输:振幅调制电路可以将基带信号通过调制过程转换为具有较高频率的载波信号,从而实现信号的传输。

通过调制可以将信息信号带到远距离,扩大了信号的传输范围。

2. 信息处理:振幅调制电路可以对信号进行调制和处理,实现信号的编码、解码和压缩等功能。

通过对信号的调制处理,可以实现对音频、视频等信息的传输和处理。

3. 抗干扰性能:振幅调制电路对于外界电磁信号的干扰具有一定的抵抗能力。

通过调制和解调过程,可以减小信号受到干扰的程度,提高信号的抗干扰性能。

4. 节约资源:通过信号的调制和压缩处理,振幅调制电路可以减小信号的带宽,从而使得信号的传输需要的资源更少。

这对于网络传输和资源开销方面具有重要意义。

5. 数据传输:振幅调制电路可以将数字信号转换为模拟信号进行传输。

在数字通信中,振幅调制电路扮演着将数字信号转换为模拟信号的重要角色。

三、振幅调制电路的应用振幅调制电路在通信领域有着广泛的应用,主要体现在以下几个方面:1. 无线电广播:振幅调制电路在无线电广播领域是非常常见的应用之一。

广播电台通过振幅调制将音频信号调制到载波信号上,然后进行传输和接收。

这种调制方式可以使得广播信号传输的范围更大,并实现多路信号的同时传输。

2. 电视传输:振幅调制电路在电视传输中也是非常重要的一部分。

电视信号通常由音频和视频两个部分组成,振幅调制电路负责将这两部分信号调制到载波信号上,然后进行传输和接收。

振幅调制

振幅调制

振幅调制(AM及DSB)摘要:信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且使频谱资源得到充分利用。

调制作用的实质就是使相同频率范围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致互相干扰。

这也是在同一信道中实现多路复用的基础。

而要还原出被调制的信号就需要解调电路。

所以现在调制与解调在高频通信领域有着更为广泛的应用。

关键词:振幅调制,单频信号引言:调制的作用是把消息置入消息载体,便于传输或处理。

在通信系统中为了适应不同的信道情况(如数字信道或模拟信道、单路信道或多路信道等),常常要在发信端对原始信号进行调制,得到便于信道传输的信号,调制是各种通信系统的重要基础,也广泛用于广播、电视、雷达、测量仪等电子设备。

一.振幅调制的原理振幅调制常用于长波,中波,短波和超短无线电广播,通信,电视,雷达等系统。

这种调制方式是用传递的低频信号去控制作为传送媒体的高频震荡波的幅度,使已调波的幅度随调制信号的大小线性变化,而保持载波的角频率不变。

标准调幅(AM)就是其中一种。

标准振幅调制是一种相对便宜的质量不高的调制形式。

主要用于声频和视频的商业广播。

AM调制器是非线性设备,有2个输入端口和1个输出端口,一端输入振幅为常数的单频载波信号,另一端输入低频载波信息信号。

在调制器中,信息作用在载波上,就产生了振幅随调制信号瞬时值而变化的已调波。

通常已调波是能有效地通过天线发射,并在自由空间中传播的射频波。

二单频信号调制1.AM调幅波的数学表达式如果设单频调制信号为uI =UImcosΩt,设载波为u c=U cm cosωCt,那么调幅信号(已调波)就可以表示为:uAM =UAM(t) cosωCt, (1)在该式子中UAM(t)称为已调波的瞬时幅值(也称为调幅波的包络函数)。

由于调幅信号的瞬时振幅与调制信号成线性关系,则有:UAM (t)= U cm+kaUImcosΩt= U cm(1+ ka UImcosΩt/ U cm)= U cm(1+macosΩt) (2)式中ka 为比例常数,一般由调制电路的参数决定;ma= kaUIm/ U cm,为调制系数(或称调制深度)ma反映了调幅波振幅的改变量,常用百分比表示,将(2)式代入(1)式可得到单频信号调幅波的表达式如下:uAM = U cm(1+macosΩt) cosωCt基于以上原理,我们做的是单二极管开关状态调幅电路,图2.1单二极管调幅电路设负载Z L 为LC 选频回路,分析可知回路谐振时Z L =R L ,且流过负载回路的电流为:i d =Ld R r +1S(t)u d 式中u d = u I (t)+ u c (t); S(t)为开关函数,且有:S(t)=1,u c >0; S(t)=0, u c <0; S(t)为周期函数,其傅里叶级数为: S(t)=∙∙∙+-+t t c c ωπωπ3cos 32cos 221i d =L d R r +1⎥⎦⎤⎢⎣⎡∙∙∙+-+t t c c ωπωπ3cos 32cos 221 (U Im cos Ωt+ U cm cos ωC t) 如果LC 回路谐振在频率ωC 处,由谐振时负载阻抗Z L =R L ,则可得出回路的输出电压为:u L (t)=()()[]t t R U g t R U g c c L In d c L cm d Ω-+Ω++ωωπωcos cos 1cos 21 =t t U U R U g c cm InL cm d ωπcos cos 4121⎪⎪⎭⎫ ⎝⎛Ω+=()t t m U c Lm ωcos cos 1Ω+ 式中d g =Ld R r +1,m=cm In U U π4,Lm U =L cm d R U g 21;如果我们给定元件的参数,固定载波的振幅U cm 与频率ωC 不变,只改变调制信号的振幅U Im ,R L =900Ω,r d =100Ω, L=100H,C=0.01 μF;可知谐振频率为:LCc 1=ω=1000 rad/s ,载波信号给定为u c =6cos (200πt)当u I =43πcos(20πt )时, m=0.5. 在matlab 中编写代码实现AM 波的调幅,代码如下: 1)调制信号的程序代码: fs=1000;%设定采样频率 N=1024;%设定数据长度 i=0:N-1; t=i/fs;f=10;%设定信号频率 %生成正弦信号 x=(3*pi/4)*cos(2*pi*f*t); subplot(231);plot(t,x);%信号的时域波形 axis([0,0.3,-4,4]); xlabel('t'); ylabel('y');title('信号时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; subplot(232);plot(f,mag);%做频谱图axis([0,200,0,2000]);xlabel('频率(Hz)');ylabel('幅值');title('信号幅频谱图')下面是调制信号的时域波形图与频谱图的截图:图2.22)载波信号的程序代码:fs=1000;%设定采样频率N=1024;%设定数据长度i=0:N-1;t=i/fs;f=100;%设定信号频率x=6*cos(2*pi*f*t); %生成余弦信号subplot(231);plot(t,x);%作信号的时域波形axis([0,0.05,-8,8]);xlabel('t');ylabel('y');title('载波信号时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; subplot(232);plot(f,mag);%做频谱图axis([0,200,0,300]);xlabel('频率(Hz)');ylabel('幅值');title('信号幅频谱图')下面是载波信号的时域波形图与频谱图的截图:图2.33)两个信号叠加以后即为已调波,已调波代码如下fm=10; %调制信号频率fc=100; %载波信号频率t=0:0.000001:0.5;x=0:0.000001:2;m1=0.5;s_am1=6*(1+m1.*cos(2*pi*fm*t)).*cos(2*pi*fc*t); figure(2) %图2为ma=0.5时的已调波plot(t,s_am2); grid on;title('m=0.5时AM调制信号');xlabel('t'); ylabel('v');运行后其调幅波波形如下:图2.44)现在再来看m=0.5时已调波的频谱图,其代码如下:t=i/fs;fm=10; %调制信号频率Hzfc=100; %载波信号频率Hzma1=0.5;x=6*(1+ma1.*cos(2*pi*fm*t)).*cos(2*pi*fc*t);y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; subplot(232);plot(f,mag);%做频谱图axis([0,200,0,1500]);xlabel('频率(Hz)');ylabel('幅值');title('已调波信号频谱图(m=0.5时)')下图是已调波的频谱图:图2.5由以上各图可知m=0.5时可以保证已调波的包络真实地反映出调制信号的变化规律当uI =23 cos(20πt)时, m=1.调制信号程序代码如下:fs=1000;%设定采样频率N=1024;%设定数据长度i=0:N-1;t=i/fs;f=10;%设定信号频率x=(3*pi/2)*cos(2*pi*f*t); %生成余弦信号subplot(231);plot(t,x);%信号的时域波形axis([0,0.3,-6,6]);xlabel('t');ylabel('y');title('调制信号时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; subplot(232);plot(f,mag);%做频谱图axis([0,200,0,2000]);xlabel('频率(Hz)');ylabel('幅值');title('信号幅频谱图')下面是调制信号的时域波形图与频谱图:图2.6再来看已调波的波形图,程序的代码如下:fm=10; %调制信号频率fc=100; %载波信号频率t=0:0.000001:0.5;x=0:0.000001:2;m2=1;s_am2=6*(1+m2.*cos(2*pi*fm*t)).*cos(2*pi*fc*t); figure(2) %为m1=1时的已调波plot(t,s_am2); grid on;title('m=1时AM调制信号');xlabel('t'); ylabel('v');程序运行的结果如下:图2.7再来看m=1时已调波的频谱图,其代码如下:fs=1000;%设定采样频率N=1024;%设定数据长度i=0:N-1;t=i/fs;fm=10; %调制信号频率Hzfc=100; %载波信号频率Hzma2=1;x=6*(1+ma2.*cos(2*pi*fm*t)).*cos(2*pi*fc*t);y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; subplot(232);plot(f,mag);%做频谱图axis([0,200,0,2500]);xlabel('频率(Hz)');ylabel('幅值');title('已调波信号频谱图(m=1时)')下图为程序运行后的结果图:图2.8由上图知m=1时,调制系数的百分比达到100%,此时包络振幅的最小值为0当uI =49 cos(20πt)时, m=1.5. 调制信号程序代码如下:fs=1000;%设定采样频率N=1024;%设定数据长度i=0:N-1;t=i/fs;f=10;%设定信号频率x=(9*pi/4)*cos(2*pi*f*t); %生成余弦信号subplot(231);plot(t,x);%作信号的时域波形axis([0,0.3,-8,8]);xlabel('t');ylabel('y');title('调制信号时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; subplot(232);plot(f,mag);%做频谱图axis([0,200,0,2000]);xlabel('频率(Hz)');ylabel('幅值');title('信号幅频谱图')图2.9下面再来看已调波的波形图,程序的代码如下:fm=10; %调制信号频率fc=100; %载波信号频率t=0:0.000001:0.5;x=0:0.000001:2;m3=1.5;s_am2=6*(1+m3.*cos(2*pi*fm*t)).*cos(2*pi*fc*t); figure(2) %图2为ma=0.5时的已调波plot(t,s_am2); grid on;title('m=1.5时AM调制信号');xlabel('t'); ylabel('v');程序运行的结果如下:图2.10再来看m=1.5时已调波的频谱图,其代码如下:fs=1000;%设定采样频率N=1024;%设定数据长度i=0:N-1;t=i/fs;fm=10; %调制信号频率Hzfc=100; %载波信号频率Hzma3=1;x=6*(1+ma3.*cos(2*pi*fm*t)).*cos(2*pi*fc*t);y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; subplot(232);plot(f,mag);%做频谱图axis([0,200,0,2500]);xlabel('频率(Hz)');ylabel('幅值');title('已调波信号频谱图(m=1.5时)')下图为程序运行后的结果图:图2.11由图知此时已调波的包络形状与调制信号不一样,产生了严重的包络失真,这种情况称为过量调幅,实际应用时应尽量避免。

高频电子线路阳昌汉版第5章_振幅调制与解调

高频电子线路阳昌汉版第5章_振幅调制与解调

uc(t)
1 id K (ct )ud rd RL K (ct ) 为周期性的函数,可用傅立叶级数展开 1 2 2 2 K ct cosct cos3ct cos5ct ....... 2 3 5
K ( c t )
1 uc t 0 开关函数K (ct ) 0 uc t 0 1 2 2 2 K ct cosct cos3ct cos5ct ....... 2 3 5
设计时输出功率和效率不是主要指标。重点是提高调制的 线性度,减小不需要的频率分量和提高滤波性能。
高电平调幅电路: 在所需的功率电平上进行调制,调制与 功放合一,一般用于发射机的末级。 一般只能产生AM。 优点:整机效率高。 设计时必须兼顾输出功率、效率和调制线性的要求。
17
5.3.1 低电平调幅电路
通过相乘实现!
5
二、单频调制
1、表达式
uΩ t U Ωm cos Ωt U Ωm cos 2Ft
u t U cm ka uΩ t cos ct
通常 c Ω
U cm kaU Ωm cosΩt cos ct U cm 1 ma cosΩt cos ct
主要用途:可产生AM、 DSB 、 SSB 单二极管开关状态调幅电路 二极管调幅电路 主要电路: 模拟乘法器调幅电路 二极管平衡调幅电路
二极管环型调幅电路
18
一、单二极管开关状态调幅电路 (1)什么是开关状态 当二极管在两个电压共同作用下,其中一个电压振幅足够 大,另一个电压振幅较小,二极管的导通和截止将完全受大 振幅电压的控制,可以近似认为二极管处于理想开关状态。 (2)调幅原理

振幅调制原理

振幅调制原理

振幅调制原理
振幅调制(Amplitude Modulation,简称AM)是一种调制技术,它通过改变载波的振幅,来传输要调制的信号。

具体而言,振幅调制是将调制信号的幅度(即振幅)与高频载波信号相乘,得到一个新的带有调制信号特征的调制信号。

在振幅调制中,调制信号通常是音频信号,比如人声或者音乐。

而载波信号是具有固定频率和振幅的高频信号。

调制信号和载波信号相乘的结果,就是振幅调制信号。

振幅调制过程中,调制指数(也称调制深度)是一个关键参数。

调制指数是调制信号的幅度变化与载波幅度的比值。

调制指数的大小会影响到调制信号的功率和频谱分布。

振幅调制的原理可以用以下几个步骤来解释:
1. 调制信号:将要传输的音频信号作为调制信号。

2. 载波信号:选择一个高频信号作为载波信号。

3. 调制过程:将调制信号的幅度与载波信号相乘,得到一个新的调制信号。

4. 调制指数:调节调制指数,控制调制信号的幅度变化。

5. 传输信号:将调制后的信号传输到接收端。

在接收端,需要进行解调过程,将调制信号还原为原始的调制信号。

解调过程是振幅调制的逆过程,在解调过程中,通过将收到的调制信号与一个参考信号(通常是与发送端相同的载波信号)相乘,就可以获得原始的调制信号。

振幅调制在广播和电视等领域中得到了广泛应用。

它可以实现信号的远距离传输,同时具有一定的抗干扰能力。

然而,振幅调制也存在一些问题,比如在传输过程中容易受到噪声和干扰的影响,以及只能传输一个信号的限制。

因此,在一些特定的应用场景中,人们也使用其他调制技术,比如频率调制(FM)和相位调制(PM)。

第五章振幅调制及解调

第五章振幅调制及解调

e 2 jt e 2j
jt

频移特性

f1 (t) F1 ( j )
jc t
则 f(t) f 1 (t) e
F1 ( j jc )

卷积定理
f1 (t) f 2 (t) F1 ( j )F2 ( j )
1 f1 (t)f 2 (t) F1( j ) F2 ( j ) 2
5.3.1利用非线性器件实现两个信号的相乘运算
iC - iC
+ u1 u be u2 - + + - EB + - (a ) u BE
ZL
ICQ 0
Q
EB (b )
u BE
图5.17 晶体三极管放大器 (a)晶体三极管放大器简图;(b)晶体管 转移特性
三极管转移特性iC=f(uBE)如图5.17(b)所示。 uBE=EB+ube,EB为静态偏置电压,晶体管静态工作 点为Q,ube为外加的交流信号。当ube比较小时,可 以将转移特性在静态工作点附近用泰勒级数展开。
0
t
图5.12 单频调制SSB信号波形图
USSB() 下边频
Um0
0
C- C
USSB() 上边频 Um0

0
C C+
图5.13 单频调制SSB信号的频谱


单边带信号的产生方法:滤波法和相移法
滤波法
H()
C C+m a x
u BF u SSB 上边带 uC

要求滤波器过渡 带很陡,当调制 信号中的低频分 量越丰富时,滤 波器的过渡带要 求越窄,实现起 来就越困难。
2 3
4
ube3 u1 u2 时
iC 3

振幅调制电路

振幅调制电路
振幅调制电路有两个输入端和一个输出端,如图 5.2 所 示 。 输 入 端 有 两 个 信 号 : 一 个 是 输 入 调 制 信 号 uΩ(t)=UωmcosΩt= Uωm cos2πFt,称之为调制信号,它 含有所需传输的信息;另一个是输入高频等幅信号, uc(t)=Ucmcosωct=Ucmcos2πfct,称之为载波信号。其中, ωc=2πfc,为载波角频率;fc为载波频率。
uo(t)= Amuc(t)uΩ(t)
=AmUΩm cosΩt Ucmcosωct
(5―10)
由上式可得双边带调幅信号的波形,如图5.9(a)所示。
根据(5―10)式可得双边带调幅信号的频谱表达式为
uo
(t)
1 2
AmUmUcm[cos(c
)t
cos(c
)t]
(5―11)
u(t)
Am uo(t)=Amu(t)uc(t)
(5―2)
4) 普通调幅信号的频谱结构和频谱宽度
将式(5―1)用三角函数展开:
Uo (t) Uomct mUom cos t cosct
Uom
cosct
1 2
maUom
cos(c
)t
1 2
maUom
cos(c
)t
(5―3)
u(t)
t uc(t)
t
uo(t)
Uo mmax
Uo mmin
t
Uo m(1+macos t)
(5―5)
可以看到,uo(t)的频谱结构中,除载波分量外, 还有由相乘器产生的上、下边频分量,其角频率为
(ωc±Ω)、(ωc+2Ω)…(ωc±nmaxΩ)。这些上、下 边频分量是将调制信号频谱不失真地搬移到ωc两边, 如图5.7所示。不难看出,调幅信号的频谱宽度为调制 信号频谱宽度的两倍,即

振幅调制和解调的原理及MATLAB编程实现

振幅调制和解调的原理及MATLAB编程实现

振幅调制和解调的原理及MATLAB 编程实现振幅调制和解调的原理1. 普通调幅信号的表达式、 波形、 频谱和功率谱普通调幅方式是用低频调制信号去控制高频正弦波(载波)的振幅, 使其随调制信号波形的变化而呈线性变化。

设载波为 uc(t)=Ucmcosωct, 调制信号为单频信号,即u Ω(t)=UΩmcosΩt(Ωωc), 则普通调幅信号为:u AM (t)= (U cm +kU Ωm cos Ωt)cosωc t=U cm (1+M a cosΩt)cosωc t 其中调幅指数Ma, 0<Ma≤1, k 为比例系数。

下图给出了u Ω(t), u c (t)和u AM (t)的波形图。

从图中并结合上式可以看出, 普通调幅信号的振幅由直流分量U cm 和交流分量kU Ωm cosΩt 迭加而成, 其中交流分量与调制信号成正比, 或者说, 普通调幅信号的包络(信号振幅各峰值点的连线)完全反映了调制信号的变化。

另外, 还可得到调幅指数M a 的表达式:cmcm cm a U U U U U U U U U U M minmin max min max min max -=-=+-=调幅的波形与频谱显然, 当Ma >1时, 普通调幅波的包络变化与调制信号不再相同, 产生了失真, 称为过调制。

所以, 普通调幅要求Ma 必须不大于1。

上式又可以写成u AM (t)=U cm cosωc t+ ·[cos (ωc +Ω)t+cos (ωc -Ω)t ]可见, uAM(t)的频谱包括了三个频率分量:ωc (载波)、 ωc +Ω(上边频)和ωc -Ω(下边频)。

原调制信号的频带宽度是 Ω或(F= ) , 而普通调幅信号的频带宽度是2Ω(或2F), 是原调制信号的两倍。

普通调幅将调制信号频谱搬移到了载频的左右两旁,如下图所示还可以看到, 若此单频调幅信号加在负载R 上, 则载频分量产生的平均功率为:P c =两个边频分量产生的平均功率相同, 均为:PSB=调幅信号总平均功率为: P av =P c +2P SB =根据信号分析理论, 一般非周期调制信号u Ω(t)的频谱是一连续频谱, 假设其频率范围是Ωmin ~Ωmax , 如载频仍是ωc , 则这时的普通调幅信号可看成是调制信号中所有π2Ωca cm a p M U M R 2241)2(21=R U cm 221c n p M )211(2+2MaUcm频率分量分别与载频调制后的迭加, 各对上、下边频的迭加组成了上、 下边带。

通信原理-第5章 振幅调制、解调及混频 63页 2.5M PPT版

通信原理-第5章 振幅调制、解调及混频 63页 2.5M PPT版
可见,调幅波并不是一个简单的正弦波,包含有三个频率分量:
载 波 分(量 c ):不 含 传 输 信 息
上边频分量 c :含传输信息 下边频分量 c :含传输信息
调制信号
Ω
载波
调幅波
U
ωc
c
下边频
1 2 m aU c
1 2
m
aU
c
上边频
ωc - Ω ωc +Ω
(2) 限带信号的调幅波
5.3 .2 高电平调幅电路 1. 集电极调幅电路 2. 基极调幅电路
返回
5.3 振幅调制电路
A信 M:u 号 AM U c(1m co ts)co cts 纯调幅 DS 信 B :u 号 DSB k U U cco tsco cts 调,调 幅相 SS 信 B:u 号 SS BU (c otcso ctssi n tsi n ct) 调,调 幅频
n
Uncosc(n)t

5.2.2双边带( double sideband DSB)调幅信号 2. 波形与频谱
休息1 休息2 返回
调制信号

下边频
载波
c 上边频
(1) DSB信号的包络正比于调制信号 Uco s t
仿真
(2) DSB信号载波的相位反映了调制信号的极性,即在调制信号负半周 时,已调波高频与原载波反相。因此严格地说,DSB信号已非单纯的振 幅调制信号,而是既调幅又调相的信号。
返回
(则1那)有么设u 调A :幅M 载U 信波c号信1( 号 n 已 :1m 调un cc 波U )o c可n cts 表o (达n sc)t为c:调 o u 制cA t信sM 其号中:U u :m m ( tn )U c cko aoU cs sttn

第五章振幅调制..

第五章振幅调制..

表示单位调制信号电压所引起的高频振荡幅度的变化
高频电子线路
二、单频调制
1. 表达式
uΩ (t ) U Ωm cos Ωt U Ωm cos 2Ft
uAM (t ) 〔U cm Ku (t )〕 cos(ct ) 〔U cm KU mcost〕 cos(ct ) U cm ( 1 ma cost〕 cos(ct )
高频电子线路
第 5 章 振幅调制、解调电路
振幅调制:用待传输的低频信号去控制高频载波信 号的幅值 解调:从高频已调信号中还原出原调制信号
振幅调制、解调和混频电路都是频谱线性搬移电路
地位: 通信系统的基本电路
高频电子线路
高频电子线路
高频电子线路
第 5 章 振幅调制、解调电路
概述 调幅信号的基本特性 低电平调幅电路 高电平调幅电路 包络检波 同步检波
uDSB (t ) AM u (t )uc (t )
uDSB (t ) AMUcmUm cos(t ) cos( c t ) Um cos(t ) cos( c t )
1 1 U m cos[(c )t ] U m cos[(c )t ] 2 2
高频电子线路
高频电子线路
5.2.1 普通调幅波(AM)
一、普通调幅波表达式
包络函数(瞬时振幅)U(t)可表示为:
U (t ) U cm U (t ) U cm Ku (t )
U (t ) 与调制电压 u (t )
成正比,代表已调波振幅的变化量;
包络函数所对应的曲线是由调幅波各高频周期峰值所连成的 曲线,称为调幅波的包络。因此,包络与调制信号的变化规 律完全一致,其包含有调制信号的有用信息。

5.1振幅调制的基本原理

5.1振幅调制的基本原理
上、下边频分量的振幅 不超过载波振幅的一半
BW = 2F
EXIT
高频电子线路
5.1 振幅调制的基本原理
4. 单频调制时 单频调制时AM调幅波的功率 调幅波的功率 由于
uAM (t ) = Ucm 1+ macosΩt〕 ωct ) cos( (
2
= Ucm cos(ωct ) + 1 maUcm[cos(ωc + )t]+ 1 maUcm cos[(ωc − )t] 2 2
EXIT
高频电子线路
5.1 振幅调制的基本原理
第 5 章 振幅调制、解调与混频电路 振幅调制、
振幅调制的基本原理 相乘器电路 振幅调制电路 振幅检波电路 混频电路 本章小结
EXIT
高频电子线路
5.1 振幅调制的基本原理
5.1 振幅调制的基本原理
主要要求: 主要要求:
掌握普通调幅波、双边带调幅波和单边带调幅波 掌握普通调幅波、 的表达式、波形特点、 的表达式、波形特点、频谱图和频带宽度的计算 掌握线性频谱搬移电路的构成要素和频谱特点 掌握调幅电路的组成模型 理解调幅度的概念与应用
高频电子线路
5.1 振幅调制的基本原理
2. 移相法
uΩ(t) =UΩmcosΩ t
Ucm cosωct
90° ° 移相 UΩmsinΩ t 90° ° 移相
AMXY uO1(t) X Y I + – uO (t)
Ucm sinωct
AMXY X Y II uO2(t)
uΟ1(t) =AMUΩmUcmcosΩ t cosωc t = 1 AMU ΩmU cm [cos(ωc + )t + cos(ωc − )t ] 2 uΟ2(t) =AMUΩmUcmsinΩ t sinωc t = 1 AMU ΩmU cm [cos(ωc − )t − cos(ωc + )t ] 2 uO1(t)+uO2(t) = AMUΩmUcm cos(ωc − )t] 输出下边带 uO1(t)–uO2(t) = AMUΩmUcm cos(ωc + )t] 输出上边带

振幅调制和解调的原理及MATLAB编程实现

振幅调制和解调的原理及MATLAB编程实现

振幅调制和解调的原理及MATLAB编程实现振幅调制和解调的原理及MATLAB 编程实现一、振幅调制和解调的原理:通常调制要传送的信号波形是比较复杂的,但无论多么复杂的信号都可用傅氏级数分解为若干正弦信号之和。

为了分析方便起见,我们一般把调制信号看成一简谐信号。

(a) 调制信过调制波形图(b) 由非正弦波调制所得到的调幅波形已调波形二、振幅调制:正交振幅调制是用两个独立的基带信号对两个相互正交的同频载波进行抑制载波的双边带调制,利用这种已调信号在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。

正交振幅调制信号的一般表示式:式中,An 是基带信号幅度,g(t-nTs)是宽度为Ts 的单个基带信号波形。

上式还可以变换为正交表示形式:令Xn=An cos φnYn=Ansin φn 则v v )cos()()(n c S nnMQAMt w nT t g At S+-=∑)cos()()(n c S nnt t w nT t g ASMQAM+-∑=tw nT t g A t w nT t g A t Sc n S nn c n S nn MQAMsin ]sin )([cos ]cos )([)(??---=∑∑t w nT t g Y t w nT t g X t S c n S nn c n S n n MQAM sin ]sin )([cos ]cos )([)(??---=∑∑tw t y t w t X c c sin )(cos )(-=假设一调制信号ft=Am.cos(2πf m.t+Qm),载波信号为ct=Ac.cos(2πfc.t+Qc),则振幅调制(已调波信号为SAM=(AC+ft) .cos(2πfc.t+Qc) 。

二、振幅解调相干解调法如图将已调波SAM信号与解调载波相乘即spt=SAM.*cos(2*pi*fcP*t+QcP)得到含有二次高频和调制信号成分的spt波形和频谱。

高频电子线路 第五章 振幅调制与解调

高频电子线路 第五章 振幅调制与解调
1 maV0 cos(0 )t 2
1
调幅波包含三个频率分量:
0 ma/2 0 0+ 0-
载波分量0:不含传输信息 上边频分量0+:含传输信息 下边频分量0-:含传输信息
边频振幅的最大值不能超过载波振幅的二分之一。
2、限带信号调幅
实际上通常的调幅信号是比较复杂的,含有许多频 率分量,因此它所产生的调幅波中的上边频和下边频都 不再是一个,而是许多个,组成所谓的上边频带和下边 频带。
(V0 maV0 cost ) cos0 t
kaV (V0 V0 cost ) cos0 t V0
v0 (V0 ka v ) V0
乘法器
v
相加器 直流
vAM
v0
方法2:
v AM V0 (1 ma cost ) cos0 t
V0 cos0t ma costV0 cos0t
Vm max Vm min Vm max V0 V0 Vm min ma 2V0 V0 V0
峰值调幅度和谷值调幅 度
Vmax Vmin Vmax V0 V0 Vmin ma 2V0 V0 V0
一般调幅度ma越大,调幅越深:
ma 0 ma 1 ma 1
四、AM调幅波中的功率关系
vAM V cos t 1 m V cos( )t 1 m V cos( )t 0 0 0 0 2 a 0 2 a 0
设调幅波输送功率到负载RL上,则载波与边频产生的功 率分别为: (1)载波功率:
Pc
1 2 RL
2 V0
(2)上、下边频功率:
v AM V0 (1 ma cost ) cos0 t

第五章 高频电子——振幅调制和解调

第五章 高频电子——振幅调制和解调

第五章 振幅调制和解调
27
二极管调制器
低电平调制电路
晶体管调制器
集成模拟调制器
第五章 振幅调制和解调
28
5.2.1 振幅调制电路基本分类
地位:振幅调制电路是无线电发射机的重要组成部 高电平调制 分。 分类(按功率高低): 低电平调制 ① 高电平调制:调制置于发射机的末端,产生大功率 的已调信号。 ② 低电平调制:调制置于发射机的前端,产生小功率 的已调信号,再通过多级线性功率放大器放大。
3
3. 解调——调制的逆过程,即从已调信号中还原出原 调制信号的过程,也称检波。
基带信号
“附加” “还原”
调制
已调信号
解调
载波信号
第五章 振幅调制和解调
4
分类:
模拟调制
1.按调制信号的形式不同
数字调制 2.按载波的不同 正弦波调制 脉冲调制
第五章 振幅调制和解调
振幅调制(AM) 频率调制(FM) 相位调制(PM)
13
(b) 多频调制
BW=2Fmax
含有若干频率分量。 上边带的频谱结构与 原调制信号的频谱结 构相同,下边带是上 边带的镜像。 多频调制时:
u AM U cm cosct
n 1 U cm mai [cos(c i )t 2 i 1 cos(c i )t ]
第五章 振幅调制和解调
23
该方法对带通滤波器要求较高。要求对要滤除的边带信号 有很强的抑制能力,而对于要求保留的边带信号应使其不 失真地通过。这就要求滤波器在载频处有非常陡峭的滤波 特性。
• 逐级滤波法:
采用了多次调制(频谱搬移) 常用的带通滤波器有:石英晶体滤波器、陶瓷滤波器、声 表面波滤波器。 第五章 振幅调制和解调

振幅调制的基本原理

振幅调制的基本原理

振幅调制的基本原理用待传输的低频信号去转变高频载波振幅的过程,称为振幅调制,简称调幅,有一般调幅(AM)、抑制载波的双边带调幅(DSB)和抑制载波的单边带调幅(SSB)三种。

1、一般调幅(AM) 设调制信号为单频信号,即:载波信号为:则一般调幅信号的表达式为:其中,m 称为调幅系数,其值介于0与1之间。

当m1时,产生过调失真。

AM 调幅信号波的波形和频谱图分别如图11(a)、(b)所示。

图1 AM信号的波形和频谱由图1(b)可看出调幅波由三个频率重量组成,即载波重量ωc,上边频ωc+Ω,下边频ωc+Ω ,其带宽为:若调制信号是多频信号,设最高频率为,则带宽为:通常将调幅波电压加在电阻R端,电阻R消耗的各频率重量对应的功率表示为:载波平均功率为:两个边频重量产生的平均功率相等,为:调幅信号总平均功率为:故调幅波的输出功率随Ma的增大而增大。

当Ma=1时,包含信息的上下边频功率值之和只占总输出功率的1/3,其能量利用率很低。

2、抑制载波的双边带调幅信号(DSB)由于载波本身并不包含信息,而且还占有较大的功率,为了减小不必要的功率铺张,可以只放射边频,而不放射载波,称为抑制载波的双边带调幅信号,用DSB表示。

其数学表示式为。

DSB信号的波形和频谱图如图2(a)、(b)所示。

图2 DSB信号的时域波形以及频谱结构其带宽为:,由于DSB方式没有包含有载波,故其功率利用率为100%。

3、单边带调幅波(SSB)SSB是由DSB经过边带滤波器滤除一个边带或者在调制过程中直接将一个边带抵消而成的。

其波形和频谱图如图如图3(a)、(b)所示。

图3 SSB信号的时域波形、频谱结构其带宽为:;功率利用率为100%。

下面从占用信号带宽、功率利用率两方面对AM、DSB、SSB三种调制方式进行比较:AM方式:占用2倍调制信号最高频率带宽;功率利用率最高只能达到1/3;DSB方式:占用2倍调制信号最高频率带宽;功率利用率最高可达到100%;SSB方式:占用1倍调制信号最高频率带宽;功率利用率最高可达到100%。

第五章 信号变换一:振幅调制、解调

第五章 信号变换一:振幅调制、解调
普通调幅( 普通调幅(AM):含载频、上、下边带 ) 含载频、 双边带调幅( 双边带调幅(DSB):不含载频 ) 单边带调幅( 单边带调幅(SSB):只含一个边带 ) 残留单边带调幅( 残留单边带调幅(VSB):含载频、一个 ) 含载频、 边带
二、双边带调制和单边带调制
1. 双边带调制
(1) 双边带调制电路的模型 )
例题
设载波功率Pc为100W,问调幅度为1及0.3 设载波功率 ,问调幅度为 及 总边频功率、总平均功率各为多少? 时,总边频功率、总平均功率各为多少? (ma =1时, P = 50W、 P∑a=150W、 时 、 、 ma = 0.3 时, P = 4.5W、 P∑a=104.5W) 、 )
7.调幅波的几种调制方式 调幅波的几种调制方式
二、混频器组成框图及工作原理
⒈ 组成框图
⒉ 工作原理
两个不同频率的高频电压作用于非线性器 件时,经非线性变换, 件时,经非线性变换,电流中包含直流分 基波、谐波、和频、差频分量等。 量、基波、谐波、和频、差频分量等。其 中差频分量f 中差频分量 Lo-fs就是混频所需要的中频成 分,通过中频带通滤波器把其它不需要的 频率分量滤掉,取出差频分量完成混频。 频率分量滤掉,取出差频分量完成混频。 若同一个非线性器件既完成混频、又作为 若同一个非线性器件既完成混频、 本地振荡,则这个混频器通常称为变频器 变频器。 本地振荡,则这个混频器通常称为变频器。
5.1.1 振幅调制电路
一、普通调幅(AM) 普通调幅( )
什么是调幅? ⒈ 什么是调幅? ——载波的振幅值随调制信号的大小作线 载波的振幅值随调制信号的大小作线 性变化,称为振幅调制,简称调幅 调幅( 性变化,称为振幅调制,简称调幅(AM) ) 2. 普通调幅电路模型

振幅调制与解调

振幅调制与解调

ma 1
4.调幅波的频谱
(1)由单一频率信号调 幅
u AM U cm (1 ma cos t ) cos c t U cm 1 1 cos c t ma cos( c )t ma cos( c )t 2 2

可见,调幅波并不是一个简单的正弦波,包含有三个频率分量: ( 载 波 分 量 c ) : 不 含 传 输 信 息 上 边 频 分 量 c : 含 传 输 信 息 下 边 频 分 量 : 含 传 输 信 息 c
c 相位调制(Phase Modulation,PM):调制信号控制载波 相位,使已调波的相位随调制信号线变化。
( 7)解调方式: 振幅检波 鉴频 鉴相 振幅调制的逆过程
调频的逆过程
调相的逆过程
§ 5.2 调幅信号的分析
调制:用低频信号直接控制高频振荡的某个参数(振幅、频率或相 位),使高频信号具有低频信号的特性。
波形与频谱
调制信号

下边频
载波
o
上边频
um cos t (1) DSB信号的包络正比于调制信号 (2) DSB信号载波的相位反映了调制信号的极性,即在调制信号负半周时,已 调波高频与原载波反相。因此严格地说,DSB信号已非单纯的振幅调制信号, 而是既调幅又调相的信号。 (3) DSB波的频谱成份中抑制了载波分量,全部功率为边带占有,功率利用率 高于AM波。 (4) 占用频带 BDSB 2 max 2Fmax
2 1 ma 1时,Pc Pav,PSB Pav 3 3
ma 0.3时,Pc 0.95Pav,PSB 0.05Pav
当ma 减小时,Pav减小,Pc不变,故Pc在Pav中的比重较大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过相乘实现! 太原科技大学
《高频电子线路》
二、单频调制 1. 表达式
uΩ (t ) U Ωm cos Ωt U Ωm cos 2Ft
uAM (t ) 〔U cm ka u (t ) 〕 cos(c t ) 〔U cm kaU mcost〕 cos(c t ) U cm ( 1 macost〕 cos( c t )
解:
BW?
太原科技大学
《高频电子线路》
作业
P144~145 5.1,5.13
太原科技大学
《高频电子线路》
总结
太原科技大学
《高频电子线路》 二、AM调幅电路组成模型 uc(t) u(t) + UQ uc(t) X AMXY Y uAM(t)

u(t)
+ + – – UQ
X AMXY Y
uAM(t)
uAM (t ) AM[UQ u (t )]Ucm cosc t [ AMUQUcm AMUcmu (t )]cosc t
太原科技大学
《高频电子线路》 例
(设ωc为Ω的整数倍) 求带宽
解:
BW = 2F
太原科技大学
《高频电子线路》 例
(设ωc为Ω的整数倍) 求带宽
解:
BW = 2F
太原科技大学
《高频电子线路》 例
(设ωc为Ω的整数倍) 求带宽
解:
BW = F
太原科技大学
《高频电子线路》 例
(设ωc为Ω的整数倍) 求带宽
最大振幅 ma= 1 ma>1时 产生过调幅失真
太原科技大学
《高频电子线路》 2. 单频调制时AM调幅波波形
为避免失真,要求ma≤1
太原科技大学
《高频电子线路》 3. 单频调制时AM调幅波频谱
uAM (t ) U cm ( 1 macost〕 cos(c t ) 1 Ucm cos(ωc t ) 1 m U [cos( ω Ω ) t ] m U cos[(ωc Ω)t ] c 2 a cm 2 a cm
上、下边频分量的振幅 不超过载波振幅的一半
BW = 2F
太原科技大学
《高频电子线路》 4. 单频调制时AM调幅波的功率 由于
uAM (t ) U cm ( 1 macost〕 cos(c t )
2
1 Ucm cos(ωc t ) 1 m U [cos( ω Ω ) t ] m U cos[(ωc Ω)t ] c 2 a cm 2 a cm
《高频电子线路》
5.1.1 普通调幅波简称AM调幅波
一、普通调幅表达式 载波信号
uc (t ) Ucm cosc t Ucm cos2 fc t
调制信号
uΩ ( t )
Um (t ) Ucm ka u (t )
ka由调制电路决定
普通调幅波幅值 普通调幅波信号
uAM (t ) U m (t ) cos(c t ) [U cm ka u (t ) 〕 cos(c t )
2. 波形 3. 频谱
太原科技大学
《高频电子线路》
5.1.3 调幅电路的组成模型
一、相乘器
实现两个信号相乘
ux
uy
X AMXY Y
uo
AM —增益系数或乘积系数,1/V
理想相乘器符号
理 1. 实现相乘,而对输入电压波形、幅度、极性、频率 无要求。(为四象限相乘器) 想 相 2. u 、u 中有一个为恒值时,相乘器相当于线性放大器。 x y 乘 uO = AM UxmUymcosxt cosyt 器 3. 产生新的频率分量 功 1 A U U [cos( ) cos( )] M xm ym x y x y 能 太原科技大学 2
1 U cm 故 载波分量功率 Po 2 RL
边频分量功率:
PSB1 PSB2
1 ( maU cm ) 2 RL
1 2
2
1 m aU 8 RL
2
2
cm
1 2 m a Po 4
太原科技大学
《高频电子线路》 4. 单频调制时AM调幅波的功率
调幅波在调制信号一个周期内的平均功率:
PAV Po PSB1 PSB2
上边带和下边带频谱分量的相对大小及间距均与调制信号 的频谱相同,仅下边带频谱倒置而已。可见调幅的作用是 将调制信号频谱不失真地搬移到载频两侧。 BW = 2Fmax
信息含于边频分量中,载波不含有用信息,但载波占 有很大能量。不经济。要抑制载波。 太原科技大学
《高频电子线路》
5.1.2 抑制载波的双边带和单边带调幅 波
《高频电子线路》
第5章
振幅调制、解调与混频电路
振幅调制:用待传输的低频信号去控制高频载波信号的幅值 解调:从高频已调信号中还原出原调制信号 混频:将已调信号的载波载频变成另一个载频 振幅调制、解调和混频电路都是频谱线性搬移电路
太原科技大学
《高频电子线路》
第 5 章 振幅调制、解调与混频电路
振幅调制的基本原理
四、SSB调幅电路组成模型
思路
DSB 除去一个边带
滤波法、移相法
SSB
太原科技大学
《高频电子线路》 1. 滤波法 uc(t) u(t) X AMXY uDSB(t) Y BPF uSSB(t)
fc–Fmax
fc
Fc+ Fmax
f
fc–Fmin Fc+ Fmin
滤波法的关键是高频带 通滤波器。要能有效滤 除不要的边带,而不失 真地通过需要的边带。
太原科技大学
《高频电子线路》 二、复杂信号调制 1. 波形
太原科技大学
《高频电子线路》 2. 表达式 周期性的复杂调制信号,可用傅里叶级数展开,表示为
max nmax , Fmax nmax F
uc (t ) Ucm cosc t

太原科技大学
《高频电子线路》 三、复杂信号调制时AM调幅波频谱
一、双边带调幅波 1. 表达式 DSB波:抑制了载波分量, 只含上、下边带分量。 ka由调制电路和 载波幅值决定。
uDSB (t ) ka u (t ) cos(c t )
单频调制时 通过相乘实现!
uDSB (t ) kaU m cos(t ) cos(c t ) 1 1 kaU m cos[( c )t ] kaU m cos[( c )t ] 2 2
[Um ka u (t )]cosc t
Um AMUQUcm
ka AMUcm
太原科技大学
《高频电子线路》 三、DSB调幅电路组成模型 uc(t) u(t) X AMXY Y
uDSB(t)
uDSB (t ) AM u (t )uc (t )
单频调制时
uDSB (t ) AMUcmUm cos(t ) cos( c t ) Um cos(t ) cos( c t )
相乘器电路
振幅调制电路
振幅检波电路 混频电路 本章小结
太原科技大学
《高频电子线路》
5.1 振幅调制的基本原理
主要要求:
掌握普通调幅波、双边带调幅波和单边带调幅波 的表达式、波形特点、频谱图和频带宽度的计算 掌握线性频谱搬移电路的构成要素和频谱特点 掌握调幅电路的组成模型 理解调幅度的概念与应用
太原科技大学
过渡带宽 f = 2Fmin
当滤波器边带相对距离 f / fc小时,直接滤波很困难。 太原科技大学
《高频电子线路》 2. 移相法
u(t) =Umcos t
U cm cos c t
90° 移相 Umsin t
AMXY uO1(t) X Y I
AMXY X Y II uO2(t) + – uO (t)
m 2a Po (1 ) 2
当 ma = 1时,边频功率最大,但仅为PAV / 3 实际使用中, ma在0.1~1之间,平均值为0.3。可见普通 调幅波中边频分量所占的功率非常小,而载波占绝大多数。 调幅波处于包络峰值时,高频输出功率最大,称为调幅 波最大功率,也称峰值包络功率。即
Pmax
[(1 ma )U cm ]2 2 ( 1 m ) a P
uO1(t) =AMUmUcmcos t cosc t 1 A U U [cos( ωc Ω)t cos(ωc Ω)t ] 2 M m cm uO2(t) =AMUmUcmsin t sinc t 1 A U U [cos( ωc Ω)t cos(ωc Ω)t ] 2 M m cm uO1(t)+uO2(t) AMU mU cm cos(ωc Ω)t ] 输出下边带 uO1(t)–uO2(t) AMU mU cm cos(ωc Ω)t ] 输出上边带
无载频分量! 太原科技大学
《高频电子线路》 2. 双边带调幅波波形
太原科技大学
《高频电子线路》 3. 双边带调幅波频谱
BW = 2F
DSB波频谱
1 1 kaU m kaU m 2 2
太原科技大学
《高频电子线路》
二、单边带调幅波
1. 表达式 单频调制时
SSB波:只含一个边带分量
1 uSSB ( t ) kaU m cos( c )t 2 1 或 uSSB ( t ) kaU m cos( c )t 2
kaU m ma U cm
通常 F<<fc
调幅系数或调幅度。 表示载波振幅受调制信号控制的程度
把调幅波振幅变化规律,即 称为调幅波的包络。
U cm ( 1 macost〕
太原科技大学
《高频电子线路》 2. 单频调制时AM调幅波波形
U cm (1 ma ) 最小振幅 U cm (1 ma )
相关文档
最新文档