晶体定向和晶面符号《结晶学》
合集下载
《结晶学》第3章晶体定向和晶面符号

注意:七大晶系中,单斜晶系先确定y 注意:七大晶系中,单斜晶系先确定y轴,其它 晶系均先确定z 晶系均先确定z轴
思考: 思考:
能否根据各晶体晶体常数特点确定属于 何种晶系? 何种晶系?
§3.3
对称型的国际符号
一、国际符号中对称要素的表示法
对称面:m 对称面: 对称轴:以轴次的数字表示, 对称轴:以轴次的数字表示, 如 1、2、3、4 和 6
Z
举例: 举例:
Y
X
答案(100)(100)(010)(010)(001)(001) 答案(100)(100)(010)(010)(001)(001) )(100)(010)(010)(001)(001
补充说明: 补充说明:
1)晶面符号中某指数为0,表示该晶面平行于相应晶轴。 晶面符号中某指数为0 表示该晶面平行于相应晶轴。 2)同一晶体中,如有两晶面,对应三组晶面指数的绝 同一晶体中,如有两晶面, 对值全部相等,而正负号恰好全部相反, 对值全部相等,而正负号恰好全部相反,则两晶面必 相互平行。 相互平行。 3)同一晶面符号中,指数的绝对值越大,表示晶面在 同一晶面符号中,指数的绝对值越大, 相应结晶轴上的截距系数值(绝对值)越小; 相应结晶轴上的截距系数值(绝对值)越小;在轴单位 相等的情况下,还表示相应截距的绝对长度也越短。 相等的情况下,还表示相应截距的绝对长度也越短。
即:
◆ ◆ ◆
平行的对称轴或旋转反伸轴; 平行的对称轴或旋转反伸轴; 垂直的对称面; 垂直的对称面; 当这两类对称要素在同一方向上同时存在 则写成分式的形式。 分式的形式 时,则写成分式的形式。
晶
系
序 位 1 2 3 1
代表方向 x或y或z轴方向 三次轴方向 x、y或x、z或y、z轴之间 四次轴, 四次轴,即z方向 与四次轴垂直, 与四次轴垂直,在x或y轴方向 与四次轴垂直,并与位2 与四次轴垂直,并与位2成450 六次或三次轴,即z 方向 六次或三次轴, 与六次或三次轴垂直, 与六次或三次轴垂直,在x或y或u轴方向 与六次或三次轴垂直,并与位2 与六次或三次轴垂直,并与位2成300角 x轴方向 y轴方向 z轴方向 y轴方向 任意方向
结晶学课件 第4章 晶体的定向与结晶符号

选晶轴的原则:
1)与晶体的对称特点相符合(既一般都以对称要 素作晶轴,要么对称轴,要么对称面法线);
2)在遵循上述原则的基础上尽量使晶轴夹角为 90度.
每个晶系的对称特点不同,因此每个晶系的选择 晶轴的具体方法也不同,见表4-1(此表非常重要, 要熟记).
表4-1
定向举例: (示范模型: 等轴、四方、六方、斜方)
z
x 宏观形态
y 微观结构
在三个行列上有晶胞参数(a,b,c; α,β,γ), 这些参数就构成了三个晶轴上的轴单位和 晶轴之间的夹角.
晶体外形不可能知道轴单位,但根据对称性可以 知道轴单位之间的比值关系,即: a:b:c
例如, 等轴晶系的 a:b:c =? 四方晶系的 a:b:c =?
我们将a:b:c 称为轴率, α,β,γ称轴角,轴率 与轴角统称晶体常数.见表4-1.表中列出的是晶 体常数特点.因为根据晶体的宏观形态只能定出 晶体常数特点,不能定出晶体常数.
不同晶系中,这三个序号位所代表的方向完全 不同,所以,不同晶系的国际符号的写法也就完全 不同,一定不要弄混淆!!
每个晶系的国际符号写法见表4-3(此表很重 要,要熟记!).
表4-3: 国际符号举例: (示范模型: 等轴、四方、六方、斜方)
三、 晶面符号与晶棱符号
1. 晶面符号:
晶体定向后, 晶面在空间的相对位置就可以根 据它与晶轴的关系来确定, 表示晶面空间方位 的符号就叫晶面符号,常用的是米氏符号:
四、 整数定律与晶带定律
1. 整数定律
晶面指数为简单整数. 为什么?
因为指数越简单的晶面 对应到内部结构是面 网密度大的面网,而面 网密度大的面网容易 形成晶面(因为能量 低容易形成晶面),所 实际晶体上的晶面就 是晶面指数简单的晶 面.
第四章 晶体定向和晶面符号

r = 0×0-1×0 =0,s = 0×0-1×0 =0,t = 1×1-0×0 =1,即此晶带
的符号为(001)。
35
⒉ 求位于晶带[rst]和晶带[uvw]交点的晶面(hkl)。 因为: hr +ks +lt =0 hu +kv +lw =0 则与例(1)类比,可用下列行列式计算:
27
整数定律
晶面在晶轴上的截距 系数之比为简单的整数比
b0
b1
b2
(010)
晶面指数为简单整数.
ao
为什么?
因为指数越简单的 晶面对应到内部结构是
a1
面网密度大的面网,而面
网密度大的面网容易形
成晶面,所以实际晶体上
的晶面就是晶面指数简
单的晶面。
b3
y
28
五、晶棱符号、晶带与晶带定律
1、晶棱符号:表征晶棱方向的 符号,所有平行的晶棱具有 同一个晶棱符号。
• 晶棱符号只涉及方向, 不涉及 具体位置。
• 截距系数比:表达为[rst]
r:s:t = MR/a : MK/b : MF/c
• [r s t] = [r s t]
此例:[rst] = [123]
29
四轴定向时的晶棱符号 • 以[u v m w]的形式表达 • 也有三指数形式: [u v w] • 四指数和三指数
c 直立,b 左右, a 前后
a=bc ===90
11
斜方晶系
3L2 a b c 轴 1L2 c轴 2P法线 a b 轴
c 直立,b 左右, a 前后
abc == =90
12
单斜晶系
1L2/1P法线 b轴, 2晶棱 a c轴
c 直立,b 左右 a 前后但向前下方倾斜 使>90
3.晶体定向及晶面符号

晶体的规则连生
第一节、 晶体定向及晶面符号
一、晶体定向
(一)、概念
晶体定向 —— 在晶体中确定一个坐标系统; 1、晶轴 ------ 晶体中的坐标轴; 2、轴单位---- 各晶轴上的量度单位:a、b、c
(二)晶轴的安置
晶轴----晶体中的坐标轴;是交晶体中心一点的 三条或四条直线。(内部构造的三条或四条行 列的方向)
复三方单锥
三方双锥
复六方单锥
复四方单锥
六方双锥
四方双锥
复三方双锥
复六方双锥
复四方双锥
三方柱
六方柱
四方柱
复三方柱
复六方柱
复四方柱
四方四面体
复四方偏三角面体
菱面体
复三方偏三角面体
斜三三方方方四偏偏面方方面体面体体
六六方方偏偏方方面面体体
四方偏方面体
高级晶族的单形
四面体 八面体
立方体 四六面体
偏方复十 二面体
(a1b2:x=1a ,y= 2b :即1: 2) (a2b4:x=2a ,y= 4b :即2: 4)
第二节、单形和聚形
1、单形
(1)概念
由对称要素联系起来的一组晶面的总合。
八面体
菱形十二面体
(2)特点
①. 在理想情况下, 同一单形各晶面 同形等大; ②. 在实际晶体上, 同一单形各晶面 性质相同;
1、三轴系统:X 、Y、Z:适用以下5个晶系:
(1)三斜晶系
(2)单斜晶系
(3)斜方晶系
(4)四方晶系
r
(5)等轴晶系
2、四轴系统:适用以下2个晶系:
(1)三方晶系: X 、Y、U、Z (2)六方晶系: X 、Y、U、Z
一
晶 轴: 轴单位:
第一节、 晶体定向及晶面符号
一、晶体定向
(一)、概念
晶体定向 —— 在晶体中确定一个坐标系统; 1、晶轴 ------ 晶体中的坐标轴; 2、轴单位---- 各晶轴上的量度单位:a、b、c
(二)晶轴的安置
晶轴----晶体中的坐标轴;是交晶体中心一点的 三条或四条直线。(内部构造的三条或四条行 列的方向)
复三方单锥
三方双锥
复六方单锥
复四方单锥
六方双锥
四方双锥
复三方双锥
复六方双锥
复四方双锥
三方柱
六方柱
四方柱
复三方柱
复六方柱
复四方柱
四方四面体
复四方偏三角面体
菱面体
复三方偏三角面体
斜三三方方方四偏偏面方方面体面体体
六六方方偏偏方方面面体体
四方偏方面体
高级晶族的单形
四面体 八面体
立方体 四六面体
偏方复十 二面体
(a1b2:x=1a ,y= 2b :即1: 2) (a2b4:x=2a ,y= 4b :即2: 4)
第二节、单形和聚形
1、单形
(1)概念
由对称要素联系起来的一组晶面的总合。
八面体
菱形十二面体
(2)特点
①. 在理想情况下, 同一单形各晶面 同形等大; ②. 在实际晶体上, 同一单形各晶面 性质相同;
1、三轴系统:X 、Y、Z:适用以下5个晶系:
(1)三斜晶系
(2)单斜晶系
(3)斜方晶系
(4)四方晶系
r
(5)等轴晶系
2、四轴系统:适用以下2个晶系:
(1)三方晶系: X 、Y、U、Z (2)六方晶系: X 、Y、U、Z
一
晶 轴: 轴单位:
第三章 晶体的定向和晶面符号

A
rc
qb
O
pa
BY
.
X
12
如图:所示晶面在三个结晶轴 上的截距分别为2a、3b、6c,
Z
截距系数分别为2,3,6。
C
那么
截距系数的倒数比为
1 h:k:l=2
:1 3
:1 6
=3:2:1
cb
aO
A
BY
该晶面的米氏符号为(321) X
晶面指数-米氏符号中小括号内的三个数字称晶面指数。
.
13
整数定律
晶面在晶轴上的截距 系数之比为简单的整数比
面网密度越大 越简单
晶面截晶轴于结点
简单的
整数比
.
14
在确定晶体上晶面的米氏符号时,并不需要知道a, b,c的大小。可以首先选择一个晶面作单位面。单位面 应该是晶体上发育很好、与三个晶轴都相截,而且截距 尽可能相等或相近的晶面。将单位面的符号定为(111 ),即认为该晶面的截距系数p=q=r,截距之比为a:b :c。确定了单位面之后,其它晶面的符号可通过与单 位面的比较而求得。
确定轴单位
Z+ _ _ +Y
+
X_
B4
晶轴 行列,轴单位 结点间距
B3
B2
晶体常数 轴率a:b:c和轴角, ,
.
B1 b
O a A 1 A 2 A 3 3A 4
三、如何为晶体定向
1、选择晶轴的原则
(1)晶轴平行行列方向。
优先
晶轴平行 对称轴
其次
对称面的法线
Z +_
_ +Y
+
X_ 再次
平行晶棱
构成双晶的两个个体之间其结晶
rc
qb
O
pa
BY
.
X
12
如图:所示晶面在三个结晶轴 上的截距分别为2a、3b、6c,
Z
截距系数分别为2,3,6。
C
那么
截距系数的倒数比为
1 h:k:l=2
:1 3
:1 6
=3:2:1
cb
aO
A
BY
该晶面的米氏符号为(321) X
晶面指数-米氏符号中小括号内的三个数字称晶面指数。
.
13
整数定律
晶面在晶轴上的截距 系数之比为简单的整数比
面网密度越大 越简单
晶面截晶轴于结点
简单的
整数比
.
14
在确定晶体上晶面的米氏符号时,并不需要知道a, b,c的大小。可以首先选择一个晶面作单位面。单位面 应该是晶体上发育很好、与三个晶轴都相截,而且截距 尽可能相等或相近的晶面。将单位面的符号定为(111 ),即认为该晶面的截距系数p=q=r,截距之比为a:b :c。确定了单位面之后,其它晶面的符号可通过与单 位面的比较而求得。
确定轴单位
Z+ _ _ +Y
+
X_
B4
晶轴 行列,轴单位 结点间距
B3
B2
晶体常数 轴率a:b:c和轴角, ,
.
B1 b
O a A 1 A 2 A 3 3A 4
三、如何为晶体定向
1、选择晶轴的原则
(1)晶轴平行行列方向。
优先
晶轴平行 对称轴
其次
对称面的法线
Z +_
_ +Y
+
X_ 再次
平行晶棱
构成双晶的两个个体之间其结晶
结晶学与矿物学 第五章 晶体定向与晶体符号

三晶棱符号晶带与晶带符号晶棱符号edgesymbol表征晶棱直线方向的符号晶棱符号晶带zone交棱相互平行的一组晶面的组合称为一晶面符号不仅用于表征晶体外部形晶面符号不仅用于表征晶体外部形态特征还用于表征矿物的解理裂开态特征还用于表征矿物的解理裂开矿物中包裹体的分布矿物切片矿物矿物中包裹体的分布矿物切片矿物光性及晶体内部结构等与晶体方向有关光性及晶体内部结构等与晶体方向有关的内容应当重点掌握
结晶轴的安置及晶体常 数特征
c 轴 直 立 b 轴 左 右 水 平 a轴前后水平, a=b≠c α=β=γ=90º
L44P
L44L2 Li42L22P L44L25PC
两个相互垂直的P的法线分别为a轴和b 轴. (⊥P ——X,Y)
两个互相垂直的L2分别为a轴和b轴. (2L2——X,Y)
六 方 和 三 方 晶 系
制定国际符号的规则:
(1)Ln ——1,2,3,4,6。
Lin ——1, 2, 3, 4, 6。 (2)P —— m。
(3)若P与Ln或Lin垂直,则两者用“-”或“/”隔开。
如:L2PC-----2/m( ),L4PC-----4/m( )。 (4)按一定顺序列出一定方向的对称要素,省略等同的和 派生的要素。
晶面符号特点
4.1 截距系数越大,晶面指数( ? )
4.2 晶面与晶轴平行时,指数为( ?)
4.3 字母和数字不能混用,0除外 4.4 三、六方晶系,晶面指数前三位代数和(?)
三、晶棱符号、晶带与晶带符号
1. 晶棱符号edge symbol
表征晶棱(直线)方向的符号
晶棱符号 2. 晶带zone
交棱相互平行的一组晶面的组合,称为一 个晶带
5.对称型国际符号
本章结束 第六章
结晶轴的安置及晶体常 数特征
c 轴 直 立 b 轴 左 右 水 平 a轴前后水平, a=b≠c α=β=γ=90º
L44P
L44L2 Li42L22P L44L25PC
两个相互垂直的P的法线分别为a轴和b 轴. (⊥P ——X,Y)
两个互相垂直的L2分别为a轴和b轴. (2L2——X,Y)
六 方 和 三 方 晶 系
制定国际符号的规则:
(1)Ln ——1,2,3,4,6。
Lin ——1, 2, 3, 4, 6。 (2)P —— m。
(3)若P与Ln或Lin垂直,则两者用“-”或“/”隔开。
如:L2PC-----2/m( ),L4PC-----4/m( )。 (4)按一定顺序列出一定方向的对称要素,省略等同的和 派生的要素。
晶面符号特点
4.1 截距系数越大,晶面指数( ? )
4.2 晶面与晶轴平行时,指数为( ?)
4.3 字母和数字不能混用,0除外 4.4 三、六方晶系,晶面指数前三位代数和(?)
三、晶棱符号、晶带与晶带符号
1. 晶棱符号edge symbol
表征晶棱(直线)方向的符号
晶棱符号 2. 晶带zone
交棱相互平行的一组晶面的组合,称为一 个晶带
5.对称型国际符号
本章结束 第六章
第五章晶体定向和晶面符号

聚形的概念
❖ 两个以上的单形的聚合称为聚形。下图分别 表示了四方柱和四方双锥、立方体和菱形十 二面体的 聚合,用粗线勾划出了它们的聚形 的形态。显然,有多少种单形相聚,其聚形 上就会出现多少种不同的晶面,它们的性质 各异;对于理想形态而言,同一单形的晶面 同形等大。
第五章 晶体的定向和晶面符号
晶体定向:设置坐标系 晶面符号:用数学符号表示方位 1 晶体定向 选择坐标轴和确定各轴上轴单位的比值。 1.1 晶轴和晶体几何常数 晶轴:于晶体上所设置的坐标轴。 轴角:每两个晶轴正端之间的夹角。 =Y∧Z =Z∧X =X∧Y
晶体定向的作用:
❖ 晶体定向后就可以对晶体上所有的面、线等 进行标定,给出这些面、线的晶体学方向性 符号;
关系式 :
θx、θy、θz
h:k:l=a Cosθx :b Cosθy : c Cosθz 可直接求出晶面指数
❖ 零表示与晶轴的 ❖ 平行关系,负数 ❖ 表示与晶轴负端 ❖ 相交。
四轴:形式(hkil)且h+k+i=0
h+
(三)单形符号
4 几个概念:
❖ 4.1 晶带
❖
晶面彼此相交的晶棱相互平行的一组晶面的组合。形
式 为〔rst〕
❖ 4.2 晶带定律
❖
晶体上任一晶面至少同时属于两个晶带;而一个晶带
❖ 有对称中心; ❖ 但没有对称面
斜方四面体
❖ 注意:三条边不等长, 所以没有对称面,只有 3个L2,单斜晶系,低级 晶族。
❖ L33L23P ❖ 晶系: ❖ 晶族:
复三方柱
❖ L66L27PC ❖ 晶族: ❖ 晶系:
六方柱
❖ L33P ❖ 晶族: ❖ 晶系:
复三方单锥
三方双锥
第四章 晶体定向和晶面符号

晶
体
的
定
向
方
法
10
四方晶系
1L4 c轴 2L2 /2P法线/2晶棱 a b轴
c 直立,b 左右, a 前后
a=bc ===90
11
斜方晶系
3L2 a b c 轴 1L2 c轴 2P法线 a b 轴
c 直立,b 左右, a 前后
abc == =90
12
单斜晶系
1L2/1P法线 b轴, 2晶棱 a c轴
交可决定一可能晶带(晶棱).
33
3、晶带方程应用
即:任一属于[u v w]晶带的晶面(h k l),必定有: h u + k v + l w = 0 晶带方程
简单的证明: 三维空间的一般平面方程为 Ax + By + Cz + D = 0 系数A、B、C决定该平面的方向,常数项D决定距原点 的距离。 那么过坐标原点且平行于(h k l)的平面方程则可以表达 为
23
考察晶体模型晶面的晶面符号:
Cube
(001) (100) (010)
Octahedron
(111) (111)
Dodecahedron
(111)
(111)
101
011
_
110
110
_
_
101
011
24
All three combined:
001
_
101
111
011 111
_ 110
100
010 110
c 直立,b 左右 a 前后但向前下方倾斜 使>90
abc ==90 >90
13
三斜晶系
第四章 晶体定向和晶面符号

几何结晶学基础
第四章 晶体定向和晶面符号
五、各晶系晶体定向及常见单形符号
5.单斜晶系
(4) 常 见 聚 形
几何结晶学基础
第四章 晶体定向和晶面符号
五、各晶系晶体定向及常见单形符号
6.三斜晶系
⑴ 对称特点
无对称轴和对称面,共有2个对称型, 常见晶体多为C对称型。
⑵ 晶体定向
选三个近于相互垂直的晶棱方向为XYZ 轴。晶体常数特点为a≠b≠c, α≠β≠γ≠90°。
几何结晶学基础
第四章
一、晶体定向
4.晶体常数
晶体定向和晶面符号
各晶系的对称特点不同,因而选择晶轴 的方法及晶体常数的特点也不同。由于确定 晶轴和轴单位的方法和在晶体构造中划晶胞 的原则或确定平行六面体的原则一致,所以 各晶系晶体常数和格子参数完全吻合。
几何结晶学基础
第四章 晶体定向和晶面符号
二、晶面符号
晶带定律(zone law)
任意两晶棱(晶带)相交必可决定一可能 晶面,而任意两晶面相交必可决定一可 能晶棱(晶带)
几何结晶学基础
第四章 晶体定向和晶面符号
四、晶带及晶带符号
2.晶带的表示方法—晶带符号 表示晶带的空间方位的符号称为晶带符号。 晶带符号是以晶带轴的符号来代表的,而 晶带轴的符号又与该晶带中晶棱的符号相 同,故晶带符号可以用晶棱符号代替。
几何结晶学基础
第四章
一、晶体定向
3.晶轴的摆法
晶体定向和晶面符号
x轴:前后放置,前端为正;
y轴:左右放置,右端为正;
z轴:上下放置,上端为正;
三方、六方晶系还要层增加u轴, u轴的前端为负,后端为正,x、y、 u的正端之间的交角为120定向
4.晶体常数
结晶学4晶体的定向及晶面符号

以L2或P的法线为Y轴,以垂直于Y轴 的主要晶棱方向为X、Z轴
三斜晶系
以三个主要的晶棱方向为X、Y、Z轴
晶体常数特点
a=b=c
a = b = g = 90
a=b≠c
a = b = g = 90
a=b≠c
a = b = 90 g = 120
a≠b≠c
a = b = g = 90
a≠b≠c
a = g = 90 b > 90
三、各个晶系的晶体定向
在七个晶系中,其晶格常数是不一样的,所以各个晶系 中定向原则也是不同的,在七个晶系中,等轴、四方、斜 方、单斜、三斜等晶系选择三轴定向。其中Z轴位于直立 方向,上正下负;X轴位于前后方向,前正后负;Y轴位于 左右方向,右正左负。
三方、六方晶系还要层增加u轴,u轴的前端为负,后端 为正,x、y、u的正端之间的交角为120°
晶系 等轴晶系
选轴原则 以互相垂直的L4或Li4为X、Y、Z轴
四方晶系
L4或Li4为Z轴,以垂直Z轴,并互相垂 直的L2或P的法线为X、Y轴
三方晶系 及六方晶系
以L3或 L6 或Li6 为Z轴,以垂直Z轴并 彼此交角120°的L2或P法线为X、Y、 U
斜方晶系 单斜晶系
以互相垂直的L2或P的法线为X、Y、 Z轴
a≠b≠ c
a b g
第二节 晶面符号的确定
一、晶面符号
1、概念:代表晶面在空间的方位的符号称为晶面符号。晶 体定向后,借助晶面和晶轴的交截关系来确定。晶面符号 有许多种表示方式,目前国际上通用的是米氏符号,这是 英国人米勒在1939年创造的。
米氏符号是用晶面在晶轴上截距系数的倒数比来表示的。
假设有一晶面ABC在X、Y、Z三个晶 轴上的截距分别为OA、OB、OC,轴 单位用a、b、c来度量,则
三斜晶系
以三个主要的晶棱方向为X、Y、Z轴
晶体常数特点
a=b=c
a = b = g = 90
a=b≠c
a = b = g = 90
a=b≠c
a = b = 90 g = 120
a≠b≠c
a = b = g = 90
a≠b≠c
a = g = 90 b > 90
三、各个晶系的晶体定向
在七个晶系中,其晶格常数是不一样的,所以各个晶系 中定向原则也是不同的,在七个晶系中,等轴、四方、斜 方、单斜、三斜等晶系选择三轴定向。其中Z轴位于直立 方向,上正下负;X轴位于前后方向,前正后负;Y轴位于 左右方向,右正左负。
三方、六方晶系还要层增加u轴,u轴的前端为负,后端 为正,x、y、u的正端之间的交角为120°
晶系 等轴晶系
选轴原则 以互相垂直的L4或Li4为X、Y、Z轴
四方晶系
L4或Li4为Z轴,以垂直Z轴,并互相垂 直的L2或P的法线为X、Y轴
三方晶系 及六方晶系
以L3或 L6 或Li6 为Z轴,以垂直Z轴并 彼此交角120°的L2或P法线为X、Y、 U
斜方晶系 单斜晶系
以互相垂直的L2或P的法线为X、Y、 Z轴
a≠b≠ c
a b g
第二节 晶面符号的确定
一、晶面符号
1、概念:代表晶面在空间的方位的符号称为晶面符号。晶 体定向后,借助晶面和晶轴的交截关系来确定。晶面符号 有许多种表示方式,目前国际上通用的是米氏符号,这是 英国人米勒在1939年创造的。
米氏符号是用晶面在晶轴上截距系数的倒数比来表示的。
假设有一晶面ABC在X、Y、Z三个晶 轴上的截距分别为OA、OB、OC,轴 单位用a、b、c来度量,则
第四章晶体的定向和晶面符号

第四章 晶体的定向和晶面符号
• • • • • 晶体定向的概念 晶体定向的原则 各晶系的定向法则 晶面符号与单形符号 晶带及晶带符号
一、晶体的定向(三轴定向)
在晶体上确定坐标系统,即选坐标轴和确 定各轴上的轴单位长度之比。 (1) 晶轴:是交于晶体中心的三条直线。为x、y、 z(或a、b、c)。 (2) 轴角:α、β、γ (3) 轴长和轴率:晶轴 是晶体中格子构造中 的行列,轴长(轴单位) 是该行列上的结点间距。 分别以 a、b、c表示, a:b:c为轴率。 (4)晶体常数: 轴率a:b:c和轴角α、β、γ
三方和六方晶系的四轴定向:
– 选择唯一的高次轴作为直立结晶轴Z轴,在垂直Z 轴的平面内选择三个相同的、即互成60°交角的L2 或P的法线,或适当的显著晶棱方向作为水平结晶 轴,即x 轴、 y 轴以及 d 轴(U轴) – 晶体几何常数: a = b = 90°, g =120°, a = b ≠ c – z 轴直立, y 轴左右水平, x 轴前后水平偏左30°
斜方晶系 单斜晶系
a = b = g = 90
a≠b≠c a = g = 90 b > 90 a≠b≠c a≠b≠g
以L2或P的法线为Y轴,以垂直于Y轴 的主要晶棱方向为X、Z轴 以不在同一平面的三个主要的晶棱方 向为X、Y、Z轴
三斜晶系
四、晶面符号与单形符号
1.整数定律
• 任何晶面截距系数之比,都是简单的整数比。
a=b≠c a = b = 90 g = 120
a≠b≠c
三方晶系 及六方晶系
以L3或 L6 或Li6 为Z轴,以垂直Z轴并彼 此交角120°(正端)的3个L2或P法线或 晶棱方向为 X 、 Y 、 U , 在 L i 6 3L 2 3P 对称
晶体的定向和晶面符号课件

晶体的定向和晶面符号课件
目录
• 晶体定向 • 晶面符号 • 晶体结构与性质 • 晶体学实验技术 • 晶体学研究前沿与展望 • 附录与参考文献
01
晶体定向
定义与重要性
定义
晶体定向是指通过确定晶体中某一晶 向指数或某一晶面指数的方法来确定 晶体空间结构的方法。
重要性
晶体定向是研究晶体结构的重要手段 ,通过确定晶向或晶面指数,可以获 得晶体结构对称性、空间群等信息, 有助于理解晶体性质和应用。
晶体结构
不同晶体结构具有不同的物理和 化学性质。
晶体尺寸
晶体尺寸对光学、电学和热学性 质产生影响。
晶体缺陷
晶体缺陷可以影响其物理和化学 性质。
晶体在材料科学中的应用
半导体材料
晶体硅、锗等是重要的半导体材料,用于制造电 子器件。
光学材料
某些晶体具有特殊的光学性质,如激光晶体、光 学窗口等。
结构材料
某些晶体具有高强度、高硬度等特性,可用于制 造刀具、航空航天结构件等。
晶体学研究的发展趋势与展望
多学科交叉融合
加强多学科交叉融合,促进晶体学与相关学科的协同发展 。
理论模拟与实验研究相结合
加强理论模拟与实验研究的结合,提高研究水平和深度。
国际化合作与交流
积极参与国际合作与交流,共同推动晶体学研究的进步和 发展。
06
附录与参考文献
附录
晶体的定向
确定晶体取向的常用方法:X射线衍射、反光显微镜观察等。
晶体定向的方法
01
02
03
几何作图法
通过几何作图方法确定晶 体中某一晶向指数或某一 晶面指数。
X射线衍射法
利用X射线衍射原理确定 晶体结构中的晶向和晶面 指数。
目录
• 晶体定向 • 晶面符号 • 晶体结构与性质 • 晶体学实验技术 • 晶体学研究前沿与展望 • 附录与参考文献
01
晶体定向
定义与重要性
定义
晶体定向是指通过确定晶体中某一晶 向指数或某一晶面指数的方法来确定 晶体空间结构的方法。
重要性
晶体定向是研究晶体结构的重要手段 ,通过确定晶向或晶面指数,可以获 得晶体结构对称性、空间群等信息, 有助于理解晶体性质和应用。
晶体结构
不同晶体结构具有不同的物理和 化学性质。
晶体尺寸
晶体尺寸对光学、电学和热学性 质产生影响。
晶体缺陷
晶体缺陷可以影响其物理和化学 性质。
晶体在材料科学中的应用
半导体材料
晶体硅、锗等是重要的半导体材料,用于制造电 子器件。
光学材料
某些晶体具有特殊的光学性质,如激光晶体、光 学窗口等。
结构材料
某些晶体具有高强度、高硬度等特性,可用于制 造刀具、航空航天结构件等。
晶体学研究的发展趋势与展望
多学科交叉融合
加强多学科交叉融合,促进晶体学与相关学科的协同发展 。
理论模拟与实验研究相结合
加强理论模拟与实验研究的结合,提高研究水平和深度。
国际化合作与交流
积极参与国际合作与交流,共同推动晶体学研究的进步和 发展。
06
附录与参考文献
附录
晶体的定向
确定晶体取向的常用方法:X射线衍射、反光显微镜观察等。
晶体定向的方法
01
02
03
几何作图法
通过几何作图方法确定晶 体中某一晶向指数或某一 晶面指数。
X射线衍射法
利用X射线衍射原理确定 晶体结构中的晶向和晶面 指数。
3.晶体定向及晶面符号

6、 研究双晶的意义: (1)鉴定矿物------如:长石族矿物 (2)矿物晶体材料的应用 --------
作压电材料的 α -石英,不允许有双晶 作光学材料的 α -石英,允许有道芬双晶,
不允许巴西双晶 作光学材料的冰洲石, 不允许双晶存在。
尖晶石律双晶
常见双晶
燕尾双晶
聚片双晶 十字双晶
膝状双晶 穿插双晶
即: 尽量使 α= β= r = 90o 三、六方晶系 r =120o
3、尽量选择
各晶系的晶体定向举例:
★ 等轴晶系:3L4、或3Li4、或 3L2 → X、Y、Z 轴 ★ 六方晶系:L6 或 Li6 → Z轴,3L2或3P⊥或棱→ X、Y、U轴 ★ 三方晶系:L3 → Z轴, 3L2或P⊥或棱 → X、Y、 U 轴 ★ 四方晶系:L4 或 Li4 →Z轴,2L2或2P⊥或晶棱 → X、Y轴 ★ 斜方晶系:3L2 或3P⊥或 棱 → X、Y、Z轴 ★ 单斜晶系:L2或P⊥→ Y轴, 2个晶棱 → X、Z轴 ★ 三斜晶系:3条晶棱 → X、Y、 Z轴
∨∨
γα
∨
β
轴角:α、β、γ
r
(三)、晶体定向原则
1、选择晶体中的对称要素或晶棱作为坐标轴 晶体中的对称要素:Ln 、Li n、P 的法线、晶棱,必须
按下列顺序选择晶轴:Ⅰ轴、Ⅱ面、Ⅲ 晶棱。
(1)、先确定Z轴(单斜晶系先确定 Y 轴)
★ 等轴晶系: ★ 六方晶系: ★ 三方晶系:
L4、或Li4、或L2 → Z轴
Z b1 b2 b3 b4 b5 b6 bx Y a1
a1bx= 1: x
a2
网面密度越大、晶面在
X
晶轴上的截距系数之比
网面密度与截距系数比的关系
《结晶学》第3章晶体定向和晶面符号PPT课件

1、首先看第二位是否为“3”,若为“3”(3代表4L3), 则为高级晶族等轴晶系
2、第二位不是3,则看第一位。若第一位为高次轴符号, 则为中级晶族;根据轴次高低判断属于相应晶系
3、符号中无高次轴符号,则为低级晶族。 只出现 1 或 1,则为三斜; “2” ≤1,或“m” ≤1,则为单斜; “2” >1, 或“m” >1,则为斜方
的全部对称要素。
即:
◆ 平行的对称轴或旋转反伸轴; ◆ 垂直的对称面; ◆ 当这两类对称要素在同一方向上同时存在
时,则写成分式的形式。
晶系 等轴晶系
四方晶系
三方及六方 晶系
斜方晶系 单斜晶系 三斜晶系
序位
1 2 3 1 2 3 1 2 3 1 2 3 1 1
代表方向
x或y或z轴方向 三次轴方向 x、y或x、z或y、z轴之间 四次轴,即z方向 与四次轴垂直,在x或y轴方向 与四次轴垂直,并与位2成450 六次或三次轴,即z 方向 与六次或三次轴垂直,在x或y或u轴方向 与六次或三次轴垂直,并与位2成300角 x轴方向 y轴方向 z轴方向 y轴方向 任意方向
z
y
x
晶体常数 a≠b≠c,α=γ=90°β>90°
5、三斜晶系
选轴原则:以不在同一平面内的3个主要晶棱 方向为x、y、z轴
Z
Y X
晶体常数 a≠b≠c,αβγ 90°
6、三方、六方晶系
选轴原则:以L6、Li6、L3为z轴,以垂直z轴并彼此相 交为1200的3个L2或P的法线或晶棱方向为x、y、u轴
OX OY OU OZ
根据定向时三个水平轴正端互成120o交角
关系,三个指数之间的关系为h+k+i=0
u
T
O
2、第二位不是3,则看第一位。若第一位为高次轴符号, 则为中级晶族;根据轴次高低判断属于相应晶系
3、符号中无高次轴符号,则为低级晶族。 只出现 1 或 1,则为三斜; “2” ≤1,或“m” ≤1,则为单斜; “2” >1, 或“m” >1,则为斜方
的全部对称要素。
即:
◆ 平行的对称轴或旋转反伸轴; ◆ 垂直的对称面; ◆ 当这两类对称要素在同一方向上同时存在
时,则写成分式的形式。
晶系 等轴晶系
四方晶系
三方及六方 晶系
斜方晶系 单斜晶系 三斜晶系
序位
1 2 3 1 2 3 1 2 3 1 2 3 1 1
代表方向
x或y或z轴方向 三次轴方向 x、y或x、z或y、z轴之间 四次轴,即z方向 与四次轴垂直,在x或y轴方向 与四次轴垂直,并与位2成450 六次或三次轴,即z 方向 与六次或三次轴垂直,在x或y或u轴方向 与六次或三次轴垂直,并与位2成300角 x轴方向 y轴方向 z轴方向 y轴方向 任意方向
z
y
x
晶体常数 a≠b≠c,α=γ=90°β>90°
5、三斜晶系
选轴原则:以不在同一平面内的3个主要晶棱 方向为x、y、z轴
Z
Y X
晶体常数 a≠b≠c,αβγ 90°
6、三方、六方晶系
选轴原则:以L6、Li6、L3为z轴,以垂直z轴并彼此相 交为1200的3个L2或P的法线或晶棱方向为x、y、u轴
OX OY OU OZ
根据定向时三个水平轴正端互成120o交角
关系,三个指数之间的关系为h+k+i=0
u
T
O
1.4晶体的定向及晶面符号

晶体定向
5. 六方晶系:具有一个六次轴(包括六次反轴)的点群。首先 选择六次轴或六次反轴作为C轴,然后将垂直于六次轴的两个 二次轴或晶面法线作为a、b晶轴。为了满足六次轴的对称,a、 b轴必须满足:①单位轴长必须相等,即a0=b0;②交角为120º
晶体定向
6. 三方晶系:具有一个三次轴的点群。有2种取向方式:①六方晶
①由晶面(h1 k1 l1)和(h2 k2 l2)求晶带符号 根据晶带定律建立方程组:
h1u+k1v+l1w = 0 h2u+k2v+l2w = 0 解出:
u:v:wk1l1:l1h1:h1k1 k2l2 l2h2 h2k2
解法:①将每一个晶面的面指数在一 列上连续写2次,其指数按次序一一对 应; ②将最右及最左的纵行删去,如 右式; ③用交叉相乘方法,并依次取 出乘积差数即可。
晶面间距好像晶体的指纹,是进行物相鉴别 的重要依据。
1 晶体的定向和晶体的分类 2 晶面指数和晶棱指数 3 晶带定律 4 晶面间距
晶体定向
晶体的定向就是以晶体中心为原点建立一个坐标系,由X,Y,Z三轴 组成,也可由X,Y,U,Z四轴组成(对三方晶系与六方晶系).
c 大拇指
Z
β
α
O
食指
γ
a
=bc
β= a c
γ=ab
中指
b
U
Y
X
120º
坐标轴符合右手定则
晶带定律
②由晶向[u1 v1 w1]和[u2 v2 w2]求晶面符号 建立方程组:
得:
hu1+kv1+lw1 = 0 hu2+kv2+lw2 = 0
h:k:lv1w1:w1u1:u1v1 v2w2 w2u2 u2v2
晶带定律
晶体的定向和晶面符号

• 如果以平行于三根不共面晶棱的直线作为坐标轴,则 晶体上任意二晶面在三个坐标轴上所截截距的比值之 比为一简单整数比。
• 设二晶面A1B1C1和A2B2C2在三根坐标轴上的截距分别 为OA1、OB1、OC1和OA2、OB2、OC2,令: OA1/ OA2: OB1/ OB2: OC1/ OC2=e:f:g 则e:f:g必可化为简单的整数比。 因为:
注意正负之分。
截距系数的倒数比
整理课件
(321) 31
米氏指数(Miller indices)是指:用来表达晶面 在晶体上之方向的一组无公约数的整数,它 们的具体数值等于该晶面在结晶轴上所截截 距系数的倒数比。
• 如果将米氏指数按顺序连写,并置于园括 号内, 表达为(h k l), 便构成了晶面的米氏 符号。
三斜晶系
以不在同一平面的三个主要的晶棱方 向为X、Y、Z轴 整理课件
晶体常数特点
a=b=c
a = b = g = 90
a=b≠c
a = b = g = 90
a=b≠c
a = b = 90 g = 120
a≠b≠c
a = b = g = 90
a≠b≠c
a = g = 90 b > 90
a≠b≠ c
a b g 15
斜方晶系:a ≠ b ≠ c,a = b = g = 90; 单斜晶系:a ≠ b ≠ c,a = g = 90,b > 90; 三斜晶系:a ≠ b ≠ c,a b g;
整理课件
16
各晶系的晶体几何常数特点
整理课件
17
三、 对称型的国际符号
•
对称型的国际符号很简明,1)它不将所有的对称要
素都写出来,2)并且可以表示出对称要素的方向性,3) 但它不容易看懂.
• 设二晶面A1B1C1和A2B2C2在三根坐标轴上的截距分别 为OA1、OB1、OC1和OA2、OB2、OC2,令: OA1/ OA2: OB1/ OB2: OC1/ OC2=e:f:g 则e:f:g必可化为简单的整数比。 因为:
注意正负之分。
截距系数的倒数比
整理课件
(321) 31
米氏指数(Miller indices)是指:用来表达晶面 在晶体上之方向的一组无公约数的整数,它 们的具体数值等于该晶面在结晶轴上所截截 距系数的倒数比。
• 如果将米氏指数按顺序连写,并置于园括 号内, 表达为(h k l), 便构成了晶面的米氏 符号。
三斜晶系
以不在同一平面的三个主要的晶棱方 向为X、Y、Z轴 整理课件
晶体常数特点
a=b=c
a = b = g = 90
a=b≠c
a = b = g = 90
a=b≠c
a = b = 90 g = 120
a≠b≠c
a = b = g = 90
a≠b≠c
a = g = 90 b > 90
a≠b≠ c
a b g 15
斜方晶系:a ≠ b ≠ c,a = b = g = 90; 单斜晶系:a ≠ b ≠ c,a = g = 90,b > 90; 三斜晶系:a ≠ b ≠ c,a b g;
整理课件
16
各晶系的晶体几何常数特点
整理课件
17
三、 对称型的国际符号
•
对称型的国际符号很简明,1)它不将所有的对称要
素都写出来,2)并且可以表示出对称要素的方向性,3) 但它不容易看懂.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、晶体定向的概念
晶体定向就是在晶体上选择坐标系统。即选择
坐标轴(或称为结晶轴)和确定各坐标轴上的 单位长(轴单位)之比(轴率)。
Z
Z
U Y X Y
X
1、晶轴:交于晶体中心的三条轴,它们分别称为x、y、z
轴,晶轴之间的夹角称为轴角,分别表示为:(yz)、 (zx)、(xy)。 注意:三方晶系及六方晶系为四轴定向,在水平方向 上为x、y、u三条互成120度夹角的坐标。
B、在上述前提下,应尽可能使晶轴垂直,轴单位
近乎相等。
§3.2各晶系晶体定向的具体原则
三轴定向
等轴、四方、斜方、单斜、三斜
四轴定向
三方、六方
1、等轴晶系
选轴原则:相互垂直的L4或Li4或L2为x、y、z轴
Z
Y
X
晶体常数:a=b=c,α =β =γ =900
2、四方晶系
选轴原则:以L4或Li4为z轴,以垂直z轴并相 互垂直的L2或P的法线或晶棱方向为x、y轴。
:
OC2
= e:f:g
C2
O
A1 A2
B2
B1
X
Y
1、截距系数之比为整数比
因为晶面是面网,晶轴是行列,晶面与晶轴之交点 为结点,或平移相交于结点。因此,若以晶轴之结 点间距为度量单位,则晶面在晶轴上的截距系数之 比为整数比
c
a
b
2、为简单整数比
晶体面网密度越大,则晶面在晶轴上的截距系数之 比越简单。又依布拉维法则,晶体总是为面网密度 较大的面网所包围,所以为简单整数比。
数为0表示晶棱垂直于相应晶轴。
(4)对于三方、六方晶系的四轴定向,相应晶棱 符号的一般式写作 [u v · w].
§3.6整数定律和晶带定律
一、 晶体的整数定律(有理指数定律)
内容:晶体上任意两晶面,在相交于一点且不在同一 平面内的三条晶棱上的截距的比值之比为简单整数比
Z
OA1
OB1
OC1
C1
:
OA2 OB2
晶带与晶面的关系: 设晶带为[u v w],晶带中任一晶面为(h k l), 则有数学关系式:hu+kv+lw = 0。
晶带定律的应用:
①判断晶面(h k l)是否属于已知晶带(u v w) 根据公式: hu+kv+lw=0 举例:已知晶带[112],判断(021)和(130) 是否属于该晶带 答案:(021)属于;(130)不属于
相互平行。 3)同一晶面符号中,指数的绝对值越大,表示晶面在 相应结晶轴上的截距系数值(绝对值)越小;在轴单位 相等的情况下,还表示相应截距的绝对长度也越短。
思考:
设有一晶体的晶面在三根晶轴上的截距之比 为1:1:1,若这一晶体属于斜方晶系,它 的晶面符号怎样?若是四方晶系、等轴晶系, 它的晶面符号又该怎样?
答案:斜方(hkl) 四方(hhl)等轴(111)
二、四轴定向时晶面符号
晶面符号一般写为(h k i l) a b d c h:k:i:l= : : :
OX OY OU OZ
根据定向时三个水平轴正端互成120o交角 关系,三个指数之间的关系为h+k+i=0
u
T
O Y U
y
X x
证明h+k+i=0的图解
X x F
Y O y
(5)去掉比号,加中括号,[uvw]即为晶棱符号。
补充说明:
(1)没有求倒数的步骤。
(2)对晶棱符号,对应指数的绝对值相等而符号 相反的两个晶棱符号表示同一晶棱,如[001]
和[001]是同一晶棱
(3)指数为0,并不表示晶棱与相应轴平行,在直 角坐标系下,即等轴、四方、斜方晶系中,指
按一定的顺序列出一定方向上的对称
要素,而省略了等同的和派生的对称要素。
等同对称要素
借助于对称型中其他对称要素的变换作用 而相互重复的同种对称要素。
L3
P3
120° P3 P2 P1 120° 120° P2
P1
L33P
派生对称要素
根据对称要素组合定理由已知对称要素导出的
其他对称要素。
L2 C P
举例:求同时属于晶带[102]和[112]的晶面符号 答案:(201)(201)
只出现 1 或 1,则为三斜;
“2” ≤1,或“m” ≤1,则为单斜; “2”
>1,
或“m”
>1,则为斜方
§3.4晶面符号
结晶符号: 晶面符号、晶棱符号、晶带符号、单形符号。 晶面符号: 表示晶面在空间位置的符号。晶面符号有几种,最常 采用米氏符号,又称米勒指数(英国W.H.Miller 1839)。
Z
Y X
晶体常数 a=b≠c,α=β=γ=900
3、斜方(正交)晶系
选轴原则:相互垂直的3个L2为x、y、z轴;
在L22P中以L2为z轴,以两个P的法线为x、y轴
Z
Y
X
晶体常数
a≠b≠c,α =β =γ =90o
4、单斜晶系
选轴原则:以L2或P的法线为y轴,以垂直y轴的 主要晶棱方向为z、x轴(z与x轴一般不正交)
2、轴单位与轴率
轴单位是晶轴的长度单位,也即作为晶轴的行列的结
点间距。x、y、z轴上的轴单位分别以a0,b0,c0表示。 轴率为轴单位之比即a:b:c
3、晶体常数
轴率a:b:c及轴角合称为晶体常数。 表示晶体坐标系特征的一组参数
二、晶轴的选择(晶体定向基本原则)
晶轴的选择不是任意的,应遵循选轴原则: A、应符合晶体本身所固有的对称规律。所以晶轴 首选为对称轴(到转轴),次为对称面法线,再次 为主要晶棱方向。
答案:[112]或[112]
③求同时属于两晶带 [u1 v1 w1]和[u2 v2 w2]
的晶面符号
解:建立方程组: hu1+kv1+lw1 = 0
hu2+kv2+lw2 = 0
h:k :l
v1 w1 v 2 w2 : w1 u1 w2 u 2 : u1 v1 u 2 v2
上下两行互换位 置,结果如何?
二、晶带和晶带定律
1、晶带:交棱相互平行的一组晶面的组合。
2、晶带轴:每个晶带的交棱方向称晶带轴。
3、晶带符号:用晶带轴方向的晶棱指数表示晶 带在空间的位置,一般式仍用[uvw]或[uv·w] 表示。
4、晶带定律:任何两个晶棱(晶带)相交决定
一可能晶面,而任意两晶面相交必可决定一可
能晶棱(晶带)。
对称型的国际符号的书写:
符号位数:是由不超过三个的位组成。 符号表示:每个位分别表示晶体该方向上所存在 的全部对称要素。
即:
◆
平行的对称轴或旋转反伸轴;
◆
◆
垂直的对称面; 当这两类对称要素在同一方向上同时存在 时,则写成分式的形式。
晶
系
序 位 1
代表方向 x或y或z轴方向 三次轴方向 x、y或x、z或y、z轴之间 四次轴,即z方向 与四次轴垂直,在x或y轴方向 与四次轴垂直,并与位2成450 六次或三次轴,即z 方向 与六次或三次轴垂直,在x或y或u轴方向
②已知两晶面(h1 k1 l1)和(h2 k2 l2)求包含两晶
面的晶带符号 解:建立方程组: h1u+k1v+l1w = 0
h2u+k2v+l2w = 0
u:v:w
k1 l1 : k 2 l2 l1 h1 : l 2 h2 h1 k1 h2 k 2
上下两行互换位 置,结果如何?
举例:求包含两晶面(110)(201)的晶带符号
2/m。 第二、第三位空着。 在此符号中没有写出C,它可根据对称要素组 合定理推导出来。
■举例:L44L25PC的国际符号的写法
L44L25PC四方晶系,国际符号三个位的方向:
Z轴、 X轴、 X轴与Y轴的角平分线;
第1位(Z轴) :L4(4)和垂直L4的对称面P(m),写做4/m; 第2位(X轴) :L2(2)和垂直L2的对称面P(m),写做2/m;
等轴晶系
2 3 1
四方晶系
2 3 1 2
三方及六方 晶系
3
1 2
与六次或三次轴垂直,并与位2成300角
x轴方向 y轴方向
斜方晶系 单斜晶系 三斜晶系
3
1 1
z轴方向
y轴方向 任意方向
■
举例: L2PC 的国际符号的写法
L2PC属于单斜晶系,只一个位,代表方向y轴
第1位(y轴):一个L2和垂直L2的对称面P,写成
一、三轴定向晶面符号确定
(1)按晶体定向原则进行晶体定向; (2)求待标晶面在X、Y、Z轴上的截距 X pa、qb、rc,得截距系数p、q、r ;
Z
Y
(3)取截距系数的倒数比1/p:1/q:1/r = h:k:l (为最小整数比); (4)去掉比号、以小括号括起来,写为(h k l)。 注意:若晶面交于晶轴负端,则在相应指数上方加“-”号
第3位(X轴与Y轴的角平分线):L2(2)和垂直L2的对称面P(m), 写做2/m。 将三个位的符号按照序位排列:4/m2/m2/m。
根据国际符号判断该对称型属于何晶族晶系
1、首先看第二位是否为“3”,若为“3”(3代表4L3), 则为高级晶族等轴晶系 2、第二位不是3,则看第一位。若第一位为高次轴符号, 则为中级晶族;根据轴次高低判断属于相应晶系 3、符号中无高次轴符号,则为低级晶族。
z
u
y x
晶体常数 a=b≠c,α =β =90°γ =120°
总结-晶体定向方法
1、根据晶体对称型,确定晶体属于何种晶系
2、对应各晶系定向原则,确定相应的x轴、y轴、z轴
注意:七大晶系中,单斜晶系先确定y轴,其它 晶系均先确定z轴