复杂网络基础理论共34页
复杂网络 PPT课件
二十一世纪(二十世纪末),系统成为主要的研 究对象,整合成为主要方法;
整合的方法在于了解细部以后,研究“如何组合”的
问题,这导致复杂网络结构的研究; 如:普列高津的耗散结构理论、哈肯的协同学、混沌 和复杂系统理论、系统生物学、…
复杂系统与复杂网络
复杂系统与复杂网络的概念
系统:集合(具体元素)+ 系统的结构是什么?
统失控等一系列不同网络间的连锁反应。
(4)网络分层结构的复杂性
行政管理网络是具有层结构的,多数网络都有节点的
分层结构,只是在许多网络中没有意识到是一种造成 复杂性的重要结构。
对复杂网络的理解
复杂网络是二十一世纪科学研究的思想和理念, 它启发我们用什么观点理解这个世界:整个世界 以及组成世界的任何细部都是由网络及其变化形 成的; 复杂网络也是研究复杂系统的一种技术和方法, 它关注系统中个体相互作用的拓扑结构,是理解 复杂系统性质和功能的基本方法。
复杂网络 Complex Network
为什么研究复杂网络?
二十一世纪涌现的新现象
互联网是怎样“链”接的? 从一个页面到另一个页面,
平均需要点击多少次鼠标?
美国航空网
城市公共交通网
为什么两者结构差异如此之大? 这种差异是必然还是偶然的? 城市交通涌堵的原因是什么?
• 非典发现在广州,为什么却 在北京爆发呢? • 传染病是怎样扩散和消失的?
互联网 病毒传播网
计算机病毒是怎样传播的? 为什么“好事不出门,坏事 行千里”呢?……
神经网络
生态网络
社交网络
电力网络
电信网络航空网络Biblioteka Facebook 全球友谊图
复杂网络分析方法
i t P(t) 1 ( i P(t))( i t)
k(i / 3) t1
i t1
t 1
i t2 1 ( i t)2
t 1
i t1
i 3,4,..., 18626 (8.3.15)
第23页/共54页
计算降水量序列可能出现的波动值的概率
Pk
k Num(x) N
(8.3.16)
第8页/共54页
图8.3.1 两种度分布:泊松分布(a)与幂律分布(b)
第9页/共54页
(2)距离与平均路径长度 在网络研究中,一般定义: 两个节点之间的距离(路径长度)为两个节点
间最短路径的长度; 网络的直径为任意两个节点之间的最大距离; 网络的平均路径长度则是所有节点对之间距离
的平均值,它描述了网络中节点之间的分离程度。
式中:Num(x) 为对应一种降水量波动模态x发生
的次数,Pk 为降水量序列可能出现的波动值的概率。
第24页/共54页
将降水量波动 Pk 划分为5个等概率区间,把落在 这5个区间的 k(t) 分别用符号表示为R,r,e, d,D, 即
R, 0 Pk 0.2
Si
r, e,
0.2 Pk 0.4 0.4 Pk 0.6
d , 0.6 Pk 0.8
D, 0.8 Pk 1.0
(8.3.17)
第25页/共54页
(8.3.17)式中,符号R,r,e, d,D所代表的含义 如图8.3.2所示:
图8.3.2 符号R,r,e,d,D 的含义
第26页/共54页
按照上述思想,可把日降水量序列 P(t) 转化为相 应的符号序列:
第三步:构建网络 引入一个加权网络来描述降水量序列中各波动
模态之间的关联性和作用,其中网络的节点就是125 个3元字符串的波动模态;
复杂网络基础理论
无标度网络
定义:无标度网络是指节点的度分布遵循幂律分布的网络即少数节点拥有大量连接大部分节点 只有少数连接。
特性:无标度网络具有高度的异质性其结构可以抵抗随机攻击但容易受到定向攻击。
构建方法:无标度网络的构建通常采用优先连接机制即新节点更倾向于与已经具有大量连接的 节点相连。
应用场景:无标度网络在现实世界中广泛存在如社交网络、互联网、蛋白质相互作用网络等。
07
复杂网络的未来研究方向和挑战
跨领域交叉研究
复杂网络与计算机 科学的交叉:研究 网络算法、网络安 全和网络流量控制 等。
复杂网络与生物学 的交叉:研究生物 系统的网络结构和 功能如蛋白质相互 作用网络和基因调 控网络等。
复杂网络与物理学 的交叉:研究网络 的拓扑结构和动力 学行为如复杂系统 、自组织系统和非 线性系统等。
复杂网络的演化过程中节点和边 的动态变化会导致网络的拓扑结 构和性质发生改变。
添加标题
添加标题
添加标题
添加标题
复杂网络具有非线性和自组织的 特性能够涌现出复杂的结构和行 为。
复杂网络在现实世界中广泛存在 如社交网络、生物网络、交通网 络等。
复杂网络的特征
节点数量巨大且具有自组织、 自相似、小世界等特性
03
复杂网络的基本理论
网络拓扑结构
节点:复杂网络中的基本单元
连通性:网络中节点之间是否存 在路径
添加标题
添加标题
添加标题
添加标题
边:连接节点的线段表示节点之 间的关系
聚类系数:衡量网络中节点聚类 的程度
网络演化模型
节点增长模型:节点按照一定概 率在网络中加入形成无标度网络
节点属性演化模型:节点属性随 时间发生变化影响网络的演化
复杂网络的基础知识
第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。
如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。
如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。
图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。
如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。
如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。
图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。
2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。
定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。
即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。
即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。
复杂网络基础8课件
复杂网络的重要性
揭示现实世界的内在规律
解决实际问题
复杂网络理论可以用于揭示各种自然 现象和社会现象的内在规律,如生态 系统的食物链、社交网络中的人际关 系等。
复杂网络理论可以用于解决许多实际 问题,如网络安全、交通拥堵、疾病 传播等,为政策制定和工程实践提供 理论支持。
推动跨学科研究
复杂网络理论涉及到数学、物理、计 算机科学等多个学科,可以促进这些 学科之间的交叉融合,推动科学技术 的进步。
提高网络鲁棒性的方法
1 2 3
增加冗余节点和边 在网络中增加冗余的节点和边可以提高网络的容 错性和恢复力,从而提高网络的鲁棒性。
优化节点和边的连接结构 优化节点和边的连接结构可以提高网络的连通性 和稳定性,从而提高网络的鲁棒性。
引入超边和超节点 在网络中引入超边和超节点可以提高网络的连通 性和稳定性,从而提高网络的鲁棒性。
技术网络分析
技术网络分析的概
念
技术网络分析是对技术系统中各 种要素之间相互作用的研究,包 括计算机网络、交通网络等。
技术网络分析的应
用
技术网络分析在计算机网络管理、 交通规划、故障诊断等领域有重 要作用,有助于提高技术系统的 可靠性和效率。
技术网络分析的工
具
技术网络分析工具包括Wireshark、 Gephi等,这些工具提供了丰富 的可视化功能和统计分析方法, 方便研究者进行深入分析。
复杂网络的应用领域
社会学
研究社交网络中的人际 关系、信息传播、群体
行为等。
生物学
研究生物体内的分子相 互作用、生态系统的食
物链等。
计算机科学
研究计算机网络的结构 和演化、计算机病毒的
传播等。
物理学
复杂网络
• 哈佛大学美国社会心理学家斯坦利•米尔格 伦(Stanley Milgram)在1967年实验后得出 结论:中间的联系人平均只需要5个,他把 这个结论称为“六度分离”(Six Degrees of Separation); • 六度分离:平均只要通过5个人,你就能与 世界任何一个角落的任何一个人发生联系。 这个结论定量地说明了我们世界的”大 小”,或者说人与人关系的紧密程度; • 六度分离理论一直被作为社会心理学的经 典范例之一。
例:神经网络中的突触有强有弱,可抑制也可兴奋
网络复杂性:即系统内部和系统之间的相互作用可以
看成由节点、边(连接)构成的体系,出现网络复杂 性、小世界特征与无标度特征等。
Hale Waihona Puke 12网络系统的复杂性
(1)结构复杂性
网络连接结构错综复杂、极其混乱,同时又蕴含着丰
富的结构:社区、基序、聚集性、生成规律性等等, 而且网络连接结构可能是随时间变化的。 包括:静态结构的复杂性和结构动态演化的复杂性。 例如:互联网上每天都不停地有页面和链接的产生和 删除。
26
小世界实验 — Erdos数
Fields奖得主的Erdos数都不超过5(只有Cohen和 Grothendieck的Erdos数是5); Nevanlinna奖得主的Erdos数不超过3(只有Valiant的 Erdos数是3); Wolf数学奖得主的Erdos数不超过6(只有V.I.Arnold是6, 且只有Kolmogorov是5); Steele奖的终身成就奖得主的Erdos数不超过4; 其他领域的专家:
比尔盖兹(Bill Gates), 他的Erdos数是4,通过如下途径实现: Erdos--Pavol Hell--Xiao Tie Deng--Christos H. Papadimitriou-William H. (Bill) Gates; 爱因斯坦的Erdos数是2。
复杂网络的基本统计特征理论知识
复杂网络的基本统计特征理论知识复杂网络的基本统计特征理论知识2.1 路网拥挤核2.1.1路网拥挤核的定义路网的总体拥堵评估,用路网拥挤核这一指标来进行评估。
路网拥挤核为路段拥挤度居全网前k%且相互连通成为一个局部网络,并且不能忽略的是,该网络对于所研究区域整体的人口,经济,政策等与人类活动的因素有着不可忽视的作用,那么这个城市道路局部网络,称为路网拥挤核。
2.1.2路网拥挤核k 值的计算根据宁波市交通工程的实际情况,考虑到宁波市的经济社会发展水平以及交通需求水平,利用宁波市的GDP 增长率、国省道日均流量增长比以及汽车拥有量增长比这三个指标,运用以下公式:;(2.1)本文选择的研究对象为宁波市,所以这里K 值计算暂时只讨论宁波市的路网拥挤核;根据公式,结合你宁波近十年数据,计算可得k=17.7,而考虑到宁波市的经济总量和汽车拥有量较大,在经济总量足够大以及汽车拥有量趋于饱和后,它们的增长率和增长比的数值会有所下降,所以将k 值暂定为15,即路段拥挤度居全网前15%且相互连通成为一个局部网络,就称该局部网络为一个路网拥挤核。
2.2复杂网络的基本统计特征对于城市道路网络演化模型构建与评估必须对于复杂网络的一些基础知识进行必要的了解。
汽车拥有量增长比增长率国省道日均流量增长比??=GDP K2.2.1复杂网络的度与度分布度是对于复杂网络系统里面,最常用同时也是最简单的一种概念。
在一个复杂网络系统里面,具体的每个节点的度m i 是指与这个节点连接在一起的边的具体的数量,而如果给这个复杂网络系统加上方向,那么具体的度可以分为二种:出度和入度;前者指的是从选定的节点,沿着复杂网络系统的方向指向的其他节点的具体的边的数目,后者指的是从选定的节点,反着复杂网络系统的方向指向的其他节点的具体的边的数目。
复杂网络系统的度m i 平均值叫做,网络的平均度用符号表示。
对于有向的复杂网络系统,有如下公式m m m out in i +=;(2.2)其中,m in 表示选定的节点的入度;m out 表示选定的节点的出度。
复杂网络理论和应用研究PPT课件
早期网络模型-ER模型
Erdös和Rényi (ER)最早提出随机网 络模型并对模型进行了深入研究,他们 是用概率统计方法研究随机图统计特性 的创始人。
在模型开始阶段给定N个节点,没有边, 以概率p用边连接任意一对节点,用这样 的方法产生一随机网络。
~ 1.5 Poisson distribution
小世界模型
为了描述从一个局部有序系统到一个随机 网络的转移过程,Watts和 Strogatz (WS)提出了一个新模型,通常称为小 世界网络模型。
WS模型始于一具有N个节点的一维网络, 网络的节点与其最近的邻接点和次邻接点 相连接,然后每条边以概率p重新连接。 约束条件为节点间无重边,无自环。
成的一张图。
中国教科网
中国教科网拓扑结构
网络(图)的基本概念
• 关联与邻接 • 度、平均度 • 节点的度分布 • 最短路径与平均路径长度 • 群系数
网络(图)的基本概念
a
b
c
d
e
网络(图)的基本概念
节点的度分布是指网络(图)中 度为 k的节点的概率 p(k随) 节点
度 的变k化规律。
网络(图)的基本概念
规则图的特征
平均度为3
随机图的特征
节点确定,但边以概率 p任意连
接。 节点不确定,点边关系也不确定。
随机图——节点19,边43
平均度为2.42,集群系数为0.13。
随机图——节点42,边118
平均度为5.62,集群系数为0.133。
4. 复杂网络的演化模型
复杂网络是大量互联的节点的集合,节点 是信息的载体,比如互联网,万维网,以 及各种通信网、食物网、生物神经网、电 力网、社会经济网、科学家合作网等。
《复杂网络简介》课件
100%
小世界网络
指网络中节点间的平均距离很短 ,即信息在网络中传播的速度很 快。
80%
随机网络
节点和边的出现是随机过程的结 果,网络结构相对均匀。
03
复杂网络的演化
网络演化的基本规律
自相似性
复杂网络在演化过程中表现出 自相似性,即在不同尺度上网 络的结构和性质具有相似性。
无标度性
复杂网络中节点的度分布遵循 幂律分布,即少数节点拥有大 量连接,而大多数节点只有少 数连接。
小世界效应
复杂网络中的节点平均距离较 小,信息在网络中传播迅速。
网络演化的机制
01
02
03
增长
随着时间的推移,网络中 的节点数量不断增加,新 的节点通过与已有节点建 立连接加入网络。
优先连接
新加入的节点更倾向于与 已有节点中连接数较多的 节点建立连接,从而形成 层次结构。
自组织
网络中的节点通过局部规 则和相互作用,在演化过 程中形成复杂的结构和模 式。
复杂网络的重要性
揭示现实世界中复杂系统的内在规律和机制
复杂网络是描述现实世界中复杂系统的重要工具,可以帮助我们 揭示系统内在的规律和机制。
促进跨学科研究
复杂网络涉及多个学科领域,如数学、物理、计算机科学、社会 学等,通过复杂网络的研究可以促进跨学科的合作与交流。
复杂网络的应用领域
01
02
03
04
网络控制的基本概念
1 2
状态反馈控制
通过测量节点的状态,并利用状态反馈控制方法 调整节点的输入,实现网络的控制。
输出反馈控制
通过测量节点的输出,并利用输出反馈控制方法 调整节点的输入,实现网络的控制。
3
复杂网络基础理论 1
1.1 引言
21世纪是复杂性和网络化的世纪。 从20世纪七八十年代开始,在国际上形成了非线 性科学和复杂性问题的研究热潮。 尤其是20世纪90年代以来,人类已经生活在一个 充满各种各样复杂网络的世界中,许多复杂性问题都 可以从复杂网络的角度去研究。 从网络观点重新认识事物并带来革命性变化的典 型实例——Google的诞生。它的PageRank算法利用了 WWW的网络结构。
返回 目录
5
1.2 网络科学理论发展的三个时期
1.2.1 规则网络理论阶段 1.2.2 随机网络理论阶段 1.2.3 复杂网络理论阶段
6
1.2.1 规则网络理论阶段
规则网络理论的发展得益于图论和拓扑学等应用 数学的发展。图论是一种强有力的研究工具和研究方 法。 历史上著名的四个图论问题: 1.哥尼斯堡七桥问题 哥尼斯堡是当时东普鲁士的首都,今俄罗斯加里 宁格勒市,普莱格尔河横贯其中,这条河上建有七座 桥,将河中间的两个岛和河岸联结起来,如图所示。 有人在闲暇散步时提出:能不能每座桥都只走一遍, 最后又回到原来的位置。
14
1.2.3 复杂网络理论阶段
2.社会网络中弱连接优势的发现 哈佛大学Granovetter的弱连接优势理论指出:与 一个人的工作和事业关系最密切的社会关系并不是“ 强连接”,而常常是“弱连接”。“弱连接”虽然不 如“强连接”那样坚固,却有着极快的、可能具有低 成本和高效能的传播效率。而在强连接关系下,成员 彼此之间具有相似的态度,他们高度的互动频率通常 会强化原本认知的观点而降低了与其它观点的融合, 故强连接网络通常不能提供创新机会。相对于强连接 关系,弱连接则能够在不同的团体间传递非冗余性的 讯息,使得网络成员能够增加修正原先观点的机会。 因此,拥有更多弱连接的人拥有信息流通的优势,往 往可得到更多工作机会和业务选择机会。
复杂网络基础理论(ppt)
IP
朋
地
友
址 网
关系
网
数理统计基础
概率论基础 数理统计基础 统计假设及检验 一元线性回归分析
图论的基本概念
图的基本概念 图的路和连通性 图的基本运算 树与生成树 图的矩阵表示
复杂网络的研究内容和意义
研究的主要内容包括:网络的几何性质,网络 的形成机制,网络演化的统计规律,网络上的模 型性质,网络的结构稳定性,网络的演化动力学 机制等。
间的距离dij和从节点vj到vi之间的距离dji是不同的。距离dij 定义为从节点vi出发沿着同一方向到达节点vj所要经历的弧的 最少数目,而它的倒数1/dij称为从节点vi到节点vj的效率, 记为εij。
有向连通简单网络的平均距离L
因为效率可以用来描述非连通网络,所以可以定义有向网 络的效率LC为
介数
介数 节点的介数Bi定义为
式中,Njl表示从节点vj到vl的最短路径条数,Njl(i)表示 从节点vj到vl的最短路径经过节点vi的条数。 边的介数Bij定义为
式中,Nlm表示从节点vl到vm的最短路径条数,Nlm(eij )表示从节点vl到vm的最短路径经过边eij(方向相同)的 条数。
加权网络的静态特征
核度 一个图的k-核是指反复去掉度值小于k的节点及其连线后
,所剩余的子图,该子图的节点数就是该核的大小。 节点核度的最大值叫做网络的核度。 节点的核度可以说明节点在核中的深度,核度的最大值自然
就对应着网络结构中最中心的位置。
度中心性
度中心性分为节点度中心性和网络度中心性。 节点vi的度中心性CD(vi)定义为
网络G的度中心性CD定义为
介数中心性
介数中心性分为节点介数中心性和网络介数中心性。 节点vi的介数中心性CB(vi)定义为