巧用极化恒等式秒杀高考向量题

合集下载

高考数学专题《极化恒等式》填选压轴题及答案

高考数学专题《极化恒等式》填选压轴题及答案

专题23 极化恒等式【方法点拨】极化恒等式:221()()4a b a b a b ⎡⎤⋅=+--⎣⎦.说明:(1)极化恒等式的几何意义是:设点D 是△ABC 边的中点,则22221||||4AB AC AD BC AD BD ⋅=-=-,即:向量的数量积可转化为中线长与半底边长的平方差.(2)具有三角几何背景的数学问题利用极化恒等式考虑尤为简单,让“秒杀”向量数量积问题成为一种可能,此恒等式的精妙之处在于建立向量与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.(3)遇到共起点的两向量的数量积问题,常取第三边的中点,从而运用极化恒等式加以解决. 特别适合于以三角形为载体,含有线段中点的向量问题.【典型例题】例1 如图,在ABC △中,D 是BC 的中点,,E F 是AD 上两个三等分点,4BA CA ⋅=,1BF CF ⋅=-,则BE CE ⋅的值是 . 【答案】78【解析】设BD x =,DF y =由极化恒等式得222294BA CA AB AC AD BD y x ⋅=⋅=-=-=, 22221BF CF FB FC FD BD y x ⋅=⋅=-=-=-解之得可得2294a b -=,221a b -=-,因此2138x =,258y =,因此222451374888BE CE EB EC ED BD y x ⨯⋅=⋅=-=-=-=.点评:紧紧把握极化恒等式使用条件,三次使用极化恒等式求解.例2 已知ABC ∆是边长为2的等边三角形,P 是平面ABC 内一点,则(2)PA PB PC +的BC最小值为 . 【答案】73-【分析】本题的难点在于如何将2PB PC +“二合一”?注意到两向量共起点且其系数和为3,可利用三点共线的方法将其“二合一”,然后使用极化恒等式. 【解析】设23PB PC PD +=,则2133PD PB PC =+,D 在BC 上 所以(2)=3PA PB PC PA PD +如图,取BC 中点为E ,由极化恒等式得221=4PA PD PE AD -在ABD ,由余弦定理得22242128=+2cos 422=9329AD AB BD AB BD ABD -⋅⋅∠=+-⋅⋅⋅ 所以当=0PE ,即P 为AD 中点时,()min7=9PA PD-所以(2)PA PB PC +的最小值73-,此时P 为AD 中点.例3 如图所示,矩形ABCD 的边AB =4,AD =2,以点C 为圆心,CB 为半径的圆与CD 交于点E ,若点P 是圆弧(含端点B 、E )上的一点,则P A → ·PB →的取值范围是 .【答案】【分析】取AB 的中点设为O ,则,然后利用平几知识确定PO 的取值范围,代入即可.【解析】取AB 的中点设为O ,则,当O 、P 、C 共线时, PO 取得最小值为222PO =-;当P 与B (或E )重合时,POEB [882,0]-2221=44PA PB PO AB PO ⋅-=-2221=44PA PB PO AB PO ⋅-=-EBCAP D取得最大值为PO =2,所以的取值范围是.例4 半径为2的圆O 上有三点A ,B ,C ,满足++0OA AB AC =,点P 是圆内一点,则++PA PO PB PC ⋅的取值范围是( )A . [)4,14-B . (]4,14-C . [)4,4-D . (]4,4-【答案】A【分析】直接两次使用极化恒等式即可. 【解析】由++0OA AB AC =得+AB AC AO = 在平行四边形ABOC 中,OB OC =, 故易知四边形ABOC是菱形,且BC =设四边形ABOC 对角线的交点为E由极化恒等式得222114PA PO PE AO PE ⋅=-=-222134PB PC PE BC PE ⋅=-=-所以2++24PA PO PB PC PE ⋅=- 因为P 是圆内一点,所以03PE ≤<所以242414PE -≤-<,即4++14PA PO PB PC -≤⋅<,选A .例5 在△ABC 中,AC =2BC =4,∠AC B 为钝角,M ,=1,若CM CN ⋅的N 是边AB 上的两个动点,且MN 最小值为34,则cos ∠ACB = .【分析】取MN 的中点P ,由极化恒等式将“CM CN ⋅的最小值为34”转化为AB 边上的PA PB⋅[8-高CH =1,然后利用两角差的的余弦公式求解.【解析】取MN 的中点P ,则由极化恒等式得2221144CM CN CP MN CP ⋅=-=- ∵CM CN ⋅的最小值为34∴min 1CP =由平几知识知:当CP ⊥AB 时,CP 最小. 如图,作CH ⊥AB ,H 为垂足,则CH =1 又AC =2BC =4,所以∠B =30o ,sin A =14所以cos ∠ACB =cos (150o -A )=1358-.例6 已知直角三角形ABC 中,90A ∠=︒,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB PC ⋅的最大值为( )A .161655+ B .16855+ C .165D .565【答案】D【解析】设BC 中点为D ,则22221120544PB PC PD BC PD PD =-=-⨯=-,又因为max 49555PD AD r =+=+=,所以()max8156555PB PC =-=, 故选:D.例7 正方体1111ABCD A B C D -棱长为2,E 是棱AB 的中点,F 是四边形11AA D D 内一点(包含边界),且34FE FD ⋅=-,当三棱锥F AED -的体积最大时,EF 与平面11ABB A 所成H角的正弦值为( ) A .23B .53C .255D .52【答案】A【分析】由条件34FE FD ⋅=-及极化恒等式入手,设DE 的中点为G ,则222153444FE FD FG DE FG ⋅=-=-=-,所以212FG =,故点F 的轨迹是以G 为球心,22为半径的球被面11AA D D 所截得的半圆,当点F 在半圆弧的最高点时,三棱锥F AED -的体积最大,此时易求得EF 与平面11ABB A 所成角的正弦值为23. 【解析】设DE 的中点为G ,则由极化恒等式得222153444FE FD FG DE FG ⋅=-=-=-,所以212FG =, 故点F 的轨迹是以G 为球心,22为半径的球被面11AA D D 所截得的半圆, 当点F 在半圆弧的最高点时,三棱锥F AED -的体积最大, 此时易求得EF 与平面11ABB A 所成角的正弦值为23.【巩固练习】1. 如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5.若AB ―→·AD ―→=-7,则BC ―→·DC ―→=________.2.矩形中,为矩形所在平面内一点,,矩形对角线,则值为 .ABCD P ABCD 3,4PA PC ==6AC =PB PD ⋅3.若平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值为________.4.已知平面向量a ,b ,e 满足|e |=1,a ·e =1,b ·e =-2,|a +b |=2,那么a ·b 的最大值为________.5.在中,已知,,则面积的最大值是 .6.已知单位向量PA ,PB ,PC 满足2330PA PB PC ++=,则AB AC ⋅的值为( ) A .89B .23C .59D .17. 已知2OA OB ==,且向量OA 与OB 的夹角为120°,又1PO =,则AP BP ⋅的取值范围为( ) A .[]1,1-B .[]1,3-C .[]3,1-D .[]3,3-8.已知平面向量,a b c ,满足1a =,12a b ⋅=,2a c ⋅=,22b c -=,那么b c ⋅的最小值为________.9.已知锐角的外接圆的半径为1, ,则的取值范围为__________.10.在ABC ∆中,︒=∠==60,4,3BAC AC AB ,若P 是ABC ∆所在平面内的一点,且2=AP ,则PC PB ⋅的最大值为_____.11.已知点P 是边长为32的正三角形ABC 内切圆上的一点,则PB PA ⋅的取值范围为_____.12.已知正方形ABCD 的边长为1,中心为O ,直线l 经过中心O ,交AB 于点M ,交CD 于点N ,P 为平面上一点,若2OP → =λOB → +(1-λ)OC → ,则PM → ·PN → 的最小值为__________. 13.设点P 为正三角形△ABC 的边BC 上的一个动点,当P A → ·PC →取得最小值时,sin ∠P AC 的值为________.14.在平面直角坐标系xOy 中,点A ,B 分别在x 轴,y 轴正半轴上移动,AB =2,若点P 满足P A → ·PB →=2,则OP 的取值范围为________.15.在△ABC 中,E ,F 分别是线段AB ,AC 的中点,点P 在直线EF 上,若△ABC 的面积为2,则PB → ·PC → +BC →2的最小值是__________.16.在半径为1的扇形AOB 中,若∠AOB =60°,C 为弧AB 上的动点,AB 与OC 交于点P ,则OP →·BP →的最小值是________.ABC ∆2BC =1AB AC •=ABC ∆ABC ∆6B π∠=BA BC ⋅17. 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,MN 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P 为正方体表面上的动点,当弦MN 的长度最大时, PM →·PN →的取值范围是________.18. 已知球O 的半径为1, ,A B是球面上的两点,且AB =P 是球面上任意一点,则PA PB ⋅的取值范围是( ) A .31,22⎡⎤-⎢⎥⎣⎦ B .13,22⎡⎤-⎢⎥⎣⎦ C .10,2⎡⎤⎢⎥⎣⎦ D .30,2⎡⎤⎢⎥⎣⎦【答案或提示】1.【答案】9【提示】两次使用极化恒等式,由224BD AB AD OA ⋅=-得=8BD ,2294BD BC DC OC ⋅=-=.2.【答案】 【提示】设矩形的对角线交点为O ,由222222346942AC PA PC PO PO +-⋅=-=-=,得272PO =,227119422BD PB PD PO ⋅=-=-=-.3.【答案】98-【解析】根据极化恒等式得:2228(2)(2)(2)99⋅=+--=+--≥a b a b a b a b ,故98⋅≥-a b ,所以⋅a b 的最小值为98-.4.【答案】-54【提示】 由a ·e =1,b ·e =-2得: a ·e -b ·e =3,即(a -b )·e =3,|a -b |cos θ=3 a ·b=14[|a +b |2-|a -b |2]≤-54 5.112-【提示】取BC 的中点为D ,则224BC AB AC AD •=-,所以2AD =因为BC 边上的高线长不大于中线长,当中线就是高线时,面积最大,故面积的最大值. 6.【答案】A【解析】∵2330PA PB PC ++=,∴23PB PC PA +=-, 如图,设BC 中点为D ,则()1123PD PB PC PA =+=-,且1PA PB PC ===, ∴,,P A D 三点共线,PD BC ⊥,1133PD PC ==,43AD =, ∴ABC 为等腰三角形, ∴22223CD PC PD =-=, ∴22224228339AB AC AD CD ⎛⎫⎛⎫⋅=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭.故选:A. 7. 【答案】C【解析】连结A B 、,则=23AB 设AB 的中点为T , 由222134PT AB PT AP BP ⋅==--,易知02PT ≤≤,所以2331PT -≤-≤ 故31AP BP -≤⋅≤,故选:C 8.【答案】58【解析】由12a b ⋅=,2a c ⋅=得23a b a c ⋅⋅=+,即(23a b c ⋅+)= 又(22cos a b c a b c θ⋅+)=+(其中θ为向量a 与2b c +的夹角) 所以32cos b c θ+= 所以2221195(2)(2)488cos 8b c b c b c θ⎛⎫⎡⎤⋅=+--=-≥ ⎪⎣⎦⎝⎭. ABC ∆29.【答案】 10.【答案】10237+ 【提示】方法同上. 11.【答案】[]3,6-12.【答案】716-13.【答案】392614.【答案】31,31⎡⎤-+⎣⎦15.【答案】4316.【解析】如图,取OB 的中点D ,连接PD ,则OP →·BP →则PD 2则OD 2则PD 2则14则即求PD 的最小值.由图可知,当PD ⊥OB 时,PD min =34, 则OP →·BP →的最小值是-116.17.【答案】[0,2]【解析】 由正方体的棱长为2,得内切球的半径为1,正方体的体对角线长为2 3.当弦MN 的长度最大时,MN 为球的直径.设内切球的球心为O ,则PM →·PN →=PO →2-ON →2=PO →2-1.由于P 为正方体表面上的动点,故OP ∈[1,3],所以PM →·PN →∈[0,2]. 18.【答案】B【解析】设,A B 的中点为C ,则12OC =33,32⎛⎤+ ⎥⎝⎦由极化恒等式得22213·44 PA PB PC AB PC=-=-因为12OC=,点P是球面上任意一点所以13 22PC≤≤所以13·,22PA PB⎡⎤∈-⎢⎥⎣⎦,故选B.。

巧用极化恒等式,妙解高考向量题

巧用极化恒等式,妙解高考向量题
巧用极化恒等式,妙解高考向量题
想一想
在处理向量的问题中,一个强有力的工具,特别 在求向量数量积最值的时候,甚至是“秒杀”某些高 考向量题,那就是向量的极化恒等式。
M
4a b (a b) (a b)
2
2
极化恒等式的几何意义:
(a b) 2 (a b) 2 a b 4
设OA =a, OB b, D为AB的中点,即点 C的轨迹是 以D为起点,以
例4
数量积有关的范围问题
点 P 是棱长为 1 的正方体 ABCD -A 1B 1C1 D1 的底面 A1B 1C 1D1 1 , 1 上的一点,则 PA PC 的取值范围为 2 .
A
. M B
.P
D1
在ABC中,点 E,F分别是线段 AB,AC的中点,点 P在直线 EF上, 若ABC的面积为 2,则 PC PB BC 的最小值是
2 2 1 取BC的中点 D,在 PBC内使用恒等式得: PC PB =PD -BD = | PD | 2 | BC | 2 , 4 4 2 2 因为 ABC的高 h , PBC的高为 , 从而 | PD | , | BC | | BC | | BC | 3 4 3 2 从而原式 | PD | 2 | BC | 2 | BC | 2 3 2 4 4 | BC |
解二:建系: AB 所在直线为 x 轴, AB 中垂线为 y 轴,设 AB 4 , C (a, b), P( x,0) 则 A(2,0), B(2,0), P0 (1,0)
(2 x)(a x) a 1恒成立,即 x 2 (a 2) x a 1 0 在 2 x 2 恒成立, a 2 0 ,即点 C 在 AB 的中垂线上, CA CB 。

平面向量中极化恒等式应用习题

平面向量中极化恒等式应用习题

编辑整理:中年油腻大叔276424199@
1 / 1 平面向量中极化恒等式应用
一.秒杀基础题:
1.如图,在平面四边形ABCD 中,O 为BD 的中点,且3OA =,5OC =.若AB →·AD →=-7,
则BC →·DC →的值是 ▲ .
答案:9
2.在△ABC 中,已知AB =3,BC =2,D 在AB 上,AD →=13
AB →.若DB →·DC →=3,则AC 的长是 ▲ . 答案: 10
3.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点, 8AB =,6CD =,则MA MB ⋅ 的取值范围是
▲ .
答案:[9,0]- 4.在周长为16的PMN ∆中,6MN =,则PM PN ⋅ 的取值范围是 ▲ .
答案:[)716,
二.难题简单化:
1.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BC CA ⋅= ,1BF CF ⋅=- ,
则BE CE ⋅ 的值是 ▲ . 答案:
78
2.已知点P
是边长为ABC 内切圆上的一点, 则.PA PB 的取值范围是 ▲ .
答案:[3,1]-
3.已知C B A ,,是半径为1的圆O 上的三点,AB 为圆O 的直径,P 为圆O 内一点(含圆周), 则PA PC PC PB PB PA ⋅+⋅+⋅的取值范围为 . 答案:4[,4]3-。

极化恒等式教师版

极化恒等式教师版

则 A(0, 3 3 ) , B( 3 , 0) , C( 3 , 0) ,
2
2
2
所以 AB ( 3 , 3 3 ) , AD ( 1 , 3 3 ) ,
22
22
所以 AB AD 15 2
法 3:极化恒等式
取 BD 的中点 O ,连接 AO , 则在 ABC 中,由余弦定理: AO2 AB2 AO2 2AB AO cos B = 31
因为

0,
2

,所以
sin
0,1
所以 FA FB 0,6
y (0,2) C F (2cosα,2sinα)
E
O
A
(- 3,-1)
x B ( 3,-1)
y C
6、如图,放置的边长为 1 的正方形 ABCD ,顶点 A, D 分别在 x 轴, y 轴
正半轴(含原点)滑动,则 OB OC 的最大值为
巧用极化恒等式秒杀高考向量题
一、极化恒等式的概念:
江苏 张锡文

a, b
是两个平面向量,则有恒等式
a
b

1 4
(a

b)2

(a

b)2

(1)
有时也将(1)写成 4a b (a b)2 (a b)2 ,
极化恒等式的几何意义是:
向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的 1 , 4
所以 AB AC BC 2 3
C
F E
21 2
2
FA FB FD BA FD 3 ,
4
A
D
B

高中数学极化恒等式专题习题含答案(图片版)

高中数学极化恒等式专题习题含答案(图片版)

向量之极化恒等式专题一、极化恒等式原理:代数原理:22()()4a b a b ab +--=向量原理:22()()4a b a b a b +--⋅=ABDC 中有如下向量关系:2222()()44AB AC AB AC AD CB AB AC +---⋅==即:平行四边形临边对应的向量的数量积等于和对角线平方与差对角线平方之差的四分之一在ABC 中有如下向量关系:2222222222()()41=444414AB AC AB AC AD CB AE CB AB AC AE CBAB AC AE CB+----⋅===-⇒⋅=-即:在三角形中相邻两边所在向量的数量积等于相应中线的平方与四分之一对边平方之差。

极化恒等式构建了向量的数量积和几何图形之间的关系,对高考中向量的一类问题可以起到“秒杀”的作用。

备注:ABDC 中还有一组关系22222()AD CB AB AC +=+ ,同学们可以自行推导。

二、极化恒等式秒杀一类向量题赏析:例1.已知Rt ABC ∆的斜边AB 的长为4,设P 是以C 为圆心,1为半径的圆上的任意一点,则PA PB ⋅的取值范围是例2.如图,圆O 为Rt ABC ∆的内切圆,已知03,4,90AC BC C ==∠=,过圆心O 的直线l 交圆于,P Q 两点,则BP CQ ⋅的取值范围是例3.已知点,A B 分别在直线1,3x x ==上,4OA OB -= ,当OA OB +取得最小值时,OA OB ⋅的值为例4.在Rt ABC ∆中,090,3,4,ACB AC AB ∠===若点,A B 分别在直角坐标系的两坐标轴上运动时,OA OC ⋅的最大值是例5.已知,A B 为椭圆2214x y +=的一条动弦,且经过原点,M 为直线34150x y --=上的一个动点,则MA MB ⋅的最小值为例6.在锐角ABC 中,已知3B π∠=,2AB AC -= ,则AB AC ⋅ 的最值范围是例7.在平面上,2121,1AB AB AP AB AB +===⊥21<的取值范围是例8.已知向量c b a ,,()()0,12=-⋅-===c b c a-的取值范围是Ans :7.⎥⎦⎤⎝⎛227,8..[]17,1-7+,三、牛刀小试1.在ABC 中,M 是BC 的中点,3,10,AM BC AB AC ==⋅=则2.设ABC ,0P 是边AB 上一定点,满足014P B AB =,且对于边AB 上任意一点P ,恒有00PB PC P B P C ⋅≥⋅,则()A.090ABC ∠= B.090BAC ∠= C.AB AC = D.AC BC=3.如图,已知直线AB 与抛物线24y x =交于点,.A B M 为AB 的中点,C 为抛物线上一个动点,若0C 满足{}00min C A C B CA CB ⋅=⋅,则下列一定成立的是()A.0C M AB ⊥B.00,C M l l C ⊥其中为抛物线过点的切线C.00C A C B⊥ D.012C M AB =4.在正ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=5.已知,a b 是平面内2个互相垂直的单位向量,若向量c满足()()0a c b c -⋅-= ,则c的最大值是6.设正方形ABCD 的边长为4,动点P 在以AB 为直径的圆弧 APB 上(如图所示),则PC PD ⋅的取值范围是7.(2012苏模拟)在ABC 中,点,E F 分别是线段,AB AC 的中点,点P 在直线EF上,若ABC 的面积为2,则2PC PB BC ⋅+ 的最小值是8.如图,在半径为1的扇形AOB 中,060AOB ∠=,C 为弧上的动点,AB 与OC 交于点P ,则OP BP ⋅的最小值为9.如图放置的边长为1的正方形ABCD 顶点分别在x 轴,y 轴的正半轴(含原点)滑动,则OB OC ⋅的最大值为10.正方体1111ABCD A B C D -的棱长为2,MN 是它内切球的一条弦(把球面上任意2个点之间的线段称为球的弦),P 为正方体表面上的动点,当弦MN 最长时,PM PN ⋅的最大值为11.点P 是棱长为1的正方体1111ABCD A B C D -的底面1111A B C D 上一点,则PA PC ⋅的取值范围是12.若平面向量b a ,满足23a b -≤,则b a ⋅的最小值是13.已知B A ,是单位圆上的两点,O 为圆心,且32π=∠AOB ,MN 是圆O 的一条直径,点O 在圆内,且满足())10(1<<-+=λλλOB OA OC ,则CN CM ⋅的取值范围是14.已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于,A B 的一点,P 是圆O 所在平面上任意一点,则()PA PB PC +⋅的最小值为Ans :1.16- 2.D 3.B4.2155.26.[]16,07.328.161-9.210.211.⎥⎦⎤⎢⎣⎡1,2112.49-13.⎪⎭⎫⎢⎣⎡-0,4314.21-。

平面向量中极化恒等式、等和(高)线定理及最值(范围)问题--备战2022年高考数学一轮复习配套试题

平面向量中极化恒等式、等和(高)线定理及最值(范围)问题--备战2022年高考数学一轮复习配套试题

平面向量中极化恒等式、等和(高)线定理及最值(范围)问题)知识梳理1.极化恒等式:a ·b =14[(a +b )2-(a -b )2].(1)几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.(2)平行四边形PMQN ,O 是对角线交点.则: ①PM →·PN→=14[|PQ |2-|NM |2](平行四边形模式); ②PM →·PN→=|PO |2-14|NM |2(三角形模式). 2.等和(高)线定理(1)由三点共线结论推导等和(高)线定理:如图,由三点共线结论可知,若OP →=λOA→+μOB →(λ,μ∈R ),则λ+μ=1,由△OAB 与△OA ′B ′相似,必存在一个常数k ,k ∈R ,使得OP ′→=kOP →,则OP ′→=kOP →=kλOA →+kμOB →,又OP ′→=xOA →+yOB →(x ,y ∈R ),∴x +y =kλ+kμ=k ;反之也成立.(2)平面内一组基底OA→,OB →及任一向量OP ′→,OP ′→=λOA →+μOB →(λ,μ∈R ),若点P ′在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值);反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和(高)线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1); ③当直线AB 在O 点和等和线之间时,k ∈(1,+∞); ④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;⑥定值k 的变化与等和线到O 点的距离成正比. 3.平面向量中的最值(范围)问题(1)向量投影、数量积、向量的模、夹角的最值(或范围). (2)向量表达式中字母参数的最值(或范围).题型一 极化恒等式的应用【例1】 (1)已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,P 是圆O 所在平面上任意一点,则(P A →+PB →)·PC →的最小值为( )A .-14B .-13C .-12 D .-1(2)(2020·天津卷)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB→=-32,则实数λ的值为__________;若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN→的最小值为__________.答案 (1)C (2)16 132解析 (1)P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →,取OC 中点D ,由极化恒等式得,PO →·PC →=|PD |2-14|OC |2=|PD |2-14,又|PD |2min=0,∴(P A →+PB →)·PC →的最小值为-12.(2)法一 依题意得AD ∥BC ,∠BAD =120°,由AD →·AB →=|AD →|·|AB →|·cos ∠BAD =-32|AD →|=-32,得|AD →|=1,因此λ=|AD →||BC→|=16.取MN 的中点E ,连接DE ,则DM →+DN →=2DE →,DM →·DN →=14[(DM →+DN →)2-(DM →-DN →)2]=DE →2-14NM →2=DE →2-14.注意到线段MN 在线段BC 上运动时,DE 的最小值等于点D 到直线BC 的距离,即AB ·sin B =332,因此DE →2-14的最小值为⎝ ⎛⎭⎪⎫3322-14=132,即DM →·DN →的最小值为132.法二 因为AD →=λBC →, 所以AD ∥BC ,则∠BAD =120°, 所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32, 解得|AD→|=1.因为AD→,BC →同向,且BC =6, 所以AD→=16BC →,即λ=16. 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系. 如图,设M (a ,0),不妨设点N 在点M 右侧, 则N (a +1,0),且-32≤a ≤72.又D ⎝ ⎛⎭⎪⎫1,332,所以DM →=⎝ ⎛⎭⎪⎫a -1,-332, DN→=⎝ ⎛⎭⎪⎫a ,-332, 所以DM →·DN →=a 2-a +274=⎝ ⎛⎭⎪⎫a -122+132.所以当a =12时,DM →·DN→取得最小值132.感悟升华 (1)极化恒等式多用于向量的数量积; (2)注意在三角形、平行四边形中的应用.【训练1】 (1)(2021·杭州二中模拟)在△ABC 中,M 是BC 的中点,AM =3 ,BC =10,则AB →·AC→=________.(2)已知正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则P A →·PB→的取值范围是________. 答案 (1)-16 (2)[-2,6]解析 (1)因为M 是BC 的中点,由极化恒等式得AB →·AC→=|AM |2-14|BC |2=9-14×100=-16.(2)取AB 的中点D ,连接CD ,因为三角形ABC 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =2 3. 又由极化恒等式得P A →·PB→=PD 2-14AB 2=PD 2-3, 因为P 在圆O 上,所以当P 在点C 处时,PD max =3, 当P 在CO 的延长线与圆O 的交点处时,PD min =1, 所以P A →·PB →∈[-2,6]. 题型二 等和线定理的应用【例2】 (1)如图,平面内有三个向量OA →,OB →,OC →,其中〈OA →,OB →〉=120°,〈OA →,OC →〉=30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=mOA →+nOB →,则m +n =________.(2)在扇形OAB 中,∠AOB =60°,C 为AB ︵上的一个动点,若OC →=xOA →+yOB →,则3x +y 的取值范围是________. 答案 (1)6 (2)[1,3]解析 (1)法一 连接AB ,交OC 于点D ,则 ∠DOA =∠OAD =30°,∠BOD =90°, |OD →|=|OB →|tan 30°=33,|OD →|=|DA →|=33,|DB →|=233,由平面向量基本定理得OD→=23OA →+13OB →,|OC →|=23=6|OD →|,∴OC →=6⎝ ⎛⎭⎪⎫23OA →+13OB →=4OA→+2OB →,m +n =6.法二 根据等高线定理可得|OC ||OD |=k =m +n ,k =|OC→||OD →|=2333=6,∴m +n =6.(2)取D 使得OD →=13OA →,OC →=xOA →+yOB →=3xOD →+yOB →,作一系列与BD 平行的直线与圆弧相交,当点C 与点B 重合时,3x +y 取得最小值1,当点C 与点A 重合时,3x +y 取得最大值3,故3x +y 的取值范围是[1,3]. 感悟升华 (1)“等和线”的解题步骤 ①确定值为1的等和线;②过动点作该线平行线,结合动点的可行域,分析在何点处取得最值; ③利用长度比或该点的位置,求得最值或范围.(2)“等和线”多用于向量线性表示式中有关系数的最值、范围问题. (3)此类问题也可建系,用坐标法解决.【训练2】 如图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且AD =1,点P 是△BCD (含边界)的动点,设OP →=λOC →+μOD →,则λ+μ的最大值为________.答案 32解析 当点P 位于B 点时,过点B 作GH ∥DC ,交OC ,OD 的延长线于G ,H ,则OP →=xOG →+yOH →,且x +y =1, ∵△GCB ∽△COD ,∴GC CO =CB OD =12,∴OP →=OB →=xOG →+yOH →=32xOC →+32yOD →=λOC →+μOD →,所以λ=32x ,μ=32y ⇒λ+μ=32x +32y =32.故答案为32. 题型三 平面向量中的最值(范围)问题 角度1 函数型【例3-1】 (1)(一题多解)(2020·浙江卷)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤ 2.设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是__________. (2)(2021·宁波十校联考)设向量a =(x 1,y 1),b =(x 2,y 2),记a *b =x 1x 2-y 1y 2,若圆C :x 2+y 2-2x +4y =0上的任意三个点A 1,A 2,A 3,且A 1A 2⊥A 2A 3,则|OA 1→*OA 2→+OA 2→*OA 3→|(O 为坐标原点)的最大值是________. 答案 (1)2829 (2)16解析 (1)法一 设e 1=(1,0),e 2=(x ,y ), 则a =(x +1,y ),b =(x +3,y ). 由2e 1-e 2=(2-x ,-y ),故|2e 1-e 2|=(2-x )2+y 2≤2,得(x -2)2+y 2≤2. 又有x 2+y 2=1,得(x -2)2+1-x 2≤2, 化简,得4x ≥3,即x ≥34,因此34≤x ≤1. cos 2θ=⎝ ⎛⎭⎪⎫a ·b |a |·|b |2 =⎝ ⎛⎭⎪⎫(x +1)(x +3)+y 2(x +1)2+y 2(x +3)2+y 22=⎝ ⎛⎭⎪⎫4x +42x +26x +102=4(x +1)2(x +1)(3x +5)=4(x +1)3x +5=43(3x +5)-833x +5=43-833x +5,当x =34时,cos 2θ有最小值,为4⎝ ⎛⎭⎪⎫34+13×34+5=2829.法二 单位向量e 1,e 2满足|2e 1-e 2|≤2, 所以|2e 1-e 2|2=5-4e 1·e 2≤2,即e 1·e 2≥34. 因为a =e 1+e 2,b =3e 1+e 2,a ,b 的夹角为θ,所以cos 2θ=(a ·b )2|a |2|b |2=[(e 1+e 2)·(3e 1+e 2)]2|e 1+e 2|2·|3e 1+e 2|2=(4+4e 1·e 2)2(2+2e ·e 2)(10+6e 1·e 2)=4+4e 1·e 25+3e 1·e 2.不妨设t =e 1·e 2,则t ≥34,cos 2θ=4+4t 5+3t ,又y =4+4t 5+3t 在⎣⎢⎡⎭⎪⎫34,+∞上单调递增.所以cos 2θ≥4+35+94=2829. 所以cos 2θ的最小值为2829. 法三 由题意,不妨设e 1=(1,0),e 2=(cos x ,sin x ).因为|2e 1-e 2|≤2,所以(2-cos x )2+sin 2x ≤2,得5-4cos x ≤2,即cos x ≥34. 易知a =(1+cos x ,sin x ),b =(3+cos x ,sin x ),所以a ·b =(1+cos x )(3+cos x )+sin 2x =4+4cos x ,|a |2=(1+cos x )2+sin 2x =2+2cos x ,|b |2=(3+cos x )2+sin 2x =10+6cos x ,所以cos 2θ=(a ·b )2|a |2|b |2=(4+4cos x )2(2+2cos x )(10+6cos x )=4+4cos x5+3cos x.不妨设m =cos x ,则m ≥34,cos 2θ=4+4m 5+3m ,又y =4+4m 5+3m 在⎣⎢⎡⎭⎪⎫34,+∞上单调递增,所以cos 2θ≥4+35+94=2829,所以cos 2θ的最小值为2829. (2)由O ,A 1,A 2,A 3四点共圆,且A 1A 2⊥A 2A 3,可知A 1A 3为圆C 的直径,故OA 1→+OA 3→=2OC →.由圆C 的标准方程设OA 2→=(1+5cos θ,-2+5sin θ),又点C (1,-2),则|OA 1→*OA 2→+OA 2→*OA 3→|=|(OA 1→+OA 3→)*OA 2→|=2|OC →*OA 2→|=2|(1+5cos θ)+2(-2+5sin θ)|=2|5sin(θ+φ)-3|≤16,其中tan φ=12,当且仅当θ=2k π-π2-φ,k ∈Z 时等号成立,所以所求最大值为16.感悟升华 此类问题可归结为函数、三角函数求最值、值域问题. 【训练3-1】 (1)如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在AB ︵上,则PM →·PB →的最小值为________.(2)(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________. 答案 (1)4-25 (2)4 2 5 解析(1)如图,以O 为坐标原点,OA→为x 轴的正半轴,OB →为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎢⎡⎦⎥⎤0,π2,所以PM →·PB→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ-4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255,所以PM →·PB→的最小值为4-2 5.(2)由题意,不妨设b =(2,0),a =(cos θ,sin θ)(θ∈[0,2π)), 则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ). 令y =|a +b |+|a -b |=(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ=5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20]. 由此可得(|a +b |+|a -b |)max =20=25, (|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5. 角度2 解不等式型【例3-2】 (1)(2021·金丽衢十二校二联)设t ∈R ,已知平面向量a ,b 满足|a |=2|b |=2,且a ·b =1,向量c =x a +(t -x )b ,若存在两个不同的实数x ∈[0,t ],使得c 2-2a ·c +3=0,则实数t ( ) A .有最大值为2,最小值为32 B .无最大值,最小值为32 C .有最大值为2,无最小值 D .无最大值,最小值为0(2)已知不共线向量OA →,OB →夹角为α,|OA →|=1,|OB →|=2,OP →=(1-t )OA →,OQ →=tOB →(0≤t ≤1),|PQ →|在t =t 0处取最小值,当0<t 0<15时,则α的取值范围为( ) A.⎝ ⎛⎭⎪⎫0,π3 B.⎝ ⎛⎭⎪⎫π3,π2 C.⎝ ⎛⎭⎪⎫π2,2π3 D.⎝ ⎛⎭⎪⎫2π3,π 答案 (1)B (2)C解析 (1)设向量a ,b 的夹角为θ,∵a ·b =|a ||b |cos θ=2cos θ=1,∴cos θ=12.∵θ∈[0,π],∴θ=π3.由题意得c ·a =[x a +(t -x )b ]·a =x a 2+(t -x )b ·a =4x +t -x =3x +t ,c 2=[x a +(t -x )b ]2=x 2a 2+2x (t -x )a ·b +(t -x )2·b 2=4x 2+2xt -2x 2+t 2-2xt +x 2=3x 2+t 2.存在两个不同的实数x ∈[0,t ],使得c 2-2a ·c +3=0,即存在两个不同的实数x ∈[0,t ],使得3x 2-6x +t 2-2t +3=0,即f (x )=3x 2-6x +t 2-2t+3在[0,t ]内有两个不同的零点,则⎩⎪⎨⎪⎧f (0)≥0,f (t )≥0,Δ>0,0<--66<t ,即⎩⎨⎧t 2-2t +3≥0,4t 2-8t +3≥0,0<t <2,t >1,解得t ∈⎣⎢⎡⎭⎪⎫32,2,则实数t 的最小值为32,无最大值,故选B. (2)由题意,不共线向量OA→,OB →夹角为α,|OA →|=1,|OB →|=2,OP →=(1-t )OA →,OQ →=tOB →(0≤t ≤1),得PQ →=OQ →-OP →=tOB →-(1-t )OA →,所以|PQ →|2=[tOB →-(1-t )OA →]2=(5+4cos α)t 2-2(1+2cos α)t +1,由二次函数的图象和性质知,当t =t 0=1+2cos α5+4cos α时,|PQ→|取最小值,即0<1+2cos α5+4cos α<15,解得-12<cos α<0,因为α∈[0,π],所以α∈⎝ ⎛⎭⎪⎫π2,2π3,故选C.感悟升华 此类问题最后化为解不等式(组)问题解决.【训练3-2】 (1)(2021·丽水测试)已知|c |=2,向量b 满足2|b -c |=b ·c .当b ,c 的夹角最大时,|b |=________.(2)(2021·金华十校调研)已知平面向量a ,b ,c 满足|a |≤1,|b |≤1,|2c -(a +b )|≤|a -b |,则|c |的最大值为________. 答案 (1)22 (2) 2解析 (1)设〈b ,c 〉=θ,则由2|b -c |=b ·c 得4(b -c )2=(b ·c )2,即4|b |2sin 2θ-16|b |cos θ+16=0,则4cos θ=|b |sin 2θ+4|b |≥2|b |sin 2θ·4|b |=4sin θ,当且仅当|b |sin 2θ=4|b |,即|b |=2sin θ时,等号成立,∵4cos θ≥4sin θ,则tan θ=sin θcos θ≤1,所以θ≤π4,当θ=π4时,|b |=2 2.(2)因为|2c -(a +b )|≤|a -b |,所以|2c |-|a +b |≤|a -b |,即|2c |≤|a +b |+|a -b |,将a ,b 的起点移到同一点,以a ,b 为邻边构造平行四边形,则a +b ,a -b 为平行四边形的两条对角线.在平行四边形ABCD 中,|AC |2=|AB |2+|AD |2+2|AB |·|AD |cos ∠BAD ,|BD |2=|AB |2+|AD |2-2|AB |·|AD |cos ∠BAD ,则|AC |2+|BD |2=2|AB |2+2|AD |2,易得当|AB |,|AD |最大且|AC |=|BD |时,|AC |+|BD |取得最大值,所以当|a |=1,|b |=1且|a +b |=|a -b |时,|a +b |+|a -b |取得最大值22,则|2c |≤|a +b |+|a -b |≤22,即|c |≤2,所以|c |的最大值为 2.角度3 重要不等式型【例3-3】 (1)(一题多解)(2021·义乌市联考)已知平面向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为α,|a |=1,|b |+|c |=2,则cos α的取值范围是________. (2)(2016·浙江卷)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________. 答案 (1)[-1,1] (2)12解析 (1)法一 由题意可知-c =a +b ,则|b |-|a |≤|c |≤|b |+|a |,所以|b |-1≤2-|b |≤|b |+1,则12≤|b |≤32.不妨设|b |=t ,t ∈⎣⎢⎡⎦⎥⎤12,32,则|c |=2-t .又由-c =a +b 两边平方得1+t 2+2t cos α=(2-t )2=4-4t +t 2,则cos α=3-4t 2t ∈[-1,1]. 法二 如图所示,椭圆方程为x 2+4y 23=1.当向量a ,b ,c 共线时,α取最大值或最小值,即cos α=1或-1,所以cos α∈[-1,1]. (2)由已知可得6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e |, 由于上式对任意单位向量e 都成立. ∴6≥|a +b |成立.∴6≥(a +b )2=a 2+b 2+2a ·b =12+22+2a ·b . 即6≥5+2a ·b ,∴a ·b ≤12. 感悟升华 常用不等式(1)基本不等式:a +b ≥2ab (a >0,b >0); (2)三角不等式:||a |-|b ||≤|a ±b |≤|a |+|b |; (3)数量积不等式:|a ·b |≤|a ||b |.【训练3-3】 (1)(2021·浙江新高考仿真三)设平面向量a ,b 满足1≤|a |≤2,2≤|b |≤3,则|a +b |+|a -b |的取值范围是________.(2)(一题多解)(2021·浙江五校联考)已知a |=3,|b |=|c |=4,若c ⊥a ,则|a -b -c |的最大值为________. 答案 (1)[6,213] (2)9解析 (1)|a +b |2+|a -b |2=2(|a |2+|b |2)①,由基本不等式,得|a +b |2+|a -b |2≥(|a +b |+|a -b |)22②.又|a |∈[1,2],|b |∈[2,3],由①②得(|a +b |+|a -b |)2≤4(|a |2+|b |2)≤52,即|a +b |+|a -b |≤213.又由三角不等式有|a +b |+|a -b |≥|(a +b )±(a -b )|,即|a +b |+|a -b |≥2|a |,|a +b |+|a -b |≥2|b |,故|a +b |+|a -b |≥6,综上,有6≤|a +b |+|a -b |≤213.(2)法一 |a -b -c |=a 2+b 2+c 2-2a ·b +2b ·c =41+2b ·(c -a ).∵c ⊥a ,∴|c -a |=5,则b ·(c -a )≤|b ||c -a |=20,所以|a -b -c |≤41+40=9.法二 由|a |=3,|b |=|c |=4知,a 在以O 为圆心,3为半径的圆上运动,b ,c 均在以O 为圆心,4为半径的圆上运动,如图,又a ⊥c ,则|a -b -c |=|(a -c )-b |=|CA→-OB →|≤|CA →|+|OB →|=5+4=9. 角度4 轨迹型【例3-4】 (2021·名校仿真训练四)直线ax +by +c =0与圆O :x 2+y 2=4相交于两点M ,N .若c 2=a 2+b 2,P 为圆O 上任意一点,则PM →·PN →的取值范围是________. 答案 [-2,6] 解析 如图,取MN 的中点A ,连接OA ,则OA ⊥MN ,∵c 2=a 2+b 2,∴O 点到直线MN 的距离OA =|c |a 2+b2=1,圆O 的半径r =2,∴Rt △AON 中,设∠AON =θ,得cos θ=OA ON =12,得θ=π3,cos ∠MON =cos 2θ=cos 2π3=-12,由此可得OM →·ON →=|OM →|·|ON →|cos ∠MON =2×2×⎝ ⎛⎭⎪⎫-12=-2,则PM →·PN →=(OM →-OP →)·(ON→-OP →)=OM →·ON →+OP →2-OP →·(OM →+ON →)=-2+4-2OP →·OA →=2-2|OP →|·|OA →|·cos ∠AOP =2-4cos ∠AOP ,当OP→,OA →同向时,取得最小值2-4=-2,当OP →,OA →反向时,取得最大值2+4=6,则PM →·PN→的取值范围是[-2,6].感悟升华 利用向量及其运算的几何意义,结合轨迹图形求解,并注意分析临界状态.【训练3-4】 (2021·湖州期末质检)正方形ABCD 的边长为2,E ,M 分别为BC ,AB 的中点,点P 是以C 为圆心,CE 为半径的圆上的动点,点N 在正方形ABCD 的边上运动,则PM →·PN →的最小值是________. 答案 1- 5 解析 由题意得PM →·PN →=(PC →+CM →)·(PC →+CN →)=1+PC →·CM →+(PC →+CM →)·CN →=1+PC →·CM →+PM →·CN →.由图易得向量PM →,CN →的夹角恒为锐角,则PM →·CN →≥0,则当点N 与点C 重合,点P 为CM 与圆C 的交点时,PC →·CM →取得最小值-5,PM →·CN →取得最小值0,此时PM →·PN →取得最小值1- 5. 角度5 投影与函数分析型【例3-5】 (1)如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A ,B ,C ,D 四点均位于图中的“晶格点”处,且A ,B 的位置如图所示,则AB →·CD→的最大值为________.(2)(2019·浙江卷)已知正方形ABCD 的边长为1,当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最小值是________,最大值是________. 答案 (1)24 (2)0 2 5解析 (1)先建立平面直角坐标系如图,因为正六边形的边长均为1,所以B (0,0),A ⎝ ⎛⎭⎪⎫32,92,当CD→在AB →方向上的投影最大时,AB →·CD →最大,此时取C (0,5),D (-3,0),即(AB →·CD →)max =⎝ ⎛⎭⎪⎫-32,-92·(-3,-5)=32+452=24. (2)如图,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则AB→=(1,0),AD →=(0,1). 设a =λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →=λ1AB →+λ2AD →-λ3AB →-λ4AD →+λ5(AB →+AD →)+λ6(AD →-AB →) =(λ1-λ3+λ5-λ6)AB →+(λ2-λ4+λ5+λ6)AD → =(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6).故|a|=(λ1-λ3+λ5-λ6)2+(λ2-λ4+λ5+λ6)2. ∵λi (i =1,2,3,4,5,6)取遍±1,∴当λ1-λ3+λ5-λ6=0,λ2-λ4+λ5+λ6=0(λ1=λ3=λ4=λ5=λ6=1,λ2=-1)时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最小值0.考虑到λ5-λ6,λ5+λ6有相关性,要确保所求模最大,只需使|λ1-λ3+λ5-λ6|,|λ2-λ4+λ5+λ6|尽可能取到最大值,即当λ1-λ3+λ5-λ6=2,λ2-λ4+λ5+λ6=4(λ1=λ2=λ5=λ6=1,λ3=λ4=-1)时可取到最大值,∴|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最大值为4+16=2 5. 感悟升华 (1)关于数量积问题常用投影分析法;(2)当向量线性表达式系数较多且给出其取值范围时,常用系数分析法. 【训练3-5】 (1)已知正三角形ABC 的边长为4,O 是平面ABC 内的动点,且∠AOB =π3,则OC →·AB →的最大值为________. (2)(2021·浙江名师预测一)已知等边△ABC 的边长为1,当每个λi (i =1,2,3)在{-1,0,1}中取值时,则|λ1AB →-λ2BC →+λ3CA →|的最小值是________,最大值是________. 答案 (1)1633 (2)0 2解析 (1)如图,圆E 2为△ABC 的外接圆,圆E 1与圆E 2关于直线AB 对称,由题意知O 在圆E 1,E 2的优弧AB ︵上(圆E 1,E 2半径相等),设AB 的中点为D ,OC →·AB →=(DC →-DO →)·AB→=BA →·DO →=|BA →|·|DO →|·cos ∠ADO ,易知DO →在BA →方向上的射影最大时,OC →·AB →取得最大值,易知DO →在BA →方向上射影的最大值为△ABO 外接圆的半径,故所求最大值为4×42sin π3=1633. (2)当λi (i =1,2,3)中三个均为0时,|λ1AB →-λ2BC →+λ3CA →|=0;当λi (i =1,2,3)中恰有2个为0时,|λ1AB →-λ2BC →+λ3CA →|≤1;当λi (i =1,2,3)中恰有1个为0时,1≤|λ1AB →-λ2BC →+λ3CA →|≤3;当λi (i =1,2,3)中均不为0时,0≤|λ1AB →-λ2BC →+λ3CA →|≤2,综上所述,|λ1AB →-λ2BC →+λ3CA →|的最小值是0,最大值是2.一、选择题1.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A .2 B .3 C .6 D .8 答案 C解析 如图,由已知|OF |=1,取FO 中点E ,连接PE ,由极化恒等式得OP →·FP→=|PE |2-14|OF |2=|PE |2-14, ∵|PE |2max =254,∴OP →·FP→的最大值为6. 2.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN→的最大值为( )A .3B .2 3C .6D .9 答案 D解析 由平面向量数量积的几何意义知,AM →·AN →等于|AM →|与AN →在AM →方向上的投影之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB →+AD →)=12AB →2+AD →2+32AB →·AD→=9.3.(一题多解)(2020·新高考山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是( )A .(-2,6)B .(-6,2)C .(-2,4)D .(-4,6) 答案 A解析 法一 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP →=(x ,y ), AB→=(2,0),且-1<x <3. 所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6). 故选A.法二 AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB→方向上的投影,所以结合图形可知,当P 与C 重合时投影最大.当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB →∈(-2,6).故选A. 4.(2021·镇海中学检测)已知向量m ,n 满足(m +n )·(m -2n )=0,(m -n )·(m +2n )+1=0,则|n |的最小值为( ) A.14 B.12 C.22 D .1 答案 C解析 因为(m +n )·(m -2n )=0,所以m 2-m ·n -2n 2=0.因为(m -n )·(m +2n )+1=0,所以m 2+m ·n -2n 2+1=0,所以m ·n =-12,且m 2=2n 2-12>0.因为(m ·n )2=14≤|m |2·|n |2=⎝ ⎛⎭⎪⎫2|n |2-12·|n |2,解得|n |2≥12,所以|n |≥22,即|n |的最小值为22,故选C.5.如图,△BCD 与△ABC 的面积之比为2,点P 是区域ABDC 内的任一点(含边界).且AP →=λAB →+μAC →,则λ+μ的取值范围是( )A .[0,1]B .[0,2]C .[0,3]D .[0,4] 答案 C解析 过点P 作GH ∥BC ,交AC 、AB 的延长线于G ,H ,则AP→=xAG →+yAH →,且x +y =1,当点P 位于D 点时,G ,H 分别位于C ′,B ′,∵△BCD 与△ABC 的面积之比为2,∴AC ′=3AC ,AB ′=3AB ,∴OP →=xAG →+yAH →=xAC ′→+yAB ′→=x ·3·AC →+y ·3·AB →=λAB →+μAC →,所以λ=3y ,μ=3x ⇒λ+μ=3x +3y =3.当点P 位于A 点时,显然有λ+μ=0,选C.6.(一题多解)已知点C 为扇形AOB 的弧AB 上任意一点,且∠AOB =120°,若OC →=λOA→+μOB →(λ,μ∈R ),则λ+μ的取值范围是( ) A .[-2,2] B .(1,2] C .[1,2] D .[1,2] 答案 D解析 法一 (常规方法)设半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,建立直角坐标系,其中A ⎝ ⎛⎭⎪⎫-12,32;B (1,0);C (cos θ,sin θ)(其中∠BOC =θ⎝ ⎛⎭⎪⎫0≤θ≤2π3,有OC→=λOA →+μOB →(λ,μ∈R ),即(cos θ,sin θ)=λ⎝ ⎛⎭⎪⎫-12,32+μ(1,0),整理得-12λ+μ=cos θ;32λ=sin θ,解得λ=2sin θ3,μ=cos θ+sin θ3,则λ+μ=2sin θ3+cos θ+sin θ3=3sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π6,θ∈⎣⎢⎡⎦⎥⎤0,2π3,易得λ+μ∈[1,2].法二 (等和线定理) 设λ+μ=k ,当C 位于A 或B 时,A 、B 、C 三点共线, 所以k =λ+μ=1,当点运动到AB ︵的中点C 时,k =λ+μ=2,∴λ+μ∈[1,2].7.设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1,则( )A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定 答案 B解析 |b +t a |2=b 2+2a ·b ·t +t 2a 2 =|a |2t 2+2|a |·|b |cos θ·t +|b |2. 因为|b +t a |min =1, 所以4|a |2·|b |2-4|a |2·|b |2cos 2θ4|a |2=|b |2(1-cos 2θ)=1.所以|b |2sin 2θ=1,所以|b |sin θ=1,即|b |=1sin θ. 即θ确定,|b |唯一确定.8.(2021·龙湾中学检测)已知平面向量a ,b ,c 满足|a |=|b |=a ·b =2,(a -c )·(b -2c )=1,则|b -c |的最小值为( ) A.7-52 B.7-32 C.5-32 D.3-12答案 A解析 由|a |=|b |=a ·b =2得〈a ,b 〉=π3,则不妨设a =OA →=(1,3),b =OB →=(2,0),c =OC→=(x ,y ),则a -c =(1-x ,3-y ),b -2c =(2-2x ,-2y ).由(a -c )·(b -2c )=1得(x -1)2+⎝ ⎛⎭⎪⎫y -322=54,则点C (x ,y )的轨迹是以⎝⎛⎭⎪⎫1,32为圆心,52为半径的圆,则|b -c |=|CB →|的最小值为(2-1)2+⎝⎛⎭⎪⎫0-322-52=7-52,故选A.9.(2021·武汉质检)已知等边△ABC 内接于圆Γ:x 2+y 2=1,且P 是圆Γ上一点,则P A →·(PB→+PC →)的最大值是( )A. 2 B .1 C. 3 D .2 答案 D 解析 设BC 的中点为E ,连接AE ,向量PO→,OE →的夹角为θ.因为等边△ABC 内接于圆Γ:x 2+y 2=1,所以点O 在AE 上,且OA =2OE =1,所以P A →·(PB →+PC →)=P A →·2PE →=2(PO →+OA →)·(PO →+OE →)=2[PO →2+PO →·(OA →+OE →)+OA →·OE →]=2[PO →2+PO →·(-OE →)-2OE →2]=2⎣⎢⎡⎦⎥⎤1-1×12cos θ-2×⎝ ⎛⎭⎪⎫122=1-cos θ,所以当cos θ=-1,∴〈PO→,OE →〉=π,∴〈OP →,OE →〉=0,即点P 为AE 的延长线与圆的交点时,P A ·(PB →+PC →)取最大值2,故选D.10.(2021·名校冲刺卷三)已知|a |=|b |=|c |=2,且a ·b =2,(a -c )·(b -c )≤0,则|a +b +c |( )A .有最小值23-2,最大值23+2B .有最小值23-2,最大值27C .有最小值27,最大值23+2D .有最小值23-2,最大值2 答案 C 解析 如图所示,令a =OA →,b =OB →,c =OC →,由a ·b =2,|a |=|b |=|c |=2可得∠AOB =π3.又(a -c )·(b -c )≤0,所以点C 在以AB 为直径的圆内,|a +b +c |=|OD →+OC →|,所以|a +b +c |的最大值是OC→,OD →同向为23+2,最小值是点C 与点A 或点B 重合为27,故选C. 11.已知m ,n 是两个非零向量,且|m |=1,|m +2n |=3,则|m +n|+|n|的最大值为( )A. 5B.10 C .4 D .5答案 B解析 因为(m +2n )2=4n 2+4m ·n +1=9,所以n 2+m ·n =2,所以(m +n )2=m 2+2m ·n +n 2=5-n 2,所以|m +n |+|n |=5-|n |2+|n |.令|n |=x (0<x ≤5),f (x )=5-x 2+x ,则f ′(x )=-2x 25-x2+1.由f ′(x )=0,得x =102,所以当0<x <102时,f ′(x )>0时,当102<x ≤5时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,102上单调递增,在⎝ ⎛⎦⎥⎤102,5上单调递减,所以f (x )max =f ⎝ ⎛⎭⎪⎫102=10,故选B. 12.(2021·北京海淀区检测)已知点M 在圆C 1:(x -1)2+(y -1)2=1上,点N 在圆C 2:(x +1)2+(y +1)2=1上,则下列说法错误的是( )A.OM →·ON→的取值范围为[-3-22,0] B .|OM→+ON →|的取值范围为[0,22] C .|OM→-ON →|的取值范围为[22-2,22+2] D .若OM→=λON →,则实数λ的取值范围为[-3-22,-3+22] 答案 B解析∵M 在圆C 1上,点N 在圆C 2上,∴∠MON ≥90°,∴OM →·ON →≤0,又|OM→|≤2+1,|ON →|≤2+1, ∴当|OM→|=2+1,|ON →|=2+1时, OM →·ON→取得最小值, (2+1)2cos π=-3-22,故A 正确;设M (1+cos α,1+sin α),N (-1+cos β,-1+sin β),则OM→+ON →=(cos α+cos β,sin α+sin β), ∴|OM→+ON →|2=2cos αcos β+2sin αsin β+2 =2cos (α-β)+2,∴0≤|OM→+ON →|≤2,故B 错误; ∵两圆外离,半径为1,|C 1C 2|=22,∴22-2≤|MN |≤22+2,即22-2≤|OM→-ON →|≤22+2,故C 正确; ∵2-1≤|OM→|≤2+1,2-1≤|ON →|≤2+1, ∴当OM →=λON →时,2-12+1≤-λ≤2+12-1, 解得-3-22≤λ≤-3+22,故D 正确.13.已知向量OA →,OB →满足|OA →|=|OB →|=2,OA →·OB →=2,若OC →=λOA →+μOB →(λ,μ∈R ),且λ+μ=1,则|OC→|的最小值为( ) A .1 B.52 C. 2 D. 3答案 D解析 |OC →|2=(λOA →+μOB →)2=[λOA →+(1-λ)OB →]2=4λ2+4(1-λ)2+2λ(1-λ)OA →·OB→, 因为OA →·OB →=2,所以|OC →|2=4λ2+4(1-λ)2+2λ(1-λ)·2=4λ2-4λ+4=4⎝ ⎛⎭⎪⎫λ-122+3,当λ=12时,|OC →|取得最小值 3.二、填空题14.在△ABC 中,AB =6,AC =5,A =120°,动点P 在以C 为圆心,2为半径的圆上,则P A →·PB→的最小值为________. 答案 16解析 设AB 的中点为M ,则P A →·PB →=⎣⎢⎡⎦⎥⎤12(P A →+PB →)2-⎣⎢⎡⎦⎥⎤12(P A →-PB →)2=PM →2-MA→2=PM →2-9, 所以要求P A →·PB→的最小值,只需求|PM →|的最小值,显然当点P 为线段MC 与圆的交点时,|PM→|取得最小值,最小值为|MC |-2.在△AMC 中,由余弦定理得|MC |2=32+52-2×3×5×cos 120°=49,所以|MC |=7,所以|PM →|的最小值为5,则P A →·PB→的最小值为16.15.(2021·宁波适考)在Rt △ABC 中,CA =CB =2,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤32,2 解析 取MN 的中点为P ,由极化恒等式得CM →·CN →=14[(2CP →)2-MN →2]=CP →2-12.问题转化为求|CP →|的取值范围,当P 为AB 的中点时,|CP →|取最小值为2,则CM →·CN→的最小值为32;当M 与A (或N 与B )重合时,|CP →|取最大值为102,则CM →·CN →的最大值为2,所以CM →·CN →的取值范围是⎣⎢⎡⎦⎥⎤32,2. 16.(2021·浙江新高考仿真二)若非零向量a 和b 满足|a +b |=|b |=2,则|a |的取值范围是________,|a -b |的取值范围是________.答案 (0,4] [2,6]解析 因为||a +b |-|b ||≤|a |=|a +b -b |≤|a +b |+|b |=4,又a 是非零向量,所以|a |的取值范围是(0,4],因为|a -b |+|a +b |≥2|b |=|(a +b )-(a -b )|≥||a -b |-|a +b ||,所以-4≤|a -b |-|a +b |≤4,|a -b |+|a +b |≥4,又|a +b |=2,解得|a -b |的取值范围是[2,6].17.(2021·稽阳联考)在Rt △ABC 中,∠B =90°,BC =2,AB =1,D 为BC 的中点,E 在斜边AC 上,若AE →=2EC →,则DE →·AC→=________. 答案 13解析如图,以B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y 轴,建立平面直角坐标系,则B (0,0),A (1,0),C (0,2),所以AC→=(-1,2). 因为D 为BC 的中点,所以D (0,1),因为AE →=2EC →,所以E ⎝ ⎛⎭⎪⎫13,43, 所以DE →=⎝ ⎛⎭⎪⎫13,13, 所以DE →·AC →=⎝ ⎛⎭⎪⎫13,13·(-1,2)=-13+23=13. 18.(2021·镇海中学检测)已知向量a ,b ,c 满足a +b +c =0,|c |=23,c 与a -b 所成的角为5π6,若t ∈R ,则|t a +(1-t )b |的最小值是________,此时|t a +(1-t )b -c |=________.答案 32 372解析 因为a +b +c =0,且|c |=23,所以|a +b |=2 3.因为c 与a -b 所成的角为5π6,所以a +b 与a -b 所成的角为π6.设d =t a +(1-t )b ,则当三个向量的起点在一起时,终点在a -b 所在直线上,|d |有最小值,所以|t a +(1-t )b |min =|a +b |2·sin 30°=32,此时|t a +(1-t )b -c |=12+34+23×32=372.。

培优点 向量极化恒等式

培优点 向量极化恒等式

培优点 向量极化恒等式平面向量基本定理及数量积是高考考查的重点,很多时候需要用基底代换,运算量大且复杂,用向量极化恒等式、等和(高)线求解,能简化向量代换,减少运算量,使题目更加清晰简单.考点一 向量极化恒等式极化恒等式:a ·b =⎝⎛⎭⎫a +b 22-⎝⎛⎭⎫a -b 22.变式:(1)a ·b =(a +b )24-(a -b )24,a ·b =|a +b |24-|a -b |24.(2)如图,在△ABC 中,设M 为BC 的中点,则AB →·AC →=AM →2-14CB →2=AM →2-MB →2.考向1 利用向量极化恒等式求值例1 (1)如图所示,在长方形ABCD 中,AB =45,AD =8,E ,O ,F 为线段BD 的四等分点,则AE →·AF →=________.答案 27解析 BD =AB 2+AD 2=12, ∴AO =6,OE =3, ∴由极化恒等式知AE →·AF →=AO →2-OE →2=36-9=27.(2)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值为________.答案 78解析 设BD =DC =m ,AE =EF =FD =n , 则AD =3n .根据向量的极化恒等式,得AB →·AC →=AD →2-DB →2=9n 2-m 2=4,① FB →·FC →=FD →2-DB →2=n 2-m 2=-1.② 联立①②,解得n 2=58,m 2=138.因此EB →·EC →=ED →2-DB →2=4n 2-m 2=78.即BE →·CE →=78.考向2 利用向量极化恒等式求最值、范围例2 (1)已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,P 是圆O 所在平面上任意一点,则(P A →+PB →)·PC →的最小值是________. 答案 -12解析 如图所示,取OC 的中点D ,连接PD ,因为O 为AB 中点,所以(P A →+PB →)·PC → =2PO →·PC →, 由极化恒等式得PO →·PC →=PD →2-DO →2=PD →2-14,因此当P 为OC 的中点,即|PD →|=0时, (P A →+PB →)·PC →取得最小值-12.(2)平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值为________. 答案 -98解析 由向量极化恒等式知a ·b =(2a +b )2-(2a -b )28=|2a +b |2-|2a -b |28≥02-328=-98,当且仅当|2a +b |=0,|2a -b |=3,即|a |=34,|b |=32,〈a ,b 〉=π时,a ·b 取最小值.规律方法 利用向量的极化恒等式可以快速对数量积进行转化,体现了向量的几何属性,特别适合于以三角形为载体,含有线段中点的向量问题.跟踪演练1 (1)如图,在四边形ABCD 中,B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________;若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.答案 16 132解析 依题意得AD ∥BC ,∠BAD =120°, 由AD →·AB →=|AD →|·|AB →|·cos ∠BAD =-32|AD →|=-32,得|AD →|=1,因此λ=AD →BC→=16.取MN 的中点E ,连接DE (图略), 则DM →+DN →=2DE →,DM →·DN →=14[(DM →+DN →)2-(DM →-DN →)2]=DE →2-14NM →2=DE →2-14.当点M ,N 在线段BC 上运动时,DE 的最小值等于点D 到直线BC 的距离, 即AB ·sin B =332,因此DE →2-14的最小值为⎝⎛⎭⎫3322-14=132,即DM →·DN →的最小值为132.(2)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,MN 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P 为正方体表面上的动点,当弦MN 的长度最大时, PM →·PN →的取值范围是________.答案 [0,2]解析 由正方体的棱长为2,得内切球的半径为1,正方体的体对角线长为2 3.当弦MN 的长度最大时,MN 为内切球的直径.设内切球的球心为O , 则PM →·PN →=PO →2-ON →2=PO →2-1.由于P 为正方体表面上的动点,故OP ∈[1,3], 所以PM →·PN →∈[0,2].考点二 等和(高)线解基底系数和(差)问题等和(高)线平面内一组基底OA →,OB →及任一向量OP ′--→,OP ′--→=λOA →+μOB →(λ,μ∈R ),若点P ′在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值);反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和(高)线. (1)当等和线恰为直线AB 时,k =1;(2)当等和线在O 点和直线AB 之间时,k ∈(0,1); (3)当直线AB 在O 点和等和线之间时,k ∈(1,+∞); (4)当等和线过O 点时,k =0;(5)若两等和线关于O 点对称,则定值k 1,k 2互为相反数; (6)定值k 的变化与等和线到O 点的距离成正比.例3 (1)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →(λ,μ∈R ),则λ+μ的值为( ) A.12 B.13 C.14 D .1 答案 A解析 方法一 设BM →=tBC →(0≤t ≤1), 则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →) =⎝⎛⎭⎫12-t 2AB →+t 2AC →, 所以λ=12-t 2,μ=t 2,所以λ+μ=12.方法二 如图,过N 作BC 的平行线, 设λ+μ=k ,则k =|AN →||AM →|.由图易知,|AN →||AM →|=12.(2)如图,圆O 是边长为23的等边△ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A. 2B. 3 C .2 D .2 2答案 C解析 如图,作出定值k 为1的等和线DE ,AC 是过圆上的点最远的等和线, 则BM →=xBA →+yBD →=2x ·12BA →·+yBD →=2xBE →+yBD →,当M 在N 点所在的位置时,2x +y 最大,设2x +y =k ,则k =|NB →||PB →|=2,所以2x +y 取得最大值2.易错提醒 要注意等和(高)线定理的形式,解题时一般要先找到k =1时的等和(高)线,以此来求其他的等和(高)线.跟踪演练2 给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3,如图所示,点C 在以O 为圆心的AB ︵上运动,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y 的最大值是________.答案 2解析 方法一 以O 为坐标原点,OA →所在直线为x 轴,建立平面直角坐标系,如图(1)所示, 则A (1,0),B ⎝⎛⎭⎫-12,32,设∠AOC =α⎝⎛⎭⎫α∈⎣⎡⎦⎤0,2π3, 则C (cos α,sin α).由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6, 又α∈⎣⎡⎦⎤0,2π3, 所以当α=π3时,x +y 取得最大值2.图(1) 图(2)方法二 令x +y =k ,在所有与直线AB 平行的直线中,切线离圆心最远,如图(2),即此时k 取得最大值,结合角度,不难得到k =|OD →||OE →|=2.专题强化练1.已知正方形ABCD 的面积为2,点P 在边AB 上,则PD →·PC →的最大值是( ) A.92 B .2 C.32 D.34 答案 B解析 如图所示,取CD 的中点E ,连接PE ,由极化恒等式可得PD →·PC →=PE →2-EC →2=PE →2-12,所以当P 与A (B )重合时,|PE |=102最大,从而(PD →·PC →)max =2. 2.如图,在四边形MNPQ 中,若NO →=OQ →,|OM →|=6,|OP →|=10,MN →·MQ →=-28,则NP →·QP →等于( )A .64B .42C .36D .28 答案 C解析 由MN →·MQ →=MO →2-ON →2 =36-ON →2=-28,解得ON →2=64, 所以OQ →2=64,所以NP →·QP →=PQ →·PN →=PO →2-OQ →2=100-64=36.3.若A ,B 为双曲线x 216-y 24=1上经过原点的一条动弦,M 为圆C :x 2+(y -2)2=1上的一个动点,则MA →·MB →的最大值为( ) A.154 B .7 C .-7 D .-16答案 C解析 如图,O 为AB 的中点,MA →·MB →=MO →2-14BA →2,|MO |max =|OC |+1=3, |AB |min =2a =8, 所以()MA →·MB→max =9-14×64=-7. 4.如图,△BCD 与△ABC 的面积之比为2,点P 是区域ABDC 内任意一点(含边界),且AP →=λAB →+μAC →,则λ+μ的取值范围为( )A .[0,1]B .[0,2]C .[0,3]D .[0,4]答案 C解析 如图,当P 位于点A 时,(λ+μ)min =0, 当P 位于点D 时,(λ+μ)max =3.5.已知在△ABC 中,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B --→·P 0C --→,则( ) A .∠ABC =90° B .∠BAC =90° C .AB =AC D .AC =BC答案 D解析 如图所示,取AB 的中点E ,因为P 0B =14AB ,所以P 0为EB 的中点,取BC 的中点D ,连接DP 0,DP , 则DP 0为△CEB 的中位线,DP 0∥CE . 根据向量的极化恒等式, 有PB →·PC →=PD →2-DB →2, P 0B --→·P 0C --→=P 0D --→2-DB →2. 又PB →·PC →≥P 0B --→·P 0C --→, 则|PD →|≥|P 0D --→|恒成立, 必有DP 0⊥AB .因此CE ⊥AB , 又E 为AB 的中点,所以AC =BC .6.已知等边△ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则P A →·PB →的取值范围是______. 答案 [-2,6]解析 如图所示,取AB 的中点D ,连接CD ,因为△ABC 为等边三角形,所以O 为△ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =2 3.又由极化恒等式得P A →·PB →= PD →2-14BA →2=PD →2-3,因为P 在圆O 上,所以当P 在点C 处时,|PD |max =3,当P 在CO 的延长线与圆O 的交点处时,|PD |min =1,所以P A →·PB →∈[-2,6].7.如图所示,正方形ABCD 的边长为1,A ,D 分别在x 轴、y 轴的正半轴(含原点)上滑动,则OC →·OB →的最大值是______.答案 2解析 如图,取BC 的中点M ,AD 的中点N ,连接MN ,ON ,则OC →·OB →=OM →2-14.因为OM ≤ON +NM =12AD +AB =32,当且仅当O ,N ,M 三点共线时取等号. 所以OC →·OB →的最大值为2.8.如图,已知点P 为等边△ABC 外接圆上一点,点Q 是该三角形内切圆上的一点,若AP →=x 1AB →+y 1AC →,AQ →=x 2AB →+y 2AC →,则|(2x 1-x 2)+(2y 1-y 2)|的最大值为________.答案 73解析 由等和线定理知当点P ,Q 分别在如图所示的位置时,x 1+y 1取最大值,x 2+y 2取最小值,且x 1+y 1的最大值为AP AM =43,x 2+y 2的最小值为AQ AM =13.故|(2x 1-x 2)+(2y 1-y 2)|=|2(x 1+y 1)-(x 2+y 2)|≤83-13=73.。

专题一 平面向量的极化恒等式(含解析)

专题一 平面向量的极化恒等式(含解析)

专题八 平面向量的极化恒等式利用向量的极化恒等式可以快速对共起点(终点)的两向量的数量积问题数量积进行转化,体现了向量的几何属性,让“秒杀”向量数量积问题成为一种可能,此恒等式的精妙之处在于建立了向量的数量积与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积问题,从而用极化恒等式解决.1.极化恒等式:a ·b =14[(a +b )2-(a -b )2]几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.2.平行四边形模式:如图(1),平行四边形ABCD ,O 是对角线交点.则:(1)AB →·AD →=14[|AC |2-|BD |2].3.三角形模式:如图(2),在△ABC 中,设D 为BC 的中点,则AB →·AC →=|AD |2-|BD |2. 三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决. 记忆:向量的数量积等于第三边的中线长与第三边长的一半的平方差. 考点一 平面向量数量积的定值问题 【方法总结】利用极化恒等式求数量积的定值问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线及第三边的长度,从而求出数量积的值.积化恒等式适用于求对共起点(终点)的两向量的数量积,对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积,从而用极化恒等式解决.在运用极化恒等式求数量积时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线及第三边的长度,通常用平面几何方法或用正余弦定理求解,从而得到数量的值.【例题选讲】[例1] (1)(2014·全国Ⅱ)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( ) A .1 B .2 C .3 D .5答案 A 解析 通法 由条件可得,(a +b )2=10,(a -b )2=6,两式相减得4a·b =4,所以a ·b =1.极化恒等式 a ·b =14[(a +b )2-(a -b )2]=14(10-6)=1.(2) (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________.AABC图(2)答案 -16 解析 因为M 是BC 的中点,由极化恒等式得:AB →·AC →=|AM |2-14|BC |2=9-14×100=-16.(3)如图所示,AB 是圆O 的直径,P 是AB 上的点,M ,N 是直径AB 上关于点O 对称的两点,且AB =6,MN =4,则PM →·PN →=( )A .13B .7C .5D .3答案 C 解析 连接AP ,BP ,则PM →=P A →+AM →,PN →=PB →+BN →=PB →-AM →,所以PM →·PN →=(P A →+AM →)·(PB →-AM →)=P A →·PB →-P A →·AM →+AM →·PB →-|AM →|2=-P A →·AM →+AM →·PB →-|AM →|2=AM →·AB →-|AM →|2=1×6-1=5.(4)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →=________.答案 32 解析 连结EG ,FH ,交于点O ,则EF →·FG →=EF →·EH →=EO →2-OH →2=1-⎝⎛⎭⎫122=34,GH →·HE →=GH →·GF →=GO →2-OH →2=1-⎝⎛⎭⎫122=34,因此EF →·FG →+GH →·HE →=32.(5) (2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值为________.答案 78 解析 极化恒等式法 设BD =DC =m ,AE =EF =FD =n ,则AD =3n .根据向量的极化恒等式,有AB →·AC →=AD →2-DB →2=9n 2-m 2=4, FB →·FC →=FD →2-DB →2=n 2-m 2=-1.联立解得n 2=58,m 2=138.因此EB →·EC →=ED →2-DB →2=4n 2-m 2=78.即BE →·CE →=78.坐标法 以直线BC 为x 轴,过点D 且垂直于BC 的直线为y 轴,建立如图所示的平面直角坐标系xoy ,如图:设A (3a ,3b ),B (-c ,0),C (-c ,0),则有E (2a ,2b ),F (a ,b ) BA →·CA →=(3a +c ,3b )·(3a -c ,3b )=9a 2-c 2+9b 2=4 BF →·CF →=(a +c ,b )·(a -c ,b )=a 2-c 2+b 2=-1,则a 2+b 2=58,c 2=138BE →·CE →=()2a -c ,2b ·()2a -c ,2b =4a 2-c 2+4b 2=78.基向量 BA →·CA →=(DA →-DB →)(DA →-DC →)=4AD →2-BC →24=36FD →2-BC →24=4,BF →·CF →=(DF →-DB →)(DF →-DC →)=4FD →2-BC →24=-1,因此FD →2=58,BC →=132,BE →·CE →=(DE →-DB →)(DE →-DC →)=4ED →2-BC →24=16FD →2-BC →24=78.(6)在梯形ABCD 中,满足AD ∥BC ,AD =1,BC =3,AB →·DC →=2,则AC →·BD →的值为________.BC答案 4 解析 过A 点作AE 平行于DC ,交BC 于E ,取BE 中点F ,连接AF ,过D 点作DH 平行于AC ,交BC 延长线于H ,E 为BH 中点,连接DE ,22212AB DC AB AE AF BF AF ⋅=⋅=-=-=,AC ⋅ 2224BD DB DH BE DE DE =-⋅=-=-,又1FE BE BF =-=,AD ∥BC ,则四边形ADEF 为平行四边形,AF DE =,1AC BD ∴⋅=.B【对点训练】1.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·DA →的值为________.1.答案 1 解析 取AE 中点O ,设|AE |=x (0≤x ≤1),则|AO |=12x ,∴DE →·DA →=|DO |2-|AO |2=12+⎝⎛⎭⎫12x 2 -14x 2=1. 2.如图,△AOB 为直角三角形,OA =1,OB =2,C 为斜边AB 的中点,P 为线段OC 的中点,则AP →·OP →= ( )A .1B .116C .14D .-122.答案 B 解析 取AO 中点Q ,连接PQ ,AP →·OP →=P A →·PO →=PQ 2-AQ 2=516-14=116.3.如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5,若AB →·AD →=-7,则BC →·DC →的值 是________.3.答案 9 解析 因为AB →·AD →=AO →2-OD →2=9-OD →2=-7⇒OD →2=16,所以BC →·DC →=CO →2-OD →2=25 -16=9.4.已知点A ,B 分别在直线x =3,x =1上,|OA →-OB →|=4,当|OA →+OB →|取最小值时,OA →·OB →的值是_____. A .0 B .2 C .3 D .64.答案 C 解析 如图,点A ,B 分别在直线x =1,x =3上,|AB →|=4,当|OA →+OB →|取最小值时,AB 的 中点在x 轴上,OA →·OB →=OM →2-BM →2=4-4=0.5.在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于( ) A .16 B .29 C .1318 D .135.答案 C 解析 解法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos60°=⎝⎛⎭⎫132+12-2×13×1×12=79,即AD =73,同理可得AE =73,在△ADE 中,由余弦定理得cos ∠DAE =AD 2+AE 2-DE 22AD ·AE =79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD →·AE →=|AD →|·|AE →|cos ∠DAE =73×73×1314=1318. 解法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=(-16,-32),AE →=⎝⎛⎭⎫16,-32,所以AD →·AE →=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.极化恒等式法 取DE 中点F ,连接AF ,则AD →·AE →=|AF |2-|DF |2=34-136=1318.6.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →等于( )A .89B .109C .259D .2696.答案 B 解析 坐标法 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两 条边,它们的长不可能为0,所以AB 与AC 垂直,所以△ABC 为直角三角形.以A 为原点,以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝⎛⎭⎫23,23,F ⎝⎛⎭⎫13,43,所以AE →=⎝⎛⎭⎫23,23,AF →=⎝⎛⎭⎫13,43,所以AE →·AF →=23×13+23×43=109.极化恒等式法 取EF 中点M ,连接AM ,则AE →·AF →=|AM |2-|EM |2=54-536=109.7.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是( )A .44B .22C .24D .727.答案 B 解析 如图,取AB 中点E ,连接EP 并延长,交AD 延长线于F ,AP →·BP →=EP 2-AE 2=EP 2-16=2,∴EP =32,又∵CP →=3PD →,AE →=EB →,AB →=DC →,∴AE =2DP ,即△F AE 中,DP 为中位线,AF =2AD =10,AE =12AB =4,FE =2PE =62,AP 2=40,AD →·AB →=AF →·AE →=AP 2-EP 2=40-(32)2=22.8.如图,在△ABC 中,已知AB =4,AC =6,∠A =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=2AE →,若F 为DE 的中点,则BF →·DE →的值为________.A BD CE F8.答案 4 解析 取BD 的中点N ,连接NF ,EB ,则BE ⊥AE ,∴BE =23.在△DEB 中.FN ∥12EB .∴FN=3.BF →·DE →=2FB →·FD →=2(FN 2-DN 2)=4.AB DCE FN9.如图,在△ABC 中,已知AB =3,AC =2,∠BAC =120°,D 为边BC 的中点,若CD ⊥AD ,垂足为E , 则EB →·EC →=________.9.答案 -277 解析 由余弦定理得,BC 2=AB 2+AC 2-2 AB ·AC ·cos120°=19,即BC =19,因为AB →·AC →AD 2-CD 2=|AB |·|AC |·cos120°=-3,所以|AD |=72,因为S △ABC =2S △ADC ,则12|AB |·|AC |·sin120°=2·12|AD ||CE |,解得|CE |=3217,在Rt △DEC 中,|DE |=CD 2-CE 2=5714,所以EB →·EC →=|ED |2-|CD |2=-277.B10.在平面四边形ABCD 中,点E ,F 分别是边AD ,BC 的中点,且AB =1,EF =2,CD =5,若AD →·BC →=15.则AC →·BD →的值为________.10.答案 解析 极化恒等式 如图,取, , , AB AC CD BD 中点, , , H I J K ,四边形ABCD 中,易知, , EF KI HJ 三线共点于O ,2215154AD BC HK HI HO IO ⋅=⇒⋅==-,又4AC BD HE HF ⋅=⋅=()224HO FO -,在EFI ∆中,12,2EF EI FI ===,由中线长公式知214IO =,从而24HO =,AC BD ⋅=14(4)142-=.基向量法2EF AB DC =+,22242EF AB DC AB DC ∴=++⋅, AB DC EF =又=1,1AB DC ∴⋅=,15 ()()15AD BC AC CD BD DC ⋅=∴+⋅+=,,则2AC BD AC DC CD BD DC ⋅+⋅+⋅-15=,可化为()()515AC BD AB BC DC CD BC CD ⋅++⋅+⋅+-=,15, AC BD AB DC ⋅+⋅= AC BD ⋅故=14.BCADE OF考点二 平面向量数量积的最值(范围)问题 【方法总结】利用极化恒等式求数量积的最值(范围)问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线长的最值(范围),从而得到数量的最值(范围).积化恒等式适用于求对共起点(终点)的两向量的数量积的最值(范围)问题,利用极化恒等式将多变量转变为单变量,再用数形结合等方法求出单变量的范围.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积的最值(范围)问题,从而用极化恒等式解决.在运用极化恒等式求数量积的最值(范围)时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线长的最值(范围),通过观察或用点到直线的距离最小或用三角形两边之和大于等于第三边,两边之差小于第三边或用基本不等式等求得中线长的最值(范围),从而得到数量的最值(范围).【例题选讲】[例1](1)若平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值为________.答案 -98 解析 a ·b =18[(2a +b )2-(2a -b )2]=18[|2a +b |2-|2a -b |2]≥02-328=-98.当且仅当|2a +b |=0,|2a -b |=3,即|a |=34,|b |=32,< a ,b >=π时,a ·b 取最小值-98.(2)如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A 到m ,n 的距离分别为1,3,点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →·AC →的最大值是________.答案214解析 坐标法 以直线n 为x 轴,过点A 且垂直于n 的直线为y 轴,建立如图所示的平面直角坐标系xOy ,如图:则A ()0,3,C ()c ,0,B ()b ,2,则AB →=()b ,-1,AC →=()c ,-3,从而()b +c 2+()-42=52,即()b +c 2=9,又AC →·AB →=bc +3≤()b +c 24+3=214,当且仅当b =c 时,等号成立.极化恒等式 连接BC ,取BC 的中点D ,AB →·AC →=AD 2-BD 2,又AD =12||AB →+AC →=52,故AB →·AC →=254-BD 2=254-14BC 2,又因为BC min =3-1=2,所以(AB →·AC →) max =214.(3)(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1答案 B 解析 方法一 (解析法) 建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),图①则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2⎣⎡⎦⎤x 2+⎝⎛⎭⎫y -322-34≥2×⎝⎛⎭⎫-34=-32.当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B .方法二 (几何法) 如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.图②要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又当点P 在线段AD 上时,|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝ ⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34,∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B .极化恒等式法 设BC 的中点为D ,AD 的中点为M ,连接DP ,PM ,∴P A →·(PB →+PC →)=2PD →·P A →=2|PM→|2-12|AD →|2=2|PM →|2-32≥-32.当且仅当M 与P 重合时取等号.BC(4)已知正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则P A →·PB →的取值范围是________.答案 [-2,6] 解析 取AB 的中点D ,连接CD ,因为三角形ABC 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =23.又由极化恒等式得:P A →·PB →=|PD |2-14|AB |2=|PD |2-3,因为P 在圆O 上,所以当P 在点C 处时,|PD |max =3,当P 在CO 的延长线与圆O 的交点处时,|PD |min =1,所以P A →·PB →∈[-2,6].(5)如图,已知P 是半径为2,圆心角为π3的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为_____.答案 5-213 解析 通法 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),设P (2cos θ,2sin θ)⎝⎛⎭⎫π3≤θ≤2π3,则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ),其中0<tan φ=36<33,所以0<φ<π6,当θ=π2-φ时,PC →·P A →取得最小值,为5-213. 极化恒等式法 设圆心为O ,由题得AB =2,∴AC =3.取AC 的中点M ,由极化恒等式得PC →·P A →=PM →2-AM →2=PM →2-94,要使PC →·P A →取最小值,则需PM 最小,当圆弧AB ︵的圆心与点P ,M 共线时,PM 最小.易知DM =12,∴OM =⎝⎛⎭⎫122+(3)2=132,所以PM 有最小值为2-132,代入求得PC →·P A →的最小值为5-213.(6)在面积为2的△ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF上,则PC →·PB →+BC →2的最小值是________.答案 23 解析 取BC 的中点为D ,连接PD ,则由极化恒等式得PC →·PB →+BC →2=PD →2-BC →24+BC→2=PD →2+3BC →24≥AD →24+3BC →24,此时当且仅当AD →⊥BC →时取等号,PC →·PB →+BC →2≥AD →24+3BC →24≥2AD →24·3BC →24=23.另解 取BC 边的中点M ,连接PM ,设点P 到BC 边的距离为h .则S △ABC =12·||BC →·2h =2⇒||BC→=2h,PM ≥h ,所以PB →·PC →+BC →2=⎝⎛⎭⎫PM →2-14BC →2+BC →2=PM →2+34BC →2=PM →2+3h 2≥h 2+3h2≥23(当且仅当||PM →=h ,h 2=3时,等号成立)【对点训练】1.已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,P 是圆O 所在平面上任意一点, 则(P A →+PB →)·PC →的最小值为( )A .-14B .-13C .-12D .-11.答案 C 解析 P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →,取OC 中点D ,由极化恒等式得,PO →·PC →=|PD |2-|CD |2=|PD |2-14,又|PD |2min =0,∴(P A →+PB →)·PC →的最小值为-12.2.如图,设A ,B 是半径为2的圆O 上的两个动点,点C 为AO 中点,则CO →·CB →的取值范围是( )A .[-1,3]B .[1,3]C .[-3,-1]D .[-3,1]2.答案 A 解析 建立平面直角坐标系如图所示,可得O (0,0),A (-2,0),C (-1,0),设B (2cos θ, 2sin θ).θ∈[0,2π).则CO →·CB →=(1,0)·(2cos θ+1,2sin θ)=2cos θ+1∈[-1,3].故选A .极化恒等式法 连接OB ,取OB 的中D ,连接CD ,则CO →·CB →=|CD |2-|BD |2=CD 2-1,又|CD |2min =0,∴CO →·CB →的最小值为-1.|CD |2max =2,∴CO →·CB →的最大值为3.3.如图,在半径为1的扇形AOB 中,∠AOB =π3,C 为弧上的动点,AB 与OC 交于点P ,则OP →·BP →的最小值为________.3.答案 -116 解析 取OB 的中点D ,连接PD ,则OP →·BP →=|PD →|2-|OD →|2=|PD →|2-14,于是只要求求PD 的最小值即可,由图可知,当PD ⊥AB ,时,PD =34,即所求最小值为-116.4.(2020·天津)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.4.答案 16 132 解析 第1空 因为AD →=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32,解得|AD →|=1.因为AD →,BC →同向,且BC =6,所以AD →=16BC →,即λ=16.第2空 通法 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系.如图,设M (a ,0),不妨设点N 在点M 右侧,则N (a +1,0),且-32≤a ≤72.又D ⎝⎛⎭⎫1,332,所以DM →=⎝⎛⎭⎫a -1,-332,DN →=⎝⎛⎭⎫a ,-332,所以DM →·DN→=a 2-a +274=⎝⎛⎭⎫a -122+132.所以当a =12时,DM →·DN →取得最小值132. 极化恒等式法 如图,取MN 的中点P ,连接PD ,则DM →·DN →=PD →2-MP →2=PD →2-14,当PD →⊥BC →时,|PD→|2取最小值274,所以DM →·DN →的最小值为132.BC5.在△ABC 中,AC =2BC =4,∠ACB 为钝角,M ,N 是边AB 上的两个动点,且MN =1,若CM CN ⋅的最小值为34,则cos ∠ACB =________.5.答案解析 取MN 的中点P ,则由极化恒等式得2221144CM CN CP MN CP ⋅=-=-,∵ CM CN ⋅的最小值为34,∴min 1CP =,由平几知识知:当CP ⊥AB 时,CP 最小,如图,作CH ⊥AB ,H 为垂足,则CH =1,又AC =2BC =4,所以∠B =30o ,sin A =14,所以cos ∠ACB =cos (150o -A ).6.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,AB =8,CD =6,则MA →·MB →的取值范围是________. 6.答案 [-9,0] 解析 如图,MA →·MB →=MO →2-AO →2=MO →2-16,∵|OG →|≤|OM →|≤|OC →|,∴7≤|OM →|≤4,∴MA →·MB →的取值范围是[-9,0].7.如图,设正方形ABCD 的边长为4,动点P 在以AB 为直径的弧APB 上,则PC →·PD →的取值范围为______. 7.答案 [0,16] 解析 如图取CD 的中点E ,连接PE ,PC →·PD →=PE →2-DE →2=OE →2-2,2≤|PE →|≤25, 所以PC →·PD →的取值范围为[0,16].8.已知正△ABC 内接于半径为2的圆O ,AE 交圆O 于点F ,则F A →·FB →的取值范围是________.8.答案 [0,6] 解析 取AB 的中点D 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =23.又由极化恒等式得:F A →·FB →=|FD |2-|AD |2=|FD |2-3,因为F 在劣弧BC 上,所以当F 在点C 处时,|FD |max =3,当F 在点B 处时, |PD |min =3,所以P A →·PB →∈[0,6].9.已知AB 是半径为4的圆O 的一条弦,圆心O 到弦AB 的距离为1,P 是圆O 上的动点,则P A →·PB →的取 值范围为_________.9.答案 [-6,10] 解析 极化恒等式法 设AB 的中点为C ,连接CP ,则P A →·PB →=|PC →|2-|AC →|2=|PC →|2-15.|PC →|2-15≥25-15=10,|PC →|2-15≤9-15=-6.10.矩形ABCD 中,AB =3,BC =4,点M ,N 分别为边BC ,CD 上的动点,且MN =2,则AM →·AN →的最小值为________.10.答案 15 解析 取K 为MN 中点,由极化恒等式,AM →·AN →=|AK |2-1,显然K 的轨迹是以点C 为圆心,1为半径的圆周在矩形内部的圆弧,所以|AK |min =5-1=4,所以AM →·AN →的最小值为15.AD11.在△ABC 中,已知AB =3,C =π3,则CA →·CB →的最大值为________.11.答案 32解析 设D 是AB 的中点,连接CD ,点O 是△ABC 的外心,连接DO 并延长交圆O 于C ´,由△ABC ´是等边三角形,∵AD =32,∴C ´D =32,则CA →·CB →=|CD →|2-|DA →|2=|CD →|2-(32)2≤|C ´D →|2-34=(32)2-34=32.∴(CA →·CB →)max =32.12.已知在△ABC 中,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( )A .∠ABC =90°B .∠BAC =90° C .AB =ACD .AC =BC12.答案 D 解析 如图所示,取AB 的中点E ,因为P 0B =14AB ,所以P 0为EB 的中点,取BC 的中点D ,则DP 0为△CEB 的中位线,DP 0∥CE .根据向量的极化恒等式,有PB →·PC →=PD →2-DB →2,P 0B →·P 0C →=P 0D →2-DB →2.又PB →·PC →≥P 0B →·P 0C →,则|PD →|≥|P 0D →|恒成立,必有DP 0⊥AB .因此CE ⊥AB ,又E 为AB 的中点,所以AC =BC .13.在正方形ABCD 中,AB =1,A ,D 分别在x ,y 轴的非负半轴上滑动,则OC →·OB →的最大值为______.13.答案 2 解析 如图取BC 的中点E ,取AD 的中点F ,OC →·OB →=OE →2-BE →2=OE →2-14,而|OE →|≤|OF →|+|FE →|=12||AD →|+|FE →||=12+1=32,当且仅当O ,F ,E 三点共线时取等号.,所以OC →·OB →的最大值为2.14.在三角形ABC 中,D 为AB 中点,∠C =90°,AC =4,BC =3,E ,F 分别为BC ,AC 上的动点,且EF =1,则DE →·DF →最小值为________. 14.答案154 解析 设EF 的中点为M ,连接CM ,则|CM →|=12,即点M 在如图所示的圆弧上,则DE →·DF → =|DM →|2-|EM →|2=|DM →|2-14≥||CD |-12|2-14=154.ABC DE M15.在Rt ABC 中,∠C =90°,AC =3,AB =5,若点A ,B 分别在x ,y 轴的非负半轴上滑动,则OA →·OC →的最大值为________.15.答案 18 解析 如图取AC 的中点M ,取AB 的中点N ,则OA →·OC →=OM →2-AM →2=OM →2-(32)2≤(ON →2-NM →2)-(32)2=(2+52)2-(32)2=18.16.已知正方形ABCD 的边长为2,点F 为AB 的中点,以A 为圆心,AF 为半径作弧交AD 于E ,若P 为劣弧EF 上的动点,则PC →·PD →的最小值为______.16.答案 5-25 解析 如图取CD 的中点M ,PC →·PD →=PM 2-DM 2=PM 2-1,而|PM |+1=|PM |+|AP |≥|AM |=5,当且仅当P ,Q 重合时等号成立,所以PC →·PD →的最小值为(5-1)2-1=5-25.C17.如图,已知B ,D 是直角C 两边上的动点,AD ⊥BD ,|AD →|=3,∠BAD =π6,CM →=12(CA →+CB →),CN →=12(CD →+CA →),则CM →·CN →的最大值为________.ABCDMN17.答案13+44 解析 设MN 的中点为G ,BD 的中点为H ,CM →·CN →=|CG →|2-|GN →|2=|CG →|2-116, ∵|CG →|≤|CH →|+|HG →|=12+134,∴CM →·CN →≤(12+134)2-116=13+44.所以CM →·CN →的最大值为13+44.AB CD MNG H18.如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°,CB =CD =23.若点M 为边BC上的动点,则AM →·DM →的最小值为________.B C18.答案214解析 设E 是AD 的中点,作EN ⊥BC 于N ,延长CB 交DA 的延长线于F ,由题意可得: FD =3CD =6,FC =2CD =43,∴BF =23,∴AB =2,F A =4,∴AD =2,EN AB =EF F A =54,EN =52.则AM →·DM →=MA →·MD →=|ME →|2-|EA →|2=|ME →|2-1≥EN 2-1=(52)2-1=214.∴AM →·DM →=214.另解 设E 是AD 的中点,作EF ⊥BC 于F ,作AG ⊥EF 于G ,∵AB ⊥BC ,AD ⊥CD ,∴四边形ABCD 共圆,如图,由圆的对称性及∠BCD =60°,CB =CD =23,可知∠BCA =∠DCA =30°,∴AB =2,∵∠GAE =30°,∴GE =12,∴EF =2+12=52,则AM →·DM →=MA →·MD →=|ME →|2-|EA →|2=|ME →|2-1≥EN 2-1=(52)2-1=214.∴AM →·DM →=214.C19.(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则AE →·BE →的最小值为________.19.答案2116解析 通法 如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD =∠CAB =60°,∠ACD =∠ACB =30°,则D (0,0),A (1,0),B ⎝⎛⎭⎫32,32,C (0,3).设E (0,y )(0≤y ≤3),则AE →=(-1,y ),BE →=⎝⎛⎭⎫-32,y -32,所以AE →·BE →=32+y 2-32y =⎝⎛⎭⎫y -342+2116,所以当y =34时,AE →·BE→有最小值2116.极化恒等式法 如图,取AB 的中点P ,连接PE ,则AE →·BE →=PE →2-AP →2=PE →2-14,当PE →⊥CD →时,|PE→|取最小值,由几何关系可知,此时,PE →2=2516,所以DM →·DN →的最小值为2116.20.如图,圆O 为Rt △ABC 的内切圆,已知AC =3,BC =4,C =π2,过圆心O 的直线l 交圆于P ,Q 两点,则BP →·CQ →的取值范围为________.20.答案 [-7,1] 解析 易知,圆的半径为1,BP →·CQ →=(BC →+CP →)·CQ →=BC →·CQ →+CP →·CQ →=CP →·CQ →-CB →·CQ →,CP →·CQ →=CO →2-OP →2=2-1=1.CB →·CQ →=|CB →||CQ →|cos ∠BCQ =2|CQ →|cos ∠BCQ ,(|CQ →|cos ∠BCQ )min =0,(|CQ →|cos ∠BCQ )max =4.所以BP →·CQ →的取值范围为[-7,1].21.在三棱锥S -ABC 中,SA ,SB ,SC 两两垂直,且SA =SB =SC =2,点M 为三棱锥S -ABC 的外接球面上任意一点,则MA →·MB →的最大值为________.21.答案 23+2 解析 如图,MA →·MB →=MO 1→2-2.当M ,A ,B 在同一个大圆上且MO 1⊥AB ,点M 与线段AB 在球心的异侧时,|MO 1→|最大,又2R =22+22+22=23,所以R =3.|MO 1→|max =3+1,MO 1→2-2的最大值为23+2.A22.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,MN 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P 为正方体表面上的动点,当弦MN 的长度最大时,PM →·PN →的取值范围是________.22.答案 [0,2] 解析 由正方体的棱长为2,得内切球的半径为1,正方体的体对角线长为23.当弦MN 的长度最大时,MN 为球的直径.设内切球的球心为O ,则PM →·PN →=PO →2-ON →2=PO →2-1.由于P 为正方体表面上的动点,故OP ∈[1,3],所以PM →·PN →∈[0,2].23.已知线段AB 的长为2,动点C 满足CA →·CB →=λ(λ为常数),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值为________.23.答案 -34解析 如图取AB 的中点为D ,连接CD ,则CA →·CB →=|CD →|2-1=λ,|CD →|=1+λ,()-1≤λ<0, 又由点C 总不在以点B 为圆心,12为半径的圆内,故1+λ≤12,则负数λ的最大值为-34.24.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .824.答案 C 解析 如图,由已知|OF |=1,取FO 中点E ,连接PE ,由极化恒等式得:OP →·FP →=|PE |2-14|OF |2=|PE |2-14,∵|PE |2max =254,∴OP →·FP →的最大值为6.。

高考冲刺极化恒等式教师版

高考冲刺极化恒等式教师版

2
BC
2
PO
32 CB
23 2 2 PO BC
4
4
3 PO BC ,
A
EP
F
h
B
C
O
因为 PO 1 h ,所以 3 PO BC 2
3 h BC 2
所以 PB PC BC2 的最小值是 2 3 .
3S ABC 2 3 ,
8、(2012 安徽)平面向量 a, b 满足 2a b 3 ,则 a b 的最小值
所以 PA PB 2,6
C P
A
D
B
3、设正方形 ABCD 的边长为 4,动点 P 在以 AB 为直径的圆弧 APB 上(如图所示),则 PD PC 的取值
范围是

D
C
P
A
B
7
3 变(2015 南通三调)如图,已知正方形 ABCD 的边长为 2,E 为 AB 的中点,以 A 为圆心,AE 为半径,
即: a
b
1 4
AD
2
BC
2
,
在三角形中,也可以用三角形的中线来表示,
即a
b
AM
21
2
BC ,它揭示了三角形
4
的中线与边长的关系.
极化恒等式的作用主要在于,它可以将两个向量的数量积转化为这两个向量的“和向量”与“差向量”, 因此,当两个向量的“和向量”或“差向量”为定向量时,常常可以考虑利用极化恒等式进行转化求解.
4
5、已知正三角形 ABC 内接于半径为 2 的圆 O , E 为线段 BC 上一动点,延长 AE 交圆 O 与点 F ,
则 FA FB 的取值范围是

析: 法 1:极化恒等式

2025年高考数学一轮复习(新高考版) 第5章 培优点7 极化恒等式

2025年高考数学一轮复习(新高考版) 第5章 培优点7 极化恒等式

所以B→A·C→A=(3a+c,3b)·(3a-c,3b)=9a2-c2+ 9b2=4,B→F·C→F=(a+c,b)·(a-c,b)=a2-c2+
b2=-1,则 a2+b2=58,c2=183, 所以B→E·C→E=(2a+c,2b)·(2a-c,2b)=4a2-c2+
4b2=78.
方法三(基向量法)
连接 HF,EG,交于点 O,则 O 为 HF,GE 的中 点,则E→F·F→G=E→F·E→H=E→O2-O→F2=1-122=34, G→H·H→E=G→H·G→F=G→O2-O→H2=1-122=34,因此 E→F·F→G+G→H·H→E=32.
题型二 利用极化恒等式求最值(范围)
例 2 (1)已知△OAB 的面积为 1,AB=2,动点 P,Q 在线段 AB 上滑动, 且 PQ=1,则O→P·O→Q的最小值为____34____.
O→A〉+16 =2-8cos〈O→P,O→A〉∈[-6,10], 故P→M·P→N的取值范围为[-6,10].
方法二(极化恒等式法) 圆心 O 到直线 ax+by+c=0 的距离 d= a2|c+| b2=1,如图③,
设 MN 的中点为 A,P→M·P→N=|P→A|2-|A→M|2=|P→A|2-15.
BD= AB2+AD2=12,∴AO=6,OE=3,
∴由极化恒等式知 A→E·A→F=A→O2-O→E2=36-9=27.
(2)如图,在平行四边形 ABCD 中,AB=1,AD=2,点 E,F,G,H 分别 是 AB,BC,CD,AD 边上的中点,则E→F·F→G+G→H·H→E=____32____.
因为|O→P|-|O→A|≤|P→A|≤|O→P|+|O→A|, 所以 3≤|P→A|≤5, 则P→M·P→N=|P→A|2-15∈[-6,10], 故P→M·P→N的取值范围为[-6,10].

妙用极化恒等式解决平面向量数量积问题(三大题型)(课件)高一数学(人教A版2019必修第二册)

 妙用极化恒等式解决平面向量数量积问题(三大题型)(课件)高一数学(人教A版2019必修第二册)


4
9

= 7,
2
1
16 2 − 2
4
= 2,
2
− 3 ⋅ − 2 − 3
2
=
⋅ =
1
2
4 2 − 2
4
4×1−8
4
=
故选:B.
1
− ⋅ − 2 − =
= −1.
典型例题
题型一:定值问题
【变式1-1】(2024·湖南长沙·长郡中学校考一模)如图,在平行四边形 中, = 1, = 2,点
, , , 分别是 , , , 边上的中点,则 ⋅ + ⋅ = (
3
3
A. 2
3
B.− 2
C. 4
【答案】A
【解析】取HF中点O,
则 ⋅ = ⋅ = 2 − 2
1
= 1 − ( 2) 2 =
3
4

⋅ = ⋅
重难点专题03
妙用极化恒等式解决平面向量数量积问题
目录
C
O
N
T
E
N
T
S
01
02
03
题型归纳
方法技巧
典型例题
01
题型归纳
题型归纳
02
方法技巧
方法技巧
(1)平行四边形平行四边形对角线的平方和等于四边的平方和:
| + | + | − | = (|| + || )
证明:不妨设 = , = ,则 = + , = −
【答案】 2−2
10
2 2

3
9

07 极化恒等式问题-冲刺2019年高考数学压轴题微切口突破(解析版)最新修正版

07 极化恒等式问题-冲刺2019年高考数学压轴题微切口突破(解析版)最新修正版

专题07 极化恒等式问题极化恒等式这个概念虽在课本上没有涉及,但在处理一类向量数量积时有奇效,备受师生喜爱. 1. 极化恒等式:221()()4a b a b a b ⎡⎤⋅=+--⎣⎦ 2. 极化恒等式三角形模型:在ABC ∆中,D 为BC 的中点,则221||||4AB AC AD BC ⋅=- 3. 极化恒等式平行四边形模型:在平行四边形ABCD 中,221(||||)4AB AD AD BD ⋅=-类型一 利用极化恒等式求值典例1.如图在三角形ABC 中,D 是BC 的中点,E,F 是AD 上的两个三等分点,4,1,BA CA BF CF ⋅=⋅=-则BE CE ⋅值为______.【答案】78【解析】设2222,,||||94DC a DF b BA CA AD BD b a ==⋅=-=-=2222||||1BF CF FD BD b a ⋅=-=-=- 解得22513,88b a == 22227||||48BE CE ED BD b a ∴⋅=-=-=类型二 利用极化恒等式求最值或范围 典例2 在三角形ABC 中,D 为AB 中点,90,4,3C AC BC ︒∠===,E,F 分别为BC,AC 上的动点,且EF=1,则DE DF ⋅最小值为______ 【答案】154【解析】设EF 的中点为M ,连接CM ,则1||2CM = 即点M 在如图所示的圆弧上, 则222211115||||||||4244DE DF DM EM DM CD ⋅=-=---=≧类型三 利用极化恒等式求参数典例 3 设三角形ABC ,P 0是边AB 上的一定点,满足P 0B=14AB,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅,则三角形ABC 形状为_______.【答案】C 为顶角的等腰三角形.【解析】取BC 的中点D ,连接PD,P 0D.00PB PC P B PC ⋅⋅… 2222011||||||44PD BC P b BC ∴--… 0||PD P D ∴…0P D AB ∴⊥,设O 为BC 的中点,OC AB AC BC ∴⊥∴=即三角形ABC 为以C 为顶角的等腰三角形.1.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是_____【答案】32- 【解析】设BC 的中点为O ,OC 的中点为M,连接OP,PM,222133()22||||2||222PA PB PC PO PA PM AO PM ∴⋅+=⋅=-=-≥- 当且仅当M 与P 重合时取等号2.直线0ax by c ++=与圆220:16x y +=相交于两点M,N,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为_______【答案】[6,10]-【解析】圆心O 到直线0ax by c ++=的距离为1d ==设MN 的中点为A ,222||||||15PM PN PA MA PA ⋅=-=-||||||||||OP OA PA OP OA -+剟23||5,||15[6,10]PA PM PN PA ∴⋅=-∈-剟3.如图,已知B,D 是直角C 两边上的动点,12,||3,,()6AD BD AD BAD CM CA CB π⊥=∠==+ 1()2CN CD CA =+,则CM CN ⋅的最大值为______【答案】14)4【解析】设MN 的中点为G ,BD 的中点为H ,21||4CM CN CG ⋅=- 221||||16MN CG =- 2113111||||||4)22164CG CH HG CM CN ⎛+=+∴⋅+-= ⎝⎭剟所以CM CN ⋅的最大值为14)44.如图在同一平面内,点A 位于两平行直线m,n 的同侧,且A 到m,n 的距离分别为1,3,点B,C 分别在m,n上,且||5AB AC +=,则AB AC ⋅的最大值为______【答案】214【解析】连接BC ,取BC 的中点D ,则22AB AC AD BD ⋅=-, 又15||22AD AB AC =+= 故2225251444AB AC BD BC ⋅=-=- 又因为min 312BC =-= 所以21()4max AB AC ⋅= 5.在半径为1的扇形AOB 中,60AOB ︒∠=,C 为弧上的动点,AB 与OC 交于点P ,则OP BP ⋅的最小值为_____【答案】41- 【解析】取OB 的中点D ,连接PD ,则22214OP BP PD OD PD ⋅=-=-于是只要求求PD 的最小值即可,由图可知,当PD AB ⊥时, min PD = 即所求最小值为41- 6.已知线段AB 的长为2,动点C 满足CA CB λ⋅=(λ为常数),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值为______ 【答案】43- 【解析】如图取AB 的中点为D ,连接CD,则21CA CB CD λ⋅=-=10CD λ=-<…又由点C 总不在以点B 为圆心,12为半径的圆内,12,则负数λ的最大值为43-7.已知A(0,1),曲线4:log C y x =横过点B ,若P 是曲线C 上的动点,且AB AP ⋅的最小值为2,则α=______【答案】e【解析】如图,B (1,0),则AB =BP ,取BP 的中点C ,连接AC,因为AB AP ⋅的最小值为2,则有()2222max 2AC BC AB -===上式等价于222AB BC AC +…,即90ABP ︒∠…当且仅当P 与B 重合时取等号,此时曲线C 在B 处的切线斜率等于1, 即11n ,e l a α==8.若平面向量,a b 满足|2|3a b -≤,则a b ⋅的最小值为_____ 【答案】98- 【解析】222222(2)(2)|2||2|0398888a b a b a b a b a b +--+---⋅==≥=- 当且仅当|2|0,|2|3a b a b +=-=,即33||,||,,42a b a b π==<>=时a b ⋅取最小值98- 9.在正方形ABCD 中,AB=1,A,D 分别在x,y 轴的非负半轴上滑动,则OC OB ⋅的最大值为_____【答案】2【解析】如图取BC 的中点E ,取AD 的中点F ,222224()()(2)(2)41OC OB OC OB OC OB OE BE OE ⋅=+--=-=- 所以214OC OB OE ⋅=- 而113|||||||||||1222OE OF FE AD FE ≤+=+=+=, 当且仅当,OF AD OA OD ⊥=时取等号,所以OC OB ⋅的最大值为210.已知正方形ABCD 的边长为2,点E 为AB 的中点,以A 为圆心,AE 为半径作弧交AD 于F ,若P 为劣弧EF 上的动点,则PC PD ⋅的最小值为______【答案】5-【解析】如图取CD 的中点M.222224()()(2)(2)44PC PD PC PD PC PD PM DM PM ⋅=+--=-=-所以21PC PD PM ⋅=- 而||1||||||5PM PM AP AE +=+≥=,当且仅当P,Q 重合时等号成立所以PC PD ⋅的最小值为21)15-=-11.正方体ABCD-A 1B 1C 1D 1的棱长为2,MN 是它的内切球的一条弦,P 为正方体表面上的动点,当弦MN 的长度最大时,求PM PN ⋅的范围.【答案】[0,2]【解析】如图当弦MN 的长度最大时,为内切球的直径,此时O 为MN 的中点,222224()()(2)(2)44PM PN PM PN PM PN PO OM PO ⋅=+--=-=-所以21PM PN PO ⋅=- 而1||3PO ≤≤,所以PM PN ⋅的范围为[0,2]。

高中数学培优点05极化恒等式、奔驰定理与等和线定理(3大考点+强化训练)(习题版)

高中数学培优点05极化恒等式、奔驰定理与等和线定理(3大考点+强化训练)(习题版)

培优点05极化恒等式、奔驰定理与等和线定理(3大考点+强化训练)平面向量基本定理及数量积是高考考查的重点,很多时候需要用基底代换,运算量大且复杂,用向量极化恒等式、奔驰定理、等和(高)线求解,能简化向量代换,减少运算量,使题目更加清晰简单.知识导图考点分类讲解考点一:向量极化恒等式极化恒等式:a ·b .变式:(1)a ·b =a +b24-a -b24,a ·b =|a +b |24-|a -b |24.(2)如图,在△ABC 中,设M 为BC 的中点,则AB →·AC →=AM →2-14CB →2=AM →2-MB →2.规律方法利用向量的极化恒等式可以对数量积进行转化,体现了向量的几何属性,特别适合于以三角形为载体,含有线段中点的向量问题.【例1】(2023·郑州模拟)如图所示,△ABC 是边长为8的等边三角形,点P 为AC 边上的一个动点,长度为6的线段EF 的中点为B ,则PE →·PF →的取值范围是________.【变式】.(2022·北京·高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-考点二:平面向量“奔驰定理”定理:如图,已知P 为△ABC 内一点,则有S △PBC ·PA →+S △PAC ·PB →+S △PAB ·PC →=0.易错提醒利用平面向量“奔驰定理”解题时,要严格按照定理的格式,注意定理中的点P 为△ABC 内一点;定理中等式左边三个向量的系数之比对应三个三角形的面积之比.【例2】(2022·安徽·三模)平面上有ABC 及其内一点O ,构成如图所示图形,若将OAB ,OBC △,OCA 的面积分别记作c S ,a S ,b S ,则有关系式0a b c S OA S OB S OC ⋅+⋅+⋅=uu r uu u r uuu r r.因图形和奔驰车的logo 很相似,常把上述结论称为“奔驰定理”.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若满足0a OA b OB c OC ⋅+⋅+⋅=,则O 为ABC 的()A .外心B .内心C .重心D .垂心【变式1】(2023·重庆模拟)△ABC 内一点O 满足关系式S △OBC ·OA →+S △OAC ·OB →+S △OAB ·OC →=0,即称为经典的“奔驰定理”,若△ABC 的三边为a ,b ,c ,现有a ·OA →+b ·OB →+c ·OC →=0,则O 为△ABC 的()A.外心B.内心C.重心D.垂心【变式2】(2023·安阳模拟)如图,已知O 是△ABC 的垂心,且OA →+2OB →+3OC →=0,则tan∠BAC ∶tan∠ABC ∶tan∠ACB 等于()A.1∶2∶3B.1∶2∶4C.2∶3∶4D.2∶3∶6考点三:等和(高)线定理等和(高)线平面内一组基底OA →,OB →及任一向量OP ′——→,OP ′——→=λOA →+μOB →(λ,μ∈R ),若点P ′在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值);反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和(高)线.(1)当等和线恰为直线AB 时,k =1;(2)当等和线在O 点和直线AB 之间时,k ∈(0,1);(3)当直线AB 在O 点和等和线之间时,k ∈(1,+∞);(4)当等和线过O 点时,k =0;(5)若两等和线关于O 点对称,则定值k 1,k 2互为相反数;(6)定值k 的变化与等和线到O 点的距离成正比.规律方法要注意等和(高)线定理的形式,解题时一般要先找到k =1时的等和(高)线,利用比例求其他的等和(高)线.【例3】.(2022·山东烟台·三模)如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB yAC =+,则22x y +的最大值为()A .83B .2C .43D .1【变式3】已知O 是ABC ∆内一点,且0OA OB OC ++=,点M 在OBC ∆内(不含边界),若AM AB AC λμ=+ ,则2λμ+的取值范围是A .51,2⎛⎫ ⎪⎝⎭B .()1,2C .2,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭强化训练一、单选题1.如图,AB 是圆O 的直径,P 是圆弧 AB 上的点,M 、N 是直径AB 上关于O 对称的两点,且6,4AB MN ==,则PM PN ⋅()A .13B .7C .5D .32.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-3.设向量,a b 满足10a b += 6a b -=r r a b ⋅ =A .1B .2C .3D .54.已知圆C 的半径为2,点A 满足||3AC =uuu r,E ,F 分别是C 上两个动点,且||3EF =AE AF ⋅的取值范围是()A .[]416,B .[]26,C .[]622,D .[]113,5.在ABC 中,点D 是线段BC 上任意一点,点P 满足3AD AP =,若存在实数m 和n ,使得BP m AB n AC =+ ,则m n +=()A .23B .13C .13-D .23-6.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,且满足AN AB AC λμ=+,则22λμ+的最小值为()A .116B .14C .18D .17.在ABC ∆中,点D 满足34BD BC = ,当E 点在线段AD (不包含端点)上移动时,若AE AB AC λμ=+,则3λμ+的取值范围是A.)+∞B .[2,)+∞C .17(,)4+∞D .(2,)+∞8.在ABC 中,点O 是线段BC 上的点,且满足||3||OC OB =,过点O 的直线分别交直线AB 、AC 于点E 、F ,且AB mAE = ,AC nAF = ,其中0m >且0n >,若1tm n+的最小值为3,则正数t 的值为()A .2B .3C .83D .1139.如图,在直角梯形ABCD 中,AB AD ⊥,AB ∥DC ,2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP xAB yAC =+,其中x y R ∈,,则4x y -的取值范围是()A.234⎡+⎢⎥⎣⎦,B.232⎡+⎢⎥⎣⎦,C.3342⎡-+⎢⎣⎦D.3322⎡-+⎢⎥⎣⎦10.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD,则λ+μ的最大值为A .3B .CD .211.奔驰定理:已知O 是ABC 内的一点,BOC ,AOC ,AOB 的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车的log o 很相似,故形象地称其为“奔驰定理”.设O 为三角形ABC 内一点,且满足:2332OA OB OC AB BC CA ++=++,则AOB ABCS S=△△()A .25B .12C .16D .1312.已知O 是ABC 内的一点,若,,BOC AOC AOB 的面积分别记为123,,S S S ,则1230S OA S OB S OC ⋅+⋅+⋅=.这个定理对应的图形与“奔驰”轿车的log o 很相似,故形象地称其为“奔驰定理”.如图,已知O 是ABC 的垂心,且230OA OB OC ++=,则tan :tan :tan BAC ABC ACB ∠∠∠=()A .1:2:3B .1:2:4C .2:3:4D .2:3:613.已知点P 是ABC 所在平面内一点,若2133AP AB AC =+,则ABP 与ACP 的面积之比是()A .3:1B .2:1C .1:3D .1:214.已知点P 为ABC 内一点,230PA PB PC ++=,则△APB ,△APC ,△BPC 的面积之比为()A .9:4:1B .1:4:9C .1:2:3D .3:2:1二、多选题15.如图.P 为ABC 内任意一点,角,,A B C 的对边分别为,,a b c ,总有优美等式0PBC PAC PAB S PA S PB S PC ++=成立,因该图形酯似奔驰汽车车标,故又称为奔驰定理.则以下命题是真命题的有()A .若P 是ABC 的重心,则有0PA PB PC ++=B .若0aPA bPB cPC ++=成立,则P 是ABC 的内心C .若2155AP AB AC =+,则:2:5ABP ABC S S =△△D .若P 是ABC 的外心,π4A =,PA mPB nPC =+ ,则)m n ⎡+∈⎣16.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”(Mercedesbenz )的log o 很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是ABC 内的一点,BOC ,AOC ,AOB 的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC 内的一点,A ,B ,C 是ABC的三个内角,且点O 满足OA OB OB OC OA OC ⋅=⋅=⋅.则()A .O 为ABC 的外心B .BOC A π∠+=C .::cos :cos :cos OA OB OC A B C =D .tan tan tan 0⋅+⋅+⋅=A OAB OBC OC 17.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车,(Mercedesbenz )的logo 很相似,故形象地称其为“奔驰定理”,奔驰定理:已知O 是△ABC 内一点,△BOC ,△AOC ,△AOB的面积分别为A S ,B S ,C S ,且0A B C S OA S OB S OC ⋅+⋅+⋅=.设O 是锐角△ABC 内的一点,∠BAC ,∠ABC ,∠ACB 分别是的△ABC 三个内角,以下命题正确的有()A .若230OA OB OC ++=,则::1:2:3A B C S S S =B .若2OA OB == ,5π6AOB ∠=,2340OA OB OC ++= ,则92ABC S =C .若O 为△ABC 的内心,3450OA OB OC ++= ,则π2C ∠=D .若O 为△ABC 的垂心,3450OA OB OC ++= ,则cos 6AOB ∠=-18.在平行四边形ABCD 中,AB AC ⊥,1AB AC ==,点P 是ABC 的三边上的任意一点,设AP AB AD λμ=+,().R λμ∈,则下列结论正确的是()A .0λ≥,0μ≥B .当点P 为AC 中点时,1λμ+=C .AP AD ⋅的最大值为1D .满足32λμ+=的点P 有且只有一个三、填空题19.在扇形OAB 中,60AOB ∠=,C 为弧AB 上的一动点,若OC xOA yOB =+,则3x y +的取值范围是.20.在ABC 中,点O 是线段BC 上的点,且满足3OC OB =,过点O 的直线分别交直线,AB AC 于点,E F ,且AB m AE = ,AC nAF = ,其中0m >且0n >,若12m n+的最小值为.21.如图,平面内有三个向量OA 、OB 、OC ,其中与OA 与OB的夹角为120 ,OA 与OC 的夹角为30 ,且|||1OA OB ==,||OC =(),OC λOA μOB λμ=+∈R ,则λμ+的值为.22.(22-23高三上·江苏南通·期中)如图,已知M ,N 是ABC 边BC 上的两个三等分点,若6BC =,4AM AN ⋅=,则AB AC ⋅uu u r uuu r =.23.已知线段AB 是圆22:(1)(1)4C x y -+-=上的一条动弦,且3AB =设点O 为坐标原点,则+OA OB的最大值为;如果直线1:310l x my m --+=与2:310l mx y m +++=相交于点M ,则MA MB ⋅的最小值为.24.在锐角三角形ABC 中,已知,23B AB AC π=-= ,则AB AC ⋅的取值范围是.25.四边形ABCD 中,点,E F 分别是,AB CD 的中点,2AB =,22CD =,1EF =,点P 满足0PA PB ⋅=,则PC PD ⋅的最大值为.26.点P 为ABC 内一点,340PA PB PC →→→→++=,则,,APB APC BPC 的面积之比是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧用极化恒等式秒杀高考向量题冷世平整理说明:由于前几天,大家经常提到极化恒等式,本人便收集整理了一些相关资料,相对较系统,且加入了群里大家讨论的部分题目,由于相当一部分内容非原创,所以只和大家分享一下自己整理的好东西而已,故不作投稿使用。

高中数学中存在着大量等量关系,如立方差(和)公式、二项展开式、两角和与差公式等.在高中数学中常能见到这些等量关系的身影,这也是高中教学重点关注的对象.但有些等量关系看似冷门,甚至课本上都不出现,但它在问题解决过程中却能起到立竿见影的效果,实现对问题的快速“秒杀”,极化恒等式就是可以“秒杀”高考向量题的一个有力工具。

1.极化恒等式极化恒等式最初出现于高等数学中的泛函分析,它表示数量积可以由它诱导出的范数来表示,把这个极化恒等式降维至二维平面即得:21()()4a b a b a b 2⎡⎤⋅=+--⎣⎦ ,有时也可将其写成。

224()(a b a b a b ⋅=+-- )注:21()()4a b a b a b ⎡⋅=+--⎣ 2⎤⎦表明向量的内积运算可以由向量线性运算的模导出(也是向量内积的另一种定义),是沟通向量内积运算和线性运算的重要公式.若是实数,则恒等式,a b 21()()4a b a b a b ⎡⋅=+--⎣2⎤⎦也叫“广义平方差”公式; 极化恒等式的几何意义是:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14,即222214a b AD BC AM BM ⎡⎤⋅=-=-⎣⎦ (如图)在三角形中,也可以用三角形的中线来表示,22214a b AM BM AM BC ⋅=-=-2,它揭示了三角形的中线与边长的关系。

此恒等式的精妙之处在于建立起了向量与几何长度(数量)之间的桥梁,实现了向量与几何、代数的巧妙结合。

2.极化恒等式的应用自向量引入高中数学以后,由于它独特的性质(代数与几何的桥梁),在近几年全国各地的高考中迅速成为创新题命制的出发点,向量试题有着越来越综合,越来越灵活的趋势,在浙江省数学高考中尤为突出,也出现了一些非常精美的向量题。

例1在ABC ∆中,M 是BC 的中点,3,10AM BC ==,则______AB AC ⋅=(年浙江省数学高考理科试题第15题)2012【分析】该问题就是利用极化恒等式解决的极好范例,因为21925162AB AC AM BC ⋅=-=-=-。

下面我们再来看年浙江省数学高考选择题第题:20137例2设是边0,ABC P ∆AB 上一定点,满足014P B AB =,且对于边AB 上任一点,恒有P00PB PC P B P C ⋅≥⋅.90A ABC ∠= ,则.9B BAC ∠= 0.C AB AC = .D AC BC =(年浙江省数学高考选择题第题)20137【分析】考生普遍反映该题无从入手,笔者认为主要原因有2个:⑴该题呈现方式比较新颖;⑵学生解题工具使用不当,以致费时费力且不得要领。

【解析1】如图,取BC 的中点D ,连接,在内使用极化恒等式得0,PD P D PBC ∆22PB PC PD BD ⋅=- ,在内使用极化恒等式得,由条件知恒有0P BC ∆22BD - 00P C P D ⋅= 0P B 0P D ≥PD ,即,故0P D AB ⊥AC BC =,故选D 。

【解析2】如图,取线段BC 的中点M ,则22224()4()4PB PC PB PC PB PC PM BC ⋅=+--=- ,要使的值最小,只需PB PC ⋅ PM 取得最小值,所以只有当MP AB ⊥时,PM取得最小值,且点与点必须重合,P 0P M 是线段BC 的中点,只有时才能成立,故选AC BC =D 。

很多一线教师都认为这个题目在10个选择题中是最难的,应该放在压轴的位置,笔者却不这样认为,其实这个题目只是在例1的基础上对极化恒等式的应用灵活化,步子迈得更大一些而己,这个题目的姊妹题也出现在年浙江省高中数学联赛中:2013例3如图,已知直线与抛物线交于点为的中点,C 为抛物线上一个动点,若满足AB 24y =x ,,A B M AB 0C {}00A C B CA CB ⋅=⋅min C,则下列一定成立的是( )0.A C M AB ⊥ 0.B C M l ⊥,其中l 为抛物线过点的切线0C 00.C C A C B ⊥ 01.2D C M AB =(20年浙江省高中数学联赛试题)13【解析1】由{}00min C A C B CA CB ⋅=⋅得00CA CB C A C B ⋅≥⋅ 220C M 2y ⑴,由极化恒等式知式⑴等价于,即,即抛物线22CM AM 220C M AM -≥- CM ≥ 4x =上所有点到M 的距离最近的点即,故以0C M 为圆心,0MC 为半径的圆与抛物线内切,故选B 。

【解析2】2244CB CA CM AB ⋅=- ,因为AB 给定,显然要使CB CA ⋅ 最小,只需CM最小,即,其中l 是抛物线过点的切线。

0C M l ⊥0C 需要说明的是,命题组并没有说明l 是一条什么样的直线,其实直线是:当以定点l M 为圆心的圆与抛物线相切时的公切线。

24y =x 例4在正中,ABC ∆D 是BC 上的点,3,1AB BD ==,则______AB AD ⋅=(年上海市数学高考试题第11题)2011【分析】这是极化恒等式的直接变式范例。

【解析】设BD 的中点为E,则222222244AE 44113AB AD BD AO OE BD ⎡⎤⋅=-+-=+-=⎢⎥⎣⎦=,则152AB AD ⋅= 。

例5已知是平面内个互相垂直的单位向量,若向量,a b2c 满足()()a c b c 0-⋅-= ,则c 的最大值是( ).1A .2BC2D (年浙江省数学高考理科试题第题)20089【解析】本题从表面上看似乎和“极化恒等式”并没有关系,事实上,根据“极化恒等式”有,从而224()()()()()()a c b c a c b c a c b c ⎡⎤⎡-⋅-=-+-----⎣⎦⎣ ⎤⎦22()(22a b a b c +--=。

如图,设OA ,且为线段的中点,显然OB ⊥ ,,,OA a OB b OC c D ===AB 21,(222=a b a b a b ODDC c ++-==-=,上式表明,DC 是有固定起点,固定模长的动向量,即点C 的轨迹是以D 为起点,以2为半径的圆,因此,c ,故选C 。

事实上,类似的问题时有看到,只是很多时候用其他的方法取代了“极化恒等式”,或在无意中使用“极化恒等式”。

例6在中,是边ABC ∆2,3,AB AC D ==BC 的中点,则_____AD BC ⋅=(2年天津市数学高考文科试题第15题)007【解析】根据“极化恒等式”有2215()()22AB AC AD BC AC AB AC AB +⋅=⋅-=-=2。

本题的解决涉及到三角形的边及中线的关系,这可以看作是年浙江省数学高考试题第题的最初原型。

20137例7设正方形的边长为,动点在以为直径的圆弧ABCD 4P AB APB 上(如图所示),则 PC PD ⋅的取值范围是【解析】取CD 中点E ,联结,在PE PDC ∆内使用极化恒等式得2222144PC PD PE ED PE CD ⋅=-=-- 2PE = ,由图可知,PE ⎡∈⎣,故。

[]0,16PC PD ⋅∈ 例8在中,点ABC ∆,E F 分别是线段,AB AC 的中点,点在直线P EF 上,若的面积为2,则的最小值是 ABC ∆2PC PB BC ⋅+(年江苏省南京市数学高考模拟试题)2012【分析】如图,取BC 的中点D ,在内使用极化恒等式得PBC ∆22214PC PB PD BD PD ⋅=-=- 2BC ,从而22234PC PB BC PD BC ⋅+=+ ,因为的面积为,所以的高ABC ∆2ABC ∆4h BC =,又EF 为ABC ∆的中位线,故PBC ∆的高为2BC ,从而2PD BC≥,因此22PB BC ⋅+ 2434PC BC BC ≥+≥,BC BC ⊥PD =例9如图,在半径为1的扇形中, AOB 60,AOB C ∠=︒为弧上的动点,与OC 交于点,则的最小值为 AB P OP BP ⋅【解析】如图,取OB 的中点D ,作DE AB ⊥于点E ,根据极化恒等式21()()4a b a b a b 2⎡⎤⋅=+--⎣⎦ 可知,2222211()()(2)4414P PO PO PB PO PB PD BO PD ⎡⎤⎡⎤⋅==+-=-=-⎣⎦⎣⎦ OP B PB ⋅ -,易知,42PD DE ⎡⎤∈=⎢⎣⎦⎣⎦AD ,则2111,4162OP BP PD ⎡⎤⋅=-∈-⎢⎥⎣⎦ OP BP ,故⋅ 的最小值为116-。

其实本题只需要等边三角形的条件,外面的圆弧完全没用,本题还可以求的取值范围。

AOB OP BP ⋅例10如图放置的边长为1的正方形顶点分别在ABCD x 轴,y 轴正半轴(含原点)滑动,则OB 的最大值为 OC ⋅【解析】取BC 中点为点E ,连接,如图所示:,OB OC由极化恒等式可知,222214412OB OC OB OC OB OC OE ⋅=+--=-≤+-= 4(1)18,因而有。

2OB OC ⋅≤3.极化恒等式带来的反思⑴极化恒等式源于教材又高于教材,在ABC ∆中,11(),(22AD AB AC BD AC AB =+=-)是课本上出现的个重要的向量三角关系,而极化恒等式无非就是这个公式的逆用;22⑵具有三角几何背景的数学问题利用极化恒等式考虑尤为简单,让“秒杀向量”成为另一种可能; ⑶向量是连接代数与几何的桥梁,由于向量的坐标运算引入,向量与代数的互换运算可以说是深入人心,而与几何的运算联系略显单薄,而极化恒等式恰恰弥补了这个缺憾,可以说极化恒等式应该是把向量的数量积问题用形象的几何图形展示得淋漓尽致; ⑷实际上,“极化恒等式”在空间中同样可以发挥作用,下面举个例子。

2例11正方体1111ABCD A B C D -的棱长为2,MN 是它内切球的一条弦(把球面上任意个点之间的线段称为球的弦),为正方体表面上的动点,当弦2P MN 最长时,PM PN ⋅的最大值为_【解析】设球心为,球半径为O R ,则1R =,根据极化恒等式,得2244(2)PM PN PO R ⋅=-244PO = -,因为为正方体表面上的动点,所以P PO 的最大值为正方体对角线长的一半,,于是的最大值为。

PM PN ⋅2例12点是棱长为1的正方体P 1111ABCD A B C D -的底面1111A B C D 上一点,则PA PC ⋅的取值范围是 _(年北京市朝阳区高三数学二模试题)2013【解析】设AC 的中点为M ,根据“极化恒等式”得222444PA PC PM AC PM 2⋅=-=- ,因为32≤1PM ≤ ,所以112PA ≤⋅PC ≤。

相关文档
最新文档