古今数学思想读书心得

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竭诚为您提供优质文档/双击可除古今数学思想读书心得

篇一:《古今数学思想》读后感

《古今数学思想》读后感

非常有幸的,我在寒假里阅读了由美国著名数学家、数学史家、教育家、哲学家和应用物理学家莫里斯·克莱因撰写的《古今数学思想》,他的这部博大精深的不朽著作,向

人们展示了数学从巴比伦和埃及起源时至20世纪最初几个

年代的主要创造。读了这本书对我的感触很深,使我懂得了好多数学的道理,对我的学习有了更大的帮助,而数学思想对于大学数学教学来说就是一种十分有效、不可或缺的工具。认识到数学思想在大学数学教学中的作用,并将数学思想与大学数学教学紧密的结合起来,不但能有效的激发学生学习数学的兴趣,而且对于提高其数学方面的素质修养以及逻辑思维能力、启发文科学生的人格成长、发展其认知能力等都有十分重要的作用。

下面我将谈谈我阅读完本书后的一点感受:⑴数学史即人类的发展史,数学的进程在很大程度上取决于历史的进程。人类是高级动物,在逐步进化中由于生活的种种需要逐渐产生了数学,如角的边常是用股或臂的自来代表的。在英文中,直角三角形的两边叫两臂。在原始文明中,数学的应用只限于简单交易,而到公元前600年的300年间,较早的泥版对数学史具有重要意义,这时已经有了初步的文字出现,巴比伦人更是以60为基底实行进位记法,还用进位记法表示分数,还有了表示平方、平方根、立方和立方根的数表。而这时的数学知识已经被运用到了挖运河、修堤坝以及搞其他水利工程。(2)有助

于培养学生的理性思维能力。对于学习大学数学的文科学生来说,其形象思维能力教强,形象思维丰富多彩。而纵观整个数学思想发展史,可以说就是一种创造的演化史。在创造的过程中,更多的是理性思维的力量。比如,描述极限的ε,δ语言的出现,就是人类理性思维的美的体现,这套语言克服了以往对极限直观描述的随意性、抽象性。数学是人类思维所能达到的最严谨的理性。通过结合数学思想的教学,可以更好的提高学生理性思维能力,从而促进学生的综合素质的提高。

最后,我想说的是读书真的是一件很有趣的事情,读书可以使人得到心灵的升华,同时也可以发现很多又去的事情,

现在的我,正处于风华正茂的时候,应该多读书来增加自己的阅历。

篇二:《古今数学思想》读书笔记

《古今数学思想》读书笔记

数科院1201杨瑞

阅读克莱因的《古今数学思想》一书后,使我了解了数学的乐趣所在。克莱因原著的书名是“mathematicalThoughtfromAncienttomodernTime”,1972

年由牛津大学出版社出版。甫经面世,即博得了好评。誉称是“就数学史而论,这是迄今为止最好的一本。”(见bulletinoftheAmericanmathematicalsociety,1974.9,Vol

.80,no.5,pp.805~807)整整30年过去了,仍未有同类的著作可与之比肩。说是“新版”,1979年,上海科学技术出版

社就推出了该书的中译本,现在斥资购买了版权,再度隆重推出,可以说是“旧貌换新颜”。

正如书名所指出,本书着重在论述数学思想的古往今来,努力说明数学的意义是什么,各门数学之间以及数学和其他自然科学尤其是和力学、物理学的关系是怎样的。本书特别关注数学在近二、三百年的历史发展,着重在19世纪,有

些分支写到了20世纪的30或40年代。

克莱因教授本人深受哥廷根大学数学传统的影响,注意研究数学史和数学教育,是一位著名的应用数学家和数学教

育家,因此,他很能体会到读者的心情。今天,学生们的数学知识,主要是从数学课程中获得的。通常的数学课程给出的是一个系统的逻辑叙述,这些课程经过编纂者的锤炼,成为“完美”的典范。这就使学生们淹没在成串的定理中,并产生一种幻象:数学就是从定义到定理,数学家们都是无坚不克的英雄。

历史却恰恰相反,克莱因在该书的序言中指出:“课本中的字斟句酌的叙述,未能表现出创造过程的斗争、挫折,以及在建立一个可观的结构之前,数学家所经历的艰苦漫长的道路。学生一旦知道这一点,他将不仅获得真知灼见,还将获得顽强地追究他所攻问题的勇气,并且不会因为他自己的工作并非完美无缺而感到颓丧。实在说,叙述数学家如何跌跤,如何在迷雾中摸索前进,并且如何零零碎碎得到他们的成果,应能使搞研究工作的任一新手鼓起勇气。”

我想,每一位数学工作者、数学教师、数学系的大学生,甚至普通的数学爱好者,都会被克莱因话拨动自己的心弦。

克莱因教授希望“本书对于专业的数学家和未来的数学家都有所帮助”,因

为,专业的数学家今天不得不把大量的时间和精力倾注到他的专题上去,使得他没有机会去熟悉他的学科的历史。事实上,这种历史背景是非常重要的。现在的根,深扎在过去。“数学是一个有机体,它的生命力的一个必要条件是所

有各个部分的不可分离的结合。”如果割断历史,可以说,

那一门学科都不会向数学这样受到伤害。克莱因以其在数学领域的专业造诣和对数学历史的高超驾驭,对数学分支的历史发展,对数学思想演变的历史脉络,和对数学家的评述都有一些独到的见解。克莱因善于把历史叙述和内容介绍结合起来,通过比较丰富的史料来阐述观点。阅读此书,不仅专业的数学家和数学史工作者感到受益非浅,就是要想了解数学的普通公众,也可以从中获得宝贵的启示。

原书51章,共1238页,中译本分成四册。短短的书评无法描述原著恢宏的气势,但是,如果您打开扉页,浏览一下目录,就会被深深地吸引住:数学是从那里出现的?希腊数学的辉煌成就中存有那些局限性?数学中的人文主义活动;数学设计信念的发展;促使微积分产生的社会因素;18世纪数学工作的推动力;作为人的创造物的数学;真理的丧失;等等。这些论题已经远远超出一般数学史的论域,而涉及数学与社会、数学与文化以及数学与哲学这些在今天引起广泛关注的课题。上述目录中问题,有些克莱因曾经做过专题论著,如《西方文化中的数学》(mathematicsinwesternculture,牛津大学出版社,1953年,中译本为张祖贵译,台湾九章出版社),有些则后来被克莱

因进一步扩展为新的学术专著,如《数学:确定性的丧失》(mathematicsThelossofcertainty,牛津大学出版社,1980

相关文档
最新文档