斐波那契数列的应用论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斐波那契数列的应用

摘要

斐波那契数列自问世以来,不断显示出它在数学理论和应用上的重要作用。而且斐波那契数列在现代物理、准晶体结构、生物、交通、化学等领域都有直接的应用。这个数列既是数学美的完美体现,又与许多数学概念有着密切的联系,很多看上去似乎彼此独立的数学概念,通过斐波那契数列,人们发现了其中的数学联系。从而进一步激发了人们探索数学的兴趣.对数学的认知更加系统化。因此对斐波那契数列的研究是一项非常重要的研究,它不仅能给各个学科带来很好的用处,它也会对我们的生活产生长远的影响,斐波那契数列的前景是不可估量的。

关键字:Fibonacci数列 Fibonacci数应用

1.斐波那契数列的提出

斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对?

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、34 、……,这个数列从第三项开始,每一项都等于前两项之和。即:如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

F(0)=0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

确定的数列{ F(n)}(n≥1)叫做Fibonacci数列,F(n)叫做Fibonacci 数。

推导过程:

利用特征方程

线性递推数列的特征方程为:

X^2=X+1

解得

则F(n)=C1*X1^n + C2*X2^n

∵F(1)=F(2)=1

∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2

解得

即: F(n)

=111

22

n n ⎡⎤

⎛⎫⎛⎫

+-

⎢⎥

-

⎪ ⎪

⎪ ⎪

⎢⎥

⎝⎭⎝⎭

⎣⎦

2.斐波那契数列的应用

人类很早就从自然界中看到了数学特征:蜜蜂的繁殖规律,树的分枝,钢琴音阶的排列以及花瓣对称排列在花托边缘、整个花朵几乎完美无缺地呈现出辐射对称状……,所有这一切向我们展示了许多美丽的数学模式。而对这些自然、社会以及生活中的许多现象的解释,最后往往都能归结到Fibonacci数列上来。

斐波那契数列在数学理论上有许多有趣的性质,不可思议的是在自然界中也存在着这个性质,似乎完全没有秩序的植物的纸条彼此相隔的距离或叶子的生长凡是,都被斐波那契数列支持着。

2.1 斐波那契数列与花朵的花瓣数

花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,百

合花有3瓣花瓣,至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;万寿菊的花瓣有13瓣,更有趣的是,有一位学者细心地数过一朵花的花瓣,发现这朵花的花瓣刚好有157瓣。且他又发现其中有13瓣与其他144瓣有显著的不同,是特别长并卷曲向内,这表明这朵花的花瓣树木是由F1=13和F2=144合成的。

为什么很多花拥有符合斐波纳契数列的花瓣数量?自然界的物种优化选择造就了这种神奇。花儿绽放前,花瓣要形成花蕾来保护内部的雌蕊和雄蕊。此时,花瓣相互叠加,用最好的形状保护住花蕊,而这正需要斐波纳契数那么多的花瓣。

2.2 斐波那契数列与仙人掌的结构

在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片厚度和一系列控制仙人掌情况的各种因素,并将所得数据输入电脑,结果发现仙人掌的Fibonacci数列结构特征能让仙人掌最大限度地减少能量消耗,适应其在干旱沙漠的生长环境。

2.3 斐波那契数列与向日葵种子排列方式

向日葵种子的排列方式,就是一种典型的数学模式。仔细观察向日葵花盘,你就会发现两组螺旋线,一组顺时针方向盘旋,另一组则逆时针方向盘旋,并且彼此相嵌。虽然不同的向日葵品种中,种子顺、逆时针方向和螺旋线的数量有所不同,但往往不会超出34和55、55和89或者89和144这3组数字,这每组数字就是Fibonacci数列中

相邻的两个数。前一个数字是顺时针盘旋的线数,后一个数字是逆时针盘旋的线数。

2.4 斐波那契数列与台阶问题

只有一个台阶时,只有一种走法,F1=1两个台阶,走法有2种,一阶一阶或者一步上两个台阶,所以F2=2。三个台阶时,走法有一步一阶,2阶再1阶,1阶再2阶,因此,F3=3。四个台阶时,走法有(1,1,1,1),(1,1,2),(1,2,1),(2,1,1)(,2,2),共5种方法,故F4=5以此类推,有数列:1,2,3,5,8,13,21,34,55,89,144,233,...斐波那契与自然、生活、科学上的联系其实还有很多,但是仅仅从这几个例子上我们就可以看出斐波那契数列的应用的广泛性,由此我们可以看到数学的美其实是无处不在的它是一门科学,同时也是一种语言,一种艺术,它如同盛开的茉莉,洁白淡雅,总而言之,数学与自然、生活相伴相随,共同发展。

2.5 斐波那契数列与蜜蜂的家谱

蜜蜂的“家谱”:蜜蜂的繁殖规律十分有趣。雄蜂只有母亲,没有父亲,因为蜂后所产的卵,受精的孵化为雌蜂(即工蜂或蜂后),未受精的孵化为雄蜂。人们在追溯雄蜂的家谱时,发现1只雄蜂的第n代子孙的数目刚好就是Fibonacci数列的第n项F(n)。

2.6 斐波那契数列的其他应用

菠萝果实上的菱形鳞片,一行行排列起来,8行向左倾斜,13行

相关文档
最新文档