9大硬件工程师谈高速PCB信号走线规则
PCB高速信号布线
PCB高速信号布线PCB是印刷电路板(Printed Circuit Board)的英文缩写,它是现代电子产品设计中不可或缺的一部分。
PCB可以在小面积内集成大量的电子元器件,有效地节省了电路板设计的空间。
在PCB 设计中,电路连接的正确性和可靠性是至关重要的。
其中高速信号线的布线设计尤为重要,因为高速信号线往往具有很高的频率和信号速度,容易受到信号衰减、反射、干扰等各种影响。
PCB高速信号布线的目标是尽量减小信号的反射和传导干扰,并且保持信号的完整性。
这个过程需要考虑多个因素,如信号速度、布线长度、布线材料、针脚间距、信号电平等等。
一、布线长度当高速信号线的长度超过了特定的阈值时,会产生反射和信号失真的问题。
此时需要采取一些措施来保持信号完整性。
其中一种方法是添加阻抗匹配电路,使信号源和负载之间的阻抗匹配。
电阻匹配可以降低信号反射,使信号保持不变。
这种方法的缺点是占用空间、增加功耗,但在高速布线设计中是必要的。
二、地平面高速线和地面之间的几何布局也非常重要。
在同层PCB中,地平面应该保持尽可能的连续,适当的地平面将有助于减少反射和传导干扰。
在多层PCB中,每个逻辑层应该都有一个地面平面来提供良好的集总环境。
一个好的地平面应该是连续的、均匀分布,并且根据需要提供足够的连通电绳。
在高速布线设计中,地平面的设计是必须的。
三、材料在高速布线设计中,选择合适的PCB材料对于保持信号完整性非常重要。
常见的PCB材料有FR-4、Rogers等。
在高速布线设计中,一般采用介电常数低、相对介电常数稳定的材料。
介电常数低可以降低信号的传播延迟,不稳定的相对介电常数会导致信号传播速度的变化,从而影响信号完整性。
四、穿孔的位置当需要在PCB板上穿孔时,应该注意使用穿孔位置对高速信号线的影响。
在PCB板上钻孔时,会产生一些毛刺,这些毛刺有可能对信号完整性产生负面的影响,因此,需要对孔壁进行平整处理。
五、差分布线差分信号传输是现在高速布线的普遍应用。
PCI-E的高速PCB布线规则
PCI-E的高速PCB布线规则PCI-E 布线规则1、从金手指边缘到PCIE芯片管脚的走线长度应限制在4英寸(约100MM)以内。
2、PCIE的PERP/N,PETP/N,PECKP/N是三个差分对线,注意保护(差分对之间的距离、差分对和所有非PCIE信号的距离是20MIL,以减少有害串扰的影响和电磁干扰(EMI)的影响。
芯片及PCIE信号线反面避免高频信号线,最好全GND)。
3、差分对中2条走线的长度差最多5MIL。
2条走线的每一部分都要求长度匹配。
差分线的线宽7MIL,差分对中2条走线的间距是7MIL。
4、当PCIE信号对走线换层时,应在靠近信号对过孔处放置地信号过孔,每对信号建议置1到3个地信号过孔。
PCIE差分对采用25/14的过孔,并且两个过孔必须放置的相互对称。
5、PCIE需要在发射端和接收端之间交流耦合,差分对的两个交流耦合电容必须有相同的封装尺寸,位置要对称且要摆放在靠近金手指这边,电容值推荐为0.1uF,不允许使用直插封装。
6、SCL等信号线不能穿越PCIE主芯片。
合理的走线设计可以信号的兼容性,减小信号的反射和电磁损耗。
PCI-E 总线的信号线采用高速串行差分通信信号,因此,注重高速差分信号对的走线设计要求和规范,确保PCI-E 总线能进行正常通信。
PCI-E是一种双单工连接的点对点串行差分低电压互联。
每个通道有两对差分信号:传输对Txp/Txn,接收对Rxp/Rxn。
该信号工作在2.5 GHz并带有嵌入式时钟。
嵌入式时钟通过消除不同差分对的长度匹配简化了布线规则。
随着PCI-E串行总线传输速率的不断增加,降低互连损耗和抖动预算的设计变得格外重要。
在整个PCI-E背板的设计中,走线的难度主要存在于PCI-E 的这些差分对。
图1提供了PCI-E高速串行信号差分对走线中主要的规范,其中A、B、C和D四个方框中表示的是常见的四种PCI-E差分对的四种扇入扇出方式,其中以图中A所示的对称管脚方式扇入扇出效果最好,D为较好方式,B和C为可行方式。
高速信号走线规则
高速信号走线规则随着信号上升沿时间的减小,信号频率的提高,电子产品的EMI问题,也来越受到电子工程师的关注。
高速PCB设计的成功,对EMI的贡献越来越受到重视,几乎60%的EMI问题可以通过高速PCB来控制解决。
规则一:高速信号走线屏蔽规则在高速的PCB设计中,时钟等关键的高速信号线,走需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都是会造成EMI的泄漏。
建议屏蔽线,每1000mil,打孔接地。
如上图所示。
规则二:高速信号的走线闭环规则由于PCB板的密度越来越高,很多PCB LAYOUT工程师在走线的过程中,很容易出现这种失误,如下图所示:时钟信号等高速信号网络,在多层的PCB走线的时候产生了闭环的结果,这样的闭环结果将产生环形天线,增加EMI 的辐射强度。
规则三:高速信号的走线开环规则规则二提到高速信号的闭环会造成EMI辐射,同样的开环同样会造成EMI辐射,如下图所示:时钟信号等高速信号网络,在多层的PCB走线的时候产生了开环的结果,这样的开环结果将产生线形天线,增加EMI 的辐射强度。
在设计中我们也要避免。
规则四:高速信号的特性阻抗连续规则高速信号,在层与层之间切换的时候必须保证特性阻抗的连续,否则会增加EMI的辐射,如下图:也就是:同层的布线的宽度必须连续,不同层的走线阻抗必须连续。
规则五:高速PCB设计的布线方向规则相邻两层间的走线必须遵循垂直走线的原则,否则会造成线间的串扰,增加EMI辐射,如下图:相邻的布线层遵循横平竖垂的布线方向,垂直的布线可以抑制线间的串扰。
规则六:高速PCB设计中的拓扑结构规则在高速PCB设计中有两个最为重要的内容,就是线路板特性阻抗的控制和多负载情况下的拓扑结构的设计。
在高速的情况下,可以说拓扑结构的是否合理直接决定,产品的成功还是失败。
如上图所示,就是我们经常用到的菊花链式拓扑结构。
这种拓扑结构一般用于几Mhz的情况下为益。
高速的拓扑结构我们建议使用后端的星形对称结构。
在PCB板边走高频高速信号线的注意事项–高频高速信号设计基本原则
在PCB板边走高频高速信号线的注意事项–高频高速信号设计基本原则我们经常在教科书或者原厂的PCB Design Guide里看到一些关于高频高速信号的设计原则,其中就包括在PCB电路板的边缘不要走高速信号线,而对于板载PCB天线的设计来说,又建议天线要尽量靠近板边放置。
尼玛,这是什么科学道理?这里老wu结合自己的一些浅薄认知,跟大家探讨一下高频高速信号线在PCB的板边时会发生什么情况,以下内容谨代表个人观点,不保证正确性,请大家自行甄别.我们在初中阶段就已经知道,用右手在导线上撸一撸的安培右手定则告诉我们,导线中电流沿着拇指的方向传播,则导线上会产生对应的磁场,磁场的方向与右手手指握拳的方向一致,而导体中的带电电荷会产生电场,电场和磁场为一对好基友,统称为电磁场。
安培右手螺旋定则按照麦克斯韦电磁场理论,变化的电场在其周围空间要产生变化的磁场,而变化的磁场又要产生变化的电场。
这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生, 并以一定速度由近及远地在空间传播出去,这就是电磁辐射。
这便产生了两个截然相反的影响:好的方面,所有的RF通信、无线互联、感应应用都受益于电磁辐射的好处;而有害的方面则是,电磁辐射导致了串扰和电磁兼容性等方面的问题。
当电磁波频率较低时,主要籍由有形的导电体才能传递;当频率逐渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。
在低频的电振荡中, 磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。
然而,在高频率的电振荡中,磁电互变甚快,能量不可能反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。
根据以上的理论,每一段流过高频电流的导线都会有电磁辐射,辐射强度与频率成正比。
PCB上有的导线用作信号传输,如DDR 时钟信号,LVDS差分信号传输线等,就不希望有太多的电磁辐射损耗能量并且对系统中的其他电路造成干扰;而有的导线用作天线,如PCB天线,就希望能尽可能地将能量转化为电磁波发射出去。
(完整word版)PCI-E的高速PCB布线规则
PCI-E 布线规则1、从金手指边缘到PCIE芯片管脚的走线长度应限制在4英寸(约100MM)以内。
2、PCIE的PERP/N,PETP/N,PECKP/N是三个差分对线,注意保护(差分对之间的距离、差分对和所有非PCIE信号的距离是20MIL,以减少有害串扰的影响和电磁干扰(EMI)的影响。
芯片及PCIE信号线反面避免高频信号线,最好全GND)。
3、差分对中2条走线的长度差最多5MIL。
2条走线的每一部分都要求长度匹配。
差分线的线宽7MIL,差分对中2条走线的间距是7MIL。
4、当PCIE信号对走线换层时,应在靠近信号对过孔处放置地信号过孔,每对信号建议置1到3个地信号过孔。
PCIE差分对采用25/14的过孔,并且两个过孔必须放置的相互对称。
5、PCIE需要在发射端和接收端之间交流耦合,差分对的两个交流耦合电容必须有相同的封装尺寸,位置要对称且要摆放在靠近金手指这边,电容值推荐为0.1uF,不允许使用直插封装。
6、SCL等信号线不能穿越PCIE主芯片。
合理的走线设计可以信号的兼容性,减小信号的反射和电磁损耗。
PCI-E 总线的信号线采用高速串行差分通信信号,因此,注重高速差分信号对的走线设计要求和规范,确保PCI-E 总线能进行正常通信。
PCI-E是一种双单工连接的点对点串行差分低电压互联。
每个通道有两对差分信号:传输对Txp/Txn,接收对Rxp/Rxn。
该信号工作在2.5 GHz并带有嵌入式时钟。
嵌入式时钟通过消除不同差分对的长度匹配简化了布线规则。
随着PCI-E串行总线传输速率的不断增加,降低互连损耗和抖动预算的设计变得格外重要。
在整个PCI-E背板的设计中,走线的难度主要存在于PCI-E的这些差分对。
图1提供了PCI-E高速串行信号差分对走线中主要的规范,其中A、B、C和D四个方框中表示的是常见的四种PCI-E差分对的四种扇入扇出方式,其中以图中A所示的对称管脚方式扇入扇出效果最好,D为较好方式,B和C 为可行方式。
高速PCB设计九大布线原则
九大PCB设计布线原则:
1、一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。
在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm。
对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地则不能这样使用)。
2、预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。
必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
3、振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。
时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零。
4、尽可能采用45°的折线布线,不可使用90°折线,以减小高频信号的辐射;(要求高的线还要用双弧线)。
5、任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少。
6、关键的线尽量短而粗,并在两边加上保护地。
7、通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出。
8、关键信号应预留测试点,以方便生产和维修检测用。
9、原理图布线完成后,应对布线进行优化。
同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。
或是做成多层板,电源,地线各占用一层。
相信你的PCB设计能力一定会大大提升的。
高速pcb设计规则
高速pcb设计规则
高速PCB设计规则是指在设计PCB时需要遵循的一系列规则和原则,以确保信号传输的质量和稳定性。
高速 PCB 的设计需要考虑多
种因素,如信号传输速度、信号波形、传输距离、干扰等等。
以下是一些常见的高速 PCB 设计规则:
1. 避免信号线的走线路径过长,尽可能缩短信号线的长度,以
减小信号传输延迟和损耗。
2. 保证信号线之间的距离足够大,以避免互相干扰,同时也能
降低信号串扰的风险。
3. 使用合适的层次结构设计,尽可能将信号线和电源线分离,
以减少干扰和噪声。
4. 在 PCB 的布线中,保证地线和供电线的宽度足够宽,以确保稳定的供电和地面连接。
5. 在 PCB 的布线中,避免过多的弯曲或拐角,以减小信号传输中的损失和延迟。
6. 选用合适的 PCB 材料和厚度,以满足高速信号传输的需求。
7. 注意 PCB 的电磁兼容性,通过合理的布线和屏蔽来减少干扰。
以上是高速 PCB 设计中的一些基本规则,但实际上,高速 PCB 的设计涉及的方面非常广泛,需要根据具体的应用场景来进行设计。
为了保证高速 PCB 的质量和可靠性,需要有专业的技术人员进行设
计和测试。
- 1 -。
九条高速PCB信号走线规则
规则一高速信号走线屏蔽规则在高速得PCB设计中,时钟等关键得高速信号线,走线需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都会造成EMI得泄漏。
建议屏蔽线,每1000mil,打孔接地。
规则二高速信号得走线闭环规则由于PCB板得密度越来越高,很多PCB LAYOUT工程师在走线得过程中,很容易出现一种失误,即时钟信号等高速信号网络,在多层得PCB走线得时候产生了闭环得结果,这样得闭环结果将产生环形天线,增加EMI得辐射强度。
规则三高速信号得走线开环规则规则二提到高速信号得闭环会造成EMI辐射,然而开环同样会造成EMI辐射。
时钟信号等高速信号网络,在多层得PCB走线得时候一旦产生了开环得结果,将产生线形天线,增加EMI得辐射强度。
规则四高速信号得特性阻抗连续规则高速信号,在层与层之间切换得时候必须保证特性阻抗得连续,否则会增加EMI得辐射。
也就就是说,同层得布线得宽度必须连续,不同层得走线阻抗必须连续。
规则五高速PCB设计得布线方向规则相邻两层间得走线必须遵循垂直走线得原则,否则会造成线间得串扰,增加EMI辐射。
简而言之,相邻得布线层遵循横平竖垂得布线方向,垂直得布线可以抑制线间得串扰。
规则六高速PCB设计中得拓扑结构规则在高速PCB设计中,线路板特性阻抗得控制与多负载情况下得拓扑结构得设计,直接决定着产品得成功还就是失败。
图示为菊花链式拓扑结构,一般用于几Mhz 得情况下为益。
高速PCB设计中建议使用后端得星形对称结构。
规则七走线长度得谐振规则检查信号线得长度与信号得频率就是否构成谐振,即当布线长度为信号波长1/4得时候得整数倍时,此布线将产生谐振,而谐振就会辐射电磁波,产生干扰。
规则八回流路径规则所有得高速信号必须有良好得回流路径。
尽可能地保证时钟等高速信号得回流路径最小。
否则会极大得增加辐射,并且辐射得大小与信号路径与回流路径所包围得面积成正比。
规则九器件得退耦电容摆放规则退耦电容得摆放得位置非常得重要。
PCB的布线原则介绍
PCB的布线原则介绍PCB(Printed Circuit Board)布线是在电子产品的设计和制造过程中非常重要的一步,它涉及到电路连接的实现和优化,对电气性能和可靠性有着直接影响。
下面将介绍一些PCB布线的原则和技巧。
1.分层布线原则:为了减少信号串扰和提高布线效果,通常使用多层PCB来进行布线。
不同信号层之间约束通过信号引线进行连接。
2.信号流布线原则:PCB布线应遵循信号流动路径的原则,尽量在布线中使用直线、平行和垂直线路,避免使用弯曲和串扰风险较大的线路。
3.引脚位置原则:为了便于布线和减少信号串扰风险,应该将高速信号的输入和输出引脚安排在同一侧或者上下相邻的地方。
4.良好的地平面原则:地平面是整个PCB布线设计中非常重要的一部分,要做到尽量连续、稳定和低阻抗。
良好的地平面可以减少信号回流路径长度,提高信号质量和抗干扰能力。
5.模拟数字分区原则:为了减少模拟信号和数字信号之间的干扰,布线时应该将它们分开布线,模拟信号通常靠近输入/输出接口,数字信号靠近芯片和处理器。
6.信号引线长度控制原则:为了提高信号的稳定性和可靠性,应尽量控制信号引线的长度,避免过长而引起信号失真或者串扰。
7.信号引线宽度控制原则:为了适应高速信号的要求,应尽量增加信号引线的宽度,减小电流密度,提高信号的传输速率。
8.信号层间距控制原则:为了减少层间串扰风险,应根据信号分布和技术需求,适当调整信号层的间距,通常越窄越好,但过窄会增加制造难度。
9.电源与分布原则:为了减少电源干扰,应设计分布式电源和地平面。
并且将电源线和信号线分开布线,以减少干扰。
10.阻抗匹配原则:为了保证传输线和匹配网络的工作效果,应根据设计要求和信号特征,选择合适的阻抗值。
11.元器件布局原则:元器件布局的合理性会直接影响到整个PCB布线的效果,因此在布局时应考虑信号传输要求、热问题、电源分布等因素。
12.电磁兼容原则:为了减少电磁辐射和电磁接收的干扰,应设计良好的屏蔽和周边环境,并尽量使用低辐射的元器件。
九条高速PCB信号走线规则
九条高速PCB信号走线规则
1.电源回返路径:保持信号和相应的地面层尽可能近,在回路长度和电流路径上减小电磁辐射。
2.信号层叠:在多层PCB中,将信号层与相邻的地层尽可能靠近,以减小串扰和电磁辐射。
3.高速信号层位于中间层:将高速信号层放置在PCB的内部层,以减小对外部层的干扰,并提高中间层的信号完整性。
4.地层间引通孔:在PCB的不同地层之间设置引通孔,以提供更好的地面连接和减小回路长度,从而减小串扰。
5.信号层间引通孔:将不同信号层之间的引通孔放置在相同的位置,形成垂直连接通道,以便信号传输和阻止串扰。
6.信号层间隔层:在不同信号层之间设置隔离层,以提供额外的电磁屏蔽和减小与相邻信号层的干扰。
7.信号走线长度匹配:对于同一组相关信号,确保各信号的走线长度相等或相差很小,以维持信号的同步传输。
8.信号走线宽度匹配:对于同一组相关信号,确保各信号的走线宽度相等或相差很小,以维持阻抗匹配。
9.地平面引通孔:在PCB的地平面上设置引通孔,以提供更好的地面连接和减小回路长度,从而减小串扰。
以上是九条高速PCB信号走线规则的详细介绍。
通过遵循这些规则,设计师可以最大程度地提高高速电子产品电路板的信号完整性和性能。
【新提醒】原创|高速信号PCB设计处理的通用原则
【新提醒】原创|高速信号PCB设计处理的通用原则
通用的高速信号PCB设计处理原则有:
(1)层面的选择:处理高速信号优先选择两边是GND的层面处理
(2)处理时要优先考虑高速信号的总长
(3)高速信号Via数量的限制:高速信号允许换一次层,换层时加GND VIA如图
(4)如果高速信号在连接器有一端信号没有与GND 相邻PIN时,设计时应加GND VIA 如下图:
(5)高速信号在连接器内的走线要求:在连接器内走线要中心出线。
(6)高速信号应设置不耦合长度及本对信号的长度误差,在做长度误差时须考虑是否要加PIN DELAY
(7)高速信号处理时尽量收发走在不同层,如果空间有限,需收
发同层时,应加大收发信号的距离
(8)高速信号离12V 要有180 MIL的间距要求,距离时钟信号65mil间距。
PCB设计高速信号走线的九种规则
PCB设计高速信号走线的九种规则1.高速信号走线规则一:保持信号路径短。
信号路径越短,信号传输的延迟越小,干扰和信号衰减的可能性也就越小。
因此,要将高速信号尽可能地在PCB板上靠近彼此地布线。
2.高速信号走线规则二:保持差分信号路径等长。
差分信号是一对相位反向、幅度相等的信号,在高速信号传输中使用较多,通常用于减小干扰和提高传输性能。
为了保持差分信号的平衡,需要使两条差分信号的路径尽可能等长。
3.高速信号走线规则三:保持高速信号路径和地路径并行。
高速信号和地路径的平行布线可以减小信号引起的电磁辐射和接地电压的变化。
因此,高速信号走线时要尽可能与地路径并行,避免交叉和走线交错。
4.高速信号走线规则四:避免信号走线在验证域的边界上。
验证域是指高速信号传输的有效区域。
将信号走线远离验证域的边界,可以降低信号的反射和干扰,提高传输性能。
5.高速信号走线规则五:保持信号走线与平面垂直。
信号走线与地平面垂直布线可以减小信号与地平面的耦合,减少传输中的干扰和信号衰减。
所以,信号走线时应尽量与地平面垂直。
6.高速信号走线规则六:保持信号走线有足够的间距。
高速信号走线之间需要有足够的间距,以减小信号之间的串扰和干扰。
一般来说,走线间距应根据信号频率和走线长度进行选择。
7.高速信号走线规则七:避免锐角弯曲。
锐角弯曲会导致信号的反射和干扰,影响传输性能。
因此,在高速信号走线时应避免使用锐角弯曲,应选择圆弧或平滑的曲线。
8.高速信号走线规则八:避免信号走线在波峰和波谷处交叉。
信号走线在波峰和波谷处交叉会导致信号间的干扰和串扰,影响传输性能。
所以,在高速信号走线时要避免这种情况的发生。
9.高速信号走线规则九:使用合适的信号层。
选择合适的信号层可以改善高速信号的传输性能。
通常情况下,内层信号层是最佳选择,因为内层信号层可以提供更好的屏蔽和隔离效果。
同时,还应考虑信号层之间的层间间距和层间结构,以减小信号的耦合和干扰。
总之,在PCB设计中,遵循这些高速信号走线规则可以提高高速信号的传输性能和可靠性,减小信号的干扰和衰减。
PCB设计高速信号走线的九种规则
PCB 设计高速信号走线的九种规则
随着信号上升沿时间的减小,信号频率的提高,电子产品的EMI 问题,也来越受到电子工程师的重视。
高速PCB 设计的成功,对EMI 的贡献越来越受到重视,几乎60%的EMI 问题可以通过高速PCB 来控制解决。
规则一:高速信号走线屏蔽规则
如上图所示:在高速的PCB 设计中,时钟等关键的高速信号线,走需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都是会造成EMI 的泄漏。
建议屏蔽线,每1000mil,打孔接地。
规则二:高速信号的走线闭环规则
由于PCB 板的密度越来越高,很多PCB LAYOUT 工程师在走线的过程中,很容易出现这种失误,如下图所示
时钟信号等高速信号网络,在多层的PCB 走线的时候产生了闭环的结果,这样的闭环结果将产生环形天线,增加EMI 的辐射强度。
PCB布局布线的一些规则
PCB布局布线的一些规则一、布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
二、布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取手工优先布线、屏蔽和加大安全间距等方法。
保证信号质量。
b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。
c、有阻抗控制要求的网络应尽量按线长线宽要求布线。
(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。
在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。
PCB小常识23——高速信号PCB布线技巧
PCB小常识23——高速信号PCB布线技巧高速信号布线的时候,需要用到传输线理论,布线过程中,有些方法和传统的一般信号布线也有所不同,下面大致给出了一些高频信号线的布线技巧。
1.多层布线高速信号布线电路往往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。
合理选择层数能大幅度降低印板尺寸,能充分利用中间层来设置屏蔽,能更好地实现就近接地,能有效地降低寄生电感,能有效缩短信号的传输长度,能大幅度地降低信号间的交叉干扰等等,所有这些都对高速电路的可靠二工作有利。
有资料显示,同种材料时,四层板要比双面板的噪声低20dB。
但是,板层数越高,制造工艺越复杂,成本越高。
2.引线弯折越少越好高速电路器件管脚间的引线弯折越少越好。
高速信号布线电路布线的引线最好采用全直线,需要转折,可用45°折线或圆弧转折(如图1所示),这种要求在低频电路中仅仅用于提高钢箔的固着强度,而在高速电路中,满足这一要求却可以减少高速信号对外的发射和相互间的耦合,减少信号的辐射和反射。
图1 布线的转折方式3.引线越短越好高速信号布线电路器件管脚间的引线越短越好。
引线越长,带来的分布电感和分布电容值越大,对系统的高频信号的通过产生很多的影响,同时也会改变电路的特性阻抗,导致系统发生反射、振荡等。
这些我们要避免的问题。
4.引线层间交替越少越好高速电路器件管脚间的引线层间交替越少越好。
所谓“引线的层间交替越少越好”,是指元件连接过程中所用的过孔越少越好。
据测,一个过孔可带来约0.5pf的分布电容,导致电路的延时明显增加,减少过孔数能显着提高速度。
这个在后面的过孔的高频特性中将详细说明。
5.注意平行交叉干扰高速信号布线电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅度减少干扰。
同一·层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。
PCB设计高速走线原则
高速走线指南(Creating High-speed Traces)PADS Router 包含的高速走线功能模块可以使你对高速部分的设计做很好的规划和控制。
在该课程中·控制走线长度·蛇形走线·差分走线·导航窗口的图形回馈·等长线规则·设置元件高级规则限制:该指南需要动态走线编辑(Dynamic Route Editing),扩展规则(Extended Rules)和基本编辑功能(General Editing),高速走线(High-speed Routing) 和走线安全模块(Route Security) ,你可以通过Help>Installed Options来查看你是否有这些模块可以操作。
准备在PADS 安装路径下的Samples 目录中打开preview.pcb文件。
控制走线长度(Trace Length Monitor)走线长度控制器用来帮助你控制走线的长度。
当你将走线长度控制器打开后,走线长度信息成为走线时光标的一部分显示出来,这样可以很好的控制走线的长度。
有两种方式可以用来控制走线长度,一种是不通过走线规则来控制长度,另一种就是通过走线规则来控制。
该课程中我们将学习在走线规则打开状态下对走线长度进行控制。
打开走线规则选项>General在Option>General 中选择Length monitor或快捷键Ctrl+L打开长度控制器。
打开长度控制器1、Pointer setting 中选择Length monitor打开长度控制器。
2、在高亮对象显示区域,区分高亮目录下选择Turning off highlighting3、OK完成设置。
置走线规则在你使用长度控制器之前,要先设置一个走线规则,该课程中,你将学习在对象浏览器中的对象查看窗口(Object View) 进行走线规则设置。
1、在对象浏览器中选中Object View。
九条高速PCB信号走线规则
九条高速PCB信号走线规则高速PCB设计是现代电子产品中非常重要的一环,它直接关系到整个电子产品的性能和可靠性。
九条高速PCB信号走线规则是国际上广泛采用的一种高速PCB设计指导原则。
以下将详细介绍九条高速PCB信号走线规则。
1.严格遵循走线规则:在进行高速PCB设计时,必须遵循一定的信号走线规则。
这些规则包括信号的最小走线宽度、最小间距、最小焊盘孔径等。
同时,还要注意信号走线的长度和路径,以确保信号传输的完整性。
2.差分信号走线:差分信号是一种特殊的信号传输方式,可以大大提高信号的抗干扰能力。
在高速PCB设计中,应该使用差分信号走线来传输高频信号。
差分信号的走线规则包括信号的差分对间距、对距离和走线长度等。
3.走线层次:在高速PCB设计中,应尽量采用多层PCB板。
多层PCB 板可以提供更好的信号屏蔽和隔离效果,减小信号互相干扰的可能性。
同时,多层PCB板还可以提供更多的信号层供走线,使得信号走线更加灵活方便。
4.电源和地线走线:电源和地线是高速PCB设计中非常重要的两类信号。
在进行电源和地线走线时,应该尽量减小其阻抗,提高其电流承载能力。
电源和地线应该尽量靠近各个元件,以减小信号传输的长度和路径,提高信号的稳定性和可靠性。
5.时钟信号走线:时钟信号是高速PCB设计中的关键信号,它直接影响整个系统的工作稳定性和准确性。
时钟信号走线应该尽量短,走线路径上不要有分支和环形结构。
另外,时钟信号的走线应该避免与其他信号走线交叉,以降低信号互相干扰的可能性。
6.阻抗控制:在高速PCB设计中,阻抗是一个非常重要的参数。
信号走线的阻抗应该能够适应信号的频率和传输速率,并且保持稳定不变。
为了控制阻抗,可以通过调整信号走线的宽度、间距和PCB板的材料来实现。
7.信号层次分离:在高速PCB设计中,不同频率的信号应该尽量分离在不同的信号层上。
这样可以降低信号之间的相互干扰,提高整个系统的性能。
同时,还可以采用不同的信号层去传输不同频率的信号,以提高整个系统的布局效果。
pcb布线规则
1.一般规则1.1 PCB板上预划分数字、模拟、DAA信号布线区域。
1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3 高速数字信号走线尽量短。
1.4 敏感模拟信号走线尽量短。
1.5 合理分配电源和地。
1.6 DGND、AGND、实地分开。
1.7 电源及临界信号走线使用宽线。
1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2. 元器件放置2.1 在系统电路原理图中:a) 划分数字、模拟、DAA电路及其相关电路;b) 在各个电路中划分数字、模拟、混合数字/模拟元器件;c) 注意各IC芯片电源和信号引脚的定位。
2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3 初步划分完毕后,从Connector和Jack开始放置元器件:a) Connector和Jack周围留出插件的位置;b) 元器件周围留出电源和地走线的空间;c) Socket周围留出相应插件的位置。
2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;b) 将元器件放置在数字和模拟信号布线区域的交界处。
2.5 放置所有的模拟器件:a) 放置模拟电路元器件,包括DAA电路;b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面;c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件;d) 对於串行DTE模块,DTE EIA/TIA-232-E系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如阻流圈和电容等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9 大硬件工程师谈高速PCB 信号走线规则
规则一:高速信号走线屏蔽规则
在高速的PCB 设计中,时钟等关键的高速信号线,走线需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都会造成EMI 的泄漏。
建议屏蔽线,每1000mil,打孔接地。
图1 高速信号线
规则二:高速信号的走线闭环规则
由于PCB 板的密度越来越高,很多PCB LAYOUT 工程师在走线的过程中,很容易出现一种失误,即时钟信号等高速信号网络,在多层的PCB 走线的时候产生了闭环的结果,这样的闭环结果将产生环形天线,增加EMI 的辐射强度。
图2 闭环规则。